|  | // Copyright (c) 2019, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  | // | 
|  | // The intrinsic code below is executed before a method has built its frame. | 
|  | // The return address is on the stack and the arguments below it. | 
|  | // Registers EDX (arguments descriptor) and ECX (function) must be preserved. | 
|  | // Each intrinsification method returns true if the corresponding | 
|  | // Dart method was intrinsified. | 
|  |  | 
|  | #include "vm/globals.h"  // Needed here to get TARGET_ARCH_IA32. | 
|  | #if defined(TARGET_ARCH_IA32) | 
|  |  | 
|  | #define SHOULD_NOT_INCLUDE_RUNTIME | 
|  |  | 
|  | #include "vm/class_id.h" | 
|  | #include "vm/compiler/asm_intrinsifier.h" | 
|  | #include "vm/compiler/assembler/assembler.h" | 
|  |  | 
|  | namespace dart { | 
|  | namespace compiler { | 
|  |  | 
|  | // When entering intrinsics code: | 
|  | // ECX: IC Data | 
|  | // EDX: Arguments descriptor | 
|  | // TOS: Return address | 
|  | // The ECX, EDX registers can be destroyed only if there is no slow-path, i.e. | 
|  | // if the intrinsified method always executes a return. | 
|  | // The EBP register should not be modified, because it is used by the profiler. | 
|  | // The THR register (see constants_ia32.h) must be preserved. | 
|  |  | 
|  | #define __ assembler-> | 
|  |  | 
|  | // Allocate a GrowableObjectArray:: using the backing array specified. | 
|  | // On stack: type argument (+2), data (+1), return-address (+0). | 
|  | void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // This snippet of inlined code uses the following registers: | 
|  | // EAX, EBX | 
|  | // and the newly allocated object is returned in EAX. | 
|  | const intptr_t kTypeArgumentsOffset = 2 * target::kWordSize; | 
|  |  | 
|  | const intptr_t kArrayOffset = 1 * target::kWordSize; | 
|  |  | 
|  | // Try allocating in new space. | 
|  | const Class& cls = GrowableObjectArrayClass(); | 
|  | __ TryAllocate(cls, normal_ir_body, Assembler::kNearJump, EAX, EBX); | 
|  |  | 
|  | // Store backing array object in growable array object. | 
|  | __ movl(EBX, Address(ESP, kArrayOffset));  // data argument. | 
|  | // EAX is new, no barrier needed. | 
|  | __ StoreIntoObjectNoBarrier( | 
|  | EAX, FieldAddress(EAX, target::GrowableObjectArray::data_offset()), EBX); | 
|  |  | 
|  | // EAX: new growable array object start as a tagged pointer. | 
|  | // Store the type argument field in the growable array object. | 
|  | __ movl(EBX, Address(ESP, kTypeArgumentsOffset));  // type argument. | 
|  | __ StoreIntoObjectNoBarrier( | 
|  | EAX, | 
|  | FieldAddress(EAX, target::GrowableObjectArray::type_arguments_offset()), | 
|  | EBX); | 
|  |  | 
|  | __ ZeroInitSmiField( | 
|  | FieldAddress(EAX, target::GrowableObjectArray::length_offset())); | 
|  | __ ret();  // returns the newly allocated object in EAX. | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | // Tests if two top most arguments are smis, jumps to label not_smi if not. | 
|  | // Topmost argument is in EAX. | 
|  | static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ movl(EBX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ orl(EBX, EAX); | 
|  | __ testl(EBX, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, not_smi, Assembler::kNearJump); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { | 
|  | ASSERT(kSmiTagShift == 1); | 
|  | ASSERT(kSmiTag == 0); | 
|  | Label overflow; | 
|  | TestBothArgumentsSmis(assembler, normal_ir_body); | 
|  | // Shift value is in EAX. Compare with tagged Smi. | 
|  | __ cmpl(EAX, Immediate(target::ToRawSmi(target::kSmiBits))); | 
|  | __ j(ABOVE_EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  |  | 
|  | __ SmiUntag(EAX); | 
|  | __ movl(ECX, EAX);  // Shift amount must be in ECX. | 
|  | __ movl(EAX, Address(ESP, +2 * target::kWordSize));  // Value. | 
|  |  | 
|  | // Overflow test - all the shifted-out bits must be same as the sign bit. | 
|  | __ movl(EBX, EAX); | 
|  | __ shll(EAX, ECX); | 
|  | __ sarl(EAX, ECX); | 
|  | __ cmpl(EAX, EBX); | 
|  | __ j(NOT_EQUAL, &overflow, Assembler::kNearJump); | 
|  |  | 
|  | __ shll(EAX, ECX);  // Shift for result now we know there is no overflow. | 
|  |  | 
|  | // EAX is a correctly tagged Smi. | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&overflow); | 
|  | // Arguments are Smi but the shift produced an overflow to Mint. | 
|  | __ cmpl(EBX, Immediate(0)); | 
|  | // TODO(srdjan): Implement negative values, for now fall through. | 
|  | __ j(LESS, normal_ir_body, Assembler::kNearJump); | 
|  | __ SmiUntag(EBX); | 
|  | __ movl(EAX, EBX); | 
|  | __ shll(EBX, ECX); | 
|  | __ xorl(EDI, EDI); | 
|  | __ shldl(EDI, EAX, ECX); | 
|  | // Result in EDI (high) and EBX (low). | 
|  | const Class& mint_class = MintClass(); | 
|  | __ TryAllocate(mint_class, normal_ir_body, Assembler::kNearJump, | 
|  | EAX,   // Result register. | 
|  | ECX);  // temp | 
|  | // EBX and EDI are not objects but integer values. | 
|  | __ movl(FieldAddress(EAX, target::Mint::value_offset()), EBX); | 
|  | __ movl(FieldAddress(EAX, target::Mint::value_offset() + target::kWordSize), | 
|  | EDI); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | static void Push64SmiOrMint(Assembler* assembler, | 
|  | Register reg, | 
|  | Register tmp, | 
|  | Label* not_smi_or_mint) { | 
|  | Label not_smi, done; | 
|  | __ testl(reg, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, ¬_smi, Assembler::kNearJump); | 
|  | __ SmiUntag(reg); | 
|  | // Sign extend to 64 bit | 
|  | __ movl(tmp, reg); | 
|  | __ sarl(tmp, Immediate(31)); | 
|  | __ pushl(tmp); | 
|  | __ pushl(reg); | 
|  | __ jmp(&done); | 
|  | __ Bind(¬_smi); | 
|  | __ CompareClassId(reg, kMintCid, tmp); | 
|  | __ j(NOT_EQUAL, not_smi_or_mint); | 
|  | // Mint. | 
|  | __ pushl(FieldAddress(reg, target::Mint::value_offset() + target::kWordSize)); | 
|  | __ pushl(FieldAddress(reg, target::Mint::value_offset())); | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | static void CompareIntegers(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | Condition true_condition) { | 
|  | Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; | 
|  | TestBothArgumentsSmis(assembler, &try_mint_smi); | 
|  | // EAX contains the right argument. | 
|  | __ cmpl(Address(ESP, +2 * target::kWordSize), EAX); | 
|  | __ j(true_condition, &is_true, Assembler::kNearJump); | 
|  | __ Bind(&is_false); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | __ Bind(&is_true); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | // 64-bit comparison | 
|  | Condition hi_true_cond, hi_false_cond, lo_false_cond; | 
|  | switch (true_condition) { | 
|  | case LESS: | 
|  | case LESS_EQUAL: | 
|  | hi_true_cond = LESS; | 
|  | hi_false_cond = GREATER; | 
|  | lo_false_cond = (true_condition == LESS) ? ABOVE_EQUAL : ABOVE; | 
|  | break; | 
|  | case GREATER: | 
|  | case GREATER_EQUAL: | 
|  | hi_true_cond = GREATER; | 
|  | hi_false_cond = LESS; | 
|  | lo_false_cond = (true_condition == GREATER) ? BELOW_EQUAL : BELOW; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | hi_true_cond = hi_false_cond = lo_false_cond = OVERFLOW; | 
|  | } | 
|  | __ Bind(&try_mint_smi); | 
|  | // Note that EDX and ECX must be preserved in case we fall through to main | 
|  | // method. | 
|  | // EAX contains the right argument. | 
|  | __ movl(EBX, Address(ESP, +2 * target::kWordSize));  // Left argument. | 
|  | // Push left as 64 bit integer. | 
|  | Push64SmiOrMint(assembler, EBX, EDI, normal_ir_body); | 
|  | // Push right as 64 bit integer. | 
|  | Push64SmiOrMint(assembler, EAX, EDI, &drop_two_fall_through); | 
|  | __ popl(EBX);       // Right.LO. | 
|  | __ popl(ECX);       // Right.HI. | 
|  | __ popl(EAX);       // Left.LO. | 
|  | __ popl(EDX);       // Left.HI. | 
|  | __ cmpl(EDX, ECX);  // cmpl left.HI, right.HI. | 
|  | __ j(hi_false_cond, &is_false, Assembler::kNearJump); | 
|  | __ j(hi_true_cond, &is_true, Assembler::kNearJump); | 
|  | __ cmpl(EAX, EBX);  // cmpl left.LO, right.LO. | 
|  | __ j(lo_false_cond, &is_false, Assembler::kNearJump); | 
|  | // Else is true. | 
|  | __ jmp(&is_true); | 
|  |  | 
|  | __ Bind(&drop_two_fall_through); | 
|  | __ Drop(2); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareIntegers(assembler, normal_ir_body, LESS); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareIntegers(assembler, normal_ir_body, GREATER); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareIntegers(assembler, normal_ir_body, LESS_EQUAL); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareIntegers(assembler, normal_ir_body, GREATER_EQUAL); | 
|  | } | 
|  |  | 
|  | // This is called for Smi and Mint receivers. The right argument | 
|  | // can be Smi, Mint or double. | 
|  | void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label true_label, check_for_mint; | 
|  | // For integer receiver '===' check first. | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ cmpl(EAX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ j(EQUAL, &true_label, Assembler::kNearJump); | 
|  | __ movl(EBX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ orl(EAX, EBX); | 
|  | __ testl(EAX, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, &check_for_mint, Assembler::kNearJump); | 
