| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include <setjmp.h> // NOLINT |
| #include <stdlib.h> |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_ARM) |
| |
| // Only build the simulator if not compiling for real ARM hardware. |
| #if defined(USING_SIMULATOR) |
| |
| #include "vm/simulator.h" |
| |
| #include "vm/compiler/assembler/disassembler.h" |
| #include "vm/constants.h" |
| #include "vm/cpu.h" |
| #include "vm/image_snapshot.h" |
| #include "vm/native_arguments.h" |
| #include "vm/os_thread.h" |
| #include "vm/stack_frame.h" |
| |
| namespace dart { |
| |
| // constants_arm.h does not define LR constant to prevent accidental direct use |
| // of it during code generation. However using LR directly is okay in this |
| // file because it is a simulator. |
| constexpr Register LR = LR_DO_NOT_USE_DIRECTLY; |
| |
| DEFINE_FLAG(uint64_t, |
| trace_sim_after, |
| ULLONG_MAX, |
| "Trace simulator execution after instruction count reached."); |
| DEFINE_FLAG(uint64_t, |
| stop_sim_at, |
| ULLONG_MAX, |
| "Instruction address or instruction count to stop simulator at."); |
| |
| DEFINE_FLAG(bool, sim_buffer_memory, false, "Simulate weak memory ordering."); |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent way through |
| // OS in the same way as SNPrint is that the Windows C Run-Time |
| // Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // SimulatorSetjmpBuffer are linked together, and the last created one |
| // is referenced by the Simulator. When an exception is thrown, the exception |
| // runtime looks at where to jump and finds the corresponding |
| // SimulatorSetjmpBuffer based on the stack pointer of the exception handler. |
| // The runtime then does a Longjmp on that buffer to return to the simulator. |
| class SimulatorSetjmpBuffer { |
| public: |
| void Longjmp() { |
| // "This" is now the last setjmp buffer. |
| simulator_->set_last_setjmp_buffer(this); |
| longjmp(buffer_, 1); |
| } |
| |
| explicit SimulatorSetjmpBuffer(Simulator* sim) { |
| simulator_ = sim; |
| link_ = sim->last_setjmp_buffer(); |
| sim->set_last_setjmp_buffer(this); |
| sp_ = static_cast<uword>(sim->get_register(SP)); |
| } |
| |
| ~SimulatorSetjmpBuffer() { |
| ASSERT(simulator_->last_setjmp_buffer() == this); |
| simulator_->set_last_setjmp_buffer(link_); |
| } |
| |
| SimulatorSetjmpBuffer* link() { return link_; } |
| |
| uword sp() { return sp_; } |
| |
| private: |
| uword sp_; |
| Simulator* simulator_; |
| SimulatorSetjmpBuffer* link_; |
| jmp_buf buffer_; |
| |
| friend class Simulator; |
| }; |
| |
| // The SimulatorDebugger class is used by the simulator while debugging |
| // simulated ARM code. |
| class SimulatorDebugger { |
| public: |
| explicit SimulatorDebugger(Simulator* sim); |
| ~SimulatorDebugger(); |
| |
| void Stop(Instr* instr, const char* message); |
| void Debug(); |
| char* ReadLine(const char* prompt); |
| |
| private: |
| Simulator* sim_; |
| |
| bool GetValue(char* desc, uint32_t* value); |
| bool GetFValue(char* desc, float* value); |
| bool GetDValue(char* desc, double* value); |
| |
| static TokenPosition GetApproximateTokenIndex(const Code& code, uword pc); |
| |
| static void PrintDartFrame(uword vm_instructions, |
| uword isolate_instructions, |
| uword pc, |
| uword fp, |
| uword sp, |
| const Function& function, |
| TokenPosition token_pos, |
| bool is_optimized, |
| bool is_inlined); |
| void PrintBacktrace(); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instr* breakpc); |
| bool DeleteBreakpoint(Instr* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| SimulatorDebugger::SimulatorDebugger(Simulator* sim) { |
| sim_ = sim; |
| } |
| |
| SimulatorDebugger::~SimulatorDebugger() {} |
| |
| void SimulatorDebugger::Stop(Instr* instr, const char* message) { |
| OS::PrintErr("Simulator hit %s\n", message); |
| Debug(); |
| } |
| |
| static Register LookupCpuRegisterByName(const char* name) { |
| static const char* const kNames[] = { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", |
| "r11", "r12", "r13", "r14", "r15", "pc", "lr", "sp", "ip", "fp", "pp"}; |
| static const Register kRegisters[] = {R0, R1, R2, R3, R4, R5, R6, R7, |
| R8, R9, R10, R11, R12, R13, R14, R15, |
| PC, LR, SP, IP, FP, PP}; |
| ASSERT(ARRAY_SIZE(kNames) == ARRAY_SIZE(kRegisters)); |
| for (unsigned i = 0; i < ARRAY_SIZE(kNames); i++) { |
| if (strcmp(kNames[i], name) == 0) { |
| return kRegisters[i]; |
| } |
| } |
| return kNoRegister; |
| } |
| |
| static SRegister LookupSRegisterByName(const char* name) { |
| int reg_nr = -1; |
| bool ok = SScanF(name, "s%d", ®_nr); |
| if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfSRegisters)) { |
| return static_cast<SRegister>(reg_nr); |
| } |
| return kNoSRegister; |
| } |
| |
| static DRegister LookupDRegisterByName(const char* name) { |
| int reg_nr = -1; |
| bool ok = SScanF(name, "d%d", ®_nr); |
| if (ok && (0 <= reg_nr) && (reg_nr < kNumberOfDRegisters)) { |
| return static_cast<DRegister>(reg_nr); |
| } |
| return kNoDRegister; |
| } |
| |
| bool SimulatorDebugger::GetValue(char* desc, uint32_t* value) { |
| Register reg = LookupCpuRegisterByName(desc); |
| if (reg != kNoRegister) { |
| if (reg == PC) { |
| *value = sim_->get_pc(); |
| } else { |
| *value = sim_->get_register(reg); |
| } |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint32_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<uint32_t*>(addr)); |
| return true; |
| } |
| } |
| bool retval = SScanF(desc, "0x%x", value) == 1; |
| if (!retval) { |
| retval = SScanF(desc, "%x", value) == 1; |
| } |
| return retval; |
| } |
| |
| bool SimulatorDebugger::GetFValue(char* desc, float* value) { |
| SRegister sreg = LookupSRegisterByName(desc); |
| if (sreg != kNoSRegister) { |
| *value = sim_->get_sregister(sreg); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint32_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<float*>(addr)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool SimulatorDebugger::GetDValue(char* desc, double* value) { |
| DRegister dreg = LookupDRegisterByName(desc); |
| if (dreg != kNoDRegister) { |
| *value = sim_->get_dregister(dreg); |
| return true; |
| } |
| if (desc[0] == '*') { |
| uint32_t addr; |
| if (GetValue(desc + 1, &addr)) { |
| if (Simulator::IsIllegalAddress(addr)) { |
| return false; |
| } |
| *value = *(reinterpret_cast<double*>(addr)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| TokenPosition SimulatorDebugger::GetApproximateTokenIndex(const Code& code, |
| uword pc) { |
| TokenPosition token_pos = TokenPosition::kNoSource; |
| uword pc_offset = pc - code.PayloadStart(); |
| const PcDescriptors& descriptors = |
| PcDescriptors::Handle(code.pc_descriptors()); |
| PcDescriptors::Iterator iter(descriptors, UntaggedPcDescriptors::kAnyKind); |
| while (iter.MoveNext()) { |
| if (iter.PcOffset() == pc_offset) { |
| return iter.TokenPos(); |
| } else if (!token_pos.IsReal() && (iter.PcOffset() > pc_offset)) { |
| token_pos = iter.TokenPos(); |
| } |
| } |
| return token_pos; |
| } |
| |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| static const char* ImageName(uword vm_instructions, |
| uword isolate_instructions, |
| uword pc, |
| intptr_t* offset) { |
| const Image vm_image(vm_instructions); |
| const Image isolate_image(isolate_instructions); |
