|  | // Copyright (c) 2012, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  |  | 
|  | #include "platform/utils.h" | 
|  |  | 
|  | #include "platform/allocation.h" | 
|  | #include "platform/globals.h" | 
|  |  | 
|  | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
|  | defined(DART_HOST_OS_ANDROID) | 
|  | #include <dlfcn.h> | 
|  | #include <libgen.h> | 
|  | #elif defined(DART_HOST_OS_FUCHSIA) | 
|  | #include <dlfcn.h> | 
|  | #include <fuchsia/io/cpp/fidl.h> | 
|  | #include <lib/fdio/directory.h> | 
|  | #include <lib/fdio/io.h> | 
|  | #include <zircon/dlfcn.h> | 
|  | #include <zircon/status.h> | 
|  | #endif | 
|  |  | 
|  | namespace dart { | 
|  |  | 
|  | uint64_t Utils::ReverseBits64(uint64_t x) { | 
|  | x = ((x >> 32) & 0x00000000ffffffff) | (x << 32); | 
|  | x = ((x >> 16) & 0x0000ffff0000ffff) | ((x & 0x0000ffff0000ffff) << 16); | 
|  | x = ((x >> 8) & 0x00ff00ff00ff00ff) | ((x & 0x00ff00ff00ff00ff) << 8); | 
|  | x = ((x >> 4) & 0x0f0f0f0f0f0f0f0f) | ((x & 0x0f0f0f0f0f0f0f0f) << 4); | 
|  | x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2); | 
|  | x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | uint32_t Utils::ReverseBits32(uint32_t x) { | 
|  | x = ((x >> 16) & 0x0000ffff) | ((x & 0x0000ffff) << 16); | 
|  | x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); | 
|  | x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); | 
|  | x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); | 
|  | x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); | 
|  | return x; | 
|  | } | 
|  |  | 
|  | // Implementation according to H.S.Warren's "Hacker's Delight" | 
|  | // (Addison Wesley, 2002) Chapter 10 and T.Grablund, P.L.Montgomery's | 
|  | // "Division by Invariant Integers Using Multiplication" (PLDI 1994). | 
|  | void Utils::CalculateMagicAndShiftForDivRem(int64_t divisor, | 
|  | int64_t* magic, | 
|  | int64_t* shift) { | 
|  | ASSERT(divisor <= -2 || divisor >= 2); | 
|  | /* The magic number M and shift S can be calculated in the following way: | 
|  | * Let nc be the most positive value of numerator(n) such that nc = kd - 1, | 
|  | * where divisor(d) >= 2. | 
|  | * Let nc be the most negative value of numerator(n) such that nc = kd + 1, | 
|  | * where divisor(d) <= -2. | 
|  | * Thus nc can be calculated like: | 
|  | * nc =  exp + exp       % d - 1, where d >= 2 and exp = 2^63. | 
|  | * nc = -exp + (exp + 1) % d,     where d >= 2 and exp = 2^63. | 
|  | * | 
|  | * So the shift p is the smallest p satisfying | 
|  | * 2^p > nc * (d - 2^p % d), where d >= 2 | 
|  | * 2^p > nc * (d + 2^p % d), where d <= -2. | 
|  | * | 
|  | * The magic number M is calculated by | 
|  | * M = (2^p + d - 2^p % d) / d, where d >= 2 | 
|  | * M = (2^p - d - 2^p % d) / d, where d <= -2. | 
|  | */ | 
|  | int64_t p = 63; | 
|  | const uint64_t exp = 1LL << 63; | 
|  |  | 
|  | // Initialize the computations. | 
|  | uint64_t abs_d = (divisor >= 0) ? divisor : -static_cast<uint64_t>(divisor); | 
|  | uint64_t sign_bit = static_cast<uint64_t>(divisor) >> 63; | 
|  | uint64_t tmp = exp + sign_bit; | 
|  | uint64_t abs_nc = tmp - 1 - (tmp % abs_d); | 
|  | uint64_t quotient1 = exp / abs_nc; | 
|  | uint64_t remainder1 = exp % abs_nc; | 
|  | uint64_t quotient2 = exp / abs_d; | 
|  | uint64_t remainder2 = exp % abs_d; | 
|  |  | 
|  | // To avoid handling both positive and negative divisor, | 
|  | // "Hacker's Delight" introduces a method to handle these | 
|  | // two cases together to avoid duplication. | 
|  | uint64_t delta; | 
|  | do { | 
|  | p++; | 
|  | quotient1 = 2 * quotient1; | 
|  | remainder1 = 2 * remainder1; | 
|  | if (remainder1 >= abs_nc) { | 
|  | quotient1++; | 
|  | remainder1 = remainder1 - abs_nc; | 
|  | } | 
|  | quotient2 = 2 * quotient2; | 
|  | remainder2 = 2 * remainder2; | 
|  | if (remainder2 >= abs_d) { | 
