blob: f0226ad8a346ac677fb4c40b63e2536e42bbd2ae [file] [log] [blame]
// Copyright (c) 2021, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
// This tests exercises misaligned reads/writes on memory.
//
// The only architecture on which this is known to fail is arm32 on Android.
import 'dart:ffi';
import 'package:expect/expect.dart';
import 'package:ffi/ffi.dart';
final bool isUnalignedFloatingPointAccessSupported = switch (Abi.current()) {
// ARMv7-A in [Unaligned Access][1] specifies that VSTR and VLDR will trigger
// alignment trap if address is not word aligned irrespective of SCTLR.A
// state. Some operating systems (e.g. Linux via [`/proc/cpu/alignment`][2])
// can be configured to catch alignment trap, perform unaligned read in
// kernel and resume the execution. Android on the other hand configures
// `/proc/cpu/alignment` to always forward alignment trap to the application
// as a SIGBUS. Finally, different version of QEMU implement different
// behavior for unaligned accesses: older versions ignored ARMv7-A
// requirements while newer versions will correctly trigger alignment trap.
//
// We have decided in https://dartbug.com/45009 that we are not going to
// support unaligned accesses in FFI in a special way (e.g. it is on user
// to be aware of potential problems with unaligned accesses). Consequently
// we simply ignore double and float unaligned tests in configurations
// where they cause alignment traps (irrespective of whether OS will fixup
// and hide the trap from the user or not).
//
// [1]: https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/Application-Level-Memory-Model/Alignment-support/Unaligned-data-access?lang=en
// [2]: https://docs.kernel.org/arch/arm/mem_alignment.html
Abi.androidArm || Abi.linuxArm || Abi.iosArm => false,
_ => true,
};
void main() {
print("hello");
testUnalignedInt16(); //# 01: ok
testUnalignedInt32(); //# 02: ok
testUnalignedInt64(); //# 03: ok
if (isUnalignedFloatingPointAccessSupported) {
testUnalignedFloat(); //# 04: ok
testUnalignedDouble(); //# 05: ok
}
_freeAll();
}
void testUnalignedInt16() {
final pointer = _allocateUnaligned<Int16>();
pointer.value = 20;
Expect.equals(20, pointer.value);
}
void testUnalignedInt32() {
final pointer = _allocateUnaligned<Int32>();
pointer.value = 20;
Expect.equals(20, pointer.value);
}
void testUnalignedInt64() {
final pointer = _allocateUnaligned<Int64>();
pointer.value = 20;
Expect.equals(20, pointer.value);
}
void testUnalignedFloat() {
final pointer = _allocateUnaligned<Float>();
pointer.value = 20.0;
Expect.approxEquals(20.0, pointer.value);
}
void testUnalignedDouble() {
final pointer = _allocateUnaligned<Double>();
pointer.value = 20.0;
Expect.equals(20.0, pointer.value);
}
final Set<Pointer> _pool = {};
void _freeAll() {
for (final pointer in _pool) {
calloc.free(pointer);
}
}
/// Up to `size<T>() == 8`.
Pointer<T> _allocateUnaligned<T extends NativeType>() {
final pointer = calloc<Int8>(16);
_pool.add(pointer);
final misaligned = pointer.elementAt(1).cast<T>();
Expect.equals(1, misaligned.address % 2);
return misaligned;
}