| if (vm_image.contains(pc)) { |
| *offset = pc - vm_instructions; |
| return kVmSnapshotInstructionsAsmSymbol; |
| } else if (isolate_image.contains(pc)) { |
| *offset = pc - isolate_instructions; |
| return kIsolateSnapshotInstructionsAsmSymbol; |
| } else { |
| *offset = 0; |
| return "<unknown>"; |
| } |
| } |
| #endif |
| |
| void SimulatorDebugger::PrintDartFrame(uword vm_instructions, |
| uword isolate_instructions, |
| uword pc, |
| uword fp, |
| uword sp, |
| const Function& function, |
| TokenPosition token_pos, |
| bool is_optimized, |
| bool is_inlined) { |
| const Script& script = Script::Handle(function.script()); |
| const String& func_name = String::Handle(function.QualifiedScrubbedName()); |
| const String& url = String::Handle(script.url()); |
| intptr_t line, column; |
| if (script.GetTokenLocation(token_pos, &line, &column)) { |
| OS::PrintErr( |
| "pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s:%" Pd ":%" Pd ")", pc, |
| fp, sp, is_optimized ? (is_inlined ? "inlined " : "optimized ") : "", |
| func_name.ToCString(), url.ToCString(), line, column); |
| |
| } else { |
| OS::PrintErr("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s%s (%s)", pc, fp, sp, |
| is_optimized ? (is_inlined ? "inlined " : "optimized ") : "", |
| func_name.ToCString(), url.ToCString()); |
| } |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| intptr_t offset; |
| auto const symbol_name = |
| ImageName(vm_instructions, isolate_instructions, pc, &offset); |
| OS::PrintErr(" %s+0x%" Px "", symbol_name, offset); |
| #endif |
| OS::PrintErr("\n"); |
| } |
| |
| void SimulatorDebugger::PrintBacktrace() { |
| auto const T = Thread::Current(); |
| auto const Z = T->zone(); |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| auto const vm_instructions = reinterpret_cast<uword>( |
| Dart::vm_isolate_group()->source()->snapshot_instructions); |
| auto const isolate_instructions = reinterpret_cast<uword>( |
| T->isolate_group()->source()->snapshot_instructions); |
| OS::PrintErr("vm_instructions=0x%" Px ", isolate_instructions=0x%" Px "\n", |
| vm_instructions, isolate_instructions); |
| #else |
| const uword vm_instructions = 0; |
| const uword isolate_instructions = 0; |
| #endif |
| StackFrameIterator frames(sim_->get_register(FP), sim_->get_register(SP), |
| sim_->get_pc(), |
| ValidationPolicy::kDontValidateFrames, T, |
| StackFrameIterator::kNoCrossThreadIteration); |
| StackFrame* frame = frames.NextFrame(); |
| ASSERT(frame != nullptr); |
| Function& function = Function::Handle(Z); |
| Function& inlined_function = Function::Handle(Z); |
| Code& code = Code::Handle(Z); |
| Code& unoptimized_code = Code::Handle(Z); |
| while (frame != nullptr) { |
| if (frame->IsDartFrame()) { |
| code = frame->LookupDartCode(); |
| function = code.function(); |
| if (code.is_optimized()) { |
| // For optimized frames, extract all the inlined functions if any |
| // into the stack trace. |
| InlinedFunctionsIterator it(code, frame->pc()); |
| while (!it.Done()) { |
| // Print each inlined frame with its pc in the corresponding |
| // unoptimized frame. |
| inlined_function = it.function(); |
| unoptimized_code = it.code(); |
| uword unoptimized_pc = it.pc(); |
| it.Advance(); |
| if (!it.Done()) { |
| PrintDartFrame( |
| vm_instructions, isolate_instructions, unoptimized_pc, |
| frame->fp(), frame->sp(), inlined_function, |
| GetApproximateTokenIndex(unoptimized_code, unoptimized_pc), |
| true, true); |
| } |
| } |
| // Print the optimized inlining frame below. |
| } |
| PrintDartFrame(vm_instructions, isolate_instructions, frame->pc(), |
| frame->fp(), frame->sp(), function, |
| GetApproximateTokenIndex(code, frame->pc()), |
| code.is_optimized(), false); |
| } else { |
| OS::PrintErr("pc=0x%" Px " fp=0x%" Px " sp=0x%" Px " %s frame", |
| frame->pc(), frame->fp(), frame->sp(), |
| frame->IsEntryFrame() ? "entry" |
| : frame->IsExitFrame() ? "exit" |
| : frame->IsStubFrame() ? "stub" |
| : "invalid"); |
| #if defined(DART_PRECOMPILED_RUNTIME) |
| intptr_t offset; |
| auto const symbol_name = ImageName(vm_instructions, isolate_instructions, |
| frame->pc(), &offset); |
| OS::PrintErr(" %s+0x%" Px "", symbol_name, offset); |
| #endif |
| OS::PrintErr("\n"); |
| } |
| frame = frames.NextFrame(); |
| } |
| } |
| |
| bool SimulatorDebugger::SetBreakpoint(Instr* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != nullptr) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| bool SimulatorDebugger::DeleteBreakpoint(Instr* breakpc) { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = nullptr; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| void SimulatorDebugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| void SimulatorDebugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(Instr::kSimulatorBreakpointInstruction); |
| } |
| } |
| |
| void SimulatorDebugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done) { |
| if (last_pc != sim_->get_pc()) { |
| last_pc = sim_->get_pc(); |
| if (Simulator::IsIllegalAddress(last_pc)) { |
| OS::PrintErr("pc is out of bounds: 0x%" Px "\n", last_pc); |
| } else { |
| if (FLAG_support_disassembler) { |
| Disassembler::Disassemble(last_pc, last_pc + Instr::kInstrSize); |
| } else { |
| OS::PrintErr("Disassembler not supported in this mode.\n"); |
| } |
| } |
| } |
| char* line = ReadLine("sim> "); |
| if (line == nullptr) { |
| FATAL("ReadLine failed"); |
| } else { |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int args = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| OS::PrintErr( |
| "c/cont -- continue execution\n" |
| "disasm -- disassemble instrs at current pc location\n" |
| " other variants are:\n" |
| " disasm <address>\n" |
| " disasm <address> <number_of_instructions>\n" |
| " by default 10 instrs are disassembled\n" |
| "del -- delete breakpoints\n" |
| "flags -- print flag values\n" |
| "gdb -- transfer control to gdb\n" |
| "h/help -- print this help string\n" |
| "break <address> -- set break point at specified address\n" |
| "p/print <reg or icount or value or *addr> -- print integer\n" |
| "ps/printsingle <sreg or *addr> -- print float value\n" |
| "pd/printdouble <dreg or *addr> -- print double value\n" |
| "po/printobject <*reg or *addr> -- print object\n" |
| "si/stepi -- single step an instruction\n" |
| "trace -- toggle execution tracing mode\n" |
| "bt -- print backtrace\n" |
| "unstop -- if current pc is a stop instr make it a nop\n" |
| "q/quit -- Quit the debugger and exit the program\n"); |
| } else if ((strcmp(cmd, "quit") == 0) || (strcmp(cmd, "q") == 0)) { |
| OS::PrintErr("Quitting\n"); |
| OS::Exit(0); |
| } else if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instr*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (args == 2) { |
| uint32_t value; |
| if (strcmp(arg1, "icount") == 0) { |
| const uint64_t icount = sim_->get_icount(); |
| OS::PrintErr("icount: %" Pu64 " 0x%" Px64 "\n", icount, icount); |
| } else if (GetValue(arg1, &value)) { |
| OS::PrintErr("%s: %u 0x%x\n", arg1, value, value); |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("print <reg or icount or value or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "ps") == 0) || |
| (strcmp(cmd, "printsingle") == 0)) { |
| if (args == 2) { |