|  | quotient2++; | 
|  | remainder2 = remainder2 - abs_d; | 
|  | } | 
|  | delta = abs_d - remainder2; | 
|  | } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); | 
|  |  | 
|  | *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); | 
|  | *shift = p - 64; | 
|  | } | 
|  |  | 
|  | // This implementation is based on the public domain MurmurHash | 
|  | // version 2.0. The constants M and R have been determined | 
|  | // to work well experimentally. | 
|  | static constexpr uint32_t kStringHashM = 0x5bd1e995; | 
|  | static constexpr int kStringHashR = 24; | 
|  |  | 
|  | // hash and part must be lvalues. | 
|  | #define MIX(hash, part)                                                        \ | 
|  | {                                                                            \ | 
|  | (part) *= kStringHashM;                                                    \ | 
|  | (part) ^= (part) >> kStringHashR;                                          \ | 
|  | (part) *= kStringHashM;                                                    \ | 
|  | (hash) *= kStringHashM;                                                    \ | 
|  | (hash) ^= (part);                                                          \ | 
|  | } | 
|  |  | 
|  | uint32_t Utils::StringHash(const void* data, int length) { | 
|  | int size = length; | 
|  | uint32_t hash = size; | 
|  |  | 
|  | auto cursor = reinterpret_cast<const uint8_t*>(data); | 
|  |  | 
|  | if (size >= kInt32Size) { | 
|  | const intptr_t misalignment = | 
|  | reinterpret_cast<intptr_t>(cursor) % kInt32Size; | 
|  | if (misalignment > 0) { | 
|  | // Stores 4-byte values starting from the start of the string to mimic | 
|  | // the algorithm on aligned data. | 
|  | uint32_t data_window = 0; | 
|  |  | 
|  | // Shift sizes for adjusting the data window when adding the next aligned | 
|  | // piece of data. | 
|  | const uint32_t sr = misalignment * kBitsPerByte; | 
|  | const uint32_t sl = kBitsPerInt32 - sr; | 
|  |  | 
|  | const intptr_t pre_alignment_length = kInt32Size - misalignment; | 
|  | switch (pre_alignment_length) { | 
|  | case 3: | 
|  | data_window |= cursor[2] << 16; | 
|  | FALL_THROUGH; | 
|  | case 2: | 
|  | data_window |= cursor[1] << 8; | 
|  | FALL_THROUGH; | 
|  | case 1: | 
|  | data_window |= cursor[0]; | 
|  | } | 
|  | cursor += pre_alignment_length; | 
|  | size -= pre_alignment_length; | 
|  |  | 
|  | // Mix four bytes at a time now that we're at an aligned spot. | 
|  | for (; size >= kInt32Size; cursor += kInt32Size, size -= kInt32Size) { | 
|  | uint32_t aligned_part = *reinterpret_cast<const uint32_t*>(cursor); | 
|  | data_window |= (aligned_part << sl); | 
|  | MIX(hash, data_window); | 
|  | data_window = aligned_part >> sr; | 
|  | } | 
|  |  | 
|  | if (size >= misalignment) { | 
|  | // There's one more full window in the data. We'll let the normal tail | 
|  | // code handle any partial window. | 
|  | switch (misalignment) { | 
|  | case 3: | 
|  | data_window |= cursor[2] << (16 + sl); | 
|  | FALL_THROUGH; | 
|  | case 2: | 
|  | data_window |= cursor[1] << (8 + sl); | 
|  | FALL_THROUGH; | 
|  | case 1: | 
|  | data_window |= cursor[0] << sl; | 
|  | } | 
|  | MIX(hash, data_window); | 
|  | cursor += misalignment; | 
|  | size -= misalignment; | 
|  | } else { | 
|  | // This is a partial window, so just xor and multiply by M. | 
|  | switch (size) { | 
|  | case 2: | 
|  | data_window |= cursor[1] << (8 + sl); | 
|  | FALL_THROUGH; | 
|  | case 1: | 
|  | data_window |= cursor[0] << sl; | 
|  | } | 
|  | hash ^= data_window; | 
|  | hash *= kStringHashM; | 
|  | cursor += size; | 
|  | size = 0; | 
|  | } | 
|  | } else { | 
|  | // Mix four bytes at a time into the hash. | 
|  | for (; size >= kInt32Size; size -= kInt32Size, cursor += kInt32Size) { | 
|  | uint32_t part = *reinterpret_cast<const uint32_t*>(cursor); | 