|  | // Both arguments are smi, '===' is good enough. | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | __ Bind(&true_label); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | // At least one of the arguments was not Smi. | 
|  | Label receiver_not_smi; | 
|  | __ Bind(&check_for_mint); | 
|  | __ movl(EAX, Address(ESP, +2 * target::kWordSize));  // Receiver. | 
|  | __ testl(EAX, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, &receiver_not_smi); | 
|  |  | 
|  | // Left (receiver) is Smi, return false if right is not Double. | 
|  | // Note that an instance of Mint never contains a value that can be | 
|  | // represented by Smi. | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize));  // Right argument. | 
|  | __ CompareClassId(EAX, kDoubleCid, EDI); | 
|  | __ j(EQUAL, normal_ir_body); | 
|  | __ LoadObject(EAX, | 
|  | CastHandle<Object>(FalseObject()));  // Smi == Mint -> false. | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&receiver_not_smi); | 
|  | // EAX:: receiver. | 
|  | __ CompareClassId(EAX, kMintCid, EDI); | 
|  | __ j(NOT_EQUAL, normal_ir_body); | 
|  | // Receiver is Mint, return false if right is Smi. | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize));  // Right argument. | 
|  | __ testl(EAX, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, normal_ir_body); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | // TODO(srdjan): Implement Mint == Mint comparison. | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_equal(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Integer_equalToInteger(assembler, normal_ir_body); | 
|  | } | 
|  |  | 
|  | // Argument is Smi (receiver). | 
|  | void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | ASSERT(kSmiTagShift == 1); | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize));  // Receiver. | 
|  | // XOR with sign bit to complement bits if value is negative. | 
|  | __ movl(ECX, EAX); | 
|  | __ sarl(ECX, Immediate(31));  // All 0 or all 1. | 
|  | __ xorl(EAX, ECX); | 
|  | // BSR does not write the destination register if source is zero.  Put a 1 in | 
|  | // the Smi tag bit to ensure BSR writes to destination register. | 
|  | __ orl(EAX, Immediate(kSmiTagMask)); | 
|  | __ bsrl(EAX, EAX); | 
|  | __ SmiTag(EAX); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { | 
|  | // static void _lsh(Uint32List x_digits, int x_used, int n, | 
|  | //                  Uint32List r_digits) | 
|  |  | 
|  | // Preserve THR to free ESI. | 
|  | __ pushl(THR); | 
|  | ASSERT(THR == ESI); | 
|  |  | 
|  | __ movl(EDI, Address(ESP, 5 * target::kWordSize));  // x_digits | 
|  | __ movl(ECX, Address(ESP, 3 * target::kWordSize));  // n is Smi | 
|  | __ SmiUntag(ECX); | 
|  | __ movl(EBX, Address(ESP, 2 * target::kWordSize));  // r_digits | 
|  | __ movl(ESI, ECX); | 
|  | __ sarl(ESI, Immediate(5));  // ESI = n ~/ _DIGIT_BITS. | 
|  | __ leal(EBX, | 
|  | FieldAddress(EBX, ESI, TIMES_4, target::TypedData::data_offset())); | 
|  | __ movl(ESI, Address(ESP, 4 * target::kWordSize));  // x_used > 0, Smi. | 
|  | __ SmiUntag(ESI); | 
|  | __ decl(ESI); | 
|  | __ xorl(EAX, EAX);  // EAX = 0. | 
|  | __ movl(EDX, | 
|  | FieldAddress(EDI, ESI, TIMES_4, target::TypedData::data_offset())); | 
|  | __ shldl(EAX, EDX, ECX); | 
|  | __ movl(Address(EBX, ESI, TIMES_4, kBytesPerBigIntDigit), EAX); | 
|  | Label last; | 
|  | __ cmpl(ESI, Immediate(0)); | 
|  | __ j(EQUAL, &last, Assembler::kNearJump); | 
|  | Label loop; | 
|  | __ Bind(&loop); | 
|  | __ movl(EAX, EDX); | 
|  | __ movl(EDX, FieldAddress( | 
|  | EDI, ESI, TIMES_4, | 
|  | target::TypedData::data_offset() - kBytesPerBigIntDigit)); | 
|  | __ shldl(EAX, EDX, ECX); | 
|  | __ movl(Address(EBX, ESI, TIMES_4, 0), EAX); | 
|  | __ decl(ESI); | 
|  | __ j(NOT_ZERO, &loop, Assembler::kNearJump); | 
|  | __ Bind(&last); | 
|  | __ shldl(EDX, ESI, ECX);  // ESI == 0. | 
|  | __ movl(Address(EBX, 0), EDX); | 
|  |  | 
|  | // Restore THR and return. | 
|  | __ popl(THR); | 
|  | __ LoadObject(EAX, NullObject()); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { | 
|  | // static void _rsh(Uint32List x_digits, int x_used, int n, | 
|  | //                  Uint32List r_digits) | 
|  |  | 
|  | // Preserve THR to free ESI. | 
|  | __ pushl(THR); | 
|  | ASSERT(THR == ESI); | 
|  |  | 
|  | __ movl(EDI, Address(ESP, 5 * target::kWordSize));  // x_digits | 
|  | __ movl(ECX, Address(ESP, 3 * target::kWordSize));  // n is Smi | 
|  | __ SmiUntag(ECX); | 
|  | __ movl(EBX, Address(ESP, 2 * target::kWordSize));  // r_digits | 
|  | __ movl(EDX, ECX); | 
|  | __ sarl(EDX, Immediate(5));                         // EDX = n ~/ _DIGIT_BITS. | 
|  | __ movl(ESI, Address(ESP, 4 * target::kWordSize));  // x_used > 0, Smi. | 
|  | __ SmiUntag(ESI); | 
|  | __ decl(ESI); | 
|  | // EDI = &x_digits[x_used - 1]. | 
|  | __ leal(EDI, | 
|  | FieldAddress(EDI, ESI, TIMES_4, target::TypedData::data_offset())); | 
|  | __ subl(ESI, EDX); | 
|  | // EBX = &r_digits[x_used - 1 - (n ~/ 32)]. | 
|  | __ leal(EBX, | 
|  | FieldAddress(EBX, ESI, TIMES_4, target::TypedData::data_offset())); | 
|  | __ negl(ESI); | 
|  | __ movl(EDX, Address(EDI, ESI, TIMES_4, 0)); | 
|  | Label last; | 
|  | __ cmpl(ESI, Immediate(0)); | 
|  | __ j(EQUAL, &last, Assembler::kNearJump); | 
|  | Label loop; | 
|  | __ Bind(&loop); | 
|  | __ movl(EAX, EDX); | 
|  | __ movl(EDX, Address(EDI, ESI, TIMES_4, kBytesPerBigIntDigit)); | 
|  | __ shrdl(EAX, EDX, ECX); | 
|  | __ movl(Address(EBX, ESI, TIMES_4, 0), EAX); | 
|  | __ incl(ESI); | 
|  | __ j(NOT_ZERO, &loop, Assembler::kNearJump); | 
|  | __ Bind(&last); | 
|  | __ shrdl(EDX, ESI, ECX);  // ESI == 0. | 
|  | __ movl(Address(EBX, 0), EDX); | 
|  |  | 
|  | // Restore THR and return. | 
|  | __ popl(THR); | 
|  | __ LoadObject(EAX, NullObject()); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // static void _absAdd(Uint32List digits, int used, | 
|  | //                     Uint32List a_digits, int a_used, | 
|  | //                     Uint32List r_digits) | 
|  |  | 
|  | // Preserve THR to free ESI. | 
|  | __ pushl(THR); | 
|  | ASSERT(THR == ESI); | 
|  |  | 
|  | __ movl(EDI, Address(ESP, 6 * target::kWordSize));  // digits | 
|  | __ movl(EAX, Address(ESP, 5 * target::kWordSize));  // used is Smi | 
|  | __ SmiUntag(EAX);                                   // used > 0. | 
|  | __ movl(ESI, Address(ESP, 4 * target::kWordSize));  // a_digits | 
|  | __ movl(ECX, Address(ESP, 3 * target::kWordSize));  // a_used is Smi | 
|  | __ SmiUntag(ECX);                                   // a_used > 0. | 
|  | __ movl(EBX, Address(ESP, 2 * target::kWordSize));  // r_digits | 
|  |  | 
|  | // Precompute 'used - a_used' now so that carry flag is not lost later. | 
|  | __ subl(EAX, ECX); | 
|  | __ incl(EAX);  // To account for the extra test between loops. | 
|  | __ pushl(EAX); | 
|  |  | 
|  | __ xorl(EDX, EDX);  // EDX = 0, carry flag = 0. | 
|  | Label add_loop; | 
|  | __ Bind(&add_loop); | 
|  | // Loop a_used times, ECX = a_used, ECX > 0. | 
|  | __ movl(EAX, | 
|  | FieldAddress(EDI, EDX, TIMES_4, target::TypedData::data_offset())); | 
|  | __ adcl(EAX, | 
|  | FieldAddress(ESI, EDX, TIMES_4, target::TypedData::data_offset())); | 
|  | __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), | 
|  | EAX); | 
|  | __ incl(EDX);  // Does not affect carry flag. | 
|  | __ decl(ECX);  // Does not affect carry flag. | 
|  | __ j(NOT_ZERO, &add_loop, Assembler::kNearJump); | 
|  |  | 
|  | Label last_carry; | 
|  | __ popl(ECX); | 
|  | __ decl(ECX);                                   // Does not affect carry flag. | 
|  | __ j(ZERO, &last_carry, Assembler::kNearJump);  // If used - a_used == 0. | 
|  |  | 
|  | Label carry_loop; | 
|  | __ Bind(&carry_loop); | 
|  | // Loop used - a_used times, ECX = used - a_used, ECX > 0. | 
|  | __ movl(EAX, | 
|  | FieldAddress(EDI, EDX, TIMES_4, target::TypedData::data_offset())); | 
|  | __ adcl(EAX, Immediate(0)); | 
|  | __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), | 
|  | EAX); | 
|  | __ incl(EDX);  // Does not affect carry flag. | 
|  | __ decl(ECX);  // Does not affect carry flag. | 
|  | __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&last_carry); | 
|  | __ movl(EAX, Immediate(0)); | 
|  | __ adcl(EAX, Immediate(0)); | 
|  | __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), | 
|  | EAX); | 
|  |  | 
|  | // Restore THR and return. | 
|  | __ popl(THR); | 
|  | __ LoadObject(EAX, NullObject()); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // static void _absSub(Uint32List digits, int used, | 
|  | //                     Uint32List a_digits, int a_used, | 
|  | //                     Uint32List r_digits) | 
|  |  | 
|  | // Preserve THR to free ESI. | 
|  | __ pushl(THR); | 
|  | ASSERT(THR == ESI); | 
|  |  | 
|  | __ movl(EDI, Address(ESP, 6 * target::kWordSize));  // digits | 
|  | __ movl(EAX, Address(ESP, 5 * target::kWordSize));  // used is Smi | 
|  | __ SmiUntag(EAX);                                   // used > 0. | 
|  | __ movl(ESI, Address(ESP, 4 * target::kWordSize));  // a_digits | 
|  | __ movl(ECX, Address(ESP, 3 * target::kWordSize));  // a_used is Smi | 