| float fvalue; |
| if (GetFValue(arg1, &fvalue)) { |
| uint32_t value = bit_cast<uint32_t, float>(fvalue); |
| OS::PrintErr("%s: 0%u 0x%x %.8g\n", arg1, value, value, fvalue); |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("printfloat <sreg or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "pd") == 0) || |
| (strcmp(cmd, "printdouble") == 0)) { |
| if (args == 2) { |
| double dvalue; |
| if (GetDValue(arg1, &dvalue)) { |
| uint64_t long_value = bit_cast<uint64_t, double>(dvalue); |
| OS::PrintErr("%s: %llu 0x%llx %.8g\n", arg1, long_value, long_value, |
| dvalue); |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("printdouble <dreg or *addr>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) || |
| (strcmp(cmd, "printobject") == 0)) { |
| if (args == 2) { |
| uint32_t value; |
| // Make the dereferencing '*' optional. |
| if (((arg1[0] == '*') && GetValue(arg1 + 1, &value)) || |
| GetValue(arg1, &value)) { |
| if (IsolateGroup::Current()->heap()->Contains(value)) { |
| OS::PrintErr("%s: \n", arg1); |
| #if defined(DEBUG) |
| const Object& obj = Object::Handle(static_cast<ObjectPtr>(value)); |
| obj.Print(); |
| #endif // defined(DEBUG) |
| } else { |
| OS::PrintErr("0x%x is not an object reference\n", value); |
| } |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("printobject <*reg or *addr>\n"); |
| } |
| } else if (strcmp(cmd, "disasm") == 0) { |
| uint32_t start = 0; |
| uint32_t end = 0; |
| if (args == 1) { |
| start = sim_->get_pc(); |
| end = start + (10 * Instr::kInstrSize); |
| } else if (args == 2) { |
| if (GetValue(arg1, &start)) { |
| // No length parameter passed, assume 10 instructions. |
| if (Simulator::IsIllegalAddress(start)) { |
| // If start isn't a valid address, warn and use PC instead. |
| OS::PrintErr("First argument yields invalid address: 0x%x\n", |
| start); |
| OS::PrintErr("Using PC instead\n"); |
| start = sim_->get_pc(); |
| } |
| end = start + (10 * Instr::kInstrSize); |
| } |
| } else { |
| uint32_t length; |
| if (GetValue(arg1, &start) && GetValue(arg2, &length)) { |
| if (Simulator::IsIllegalAddress(start)) { |
| // If start isn't a valid address, warn and use PC instead. |
| OS::PrintErr("First argument yields invalid address: 0x%x\n", |
| start); |
| OS::PrintErr("Using PC instead\n"); |
| start = sim_->get_pc(); |
| } |
| end = start + (length * Instr::kInstrSize); |
| } |
| } |
| if ((start > 0) && (end > start)) { |
| if (FLAG_support_disassembler) { |
| Disassembler::Disassemble(start, end); |
| } else { |
| OS::PrintErr("Disassembler not supported in this mode.\n"); |
| } |
| } else { |
| OS::PrintErr("disasm [<address> [<number_of_instructions>]]\n"); |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| OS::PrintErr("relinquishing control to gdb\n"); |
| OS::DebugBreak(); |
| OS::PrintErr("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (args == 2) { |
| uint32_t addr; |
| if (GetValue(arg1, &addr)) { |
| if (!SetBreakpoint(reinterpret_cast<Instr*>(addr))) { |
| OS::PrintErr("setting breakpoint failed\n"); |
| } |
| } else { |
| OS::PrintErr("%s unrecognized\n", arg1); |
| } |
| } else { |
| OS::PrintErr("break <addr>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(nullptr)) { |
| OS::PrintErr("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| OS::PrintErr("APSR: "); |
| OS::PrintErr("N flag: %d; ", sim_->n_flag_); |
| OS::PrintErr("Z flag: %d; ", sim_->z_flag_); |
| OS::PrintErr("C flag: %d; ", sim_->c_flag_); |
| OS::PrintErr("V flag: %d\n", sim_->v_flag_); |
| OS::PrintErr("FPSCR: "); |
| OS::PrintErr("N flag: %d; ", sim_->fp_n_flag_); |
| OS::PrintErr("Z flag: %d; ", sim_->fp_z_flag_); |
| OS::PrintErr("C flag: %d; ", sim_->fp_c_flag_); |
| OS::PrintErr("V flag: %d\n", sim_->fp_v_flag_); |
| } else if (strcmp(cmd, "unstop") == 0) { |
| intptr_t stop_pc = sim_->get_pc() - Instr::kInstrSize; |
| Instr* stop_instr = reinterpret_cast<Instr*>(stop_pc); |
| if (stop_instr->IsSvc() || stop_instr->IsBkpt()) { |
| stop_instr->SetInstructionBits(Instr::kNopInstruction); |
| } else { |
| OS::PrintErr("Not at debugger stop.\n"); |
| } |
| } else if (strcmp(cmd, "trace") == 0) { |
| if (FLAG_trace_sim_after == ULLONG_MAX) { |
| FLAG_trace_sim_after = sim_->get_icount(); |
| OS::PrintErr("execution tracing on\n"); |
| } else { |
| FLAG_trace_sim_after = ULLONG_MAX; |
| OS::PrintErr("execution tracing off\n"); |
| } |
| } else if (strcmp(cmd, "bt") == 0) { |
| Thread* thread = reinterpret_cast<Thread*>(sim_->get_register(THR)); |
| thread->set_execution_state(Thread::kThreadInVM); |
| PrintBacktrace(); |
| thread->set_execution_state(Thread::kThreadInGenerated); |
| } else { |
| OS::PrintErr("Unknown command: %s\n", cmd); |
| } |
| } |
| delete[] line; |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| char* SimulatorDebugger::ReadLine(const char* prompt) { |
| char* result = nullptr; |
| char line_buf[256]; |
| intptr_t offset = 0; |
| bool keep_going = true; |
| OS::PrintErr("%s", prompt); |
| while (keep_going) { |
| if (fgets(line_buf, sizeof(line_buf), stdin) == nullptr) { |
| // fgets got an error. Just give up. |
| if (result != nullptr) { |
| delete[] result; |
| } |
| return nullptr; |
| } |
| intptr_t len = strlen(line_buf); |
| if (len > 1 && line_buf[len - 2] == '\\' && line_buf[len - 1] == '\n') { |
| // When we read a line that ends with a "\" we remove the escape and |
| // append the remainder. |
| line_buf[len - 2] = '\n'; |
| line_buf[len - 1] = 0; |
| len -= 1; |
| } else if ((len > 0) && (line_buf[len - 1] == '\n')) { |
| // Since we read a new line we are done reading the line. This |
| // will exit the loop after copying this buffer into the result. |
| keep_going = false; |
| } |
| if (result == nullptr) { |
| // Allocate the initial result and make room for the terminating '\0' |
| result = new char[len + 1]; |
| if (result == nullptr) { |
| // OOM, so cannot readline anymore. |
| return nullptr; |
| } |
| } else { |
| // Allocate a new result with enough room for the new addition. |
| intptr_t new_len = offset + len + 1; |
| char* new_result = new char[new_len]; |
| if (new_result == nullptr) { |
| // OOM, free the buffer allocated so far and return nullptr. |
| delete[] result; |
| return nullptr; |
| } else { |
| // Copy the existing input into the new array and set the new |
| // array as the result. |
| memmove(new_result, result, offset); |
| delete[] result; |
| result = new_result; |
| } |
| } |
| // Copy the newly read line into the result. |
| memmove(result + offset, line_buf, len); |
| offset += len; |
| } |
| ASSERT(result != nullptr); |
| result[offset] = '\0'; |
| return result; |
| } |
| |
| void Simulator::Init() {} |
| |
| Simulator::Simulator() : memory_(FLAG_sim_buffer_memory) { |
| // Setup simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| // We allocate the stack here, the size is computed as the sum of |
| // the size specified by the user and the buffer space needed for |
| // handling stack overflow exceptions. To be safe in potential |
| // stack underflows we also add some underflow buffer space. |
| stack_ = |
| new char[(OSThread::GetSpecifiedStackSize() + |
| OSThread::kStackSizeBufferMax + kSimulatorStackUnderflowSize)]; |
| // Low address. |
| stack_limit_ = reinterpret_cast<uword>(stack_); |