|  | MIX(hash, part); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle the last few bytes of the string if any. | 
|  | switch (size) { | 
|  | case 3: | 
|  | hash ^= cursor[2] << 16; | 
|  | FALL_THROUGH; | 
|  | case 2: | 
|  | hash ^= cursor[1] << 8; | 
|  | FALL_THROUGH; | 
|  | case 1: | 
|  | hash ^= cursor[0]; | 
|  | hash *= kStringHashM; | 
|  | } | 
|  |  | 
|  | // Do a few final mixes of the hash to ensure the last few bytes are | 
|  | // well-incorporated. | 
|  | hash ^= hash >> 13; | 
|  | hash *= kStringHashM; | 
|  | hash ^= hash >> 15; | 
|  | return hash; | 
|  | } | 
|  |  | 
|  | #undef MIX | 
|  |  | 
|  | uint32_t Utils::WordHash(intptr_t key) { | 
|  | // TODO(iposva): Need to check hash spreading. | 
|  | // This example is from http://www.concentric.net/~Ttwang/tech/inthash.htm | 
|  | // via. http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm | 
|  | uword a = static_cast<uword>(key); | 
|  | a = (a + 0x7ed55d16) + (a << 12); | 
|  | a = (a ^ 0xc761c23c) ^ (a >> 19); | 
|  | a = (a + 0x165667b1) + (a << 5); | 
|  | a = (a + 0xd3a2646c) ^ (a << 9); | 
|  | a = (a + 0xfd7046c5) + (a << 3); | 
|  | a = (a ^ 0xb55a4f09) ^ (a >> 16); | 
|  | return static_cast<uint32_t>(a); | 
|  | } | 
|  |  | 
|  | char* Utils::SCreate(const char* format, ...) { | 
|  | va_list args; | 
|  | va_start(args, format); | 
|  | char* buffer = VSCreate(format, args); | 
|  | va_end(args); | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  | char* Utils::VSCreate(const char* format, va_list args) { | 
|  | // Measure. | 
|  | va_list measure_args; | 
|  | va_copy(measure_args, args); | 
|  | intptr_t len = VSNPrint(nullptr, 0, format, measure_args); | 
|  | va_end(measure_args); | 
|  |  | 
|  | char* buffer = reinterpret_cast<char*>(malloc(len + 1)); | 
|  | ASSERT(buffer != nullptr); | 
|  |  | 
|  | // Print. | 
|  | va_list print_args; | 
|  | va_copy(print_args, args); | 
|  | VSNPrint(buffer, len + 1, format, print_args); | 
|  | va_end(print_args); | 
|  | return buffer; | 
|  | } | 
|  |  | 
|  | static void GetLastErrorAsString(char** error) { | 
|  | if (error == nullptr) return;  // Nothing to do. | 
|  |  | 
|  | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
|  | defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
|  | const char* status = dlerror(); | 
|  | *error = status != nullptr ? strdup(status) : nullptr; | 
|  | #elif defined(DART_HOST_OS_WINDOWS) | 
|  | const int status = GetLastError(); | 
|  | if (status != 0) { | 
|  | char* description = nullptr; | 
|  | int length = FormatMessageA( | 
|  | FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | | 
|  | FORMAT_MESSAGE_IGNORE_INSERTS, | 
|  | nullptr, status, MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), | 
|  | reinterpret_cast<char*>(&description), 0, nullptr); | 
|  | if (length == 0) { | 
|  | // Seems like there is no message for this error code. | 
|  | *error = Utils::SCreate("error code %i", status); | 
|  | } else { | 
|  | *error = Utils::SCreate("%s (error code: %i)", description, status); | 
|  | } | 
|  |  | 
|  | LocalFree(description); | 
|  | } else { | 
|  | *error = nullptr; | 
|  | } | 
|  | #else | 
|  | *error = Utils::StrDup("loading dynamic libraries is not supported"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void* Utils::LoadDynamicLibrary(const char* library_path, | 
|  | bool search_dll_load_dir, | 
|  | char** error) { | 
|  | void* handle = nullptr; | 
|  |  | 
|  | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
|  | defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
|  | handle = dlopen(library_path, RTLD_LAZY); | 
|  | #if defined(DART_HOST_OS_FUCHSIA) | 
|  | if (handle == nullptr) { | 
|  | // Fuchsia's search path is different. | 