|  | __ SmiUntag(ECX);                                   // a_used > 0. | 
|  | __ movl(EBX, Address(ESP, 2 * target::kWordSize));  // r_digits | 
|  |  | 
|  | // Precompute 'used - a_used' now so that carry flag is not lost later. | 
|  | __ subl(EAX, ECX); | 
|  | __ incl(EAX);  // To account for the extra test between loops. | 
|  | __ pushl(EAX); | 
|  |  | 
|  | __ xorl(EDX, EDX);  // EDX = 0, carry flag = 0. | 
|  | Label sub_loop; | 
|  | __ Bind(&sub_loop); | 
|  | // Loop a_used times, ECX = a_used, ECX > 0. | 
|  | __ movl(EAX, | 
|  | FieldAddress(EDI, EDX, TIMES_4, target::TypedData::data_offset())); | 
|  | __ sbbl(EAX, | 
|  | FieldAddress(ESI, EDX, TIMES_4, target::TypedData::data_offset())); | 
|  | __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), | 
|  | EAX); | 
|  | __ incl(EDX);  // Does not affect carry flag. | 
|  | __ decl(ECX);  // Does not affect carry flag. | 
|  | __ j(NOT_ZERO, &sub_loop, Assembler::kNearJump); | 
|  |  | 
|  | Label done; | 
|  | __ popl(ECX); | 
|  | __ decl(ECX);                             // Does not affect carry flag. | 
|  | __ j(ZERO, &done, Assembler::kNearJump);  // If used - a_used == 0. | 
|  |  | 
|  | Label carry_loop; | 
|  | __ Bind(&carry_loop); | 
|  | // Loop used - a_used times, ECX = used - a_used, ECX > 0. | 
|  | __ movl(EAX, | 
|  | FieldAddress(EDI, EDX, TIMES_4, target::TypedData::data_offset())); | 
|  | __ sbbl(EAX, Immediate(0)); | 
|  | __ movl(FieldAddress(EBX, EDX, TIMES_4, target::TypedData::data_offset()), | 
|  | EAX); | 
|  | __ incl(EDX);  // Does not affect carry flag. | 
|  | __ decl(ECX);  // Does not affect carry flag. | 
|  | __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&done); | 
|  | // Restore THR and return. | 
|  | __ popl(THR); | 
|  | __ LoadObject(EAX, NullObject()); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Pseudo code: | 
|  | // static int _mulAdd(Uint32List x_digits, int xi, | 
|  | //                    Uint32List m_digits, int i, | 
|  | //                    Uint32List a_digits, int j, int n) { | 
|  | //   uint32_t x = x_digits[xi >> 1];  // xi is Smi. | 
|  | //   if (x == 0 || n == 0) { | 
|  | //     return 1; | 
|  | //   } | 
|  | //   uint32_t* mip = &m_digits[i >> 1];  // i is Smi. | 
|  | //   uint32_t* ajp = &a_digits[j >> 1];  // j is Smi. | 
|  | //   uint32_t c = 0; | 
|  | //   SmiUntag(n); | 
|  | //   do { | 
|  | //     uint32_t mi = *mip++; | 
|  | //     uint32_t aj = *ajp; | 
|  | //     uint64_t t = x*mi + aj + c;  // 32-bit * 32-bit -> 64-bit. | 
|  | //     *ajp++ = low32(t); | 
|  | //     c = high32(t); | 
|  | //   } while (--n > 0); | 
|  | //   while (c != 0) { | 
|  | //     uint64_t t = *ajp + c; | 
|  | //     *ajp++ = low32(t); | 
|  | //     c = high32(t);  // c == 0 or 1. | 
|  | //   } | 
|  | //   return 1; | 
|  | // } | 
|  |  | 
|  | Label no_op; | 
|  | // EBX = x, no_op if x == 0 | 
|  | __ movl(ECX, Address(ESP, 7 * target::kWordSize));  // x_digits | 
|  | __ movl(EAX, Address(ESP, 6 * target::kWordSize));  // xi is Smi | 
|  | __ movl(EBX, | 
|  | FieldAddress(ECX, EAX, TIMES_2, target::TypedData::data_offset())); | 
|  | __ testl(EBX, EBX); | 
|  | __ j(ZERO, &no_op, Assembler::kNearJump); | 
|  |  | 
|  | // EDX = SmiUntag(n), no_op if n == 0 | 
|  | __ movl(EDX, Address(ESP, 1 * target::kWordSize)); | 
|  | __ SmiUntag(EDX); | 
|  | __ j(ZERO, &no_op, Assembler::kNearJump); | 
|  |  | 
|  | // Preserve THR to free ESI. | 
|  | __ pushl(THR); | 
|  | ASSERT(THR == ESI); | 
|  |  | 
|  | // EDI = mip = &m_digits[i >> 1] | 
|  | __ movl(EDI, Address(ESP, 6 * target::kWordSize));  // m_digits | 
|  | __ movl(EAX, Address(ESP, 5 * target::kWordSize));  // i is Smi | 
|  | __ leal(EDI, | 
|  | FieldAddress(EDI, EAX, TIMES_2, target::TypedData::data_offset())); | 
|  |  | 
|  | // ESI = ajp = &a_digits[j >> 1] | 
|  | __ movl(ESI, Address(ESP, 4 * target::kWordSize));  // a_digits | 
|  | __ movl(EAX, Address(ESP, 3 * target::kWordSize));  // j is Smi | 
|  | __ leal(ESI, | 
|  | FieldAddress(ESI, EAX, TIMES_2, target::TypedData::data_offset())); | 
|  |  | 
|  | // Save n | 
|  | __ pushl(EDX); | 
|  | Address n_addr = Address(ESP, 0 * target::kWordSize); | 
|  |  | 
|  | // ECX = c = 0 | 
|  | __ xorl(ECX, ECX); | 
|  |  | 
|  | Label muladd_loop; | 
|  | __ Bind(&muladd_loop); | 
|  | // x:   EBX | 
|  | // mip: EDI | 
|  | // ajp: ESI | 
|  | // c:   ECX | 
|  | // t:   EDX:EAX (not live at loop entry) | 
|  | // n:   ESP[0] | 
|  |  | 
|  | // uint32_t mi = *mip++ | 
|  | __ movl(EAX, Address(EDI, 0)); | 
|  | __ addl(EDI, Immediate(kBytesPerBigIntDigit)); | 
|  |  | 
|  | // uint64_t t = x*mi | 
|  | __ mull(EBX);       // t = EDX:EAX = EAX * EBX | 
|  | __ addl(EAX, ECX);  // t += c | 
|  | __ adcl(EDX, Immediate(0)); | 
|  |  | 
|  | // uint32_t aj = *ajp; t += aj | 
|  | __ addl(EAX, Address(ESI, 0)); | 
|  | __ adcl(EDX, Immediate(0)); | 
|  |  | 
|  | // *ajp++ = low32(t) | 
|  | __ movl(Address(ESI, 0), EAX); | 
|  | __ addl(ESI, Immediate(kBytesPerBigIntDigit)); | 
|  |  | 
|  | // c = high32(t) | 
|  | __ movl(ECX, EDX); | 
|  |  | 
|  | // while (--n > 0) | 
|  | __ decl(n_addr);  // --n | 
|  | __ j(NOT_ZERO, &muladd_loop, Assembler::kNearJump); | 
|  |  | 
|  | Label done; | 
|  | __ testl(ECX, ECX); | 
|  | __ j(ZERO, &done, Assembler::kNearJump); | 
|  |  | 
|  | // *ajp += c | 
|  | __ addl(Address(ESI, 0), ECX); | 
|  | __ j(NOT_CARRY, &done, Assembler::kNearJump); | 
|  |  | 
|  | Label propagate_carry_loop; | 
|  | __ Bind(&propagate_carry_loop); | 
|  | __ addl(ESI, Immediate(kBytesPerBigIntDigit)); | 
|  | __ incl(Address(ESI, 0));  // c == 0 or 1 | 
|  | __ j(CARRY, &propagate_carry_loop, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&done); | 
|  | __ Drop(1);  // n | 
|  | // Restore THR and return. | 
|  | __ popl(THR); | 
|  |  | 
|  | __ Bind(&no_op); | 
|  | __ movl(EAX, Immediate(target::ToRawSmi(1)));  // One digit processed. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Pseudo code: | 
|  | // static int _sqrAdd(Uint32List x_digits, int i, | 
|  | //                    Uint32List a_digits, int used) { | 
|  | //   uint32_t* xip = &x_digits[i >> 1];  // i is Smi. | 
|  | //   uint32_t x = *xip++; | 
|  | //   if (x == 0) return 1; | 
|  | //   uint32_t* ajp = &a_digits[i];  // j == 2*i, i is Smi. | 
|  | //   uint32_t aj = *ajp; | 
|  | //   uint64_t t = x*x + aj; | 
|  | //   *ajp++ = low32(t); | 
|  | //   uint64_t c = high32(t); | 
|  | //   int n = ((used - i) >> 1) - 1;  // used and i are Smi. | 
|  | //   while (--n >= 0) { | 
|  | //     uint32_t xi = *xip++; | 
|  | //     uint32_t aj = *ajp; | 
|  | //     uint96_t t = 2*x*xi + aj + c;  // 2-bit * 32-bit * 32-bit -> 65-bit. | 
|  | //     *ajp++ = low32(t); | 
|  | //     c = high64(t);  // 33-bit. | 
|  | //   } | 
|  | //   uint32_t aj = *ajp; | 
|  | //   uint64_t t = aj + c;  // 32-bit + 33-bit -> 34-bit. | 
|  | //   *ajp++ = low32(t); | 
|  | //   *ajp = high32(t); | 
|  | //   return 1; | 
|  | // } | 
|  |  | 
|  | // EDI = xip = &x_digits[i >> 1] | 
|  | __ movl(EDI, Address(ESP, 4 * target::kWordSize));  // x_digits | 
|  | __ movl(EAX, Address(ESP, 3 * target::kWordSize));  // i is Smi | 
|  | __ leal(EDI, | 
|  | FieldAddress(EDI, EAX, TIMES_2, target::TypedData::data_offset())); | 
|  |  | 
|  | // EBX = x = *xip++, return if x == 0 | 
|  | Label x_zero; | 
|  | __ movl(EBX, Address(EDI, 0)); | 
|  | __ cmpl(EBX, Immediate(0)); | 
|  | __ j(EQUAL, &x_zero, Assembler::kNearJump); | 
|  | __ addl(EDI, Immediate(kBytesPerBigIntDigit)); | 
|  |  | 
|  | // Preserve THR to free ESI. | 
|  | __ pushl(THR); | 
|  | ASSERT(THR == ESI); | 
|  |  | 
|  | // ESI = ajp = &a_digits[i] | 
|  | __ movl(ESI, Address(ESP, 3 * target::kWordSize));  // a_digits | 
|  | __ leal(ESI, | 
|  | FieldAddress(ESI, EAX, TIMES_4, target::TypedData::data_offset())); | 
|  |  | 
|  | // EDX:EAX = t = x*x + *ajp | 
|  | __ movl(EAX, EBX); | 
|  | __ mull(EBX); | 
|  | __ addl(EAX, Address(ESI, 0)); | 
|  | __ adcl(EDX, Immediate(0)); | 
|  |  | 
|  | // *ajp++ = low32(t) | 
|  | __ movl(Address(ESI, 0), EAX); | 
|  | __ addl(ESI, Immediate(kBytesPerBigIntDigit)); | 
|  |  | 
|  | // int n = used - i - 1 | 
|  | __ movl(EAX, Address(ESP, 2 * target::kWordSize));  // used is Smi | 
|  | __ subl(EAX, Address(ESP, 4 * target::kWordSize));  // i is Smi | 
|  | __ SmiUntag(EAX); | 
|  | __ decl(EAX); | 
|  | __ pushl(EAX);  // Save n on stack. | 
|  |  | 
|  | // uint64_t c = high32(t) | 
|  | __ pushl(Immediate(0));  // push high32(c) == 0 | 
|  | __ pushl(EDX);           // push low32(c) == high32(t) | 
|  |  | 
|  | Address n_addr = Address(ESP, 2 * target::kWordSize); | 
|  | Address ch_addr = Address(ESP, 1 * target::kWordSize); | 
|  | Address cl_addr = Address(ESP, 0 * target::kWordSize); | 
|  |  | 
|  | Label loop, done; | 
|  | __ Bind(&loop); | 
|  | // x:   EBX | 
|  | // xip: EDI | 
|  | // ajp: ESI | 
|  | // c:   ESP[1]:ESP[0] | 
|  | // t:   ECX:EDX:EAX (not live at loop entry) | 
|  | // n:   ESP[2] | 
|  |  | 
|  | // while (--n >= 0) | 
|  | __ decl(Address(ESP, 2 * target::kWordSize));  // --n | 
|  | __ j(NEGATIVE, &done, Assembler::kNearJump); | 
|  |  | 
|  | // uint32_t xi = *xip++ | 
|  | __ movl(EAX, Address(EDI, 0)); | 