| // Limit for StackOverflowError. |
| overflow_stack_limit_ = stack_limit_ + OSThread::kStackSizeBufferMax; |
| // High address. |
| stack_base_ = overflow_stack_limit_ + OSThread::GetSpecifiedStackSize(); |
| |
| pc_modified_ = false; |
| icount_ = 0; |
| break_pc_ = nullptr; |
| break_instr_ = 0; |
| last_setjmp_buffer_ = nullptr; |
| |
| // Setup architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < kNumberOfCpuRegisters; i++) { |
| registers_[i] = 0; |
| } |
| n_flag_ = false; |
| z_flag_ = false; |
| c_flag_ = false; |
| v_flag_ = false; |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. |
| registers_[SP] = stack_base(); |
| // The lr and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[PC] = kBadLR; |
| registers_[LR] = kBadLR; |
| |
| // All double-precision registers are initialized to zero. |
| for (int i = 0; i < kNumberOfDRegisters; i++) { |
| dregisters_[i] = 0; |
| } |
| // Since VFP registers are overlapping, single-precision registers should |
| // already be initialized. |
| ASSERT(2 * kNumberOfDRegisters >= kNumberOfSRegisters); |
| for (int i = 0; i < kNumberOfSRegisters; i++) { |
| ASSERT(sregisters_[i] == 0.0); |
| } |
| fp_n_flag_ = false; |
| fp_z_flag_ = false; |
| fp_c_flag_ = false; |
| fp_v_flag_ = false; |
| } |
| |
| Simulator::~Simulator() { |
| delete[] stack_; |
| Isolate* isolate = Isolate::Current(); |
| if (isolate != nullptr) { |
| isolate->set_simulator(nullptr); |
| } |
| } |
| |
| // When the generated code calls an external reference we need to catch that in |
| // the simulator. The external reference will be a function compiled for the |
| // host architecture. We need to call that function instead of trying to |
| // execute it with the simulator. We do that by redirecting the external |
| // reference to a svc (supervisor call) instruction that is handled by |
| // the simulator. We write the original destination of the jump just at a known |
| // offset from the svc instruction so the simulator knows what to call. |
| class Redirection { |
| public: |
| uword address_of_svc_instruction() { |
| return reinterpret_cast<uword>(&svc_instruction_); |
| } |
| |
| uword external_function() const { return external_function_; } |
| |
| Simulator::CallKind call_kind() const { return call_kind_; } |
| |
| int argument_count() const { return argument_count_; } |
| |
| static Redirection* Get(uword external_function, |
| Simulator::CallKind call_kind, |
| int argument_count) { |
| MutexLocker ml(mutex_); |
| |
| Redirection* old_head = list_.load(std::memory_order_relaxed); |
| for (Redirection* current = old_head; current != nullptr; |
| current = current->next_) { |
| if (current->external_function_ == external_function) return current; |
| } |
| |
| Redirection* redirection = |
| new Redirection(external_function, call_kind, argument_count); |
| redirection->next_ = old_head; |
| |
| // Use a memory fence to ensure all pending writes are written at the time |
| // of updating the list head, so the profiling thread always has a valid |
| // list to look at. |
| list_.store(redirection, std::memory_order_release); |
| |
| return redirection; |
| } |
| |
| static Redirection* FromSvcInstruction(Instr* svc_instruction) { |
| char* addr_of_svc = reinterpret_cast<char*>(svc_instruction); |
| char* addr_of_redirection = |
| addr_of_svc - OFFSET_OF(Redirection, svc_instruction_); |
| return reinterpret_cast<Redirection*>(addr_of_redirection); |
| } |
| |
| // Please note that this function is called by the signal handler of the |
| // profiling thread. It can therefore run at any point in time and is not |
| // allowed to hold any locks - which is precisely the reason why the list is |
| // prepend-only and a memory fence is used when writing the list head [list_]! |
| static uword FunctionForRedirect(uword address_of_svc) { |
| for (Redirection* current = list_.load(std::memory_order_acquire); |
| current != nullptr; current = current->next_) { |
| if (current->address_of_svc_instruction() == address_of_svc) { |
| return current->external_function_; |
| } |
| } |
| return 0; |
| } |
| |
| private: |
| Redirection(uword external_function, |
| Simulator::CallKind call_kind, |
| int argument_count) |
| : external_function_(external_function), |
| call_kind_(call_kind), |
| argument_count_(argument_count), |
| svc_instruction_(Instr::kSimulatorRedirectInstruction), |
| next_(nullptr) {} |
| |
| uword external_function_; |
| Simulator::CallKind call_kind_; |
| int argument_count_; |
| uint32_t svc_instruction_; |
| Redirection* next_; |
| static std::atomic<Redirection*> list_; |
| static Mutex* mutex_; |
| }; |
| |
| std::atomic<Redirection*> Redirection::list_ = {nullptr}; |
| Mutex* Redirection::mutex_ = new Mutex(); |
| |
| uword Simulator::RedirectExternalReference(uword function, |
| CallKind call_kind, |
| int argument_count) { |
| Redirection* redirection = |
| Redirection::Get(function, call_kind, argument_count); |
| return redirection->address_of_svc_instruction(); |
| } |
| |
| uword Simulator::FunctionForRedirect(uword redirect) { |
| return Redirection::FunctionForRedirect(redirect); |
| } |
| |
| // Get the active Simulator for the current isolate. |
| Simulator* Simulator::Current() { |
| Isolate* isolate = Isolate::Current(); |
| Simulator* simulator = isolate->simulator(); |
| if (simulator == nullptr) { |
| NoSafepointScope no_safepoint; |
| simulator = new Simulator(); |
| isolate->set_simulator(simulator); |
| } |
| return simulator; |
| } |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| DART_FORCE_INLINE void Simulator::set_register(Register reg, int32_t value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfCpuRegisters)); |
| if (reg == PC) { |
| pc_modified_ = true; |
| } |
| registers_[reg] = value; |
| } |
| |
| // Raw access to the PC register. |
| DART_FORCE_INLINE void Simulator::set_pc(int32_t value) { |
| pc_modified_ = true; |
| registers_[PC] = value; |
| } |
| |
| // Accessors for VFP register state. |
| DART_FORCE_INLINE void Simulator::set_sregister(SRegister reg, float value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| sregisters_[reg] = bit_cast<int32_t, float>(value); |
| } |
| |
| DART_FORCE_INLINE float Simulator::get_sregister(SRegister reg) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| return bit_cast<float, int32_t>(sregisters_[reg]); |
| } |
| |
| DART_FORCE_INLINE void Simulator::set_dregister(DRegister reg, double value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| dregisters_[reg] = bit_cast<int64_t, double>(value); |
| } |
| |
| DART_FORCE_INLINE double Simulator::get_dregister(DRegister reg) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| return bit_cast<double, int64_t>(dregisters_[reg]); |
| } |
| |
| void Simulator::set_qregister(QRegister reg, const simd_value_t& value) { |
| ASSERT(TargetCPUFeatures::neon_supported()); |
| ASSERT((reg >= 0) && (reg < kNumberOfQRegisters)); |
| memcpy(&qregisters_[reg], &value, sizeof(value)); // NOLINT |
| } |
| |
| void Simulator::get_qregister(QRegister reg, simd_value_t* value) const { |
| ASSERT(TargetCPUFeatures::neon_supported()); |
| // TODO(zra): Replace this test with an assert after we support |
| // 16 Q registers. |
| if ((reg >= 0) && (reg < kNumberOfQRegisters)) { |