|  | // https://fuchsia.dev/fuchsia-src/concepts/process/program_loading#zircons_standard_elf_dynamic_linker | 
|  | fuchsia::io::Flags flags = | 
|  | fuchsia::io::PERM_READABLE | fuchsia::io::PERM_EXECUTABLE; | 
|  | int fd = -1; | 
|  | zx_status_t status = fdio_open3_fd(library_path, uint64_t{flags}, &fd); | 
|  | if (status != ZX_OK) { | 
|  | *error = strdup(zx_status_get_string(status)); | 
|  | return nullptr; | 
|  | } | 
|  | zx_handle_t vmo = ZX_HANDLE_INVALID; | 
|  | status = fdio_get_vmo_exec(fd, &vmo); | 
|  | close(fd); | 
|  | if (status != ZX_OK) { | 
|  | *error = strdup(zx_status_get_string(status)); | 
|  | return nullptr; | 
|  | } | 
|  | handle = dlopen_vmo(vmo, RTLD_LAZY); | 
|  | } | 
|  | #endif  // defined(DART_HOST_OS_FUCHSIA) | 
|  | #elif defined(DART_HOST_OS_WINDOWS) | 
|  | SetLastError(0);  // Clear any errors. | 
|  |  | 
|  | if (library_path == nullptr) { | 
|  | handle = GetModuleHandle(nullptr); | 
|  | } else { | 
|  | // Convert to wchar_t string. | 
|  | const int name_len = MultiByteToWideChar( | 
|  | CP_UTF8, /*dwFlags=*/0, library_path, /*cbMultiByte=*/-1, nullptr, 0); | 
|  | if (name_len != 0) { | 
|  | std::unique_ptr<wchar_t[]> name(new wchar_t[name_len]); | 
|  | const int written_len = | 
|  | MultiByteToWideChar(CP_UTF8, /*dwFlags=*/0, library_path, | 
|  | /*cbMultiByte=*/-1, name.get(), name_len); | 
|  | RELEASE_ASSERT(written_len == name_len); | 
|  | if (search_dll_load_dir) { | 
|  | handle = | 
|  | LoadLibraryExW(name.get(), NULL, LOAD_WITH_ALTERED_SEARCH_PATH); | 
|  | } else { | 
|  | handle = LoadLibraryW(name.get()); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (handle == nullptr) { | 
|  | GetLastErrorAsString(error); | 
|  | } | 
|  |  | 
|  | return handle; | 
|  | } | 
|  |  | 
|  | void* Utils::ResolveSymbolInDynamicLibrary(void* library_handle, | 
|  | const char* symbol, | 
|  | char** error) { | 
|  | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
|  | defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
|  | dlerror();  // Clear any errors. | 
|  | void* result = dlsym(library_handle, symbol); | 
|  | // Note: nullptr might be a valid return from dlsym. Must call dlerror | 
|  | // to differentiate. | 
|  | GetLastErrorAsString(error); | 
|  | return result; | 
|  | #elif defined(DART_HOST_OS_WINDOWS) | 
|  | SetLastError(0); | 
|  | void* result = reinterpret_cast<void*>( | 
|  | GetProcAddress(reinterpret_cast<HMODULE>(library_handle), symbol)); | 
|  | if (result == nullptr) { | 
|  | GetLastErrorAsString(error); | 
|  | } | 
|  | return result; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void Utils::UnloadDynamicLibrary(void* library_handle, char** error) { | 
|  | bool ok = false; | 
|  |  | 
|  | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
|  | defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
|  | ok = dlclose(library_handle) == 0; | 
|  | #elif defined(DART_HOST_OS_WINDOWS) | 
|  | SetLastError(0);  // Clear any errors. | 
|  |  | 
|  | ok = FreeLibrary(reinterpret_cast<HMODULE>(library_handle)); | 
|  | #endif | 
|  |  | 
|  | if (!ok) { | 
|  | GetLastErrorAsString(error); | 
|  | } | 
|  | } | 
|  |  | 
|  | char* Utils::Basename(const char* path) { | 
|  | #if defined(DART_HOST_OS_FUCHSIA) || defined(DART_HOST_OS_WINDOWS) | 
|  | // Not handled for these operating systems. | 
|  | return nullptr; | 
|  | #else | 
|  | if (path == nullptr) return nullptr; | 
|  | char* const path_copy = Utils::StrDup(path); | 
|  | char* result = basename(path_copy); | 
|  | // The result may be in statically allocated memory, so copy. | 
|  | result = Utils::StrDup(result); | 
|  | // The result may point to a portion of the passed in string, so | 
|  | // only free the copy after duplicating the result. | 
|  | free(path_copy); | 
|  | return result; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | }  // namespace dart |