|  | __ addl(EDI, Immediate(kBytesPerBigIntDigit)); | 
|  |  | 
|  | // uint96_t t = ECX:EDX:EAX = 2*x*xi + aj + c | 
|  | __ mull(EBX);       // EDX:EAX = EAX * EBX | 
|  | __ xorl(ECX, ECX);  // ECX = 0 | 
|  | __ shldl(ECX, EDX, Immediate(1)); | 
|  | __ shldl(EDX, EAX, Immediate(1)); | 
|  | __ shll(EAX, Immediate(1));     // ECX:EDX:EAX <<= 1 | 
|  | __ addl(EAX, Address(ESI, 0));  // t += aj | 
|  | __ adcl(EDX, Immediate(0)); | 
|  | __ adcl(ECX, Immediate(0)); | 
|  | __ addl(EAX, cl_addr);  // t += low32(c) | 
|  | __ adcl(EDX, ch_addr);  // t += high32(c) << 32 | 
|  | __ adcl(ECX, Immediate(0)); | 
|  |  | 
|  | // *ajp++ = low32(t) | 
|  | __ movl(Address(ESI, 0), EAX); | 
|  | __ addl(ESI, Immediate(kBytesPerBigIntDigit)); | 
|  |  | 
|  | // c = high64(t) | 
|  | __ movl(cl_addr, EDX); | 
|  | __ movl(ch_addr, ECX); | 
|  |  | 
|  | __ jmp(&loop, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&done); | 
|  | // uint64_t t = aj + c | 
|  | __ movl(EAX, cl_addr);  // t = c | 
|  | __ movl(EDX, ch_addr); | 
|  | __ addl(EAX, Address(ESI, 0));  // t += *ajp | 
|  | __ adcl(EDX, Immediate(0)); | 
|  |  | 
|  | // *ajp++ = low32(t) | 
|  | // *ajp = high32(t) | 
|  | __ movl(Address(ESI, 0), EAX); | 
|  | __ movl(Address(ESI, kBytesPerBigIntDigit), EDX); | 
|  |  | 
|  | // Restore THR and return. | 
|  | __ Drop(3); | 
|  | __ popl(THR); | 
|  | __ Bind(&x_zero); | 
|  | __ movl(EAX, Immediate(target::ToRawSmi(1)));  // One digit processed. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Pseudo code: | 
|  | // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { | 
|  | //   uint32_t yt = args[_YT];  // _YT == 1. | 
|  | //   uint32_t* dp = &digits[i >> 1];  // i is Smi. | 
|  | //   uint32_t dh = dp[0];  // dh == digits[i >> 1]. | 
|  | //   uint32_t qd; | 
|  | //   if (dh == yt) { | 
|  | //     qd = DIGIT_MASK; | 
|  | //   } else { | 
|  | //     dl = dp[-1];  // dl == digits[(i - 1) >> 1]. | 
|  | //     qd = dh:dl / yt;  // No overflow possible, because dh < yt. | 
|  | //   } | 
|  | //   args[_QD] = qd;  // _QD == 2. | 
|  | //   return 1; | 
|  | // } | 
|  |  | 
|  | // EDI = args | 
|  | __ movl(EDI, Address(ESP, 3 * target::kWordSize));  // args | 
|  |  | 
|  | // ECX = yt = args[1] | 
|  | __ movl(ECX, FieldAddress(EDI, target::TypedData::data_offset() + | 
|  | kBytesPerBigIntDigit)); | 
|  |  | 
|  | // EBX = dp = &digits[i >> 1] | 
|  | __ movl(EBX, Address(ESP, 2 * target::kWordSize));  // digits | 
|  | __ movl(EAX, Address(ESP, 1 * target::kWordSize));  // i is Smi | 
|  | __ leal(EBX, | 
|  | FieldAddress(EBX, EAX, TIMES_2, target::TypedData::data_offset())); | 
|  |  | 
|  | // EDX = dh = dp[0] | 
|  | __ movl(EDX, Address(EBX, 0)); | 
|  |  | 
|  | // EAX = qd = DIGIT_MASK = -1 | 
|  | __ movl(EAX, Immediate(-1)); | 
|  |  | 
|  | // Return qd if dh == yt | 
|  | Label return_qd; | 
|  | __ cmpl(EDX, ECX); | 
|  | __ j(EQUAL, &return_qd, Assembler::kNearJump); | 
|  |  | 
|  | // EAX = dl = dp[-1] | 
|  | __ movl(EAX, Address(EBX, -kBytesPerBigIntDigit)); | 
|  |  | 
|  | // EAX = qd = dh:dl / yt = EDX:EAX / ECX | 
|  | __ divl(ECX); | 
|  |  | 
|  | __ Bind(&return_qd); | 
|  | // args[2] = qd | 
|  | __ movl(FieldAddress( | 
|  | EDI, target::TypedData::data_offset() + 2 * kBytesPerBigIntDigit), | 
|  | EAX); | 
|  |  | 
|  | __ movl(EAX, Immediate(target::ToRawSmi(1)));  // One digit processed. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Pseudo code: | 
|  | // static int _mulMod(Uint32List args, Uint32List digits, int i) { | 
|  | //   uint32_t rho = args[_RHO];  // _RHO == 2. | 
|  | //   uint32_t d = digits[i >> 1];  // i is Smi. | 
|  | //   uint64_t t = rho*d; | 
|  | //   args[_MU] = t mod DIGIT_BASE;  // _MU == 4. | 
|  | //   return 1; | 
|  | // } | 
|  |  | 
|  | // EDI = args | 
|  | __ movl(EDI, Address(ESP, 3 * target::kWordSize));  // args | 
|  |  | 
|  | // ECX = rho = args[2] | 
|  | __ movl(ECX, FieldAddress(EDI, target::TypedData::data_offset() + | 
|  | 2 * kBytesPerBigIntDigit)); | 
|  |  | 
|  | // EAX = digits[i >> 1] | 
|  | __ movl(EBX, Address(ESP, 2 * target::kWordSize));  // digits | 
|  | __ movl(EAX, Address(ESP, 1 * target::kWordSize));  // i is Smi | 
|  | __ movl(EAX, | 
|  | FieldAddress(EBX, EAX, TIMES_2, target::TypedData::data_offset())); | 
|  |  | 
|  | // EDX:EAX = t = rho*d | 
|  | __ mull(ECX); | 
|  |  | 
|  | // args[4] = t mod DIGIT_BASE = low32(t) | 
|  | __ movl(FieldAddress( | 
|  | EDI, target::TypedData::data_offset() + 4 * kBytesPerBigIntDigit), | 
|  | EAX); | 
|  |  | 
|  | __ movl(EAX, Immediate(target::ToRawSmi(1)));  // One digit processed. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | // Check if the last argument is a double, jump to label 'is_smi' if smi | 
|  | // (easy to convert to double), otherwise jump to label 'not_double_smi', | 
|  | // Returns the last argument in EAX. | 
|  | static void TestLastArgumentIsDouble(Assembler* assembler, | 
|  | Label* is_smi, | 
|  | Label* not_double_smi) { | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ testl(EAX, Immediate(kSmiTagMask)); | 
|  | __ j(ZERO, is_smi, Assembler::kNearJump);  // Jump if Smi. | 
|  | __ CompareClassId(EAX, kDoubleCid, EBX); | 
|  | __ j(NOT_EQUAL, not_double_smi, Assembler::kNearJump); | 
|  | // Fall through if double. | 
|  | } | 
|  |  | 
|  | // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown | 
|  | // type. Return true or false object in the register EAX. Any NaN argument | 
|  | // returns false. Any non-double arg1 causes control flow to fall through to the | 
|  | // slow case (compiled method body). | 
|  | static void CompareDoubles(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | Condition true_condition) { | 
|  | Label is_false, is_true, is_smi, double_op; | 
|  | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); | 
|  | // Both arguments are double, right operand is in EAX. | 
|  | __ movsd(XMM1, FieldAddress(EAX, target::Double::value_offset())); | 
|  | __ Bind(&double_op); | 
|  | __ movl(EAX, Address(ESP, +2 * target::kWordSize));  // Left argument. | 
|  | __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); | 
|  | __ comisd(XMM0, XMM1); | 
|  | __ j(PARITY_EVEN, &is_false, Assembler::kNearJump);  // NaN -> false; | 
|  | __ j(true_condition, &is_true, Assembler::kNearJump); | 
|  | // Fall through false. | 
|  | __ Bind(&is_false); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | __ Bind(&is_true); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  | __ Bind(&is_smi); | 
|  | __ SmiUntag(EAX); | 
|  | __ cvtsi2sd(XMM1, EAX); | 
|  | __ jmp(&double_op); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | // arg0 is Double, arg1 is unknown. | 
|  | void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, ABOVE); | 
|  | } | 
|  |  | 
|  | // arg0 is Double, arg1 is unknown. | 
|  | void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, ABOVE_EQUAL); | 
|  | } | 
|  |  | 
|  | // arg0 is Double, arg1 is unknown. | 
|  | void AsmIntrinsifier::Double_lessThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, BELOW); | 
|  | } | 
|  |  | 
|  | // arg0 is Double, arg1 is unknown. | 
|  | void AsmIntrinsifier::Double_equal(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, EQUAL); | 
|  | } | 
|  |  | 
|  | // arg0 is Double, arg1 is unknown. | 
|  | void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, BELOW_EQUAL); | 
|  | } | 
|  |  | 
|  | // Expects left argument to be double (receiver). Right argument is unknown. | 
|  | // Both arguments are on stack. | 
|  | static void DoubleArithmeticOperations(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | Token::Kind kind) { | 
|  | Label is_smi, double_op; | 
|  | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); | 
|  | // Both arguments are double, right operand is in EAX. | 
|  | __ movsd(XMM1, FieldAddress(EAX, target::Double::value_offset())); | 
|  | __ Bind(&double_op); | 
|  | __ movl(EAX, Address(ESP, +2 * target::kWordSize));  // Left argument. | 
|  | __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); | 
|  | switch (kind) { | 
|  | case Token::kADD: | 
|  | __ addsd(XMM0, XMM1); | 
|  | break; | 
|  | case Token::kSUB: | 
|  | __ subsd(XMM0, XMM1); | 
|  | break; | 
|  | case Token::kMUL: | 
|  | __ mulsd(XMM0, XMM1); | 
|  | break; | 
|  | case Token::kDIV: | 
|  | __ divsd(XMM0, XMM1); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | const Class& double_class = DoubleClass(); | 
|  | __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, | 
|  | EAX,  // Result register. | 
|  | EBX); | 
|  | __ movsd(FieldAddress(EAX, target::Double::value_offset()), XMM0); | 
|  | __ ret(); | 
|  | __ Bind(&is_smi); | 
|  | __ SmiUntag(EAX); | 
|  | __ cvtsi2sd(XMM1, EAX); | 
|  | __ jmp(&double_op); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { | 
|  | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { | 
|  | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { | 
|  | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { | 
|  | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); | 
|  | } | 
|  |  | 
|  | // Left is double, right is integer (Mint or Smi) | 