| *value = qregisters_[reg]; |
| } |
| } |
| |
| void Simulator::set_sregister_bits(SRegister reg, int32_t value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| sregisters_[reg] = value; |
| } |
| |
| int32_t Simulator::get_sregister_bits(SRegister reg) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfSRegisters)); |
| return sregisters_[reg]; |
| } |
| |
| void Simulator::set_dregister_bits(DRegister reg, int64_t value) { |
| ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| dregisters_[reg] = value; |
| } |
| |
| int64_t Simulator::get_dregister_bits(DRegister reg) const { |
| ASSERT((reg >= 0) && (reg < kNumberOfDRegisters)); |
| return dregisters_[reg]; |
| } |
| |
| void Simulator::HandleIllegalAccess(uword addr, Instr* instr) { |
| uword fault_pc = get_pc(); |
| // The debugger will not be able to single step past this instruction, but |
| // it will be possible to disassemble the code and inspect registers. |
| char buffer[128]; |
| snprintf(buffer, sizeof(buffer), |
| "illegal memory access at 0x%" Px ", pc=0x%" Px "\n", addr, |
| fault_pc); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| // The debugger will return control in non-interactive mode. |
| FATAL("Cannot continue execution after illegal memory access."); |
| } |
| |
| void Simulator::UnimplementedInstruction(Instr* instr) { |
| char buffer[64]; |
| snprintf(buffer, sizeof(buffer), "Unimplemented instruction: pc=%p\n", instr); |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, buffer); |
| FATAL("Cannot continue execution after unimplemented instruction."); |
| } |
| |
| DART_FORCE_INLINE intptr_t Simulator::ReadW(uword addr, Instr* instr) { |
| return memory_.Load<intptr_t>(addr); |
| } |
| |
| DART_FORCE_INLINE void Simulator::WriteW(uword addr, |
| intptr_t value, |
| Instr* instr) { |
| memory_.Store(addr, value); |
| } |
| |
| DART_FORCE_INLINE uint16_t Simulator::ReadHU(uword addr, Instr* instr) { |
| return memory_.Load<uint16_t>(addr); |
| } |
| |
| DART_FORCE_INLINE int16_t Simulator::ReadH(uword addr, Instr* instr) { |
| return memory_.Load<int16_t>(addr); |
| } |
| |
| DART_FORCE_INLINE void Simulator::WriteH(uword addr, |
| uint16_t value, |
| Instr* instr) { |
| memory_.Store(addr, value); |
| } |
| |
| DART_FORCE_INLINE uint8_t Simulator::ReadBU(uword addr) { |
| return memory_.Load<uint8_t>(addr); |
| } |
| |
| DART_FORCE_INLINE int8_t Simulator::ReadB(uword addr) { |
| return memory_.Load<int8_t>(addr); |
| } |
| |
| DART_FORCE_INLINE void Simulator::WriteB(uword addr, uint8_t value) { |
| memory_.Store(addr, value); |
| } |
| |
| void Simulator::ClearExclusive() { |
| exclusive_access_addr_ = 0; |
| exclusive_access_value_ = 0; |
| } |
| |
| intptr_t Simulator::ReadExclusiveW(uword addr, Instr* instr) { |
| exclusive_access_addr_ = addr; |
| exclusive_access_value_ = ReadW(addr, instr); |
| return exclusive_access_value_; |
| } |
| |
| intptr_t Simulator::WriteExclusiveW(uword addr, intptr_t value, Instr* instr) { |
| // In a well-formed code store-exclusive instruction should always follow |
| // a corresponding load-exclusive instruction with the same address. |
| ASSERT((exclusive_access_addr_ == 0) || (exclusive_access_addr_ == addr)); |
| if (exclusive_access_addr_ != addr) { |
| return 1; // Failure. |
| } |
| |
| int32_t old_value = static_cast<uint32_t>(exclusive_access_value_); |
| ClearExclusive(); |
| |
| if ((random_.NextUInt32() % 16) == 0) { |
| return 1; // Spurious failure. |
| } |
| |
| if (memory_.CompareExchange(addr, old_value, value, |
| std::memory_order_relaxed)) { |
| return 0; // Success. |
| } |
| return 1; // Failure. |
| } |
| |
| bool Simulator::IsTracingExecution() const { |
| return icount_ > FLAG_trace_sim_after; |
| } |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instr* instr, const char* format) { |
| OS::PrintErr("Simulator found unsupported instruction:\n 0x%p: %s\n", instr, |
| format); |
| UNIMPLEMENTED(); |
| } |
| |
| // Checks if the current instruction should be executed based on its |
| // condition bits. |
| DART_FORCE_INLINE bool Simulator::ConditionallyExecute(Instr* instr) { |
| switch (instr->ConditionField()) { |
| case EQ: |
| return z_flag_; |
| case NE: |
| return !z_flag_; |
| case CS: |
| return c_flag_; |
| case CC: |
| return !c_flag_; |
| case MI: |
| return n_flag_; |
| case PL: |
| return !n_flag_; |
| case VS: |
| return v_flag_; |
| case VC: |
| return !v_flag_; |
| case HI: |
| return c_flag_ && !z_flag_; |
| case LS: |
| return !c_flag_ || z_flag_; |
| case GE: |
| return n_flag_ == v_flag_; |
| case LT: |
| return n_flag_ != v_flag_; |
| case GT: |
| return !z_flag_ && (n_flag_ == v_flag_); |
| case LE: |
| return z_flag_ || (n_flag_ != v_flag_); |
| case AL: |
| return true; |
| default: |
| UNREACHABLE(); |
| } |
| return false; |
| } |
| |
| // Calculate and set the Negative and Zero flags. |
| DART_FORCE_INLINE void Simulator::SetNZFlags(int32_t val) { |
| n_flag_ = (val < 0); |
| z_flag_ = (val == 0); |
| } |
| |
| // Set the Carry flag. |
| DART_FORCE_INLINE void Simulator::SetCFlag(bool val) { |
| c_flag_ = val; |
| } |
| |
| // Set the oVerflow flag. |
| DART_FORCE_INLINE void Simulator::SetVFlag(bool val) { |
| v_flag_ = val; |
| } |
| |
| // Calculate C flag value for additions (and subtractions with adjusted args). |
| DART_FORCE_INLINE bool Simulator::CarryFrom(int32_t left, |
| int32_t right, |
| int32_t carry) { |
| uint64_t uleft = static_cast<uint32_t>(left); |
| uint64_t uright = static_cast<uint32_t>(right); |
| uint64_t ucarry = static_cast<uint32_t>(carry); |
| return ((uleft + uright + ucarry) >> 32) != 0; |
| } |
| |
| // Calculate V flag value for additions (and subtractions with adjusted args). |
| DART_FORCE_INLINE bool Simulator::OverflowFrom(int32_t left, |
| int32_t right, |
| int32_t carry) { |
| int64_t result = static_cast<int64_t>(left) + right + carry; |
| return (result >> 31) != (result >> 32); |
| } |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with register. |
| int32_t Simulator::GetShiftRm(Instr* instr, bool* carry_out) { |
| Shift shift = instr->ShiftField(); |
| int shift_amount = instr->ShiftAmountField(); |
| int32_t result = get_register(instr->RmField()); |
| if (instr->Bit(4) == 0) { |
| // by immediate |
| if ((shift == ROR) && (shift_amount == 0)) { |
| UnimplementedInstruction(instr); |
| } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
| shift_amount = 32; |
| } |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| if (result < 0) { |
| result = 0xffffffff; |
| *carry_out = true; |
| } else { |
| result = 0; |
| *carry_out = false; |
| } |
| } else { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| result = static_cast<uint32_t>(result) << (shift_amount - 1); |
| *carry_out = (result < 0); |
| result = static_cast<uint32_t>(result) << 1; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| result = 0; |
| *carry_out = c_flag_; |
| } else { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } |
| break; |
| } |
| |
| case ROR: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| // by register |
| Register rs = instr->RsField(); |
| shift_amount = get_register(rs) & 0xff; |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } else { |
| ASSERT(shift_amount >= 32); |