|  | void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Only smis allowed. | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ testl(EAX, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, normal_ir_body, Assembler::kNearJump); | 
|  | // Is Smi. | 
|  | __ SmiUntag(EAX); | 
|  | __ cvtsi2sd(XMM1, EAX); | 
|  | __ movl(EAX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); | 
|  | __ mulsd(XMM0, XMM1); | 
|  | const Class& double_class = DoubleClass(); | 
|  | __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, | 
|  | EAX,  // Result register. | 
|  | EBX); | 
|  | __ movsd(FieldAddress(EAX, target::Double::value_offset()), XMM0); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ testl(EAX, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, normal_ir_body, Assembler::kNearJump); | 
|  | // Is Smi. | 
|  | __ SmiUntag(EAX); | 
|  | __ cvtsi2sd(XMM0, EAX); | 
|  | const Class& double_class = DoubleClass(); | 
|  | __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, | 
|  | EAX,  // Result register. | 
|  | EBX); | 
|  | __ movsd(FieldAddress(EAX, target::Double::value_offset()), XMM0); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label is_true; | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); | 
|  | __ comisd(XMM0, XMM0); | 
|  | __ j(PARITY_EVEN, &is_true, Assembler::kNearJump);  // NaN -> true; | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | __ Bind(&is_true); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label not_inf; | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ movl(EBX, FieldAddress(EAX, target::Double::value_offset())); | 
|  |  | 
|  | // If the low word isn't zero, then it isn't infinity. | 
|  | __ cmpl(EBX, Immediate(0)); | 
|  | __ j(NOT_EQUAL, ¬_inf, Assembler::kNearJump); | 
|  | // Check the high word. | 
|  | __ movl(EBX, FieldAddress( | 
|  | EAX, target::Double::value_offset() + target::kWordSize)); | 
|  | // Mask off sign bit. | 
|  | __ andl(EBX, Immediate(0x7FFFFFFF)); | 
|  | // Compare with +infinity. | 
|  | __ cmpl(EBX, Immediate(0x7FF00000)); | 
|  | __ j(NOT_EQUAL, ¬_inf, Assembler::kNearJump); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_inf); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label is_false, is_true, is_zero; | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ movsd(XMM0, FieldAddress(EAX, target::Double::value_offset())); | 
|  | __ xorpd(XMM1, XMM1);  // 0.0 -> XMM1. | 
|  | __ comisd(XMM0, XMM1); | 
|  | __ j(PARITY_EVEN, &is_false, Assembler::kNearJump);  // NaN -> false. | 
|  | __ j(EQUAL, &is_zero, Assembler::kNearJump);  // Check for negative zero. | 
|  | __ j(ABOVE_EQUAL, &is_false, Assembler::kNearJump);  // >= 0 -> false. | 
|  | __ Bind(&is_true); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  | __ Bind(&is_false); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | __ Bind(&is_zero); | 
|  | // Check for negative zero (get the sign bit). | 
|  | __ movmskpd(EAX, XMM0); | 
|  | __ testl(EAX, Immediate(1)); | 
|  | __ j(NOT_ZERO, &is_true, Assembler::kNearJump); | 
|  | __ jmp(&is_false, Assembler::kNearJump); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_hashCode(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // TODO(dartbug.com/31174): Convert this to a graph intrinsic. | 
|  |  | 
|  | // Convert double value to signed 32-bit int in EAX and | 
|  | // back to a double in XMM1. | 
|  | __ movl(ECX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ movsd(XMM0, FieldAddress(ECX, target::Double::value_offset())); | 
|  | __ cvttsd2si(EAX, XMM0); | 
|  | __ cvtsi2sd(XMM1, EAX); | 
|  |  | 
|  | // Tag the int as a Smi, making sure that it fits; this checks for | 
|  | // overflow and NaN in the conversion from double to int. Conversion | 
|  | // overflow from cvttsd2si is signalled with an INT32_MIN value. | 
|  | ASSERT(kSmiTag == 0 && kSmiTagShift == 1); | 
|  | __ addl(EAX, EAX); | 
|  | __ j(OVERFLOW, normal_ir_body, Assembler::kNearJump); | 
|  |  | 
|  | // Compare the two double values. If they are equal, we return the | 
|  | // Smi tagged result immediately as the hash code. | 
|  | Label double_hash; | 
|  | __ comisd(XMM0, XMM1); | 
|  | __ j(NOT_EQUAL, &double_hash, Assembler::kNearJump); | 
|  | __ ret(); | 
|  |  | 
|  | // Convert the double bits to a hash code that fits in a Smi. | 
|  | __ Bind(&double_hash); | 
|  | __ movl(EAX, FieldAddress(ECX, target::Double::value_offset())); | 
|  | __ movl(ECX, FieldAddress(ECX, target::Double::value_offset() + 4)); | 
|  | __ xorl(EAX, ECX); | 
|  | __ andl(EAX, Immediate(target::kSmiMax)); | 
|  | __ SmiTag(EAX); | 
|  | __ ret(); | 
|  |  | 
|  | // Fall into the native C++ implementation. | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | //    var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; | 
|  | //    _state[kSTATE_LO] = state & _MASK_32; | 
|  | //    _state[kSTATE_HI] = state >> 32; | 
|  | void AsmIntrinsifier::Random_nextState(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | const Field& state_field = LookupMathRandomStateFieldOffset(); | 
|  | const int64_t a_int_value = AsmIntrinsifier::kRandomAValue; | 
|  |  | 
|  | // 'a_int_value' is a mask. | 
|  | ASSERT(Utils::IsUint(32, a_int_value)); | 
|  | int32_t a_int32_value = static_cast<int32_t>(a_int_value); | 
|  |  | 
|  | // Receiver. | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | // Field '_state'. | 
|  | __ movl(EBX, FieldAddress(EAX, LookupFieldOffsetInBytes(state_field))); | 
|  | // Addresses of _state[0] and _state[1]. | 
|  | const intptr_t scale = | 
|  | target::Instance::ElementSizeFor(kTypedDataUint32ArrayCid); | 
|  | const intptr_t offset = | 
|  | target::Instance::DataOffsetFor(kTypedDataUint32ArrayCid); | 
|  | Address addr_0 = FieldAddress(EBX, 0 * scale + offset); | 
|  | Address addr_1 = FieldAddress(EBX, 1 * scale + offset); | 
|  | __ movl(EAX, Immediate(a_int32_value)); | 
|  | // 64-bit multiply EAX * value -> EDX:EAX. | 
|  | __ mull(addr_0); | 
|  | __ addl(EAX, addr_1); | 
|  | __ adcl(EDX, Immediate(0)); | 
|  | __ movl(addr_1, EDX); | 
|  | __ movl(addr_0, EAX); | 
|  | ASSERT(target::ToRawSmi(0) == 0); | 
|  | __ xorl(EAX, EAX); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | // Identity comparison. | 
|  | void AsmIntrinsifier::ObjectEquals(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label is_true; | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ cmpl(EAX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ j(EQUAL, &is_true, Assembler::kNearJump); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | __ Bind(&is_true); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | static void RangeCheck(Assembler* assembler, | 
|  | Register reg, | 
|  | intptr_t low, | 
|  | intptr_t high, | 
|  | Condition cc, | 
|  | Label* target) { | 
|  | __ subl(reg, Immediate(low)); | 
|  | __ cmpl(reg, Immediate(high - low)); | 
|  | __ j(cc, target); | 
|  | } | 
|  |  | 
|  | const Condition kIfNotInRange = ABOVE; | 
|  | const Condition kIfInRange = BELOW_EQUAL; | 
|  |  | 
|  | static void JumpIfInteger(Assembler* assembler, Register cid, Label* target) { | 
|  | RangeCheck(assembler, cid, kSmiCid, kMintCid, kIfInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfNotInteger(Assembler* assembler, | 
|  | Register cid, | 
|  | Label* target) { | 
|  | RangeCheck(assembler, cid, kSmiCid, kMintCid, kIfNotInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfString(Assembler* assembler, Register cid, Label* target) { | 
|  | RangeCheck(assembler, cid, kOneByteStringCid, kExternalTwoByteStringCid, | 
|  | kIfInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfNotString(Assembler* assembler, Register cid, Label* target) { | 
|  | RangeCheck(assembler, cid, kOneByteStringCid, kExternalTwoByteStringCid, | 
|  | kIfNotInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfNotList(Assembler* assembler, Register cid, Label* target) { | 
|  | RangeCheck(assembler, cid, kArrayCid, kGrowableObjectArrayCid, kIfNotInRange, | 
|  | target); | 
|  | } | 
|  |  | 
|  | static void JumpIfType(Assembler* assembler, Register cid, Label* target) { | 
|  | RangeCheck(assembler, cid, kTypeCid, kFunctionTypeCid, kIfInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfNotType(Assembler* assembler, Register cid, Label* target) { | 
|  | RangeCheck(assembler, cid, kTypeCid, kFunctionTypeCid, kIfNotInRange, target); | 
|  | } | 
|  |  | 
|  | // Return type quickly for simple types (not parameterized and not signature). | 
|  | void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label use_declaration_type, not_double, not_integer, not_string; | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ LoadClassIdMayBeSmi(EDI, EAX); | 
|  |  | 
|  | __ cmpl(EDI, Immediate(kClosureCid)); | 
|  | __ j(EQUAL, normal_ir_body);  // Instance is a closure. | 
|  |  | 
|  | __ cmpl(EDI, Immediate(kNumPredefinedCids)); | 
|  | __ j(ABOVE, &use_declaration_type); | 
|  |  | 
|  | // If object is a instance of _Double return double type. | 
|  | __ cmpl(EDI, Immediate(kDoubleCid)); | 
|  | __ j(NOT_EQUAL, ¬_double); | 
|  |  | 
|  | __ LoadIsolateGroup(EAX); | 
|  | __ movl(EAX, Address(EAX, target::IsolateGroup::object_store_offset())); | 
|  | __ movl(EAX, Address(EAX, target::ObjectStore::double_type_offset())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_double); | 
|  | // If object is an integer (smi, mint or bigint) return int type. | 
|  | __ movl(EAX, EDI); | 
|  | JumpIfNotInteger(assembler, EAX, ¬_integer); | 
|  |  | 
|  | __ LoadIsolateGroup(EAX); | 
|  | __ movl(EAX, Address(EAX, target::IsolateGroup::object_store_offset())); | 
|  | __ movl(EAX, Address(EAX, target::ObjectStore::int_type_offset())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_integer); | 
|  | // If object is a string (one byte, two byte or external variants) return | 
|  | // string type. | 
|  | __ movl(EAX, EDI); | 
|  | JumpIfNotString(assembler, EAX, ¬_string); | 
|  |  | 
|  | __ LoadIsolateGroup(EAX); | 
|  | __ movl(EAX, Address(EAX, target::IsolateGroup::object_store_offset())); | 
|  | __ movl(EAX, Address(EAX, target::ObjectStore::string_type_offset())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_string); | 
|  | // If object is a type or function type, return Dart type. | 
|  | __ movl(EAX, EDI); | 
|  | JumpIfNotType(assembler, EAX, &use_declaration_type); | 
|  |  | 
|  | __ LoadIsolateGroup(EAX); | 
|  | __ movl(EAX, Address(EAX, target::IsolateGroup::object_store_offset())); | 
|  | __ movl(EAX, Address(EAX, target::ObjectStore::type_type_offset())); | 
|  | __ ret(); | 
|  |  | 
|  | // Object is neither double, nor integer, nor string, nor type. | 
|  | __ Bind(&use_declaration_type); | 
|  | __ LoadClassById(EBX, EDI); | 
|  | __ movzxw(EDI, FieldAddress(EBX, target::Class::num_type_arguments_offset())); | 
|  | __ cmpl(EDI, Immediate(0)); | 
|  | __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  | __ movl(EAX, FieldAddress(EBX, target::Class::declaration_type_offset())); | 
|  | __ CompareObject(EAX, NullObject()); | 
|  | __ j(EQUAL, normal_ir_body, Assembler::kNearJump);  // Not yet set. | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | // Compares cid1 and cid2 to see if they're syntactically equivalent. If this | 
|  | // can be determined by this fast path, it jumps to either equal_* or not_equal. | 
|  | // If classes are equivalent but may be generic, then jumps to | 
|  | // equal_may_be_generic. Clobbers scratch. | 
|  | static void EquivalentClassIds(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | Label* equal_may_be_generic, | 
|  | Label* equal_not_generic, | 
|  | Label* not_equal, | 
|  | Register cid1, | 
|  | Register cid2, | 
|  | Register scratch, | 
|  | bool testing_instance_cids) { | 
|  | Label not_integer, not_integer_or_string, not_integer_or_string_or_list; | 
|  |  | 
|  | // Check if left hand side is a closure. Closures are handled in the runtime. | 
|  | __ cmpl(cid1, Immediate(kClosureCid)); | 
|  | __ j(EQUAL, normal_ir_body); | 
|  |  | 
|  | // Check whether class ids match. If class ids don't match types may still be | 
|  | // considered equivalent (e.g. multiple string implementation classes map to a | 
|  | // single String type). | 
|  | __ cmpl(cid1, cid2); | 
|  | __ j(EQUAL, equal_may_be_generic); | 
|  |  | 
|  | // Class ids are different. Check if we are comparing two string types (with | 
|  | // different representations), two integer types, two list types or two type | 
|  | // types. | 
|  | __ cmpl(cid1, Immediate(kNumPredefinedCids)); | 
|  | __ j(ABOVE_EQUAL, not_equal); | 
|  |  | 
|  | // Check if both are integer types. | 
|  | __ movl(scratch, cid1); | 
|  | JumpIfNotInteger(assembler, scratch, ¬_integer); | 
|  |  | 
|  | // First type is an integer. Check if the second is an integer too. | 
|  | __ movl(scratch, cid2); | 
|  | JumpIfInteger(assembler, scratch, equal_not_generic); | 
|  | // Integer types are only equivalent to other integer types. | 
|  | __ jmp(not_equal); | 
|  |  | 
|  | __ Bind(¬_integer); | 
|  | // Check if both are String types. | 
|  | __ movl(scratch, cid1); | 
|  | JumpIfNotString(assembler, scratch, | 
|  | testing_instance_cids ? ¬_integer_or_string : not_equal); | 
|  |  | 
|  | // First type is a String. Check if the second is a String too. | 
|  | __ movl(scratch, cid2); | 
|  | JumpIfString(assembler, scratch, equal_not_generic); | 
|  | // String types are only equivalent to other String types. | 
|  | __ jmp(not_equal); | 
|  |  | 
|  | if (testing_instance_cids) { | 
|  | __ Bind(¬_integer_or_string); | 
|  | // Check if both are List types. | 
|  | __ movl(scratch, cid1); | 
|  | JumpIfNotList(assembler, scratch, ¬_integer_or_string_or_list); | 
|  |  | 
|  | // First type is a List. Check if the second is a List too. | 
|  | __ movl(scratch, cid2); | 
|  | JumpIfNotList(assembler, scratch, not_equal); | 
|  | ASSERT(compiler::target::Array::type_arguments_offset() == | 
|  | compiler::target::GrowableObjectArray::type_arguments_offset()); | 
|  | __ jmp(equal_may_be_generic); | 
|  |  | 
|  | __ Bind(¬_integer_or_string_or_list); | 
|  | // Check if the first type is a Type. If it is not then types are not | 
|  | // equivalent because they have different class ids and they are not String | 
|  | // or integer or List or Type. | 
|  | __ movl(scratch, cid1); | 
|  | JumpIfNotType(assembler, scratch, not_equal); | 
|  |  | 
|  | // First type is a Type. Check if the second is a Type too. | 
|  | __ movl(scratch, cid2); | 
|  | JumpIfType(assembler, scratch, equal_not_generic); | 
|  | // Type types are only equivalent to other Type types. | 
|  | __ jmp(not_equal); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize)); | 
|  | __ LoadClassIdMayBeSmi(EDI, EAX); | 
|  |  | 
|  | __ movl(EAX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ LoadClassIdMayBeSmi(EBX, EAX); | 
|  |  | 
|  | Label equal_may_be_generic, equal, not_equal; | 
|  | EquivalentClassIds(assembler, normal_ir_body, &equal_may_be_generic, &equal, | 
|  | ¬_equal, EDI, EBX, EAX, | 
|  | /* testing_instance_cids = */ true); | 
|  |  | 
|  | __ Bind(&equal_may_be_generic); | 
|  | // Classes are equivalent and neither is a closure class. | 
|  | // Check if there are no type arguments. In this case we can return true. | 
|  | // Otherwise fall through into the runtime to handle comparison. | 
|  | __ LoadClassById(EAX, EDI); | 
|  | __ movl( | 
|  | EAX, | 
|  | FieldAddress( | 
|  | EAX, | 
|  | target::Class::host_type_arguments_field_offset_in_words_offset())); | 
|  | __ cmpl(EAX, Immediate(target::Class::kNoTypeArguments)); | 
|  | __ j(EQUAL, &equal); | 
|  |  | 
|  | // Compare type arguments, host_type_arguments_field_offset_in_words in EAX. | 
|  | __ movl(EDI, Address(ESP, +1 * target::kWordSize)); | 
|  | __ movl(EBX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ movl(EDI, FieldAddress(EDI, EAX, TIMES_4, 0)); | 
|  | __ movl(EBX, FieldAddress(EBX, EAX, TIMES_4, 0)); | 
|  | __ cmpl(EDI, EBX); | 
|  | __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  | // Fall through to equal case if type arguments are equal. | 
|  |  | 
|  | __ Bind(&equal); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_equal); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::String_getHashCode(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize));  // String object. | 
|  | __ movl(EAX, FieldAddress(EAX, target::String::hash_offset())); | 
|  | __ cmpl(EAX, Immediate(0)); | 
|  | __ j(EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | // Hash not yet computed. | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Type_getHashCode(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize));  // Type object. | 
|  | __ movl(EAX, FieldAddress(EAX, target::Type::hash_offset())); | 
|  | __ testl(EAX, EAX); | 
|  | __ j(EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | // Hash not yet computed. | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Type_equality(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label equal, not_equal, equiv_cids_may_be_generic, equiv_cids, check_legacy; | 
|  |  | 
|  | __ movl(EDI, Address(ESP, +1 * target::kWordSize)); | 
|  | __ movl(EBX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ cmpl(EDI, EBX); | 
|  | __ j(EQUAL, &equal); | 
|  |  | 
|  | // EDI might not be a Type object, so check that first (EBX should be though, | 
|  | // since this is a method on the Type class). | 
|  | __ LoadClassIdMayBeSmi(EAX, EDI); | 
|  | __ cmpl(EAX, Immediate(kTypeCid)); | 
|  | __ j(NOT_EQUAL, normal_ir_body); | 
|  |  | 
|  | // Check if types are syntactically equal. | 
|  | __ LoadTypeClassId(ECX, EDI); | 
|  | __ LoadTypeClassId(EDX, EBX); | 
|  | // We are not testing instance cids, but type class cids of Type instances. | 
|  | EquivalentClassIds(assembler, normal_ir_body, &equiv_cids_may_be_generic, | 
|  | &equiv_cids, ¬_equal, ECX, EDX, EAX, | 
|  | /* testing_instance_cids = */ false); | 
|  |  | 
|  | __ Bind(&equiv_cids_may_be_generic); | 
|  | // Compare type arguments in Type instances. | 
|  | __ movl(ECX, FieldAddress(EDI, target::Type::arguments_offset())); | 
|  | __ movl(EDX, FieldAddress(EBX, target::Type::arguments_offset())); | 
|  | __ cmpl(ECX, EDX); | 
|  | __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  | // Fall through to check nullability if type arguments are equal. | 
|  |  | 
|  | // Check nullability. | 
|  | __ Bind(&equiv_cids); | 