| if (result < 0) { |
| *carry_out = true; |
| result = 0xffffffff; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result = static_cast<uint32_t>(result) << (shift_amount - 1); |
| *carry_out = (result < 0); |
| result = static_cast<uint32_t>(result) << 1; |
| } else if (shift_amount == 32) { |
| *carry_out = (result & 1) == 1; |
| result = 0; |
| } else { |
| ASSERT(shift_amount > 32); |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } else if (shift_amount == 32) { |
| *carry_out = (result < 0); |
| result = 0; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case ROR: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| return result; |
| } |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with immediate. |
| DART_FORCE_INLINE int32_t Simulator::GetImm(Instr* instr, bool* carry_out) { |
| uint8_t rotate = instr->RotateField() * 2; |
| int32_t immed8 = instr->Immed8Field(); |
| int32_t imm = Utils::RotateRight(immed8, rotate); |
| *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); |
| return imm; |
| } |
| |
| // Addressing Mode 4 - Load and Store Multiple |
| void Simulator::HandleRList(Instr* instr, bool load) { |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int rlist = instr->RlistField(); |
| int num_regs = Utils::CountOneBits32(static_cast<uint32_t>(rlist)); |
| |
| uword address = 0; |
| uword end_address = 0; |
| switch (instr->PUField()) { |
| case 0: { |
| // Print("da"); |
| address = rn_val - (num_regs * 4) + 4; |
| end_address = rn_val + 4; |
| rn_val = rn_val - (num_regs * 4); |
| break; |
| } |
| case 1: { |
| // Print("ia"); |
| address = rn_val; |
| end_address = rn_val + (num_regs * 4); |
| rn_val = rn_val + (num_regs * 4); |
| break; |
| } |
| case 2: { |
| // Print("db"); |
| address = rn_val - (num_regs * 4); |
| end_address = rn_val; |
| rn_val = address; |
| break; |
| } |
| case 3: { |
| // Print("ib"); |
| address = rn_val + 4; |
| end_address = rn_val + (num_regs * 4) + 4; |
| rn_val = rn_val + (num_regs * 4); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (IsIllegalAddress(address)) { |
| HandleIllegalAccess(address, instr); |
| } else { |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| int reg = 0; |
| while (rlist != 0) { |
| if ((rlist & 1) != 0) { |
| if (load) { |
| set_register(static_cast<Register>(reg), ReadW(address, instr)); |
| } else { |
| WriteW(address, get_register(static_cast<Register>(reg)), instr); |
| } |
| address += 4; |
| } |
| reg++; |
| rlist >>= 1; |
| } |
| ASSERT(end_address == address); |
| } |
| } |
| |
| // Calls into the Dart runtime are based on this interface. |
| typedef void (*SimulatorRuntimeCall)(NativeArguments arguments); |
| |
| // Calls to leaf Dart runtime functions are based on this interface. |
| typedef int32_t (*SimulatorLeafRuntimeCall)(int32_t r0, |
| int32_t r1, |
| int32_t r2, |
| int32_t r3, |
| int32_t r4); |
| |
| // [target] has several different signatures that differ from |
| // SimulatorLeafRuntimeCall. We can call them all from here only because in |
| // IA32's calling convention a function can be called with extra arguments |
| // and the callee will see the first arguments and won't unbalance the stack. |
| NO_SANITIZE_UNDEFINED("function") |
| static int32_t InvokeLeafRuntime(SimulatorLeafRuntimeCall target, |
| int32_t r0, |
| int32_t r1, |
| int32_t r2, |
| int32_t r3, |
| int32_t r4) { |
| return target(r0, r1, r2, r3, r4); |
| } |
| |
| // Calls to leaf float Dart runtime functions are based on this interface. |
| typedef double (*SimulatorLeafFloatRuntimeCall)(double d0, double d1); |
| |
| // [target] has several different signatures that differ from |
| // SimulatorFloatLeafRuntimeCall. We can call them all from here only because |
| // IA32's calling convention a function can be called with extra arguments |
| // and the callee will see the first arguments and won't unbalance the stack. |
| NO_SANITIZE_UNDEFINED("function") |
| static double InvokeFloatLeafRuntime(SimulatorLeafFloatRuntimeCall target, |
| double d0, |
| double d1) { |
| return target(d0, d1); |
| } |
| |
| // Calls to native Dart functions are based on this interface. |
| typedef void (*SimulatorNativeCallWrapper)(Dart_NativeArguments arguments, |
| Dart_NativeFunction target); |
| |
| void Simulator::SupervisorCall(Instr* instr) { |
| // We can't instrument the runtime. |
| memory_.FlushAll(); |
| |
| int svc = instr->SvcField(); |
| switch (svc) { |
| case Instr::kSimulatorRedirectCode: { |
| SimulatorSetjmpBuffer buffer(this); |
| |
| if (!setjmp(buffer.buffer_)) { |
| int32_t saved_lr = get_register(LR); |
| Redirection* redirection = Redirection::FromSvcInstruction(instr); |
| uword external = redirection->external_function(); |
| if (IsTracingExecution()) { |
| THR_Print("Call to host function at 0x%" Pd "\n", external); |
| } |
| if (redirection->call_kind() == kRuntimeCall) { |
| NativeArguments arguments; |
| ASSERT(sizeof(NativeArguments) == 4 * kWordSize); |
| arguments.thread_ = reinterpret_cast<Thread*>(get_register(R0)); |
| arguments.argc_tag_ = get_register(R1); |
| arguments.argv_ = reinterpret_cast<ObjectPtr*>(get_register(R2)); |
| arguments.retval_ = reinterpret_cast<ObjectPtr*>(get_register(R3)); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| target(arguments); |
| ClobberVolatileRegisters(); |
| } else if (redirection->call_kind() == kLeafRuntimeCall) { |
| ASSERT((0 <= redirection->argument_count()) && |
| (redirection->argument_count() <= 5)); |
| int32_t r0 = get_register(R0); |
| int32_t r1 = get_register(R1); |
| int32_t r2 = get_register(R2); |
| int32_t r3 = get_register(R3); |
| int32_t r4 = *reinterpret_cast<int32_t*>(get_register(SP)); |
| SimulatorLeafRuntimeCall target = |
| reinterpret_cast<SimulatorLeafRuntimeCall>(external); |
| r0 = InvokeLeafRuntime(target, r0, r1, r2, r3, r4); |
| ClobberVolatileRegisters(); |
| set_register(R0, r0); // Set returned result from function. |
| } else if (redirection->call_kind() == kLeafFloatRuntimeCall) { |
| ASSERT((0 <= redirection->argument_count()) && |
| (redirection->argument_count() <= 2)); |
| SimulatorLeafFloatRuntimeCall target = |
| reinterpret_cast<SimulatorLeafFloatRuntimeCall>(external); |
| if (TargetCPUFeatures::hardfp_supported()) { |
| // If we're doing "hardfp", the double arguments are already in the |
| // floating point registers. |
| double d0 = get_dregister(D0); |
| double d1 = get_dregister(D1); |
| d0 = InvokeFloatLeafRuntime(target, d0, d1); |
| ClobberVolatileRegisters(); |
| set_dregister(D0, d0); |
| } else { |
| // If we're not doing "hardfp", we must be doing "soft" or "softfp", |
| // So take the double arguments from the integer registers. |
| uint32_t r0 = get_register(R0); |
| int32_t r1 = get_register(R1); |
| uint32_t r2 = get_register(R2); |
| int32_t r3 = get_register(R3); |
| int64_t a0 = Utils::LowHighTo64Bits(r0, r1); |
| int64_t a1 = Utils::LowHighTo64Bits(r2, r3); |
| double d0 = bit_cast<double, int64_t>(a0); |
| double d1 = bit_cast<double, int64_t>(a1); |
| d0 = InvokeFloatLeafRuntime(target, d0, d1); |
| ClobberVolatileRegisters(); |
| a0 = bit_cast<int64_t, double>(d0); |
| r0 = Utils::Low32Bits(a0); |
| r1 = Utils::High32Bits(a0); |
| set_register(R0, r0); |
| set_register(R1, r1); |
| } |
| } else { |