|  | __ movzxb(EDI, FieldAddress(EDI, target::Type::nullability_offset())); | 
|  | __ movzxb(EBX, FieldAddress(EBX, target::Type::nullability_offset())); | 
|  | __ cmpl(EDI, EBX); | 
|  | __ j(NOT_EQUAL, &check_legacy, Assembler::kNearJump); | 
|  | // Fall through to equal case if nullability is strictly equal. | 
|  |  | 
|  | __ Bind(&equal); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | // At this point the nullabilities are different, so they can only be | 
|  | // syntactically equivalent if they're both either kNonNullable or kLegacy. | 
|  | // These are the two largest values of the enum, so we can just do a < check. | 
|  | ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable && | 
|  | target::Nullability::kNonNullable < target::Nullability::kLegacy); | 
|  | __ Bind(&check_legacy); | 
|  | __ cmpl(EDI, Immediate(target::Nullability::kNonNullable)); | 
|  | __ j(LESS, ¬_equal, Assembler::kNearJump); | 
|  | __ cmpl(EBX, Immediate(target::Nullability::kNonNullable)); | 
|  | __ j(GREATER_EQUAL, &equal, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(¬_equal); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::FunctionType_getHashCode(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize));  // FunctionType object. | 
|  | __ movl(EAX, FieldAddress(EAX, target::FunctionType::hash_offset())); | 
|  | __ testl(EAX, EAX); | 
|  | __ j(EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | // Hash not yet computed. | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::FunctionType_equality(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(EDI, Address(ESP, +1 * target::kWordSize)); | 
|  | __ movl(EBX, Address(ESP, +2 * target::kWordSize)); | 
|  | __ cmpl(EDI, EBX); | 
|  | __ j(NOT_EQUAL, normal_ir_body); | 
|  |  | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | // bool _substringMatches(int start, String other) | 
|  | void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // For precompilation, not implemented on IA32. | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Object_getHash(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label try_two_byte_string; | 
|  | __ movl(EBX, Address(ESP, +1 * target::kWordSize));  // Index. | 
|  | __ movl(EAX, Address(ESP, +2 * target::kWordSize));  // String. | 
|  | __ testl(EBX, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, normal_ir_body, Assembler::kNearJump);  // Non-smi index. | 
|  | // Range check. | 
|  | __ cmpl(EBX, FieldAddress(EAX, target::String::length_offset())); | 
|  | // Runtime throws exception. | 
|  | __ j(ABOVE_EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  | __ CompareClassId(EAX, kOneByteStringCid, EDI); | 
|  | __ j(NOT_EQUAL, &try_two_byte_string, Assembler::kNearJump); | 
|  | __ SmiUntag(EBX); | 
|  | __ movzxb(EBX, FieldAddress(EAX, EBX, TIMES_1, | 
|  | target::OneByteString::data_offset())); | 
|  | __ cmpl(EBX, Immediate(target::Symbols::kNumberOfOneCharCodeSymbols)); | 
|  | __ j(GREATER_EQUAL, normal_ir_body); | 
|  | __ movl(EAX, Immediate(SymbolsPredefinedAddress())); | 
|  | __ movl(EAX, Address(EAX, EBX, TIMES_4, | 
|  | target::Symbols::kNullCharCodeSymbolOffset * | 
|  | target::kWordSize)); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&try_two_byte_string); | 
|  | __ CompareClassId(EAX, kTwoByteStringCid, EDI); | 
|  | __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  | ASSERT(kSmiTagShift == 1); | 
|  | __ movzxw(EBX, FieldAddress(EAX, EBX, TIMES_1, | 
|  | target::TwoByteString::data_offset())); | 
|  | __ cmpl(EBX, Immediate(target::Symbols::kNumberOfOneCharCodeSymbols)); | 
|  | __ j(GREATER_EQUAL, normal_ir_body); | 
|  | __ movl(EAX, Immediate(SymbolsPredefinedAddress())); | 
|  | __ movl(EAX, Address(EAX, EBX, TIMES_4, | 
|  | target::Symbols::kNullCharCodeSymbolOffset * | 
|  | target::kWordSize)); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label is_true; | 
|  | // Get length. | 
|  | __ movl(EAX, Address(ESP, +1 * target::kWordSize));  // String object. | 
|  | __ movl(EAX, FieldAddress(EAX, target::String::length_offset())); | 
|  | __ cmpl(EAX, Immediate(target::ToRawSmi(0))); | 
|  | __ j(EQUAL, &is_true, Assembler::kNearJump); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | __ Bind(&is_true); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label compute_hash; | 
|  | __ movl(EBX, Address(ESP, +1 * target::kWordSize));  // OneByteString object. | 
|  | __ movl(EAX, FieldAddress(EBX, target::String::hash_offset())); | 
|  | __ cmpl(EAX, Immediate(0)); | 
|  | __ j(EQUAL, &compute_hash, Assembler::kNearJump); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&compute_hash); | 
|  | // Hash not yet computed, use algorithm of class StringHasher. | 
|  | __ movl(ECX, FieldAddress(EBX, target::String::length_offset())); | 
|  | __ SmiUntag(ECX); | 
|  | __ xorl(EAX, EAX); | 
|  | __ xorl(EDI, EDI); | 
|  | // EBX: Instance of OneByteString. | 
|  | // ECX: String length, untagged integer. | 
|  | // EDI: Loop counter, untagged integer. | 
|  | // EAX: Hash code, untagged integer. | 
|  | Label loop, done, set_hash_code; | 
|  | __ Bind(&loop); | 
|  | __ cmpl(EDI, ECX); | 
|  | __ j(EQUAL, &done, Assembler::kNearJump); | 
|  | // Add to hash code: (hash_ is uint32) | 
|  | // hash_ += ch; | 
|  | // hash_ += hash_ << 10; | 
|  | // hash_ ^= hash_ >> 6; | 
|  | // Get one characters (ch). | 
|  | __ movzxb(EDX, FieldAddress(EBX, EDI, TIMES_1, | 
|  | target::OneByteString::data_offset())); | 
|  | // EDX: ch and temporary. | 
|  | __ addl(EAX, EDX); | 
|  | __ movl(EDX, EAX); | 
|  | __ shll(EDX, Immediate(10)); | 
|  | __ addl(EAX, EDX); | 
|  | __ movl(EDX, EAX); | 
|  | __ shrl(EDX, Immediate(6)); | 
|  | __ xorl(EAX, EDX); | 
|  |  | 
|  | __ incl(EDI); | 
|  | __ jmp(&loop, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&done); | 
|  | // Finalize: | 
|  | // hash_ += hash_ << 3; | 
|  | // hash_ ^= hash_ >> 11; | 
|  | // hash_ += hash_ << 15; | 
|  | __ movl(EDX, EAX); | 
|  | __ shll(EDX, Immediate(3)); | 
|  | __ addl(EAX, EDX); | 
|  | __ movl(EDX, EAX); | 
|  | __ shrl(EDX, Immediate(11)); | 
|  | __ xorl(EAX, EDX); | 
|  | __ movl(EDX, EAX); | 
|  | __ shll(EDX, Immediate(15)); | 
|  | __ addl(EAX, EDX); | 
|  | // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); | 
|  | __ andl( | 
|  | EAX, | 
|  | Immediate(((static_cast<intptr_t>(1) << target::String::kHashBits) - 1))); | 
|  |  | 
|  | // return hash_ == 0 ? 1 : hash_; | 
|  | __ cmpl(EAX, Immediate(0)); | 
|  | __ j(NOT_EQUAL, &set_hash_code, Assembler::kNearJump); | 
|  | __ incl(EAX); | 
|  | __ Bind(&set_hash_code); | 
|  | __ SmiTag(EAX); | 
|  | __ StoreIntoSmiField(FieldAddress(EBX, target::String::hash_offset()), EAX); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | // Allocates a _OneByteString or _TwoByteString. The content is not initialized. | 
|  | // 'length_reg' contains the desired length as a _Smi or _Mint. | 
|  | // Returns new string as tagged pointer in EAX. | 
|  | static void TryAllocateString(Assembler* assembler, | 
|  | classid_t cid, | 
|  | Label* ok, | 
|  | Label* failure, | 
|  | Register length_reg) { | 
|  | ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); | 
|  | // _Mint length: call to runtime to produce error. | 
|  | __ BranchIfNotSmi(length_reg, failure); | 
|  | // negative length: call to runtime to produce error. | 
|  | __ cmpl(length_reg, Immediate(0)); | 
|  | __ j(LESS, failure); | 
|  |  | 
|  | NOT_IN_PRODUCT( | 
|  | __ MaybeTraceAllocation(cid, EAX, failure, Assembler::kFarJump)); | 
|  | if (length_reg != EDI) { | 
|  | __ movl(EDI, length_reg); | 
|  | } | 
|  | Label pop_and_fail; | 
|  | __ pushl(EDI);  // Preserve length. | 
|  | if (cid == kOneByteStringCid) { | 
|  | __ SmiUntag(EDI); | 
|  | } else { | 
|  | // Untag length and multiply by element size -> no-op. | 
|  | } | 
|  | const intptr_t fixed_size_plus_alignment_padding = | 
|  | target::String::InstanceSize() + | 
|  | target::ObjectAlignment::kObjectAlignment - 1; | 
|  | __ leal(EDI, Address(EDI, TIMES_1, | 
|  | fixed_size_plus_alignment_padding));  // EDI is untagged. | 
|  | __ andl(EDI, Immediate(-target::ObjectAlignment::kObjectAlignment)); | 
|  |  | 
|  | __ movl(EAX, Address(THR, target::Thread::top_offset())); | 
|  | __ movl(EBX, EAX); | 
|  |  | 
|  | // EDI: allocation size. | 
|  | __ addl(EBX, EDI); | 
|  | __ j(CARRY, &pop_and_fail); | 
|  |  | 
|  | // Check if the allocation fits into the remaining space. | 
|  | // EAX: potential new object start. | 
|  | // EBX: potential next object start. | 
|  | // EDI: allocation size. | 
|  | __ cmpl(EBX, Address(THR, target::Thread::end_offset())); | 
|  | __ j(ABOVE_EQUAL, &pop_and_fail); | 
|  |  | 
|  | // Successfully allocated the object(s), now update top to point to | 
|  | // next object start and initialize the object. | 
|  | __ movl(Address(THR, target::Thread::top_offset()), EBX); | 
|  | __ addl(EAX, Immediate(kHeapObjectTag)); | 
|  |  | 
|  | // Initialize the tags. | 
|  | // EAX: new object start as a tagged pointer. | 
|  | // EBX: new object end address. | 
|  | // EDI: allocation size. | 
|  | { | 
|  | Label size_tag_overflow, done; | 
|  | __ cmpl(EDI, Immediate(target::UntaggedObject::kSizeTagMaxSizeTag)); | 