| ASSERT(redirection->call_kind() == kNativeCallWrapper); |
| SimulatorNativeCallWrapper wrapper = |
| reinterpret_cast<SimulatorNativeCallWrapper>(external); |
| Dart_NativeArguments arguments = |
| reinterpret_cast<Dart_NativeArguments>(get_register(R0)); |
| Dart_NativeFunction target_func = |
| reinterpret_cast<Dart_NativeFunction>(get_register(R1)); |
| wrapper(arguments, target_func); |
| ClobberVolatileRegisters(); |
| } |
| |
| // Return. |
| set_pc(saved_lr); |
| } else { |
| // Coming via long jump from a throw. Continue to exception handler. |
| } |
| |
| break; |
| } |
| case Instr::kSimulatorBreakCode: { |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, "breakpoint"); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| void Simulator::ClobberVolatileRegisters() { |
| // Clear atomic reservation. |
| exclusive_access_addr_ = exclusive_access_value_ = 0; |
| |
| for (intptr_t i = 0; i < kNumberOfCpuRegisters; i++) { |
| if ((kAbiVolatileCpuRegs & (1 << i)) != 0) { |
| registers_[i] = random_.NextUInt32(); |
| } |
| } |
| |
| double zap_dvalue = static_cast<double>(icount_); |
| for (int i = D0; i <= D7; i++) { |
| set_dregister(static_cast<DRegister>(i), zap_dvalue); |
| } |
| // The above loop also zaps overlapping registers S2-S15. |
| // Registers D8-D15 (overlapping with S16-S31) are preserved. |
| #if defined(VFPv3_D32) |
| for (int i = D16; i <= D31; i++) { |
| set_dregister(static_cast<DRegister>(i), zap_dvalue); |
| } |
| #endif |
| } |
| |
| // Handle execution based on instruction types. |
| |
| // Instruction types 0 and 1 are both rolled into one function because they |
| // only differ in the handling of the shifter_operand. |
| DART_FORCE_INLINE void Simulator::DecodeType01(Instr* instr) { |
| if (!instr->IsDataProcessing()) { |
| // miscellaneous, multiply, sync primitives, extra loads and stores. |
| if (instr->IsMiscellaneous()) { |
| switch (instr->Bits(4, 3)) { |
| case 1: { |
| if (instr->Bits(21, 2) == 0x3) { |
| // Format(instr, "clz'cond 'rd, 'rm"); |
| Register rm = instr->RmField(); |
| Register rd = instr->RdField(); |
| int32_t rm_val = get_register(rm); |
| int32_t rd_val = 0; |
| if (rm_val != 0) { |
| while (rm_val > 0) { |
| rd_val++; |
| rm_val <<= 1; |
| } |
| } else { |
| rd_val = 32; |
| } |
| set_register(rd, rd_val); |
| } else { |
| ASSERT(instr->Bits(21, 2) == 0x1); |
| // Format(instr, "bx'cond 'rm"); |
| Register rm = instr->RmField(); |
| int32_t rm_val = get_register(rm); |
| set_pc(rm_val); |
| } |
| break; |
| } |
| case 3: { |
| ASSERT(instr->Bits(21, 2) == 0x1); |
| // Format(instr, "blx'cond 'rm"); |
| Register rm = instr->RmField(); |
| int32_t rm_val = get_register(rm); |
| intptr_t pc = get_pc(); |
| set_register(LR, pc + Instr::kInstrSize); |
| set_pc(rm_val); |
| break; |
| } |
| case 7: { |
| if ((instr->Bits(21, 2) == 0x1) && (instr->ConditionField() == AL)) { |
| // Format(instr, "bkpt #'imm12_4"); |
| SimulatorDebugger dbg(this); |
| int32_t imm = instr->BkptField(); |
| char buffer[32]; |
| snprintf(buffer, sizeof(buffer), "bkpt #0x%x", imm); |
| set_pc(get_pc() + Instr::kInstrSize); |
| dbg.Stop(instr, buffer); |
| } else { |
| // Format(instr, "smc'cond"); |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } else if (instr->IsMultiplyOrSyncPrimitive()) { |
| if (instr->Bit(24) == 0) { |
| // multiply instructions. |
| Register rn = instr->RnField(); |
| Register rd = instr->RdField(); |
| Register rs = instr->RsField(); |
| Register rm = instr->RmField(); |
| uint32_t rm_val = get_register(rm); |
| uint32_t rs_val = get_register(rs); |
| uint32_t rd_val = 0; |
| switch (instr->Bits(21, 3)) { |
| case 1: |
| // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
| // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
| case 3: { |
| // Registers rd, rn, rm, ra are encoded as rn, rm, rs, rd. |
| // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); |
| rd_val = get_register(rd); |
| FALL_THROUGH; |
| } |
| case 0: { |
| // Registers rd, rn, rm are encoded as rn, rm, rs. |
| // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
| uint32_t alu_out = rm_val * rs_val; |
| if (instr->Bits(21, 3) == 3) { // mls |
| alu_out = -alu_out; |
| } |
| alu_out += rd_val; |
| set_register(rn, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| } |
| break; |
| } |
| case 4: |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "umull'cond's 'rd, 'rn, 'rm, 'rs"); |
| case 6: { |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "smull'cond's 'rd, 'rn, 'rm, 'rs"); |
| int64_t result; |
| if (instr->Bits(21, 3) == 4) { // umull |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| result = left_op * right_op; // Unsigned multiplication. |
| } else { // smull |
| int64_t left_op = static_cast<int32_t>(rm_val); |
| int64_t right_op = static_cast<int32_t>(rs_val); |
| result = left_op * right_op; // Signed multiplication. |
| } |
| int32_t hi_res = Utils::High32Bits(result); |
| int32_t lo_res = Utils::Low32Bits(result); |
| set_register(rd, lo_res); |
| set_register(rn, hi_res); |
| if (instr->HasS()) { |
| if (lo_res != 0) { |
| // Collapse bits 0..31 into bit 32 so that 32-bit Z check works. |
| hi_res |= 1; |
| } |
| ASSERT((result == 0) == (hi_res == 0)); // Z bit |
| ASSERT(((result & (1LL << 63)) != 0) == (hi_res < 0)); // N bit |
| SetNZFlags(hi_res); |
| } |
| break; |
| } |
| case 2: |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "umaal'cond's 'rd, 'rn, 'rm, 'rs"); |
| FALL_THROUGH; |
| case 5: |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "umlal'cond's 'rd, 'rn, 'rm, 'rs"); |
| FALL_THROUGH; |
| case 7: { |
| // Registers rd_lo, rd_hi, rn, rm are encoded as rd, rn, rm, rs. |
| // Format(instr, "smlal'cond's 'rd, 'rn, 'rm, 'rs"); |
| int32_t rd_lo_val = get_register(rd); |
| int32_t rd_hi_val = get_register(rn); |
| uint32_t accum_lo = static_cast<uint32_t>(rd_lo_val); |
| int32_t accum_hi = static_cast<int32_t>(rd_hi_val); |
| int64_t accum = Utils::LowHighTo64Bits(accum_lo, accum_hi); |
| int64_t result; |
| if (instr->Bits(21, 3) == 5) { // umlal |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| result = accum + left_op * right_op; // Unsigned multiplication. |
| } else if (instr->Bits(21, 3) == 7) { // smlal |
| int64_t left_op = static_cast<int32_t>(rm_val); |
| int64_t right_op = static_cast<int32_t>(rs_val); |
| result = accum + left_op * right_op; // Signed multiplication. |
| } else { |
| ASSERT(instr->Bits(21, 3) == 2); // umaal |
| ASSERT(!instr->HasS()); |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| result = left_op * right_op + // Unsigned multiplication. |
| static_cast<uint32_t>(rd_lo_val) + |
| static_cast<uint32_t>(rd_hi_val); |
| } |
| int32_t hi_res = Utils::High32Bits(result); |
| int32_t lo_res = Utils::Low32Bits(result); |
| set_register(rd, lo_res); |
| set_register(rn, hi_res); |
| if (instr->HasS()) { |
| if (lo_res != 0) { |
| // Collapse bits 0..31 into bit 32 so that 32-bit Z check works. |
| hi_res |= 1; |
| } |
| ASSERT((result == 0) == (hi_res == 0)); // Z bit |
| ASSERT(((result & (1LL << 63)) != 0) == (hi_res < 0)); // N bit |
| SetNZFlags(hi_res); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } else { |
| // synchronization primitives |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| uword addr = get_register(rn); |