|  | __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); | 
|  | __ shll(EDI, Immediate(target::UntaggedObject::kTagBitsSizeTagPos - | 
|  | target::ObjectAlignment::kObjectAlignmentLog2)); | 
|  | __ jmp(&done, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&size_tag_overflow); | 
|  | __ xorl(EDI, EDI); | 
|  | __ Bind(&done); | 
|  |  | 
|  | // Get the class index and insert it into the tags. | 
|  | const uword tags = | 
|  | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); | 
|  | __ orl(EDI, Immediate(tags)); | 
|  | __ movl(FieldAddress(EAX, target::Object::tags_offset()), EDI);  // Tags. | 
|  | } | 
|  |  | 
|  | // Set the length field. | 
|  | __ popl(EDI); | 
|  | __ StoreIntoObjectNoBarrier( | 
|  | EAX, FieldAddress(EAX, target::String::length_offset()), EDI); | 
|  | // Clear hash. | 
|  | __ ZeroInitSmiField(FieldAddress(EAX, target::String::hash_offset())); | 
|  | __ jmp(ok, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&pop_and_fail); | 
|  | __ popl(EDI); | 
|  | __ jmp(failure); | 
|  | } | 
|  |  | 
|  | // Arg0: OneByteString (receiver) | 
|  | // Arg1: Start index as Smi. | 
|  | // Arg2: End index as Smi. | 
|  | // The indexes must be valid. | 
|  | void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | const intptr_t kStringOffset = 3 * target::kWordSize; | 
|  | const intptr_t kStartIndexOffset = 2 * target::kWordSize; | 
|  | const intptr_t kEndIndexOffset = 1 * target::kWordSize; | 
|  | Label ok; | 
|  | __ movl(EAX, Address(ESP, +kStartIndexOffset)); | 
|  | __ movl(EDI, Address(ESP, +kEndIndexOffset)); | 
|  | __ orl(EAX, EDI); | 
|  | __ testl(EAX, Immediate(kSmiTagMask)); | 
|  | __ j(NOT_ZERO, normal_ir_body);  // 'start', 'end' not Smi. | 
|  |  | 
|  | __ subl(EDI, Address(ESP, +kStartIndexOffset)); | 
|  | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body, EDI); | 
|  | __ Bind(&ok); | 
|  | // EAX: new string as tagged pointer. | 
|  | // Copy string. | 
|  | __ movl(EDI, Address(ESP, +kStringOffset)); | 
|  | __ movl(EBX, Address(ESP, +kStartIndexOffset)); | 
|  | __ SmiUntag(EBX); | 
|  | __ leal(EDI, FieldAddress(EDI, EBX, TIMES_1, | 
|  | target::OneByteString::data_offset())); | 
|  | // EDI: Start address to copy from (untagged). | 
|  | // EBX: Untagged start index. | 
|  | __ movl(ECX, Address(ESP, +kEndIndexOffset)); | 
|  | __ SmiUntag(ECX); | 
|  | __ subl(ECX, EBX); | 
|  | __ xorl(EDX, EDX); | 
|  | // EDI: Start address to copy from (untagged). | 
|  | // ECX: Untagged number of bytes to copy. | 
|  | // EAX: Tagged result string. | 
|  | // EDX: Loop counter. | 
|  | // EBX: Scratch register. | 
|  | Label loop, check; | 
|  | __ jmp(&check, Assembler::kNearJump); | 
|  | __ Bind(&loop); | 
|  | __ movzxb(EBX, Address(EDI, EDX, TIMES_1, 0)); | 
|  | __ movb(FieldAddress(EAX, EDX, TIMES_1, target::OneByteString::data_offset()), | 
|  | BL); | 
|  | __ incl(EDX); | 
|  | __ Bind(&check); | 
|  | __ cmpl(EDX, ECX); | 
|  | __ j(LESS, &loop, Assembler::kNearJump); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(ECX, Address(ESP, +1 * target::kWordSize));  // Value. | 
|  | __ movl(EBX, Address(ESP, +2 * target::kWordSize));  // Index. | 
|  | __ movl(EAX, Address(ESP, +3 * target::kWordSize));  // OneByteString. | 
|  | __ SmiUntag(EBX); | 
|  | __ SmiUntag(ECX); | 
|  | __ movb(FieldAddress(EAX, EBX, TIMES_1, target::OneByteString::data_offset()), | 
|  | CL); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(ECX, Address(ESP, +1 * target::kWordSize));  // Value. | 
|  | __ movl(EBX, Address(ESP, +2 * target::kWordSize));  // Index. | 
|  | __ movl(EAX, Address(ESP, +3 * target::kWordSize));  // TwoByteString. | 
|  | // Untag index and multiply by element size -> no-op. | 
|  | __ SmiUntag(ECX); | 
|  | __ movw(FieldAddress(EAX, EBX, TIMES_1, target::TwoByteString::data_offset()), | 
|  | ECX); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(EDI, Address(ESP, +1 * target::kWordSize));  // Length. | 
|  | Label ok; | 
|  | TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body, EDI); | 
|  | // EDI: Start address to copy from (untagged). | 
|  |  | 
|  | __ Bind(&ok); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ movl(EDI, Address(ESP, +1 * target::kWordSize));  // Length. | 
|  | Label ok; | 
|  | TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body, EDI); | 
|  | // EDI: Start address to copy from (untagged). | 
|  |  | 
|  | __ Bind(&ok); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). | 
|  | static void StringEquality(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | intptr_t string_cid) { | 
|  | Label is_true, is_false, loop; | 
|  | __ movl(EAX, Address(ESP, +2 * target::kWordSize));  // This. | 
|  | __ movl(EBX, Address(ESP, +1 * target::kWordSize));  // Other. | 
|  |  | 
|  | // Are identical? | 
|  | __ cmpl(EAX, EBX); | 
|  | __ j(EQUAL, &is_true, Assembler::kNearJump); | 
|  |  | 
|  | // Is other OneByteString? | 
|  | __ testl(EBX, Immediate(kSmiTagMask)); | 
|  | __ j(ZERO, &is_false);  // Smi | 
|  | __ CompareClassId(EBX, string_cid, EDI); | 
|  | __ j(NOT_EQUAL, normal_ir_body, Assembler::kNearJump); | 
|  |  | 
|  | // Have same length? | 
|  | __ movl(EDI, FieldAddress(EAX, target::String::length_offset())); | 
|  | __ cmpl(EDI, FieldAddress(EBX, target::String::length_offset())); | 
|  | __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); | 
|  |  | 
|  | // Check contents, no fall-through possible. | 
|  | // TODO(srdjan): write a faster check. | 
|  | __ SmiUntag(EDI); | 
|  | __ Bind(&loop); | 
|  | __ decl(EDI); | 
|  | __ cmpl(EDI, Immediate(0)); | 
|  | __ j(LESS, &is_true, Assembler::kNearJump); | 
|  | if (string_cid == kOneByteStringCid) { | 
|  | __ movzxb(ECX, FieldAddress(EAX, EDI, TIMES_1, | 
|  | target::OneByteString::data_offset())); | 
|  | __ movzxb(EDX, FieldAddress(EBX, EDI, TIMES_1, | 
|  | target::OneByteString::data_offset())); | 
|  | } else if (string_cid == kTwoByteStringCid) { | 
|  | __ movzxw(ECX, FieldAddress(EAX, EDI, TIMES_2, | 
|  | target::TwoByteString::data_offset())); | 
|  | __ movzxw(EDX, FieldAddress(EBX, EDI, TIMES_2, | 
|  | target::TwoByteString::data_offset())); | 
|  | } else { | 
|  | UNIMPLEMENTED(); | 
|  | } | 
|  | __ cmpl(ECX, EDX); | 
|  | __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); | 
|  | __ jmp(&loop, Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&is_true); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&is_false); | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | StringEquality(assembler, normal_ir_body, kOneByteStringCid); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | StringEquality(assembler, normal_ir_body, kTwoByteStringCid); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | bool sticky) { | 
|  | if (FLAG_interpret_irregexp) return; | 
|  |  | 
|  | static const intptr_t kRegExpParamOffset = 3 * target::kWordSize; | 
|  | static const intptr_t kStringParamOffset = 2 * target::kWordSize; | 
|  | // start_index smi is located at offset 1. | 
|  |  | 
|  | // Incoming registers: | 
|  | // EAX: Function. (Will be loaded with the specialized matcher function.) | 
|  | // ECX: Unknown. (Must be GC safe on tail call.) | 
|  | // EDX: Arguments descriptor. (Will be preserved.) | 
|  |  | 
|  | // Load the specialized function pointer into EAX. Leverage the fact the | 
|  | // string CIDs as well as stored function pointers are in sequence. | 
|  | __ movl(EBX, Address(ESP, kRegExpParamOffset)); | 
|  | __ movl(EDI, Address(ESP, kStringParamOffset)); | 
|  | __ LoadClassId(EDI, EDI); | 
|  | __ SubImmediate(EDI, Immediate(kOneByteStringCid)); | 
|  | __ movl(EAX, FieldAddress( | 
|  | EBX, EDI, TIMES_4, | 
|  | target::RegExp::function_offset(kOneByteStringCid, sticky))); | 
|  |  | 
|  | // Registers are now set up for the lazy compile stub. It expects the function | 
|  | // in EAX, the argument descriptor in EDX, and IC-Data in ECX. | 
|  | __ xorl(ECX, ECX); | 
|  |  | 
|  | // Tail-call the function. | 
|  | __ jmp(FieldAddress(EAX, target::Function::entry_point_offset())); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ LoadIsolate(EAX); | 
|  | __ movl(EAX, Address(EAX, target::Isolate::default_tag_offset())); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ LoadIsolate(EAX); | 
|  | __ movl(EAX, Address(EAX, target::Isolate::current_tag_offset())); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | #if !defined(SUPPORT_TIMELINE) | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | #else | 
|  | Label true_label; | 
|  | // Load TimelineStream*. | 
|  | __ movl(EAX, Address(THR, target::Thread::dart_stream_offset())); | 
|  | // Load uintptr_t from TimelineStream*. | 
|  | __ movl(EAX, Address(EAX, target::TimelineStream::enabled_offset())); | 
|  | __ cmpl(EAX, Immediate(0)); | 
|  | __ j(NOT_ZERO, &true_label, Assembler::kNearJump); | 
|  | // Not enabled. | 
|  | __ LoadObject(EAX, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | // Enabled. | 
|  | __ Bind(&true_label); | 
|  | __ LoadObject(EAX, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #undef __ | 
|  |  | 
|  | }  // namespace compiler | 
|  | }  // namespace dart | 
|  |  | 
|  | #endif  // defined(TARGET_ARCH_IA32) |