| switch (instr->Bits(20, 4)) { |
| case 8: { |
| // Format(instr, "strex'cond 'rd, 'rm, ['rn]"); |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| Register rm = instr->RmField(); |
| set_register(rd, WriteExclusiveW(addr, get_register(rm), instr)); |
| } |
| break; |
| } |
| case 9: { |
| // Format(instr, "ldrex'cond 'rd, ['rn]"); |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| set_register(rd, ReadExclusiveW(addr, instr)); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } |
| } else if (instr->Bit(25) == 1) { |
| // 16-bit immediate loads, msr (immediate), and hints |
| switch (instr->Bits(20, 5)) { |
| case 16: |
| case 20: { |
| uint16_t imm16 = instr->MovwField(); |
| Register rd = instr->RdField(); |
| if (instr->Bit(22) == 0) { |
| // Format(instr, "movw'cond 'rd, #'imm4_12"); |
| set_register(rd, imm16); |
| } else { |
| // Format(instr, "movt'cond 'rd, #'imm4_12"); |
| set_register(rd, (get_register(rd) & 0xffff) | (imm16 << 16)); |
| } |
| break; |
| } |
| case 18: { |
| if ((instr->Bits(16, 4) == 0) && (instr->Bits(0, 8) == 0)) { |
| // Format(instr, "nop'cond"); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } else { |
| // extra load/store instructions |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| uword addr = 0; |
| bool write_back = false; |
| if (instr->Bit(22) == 0) { |
| Register rm = instr->RmField(); |
| int32_t rm_val = get_register(rm); |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn], -'rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= rm_val; |
| write_back = true; |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn], +'rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += rm_val; |
| write_back = true; |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn, -'rm]'w"); |
| rn_val -= rm_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn, +'rm]'w"); |
| rn_val += rm_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| int32_t imm_val = (instr->ImmedHField() << 4) | instr->ImmedLField(); |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn], #-'off8"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= imm_val; |
| write_back = true; |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn], #+'off8"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += imm_val; |
| write_back = true; |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn, #-'off8]'w"); |
| rn_val -= imm_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'x 'rd2, ['rn, #+'off8]'w"); |
| rn_val += imm_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (write_back) { |
| ASSERT(rd != rn); // Unpredictable. |
| set_register(rn, rn_val); |
| } |
| if (!instr->HasSign()) { |
| if (instr->HasL()) { |
| uint16_t val = ReadHU(addr, instr); |
| set_register(rd, val); |
| } else { |
| uint16_t val = get_register(rd); |
| WriteH(addr, val, instr); |
| } |
| } else if (instr->HasL()) { |
| if (instr->HasH()) { |
| int16_t val = ReadH(addr, instr); |
| set_register(rd, val); |
| } else { |
| int8_t val = ReadB(addr); |
| set_register(rd, val); |
| } |
| } else if ((rd & 1) == 0) { |
| Register rd1 = static_cast<Register>(rd | 1); |
| ASSERT(rd1 < kNumberOfCpuRegisters); |
| if (instr->HasH()) { |
| int32_t val_low = get_register(rd); |
| int32_t val_high = get_register(rd1); |
| WriteW(addr, val_low, instr); |
| WriteW(addr + 4, val_high, instr); |
| } else { |
| int32_t val_low = ReadW(addr, instr); |
| int32_t val_high = ReadW(addr + 4, instr); |
| set_register(rd, val_low); |
| set_register(rd1, val_high); |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| } |
| } else { |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| uint32_t rn_val = get_register(rn); |
| uint32_t shifter_operand = 0; |
| bool shifter_carry_out = 0; |
| if (instr->TypeField() == 0) { |
| shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| } else { |
| ASSERT(instr->TypeField() == 1); |
| shifter_operand = GetImm(instr, &shifter_carry_out); |
| } |
| uint32_t carry_in; |
| uint32_t alu_out; |
| |
| switch (instr->OpcodeField()) { |
| case AND: { |
| // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "and'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case EOR: { |
| // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case SUB: { |
| // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val - shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, ~shifter_operand, 1)); |
| SetVFlag(OverflowFrom(rn_val, ~shifter_operand, 1)); |
| } |
| break; |
| } |
| |
| case RSB: { |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); |
| alu_out = shifter_operand - rn_val; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(shifter_operand, ~rn_val, 1)); |
| SetVFlag(OverflowFrom(shifter_operand, ~rn_val, 1)); |
| } |
| break; |
| } |
| |
| case ADD: { |
| // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "add'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand, 0)); |
| SetVFlag(OverflowFrom(rn_val, shifter_operand, 0)); |
| } |
| break; |
| } |
| |
| case ADC: { |
| // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); |
| carry_in = c_flag_ ? 1 : 0; |
| alu_out = rn_val + shifter_operand + carry_in; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand, carry_in)); |
| SetVFlag(OverflowFrom(rn_val, shifter_operand, carry_in)); |
| } |
| break; |
| } |
| |
| case SBC: { |
| // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); |
| carry_in = c_flag_ ? 1 : 0; |
| alu_out = rn_val + ~shifter_operand + carry_in; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, ~shifter_operand, carry_in)); |
| SetVFlag(OverflowFrom(rn_val, ~shifter_operand, carry_in)); |
| } |
| break; |
| } |
| |
| case RSC: { |
| // Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); |
| carry_in = c_flag_ ? 1 : 0; |
| alu_out = shifter_operand + ~rn_val + carry_in; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(shifter_operand, ~rn_val, carry_in)); |
| SetVFlag(OverflowFrom(shifter_operand, ~rn_val, carry_in)); |
| } |
| break; |
| } |
| |
| case TST: { |
| if (instr->HasS()) { |
| // Format(instr, "tst'cond 'rn, 'shift_rm"); |
| // Format(instr, "tst'cond 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| |
| case TEQ: { |
| if (instr->HasS()) { |
| // Format(instr, "teq'cond 'rn, 'shift_rm"); |
| // Format(instr, "teq'cond 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| |
| case CMP: { |
| if (instr->HasS()) { |
| // Format(instr, "cmp'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmp'cond 'rn, 'imm"); |
| alu_out = rn_val - shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, ~shifter_operand, 1)); |
| SetVFlag(OverflowFrom(rn_val, ~shifter_operand, 1)); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| |
| case CMN: { |
| if (instr->HasS()) { |
| // Format(instr, "cmn'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmn'cond 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand, 0)); |
| SetVFlag(OverflowFrom(rn_val, shifter_operand, 0)); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| break; |
| } |
| |
| case ORR: { |
| // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val | shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MOV: { |
| // Format(instr, "mov'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mov'cond's 'rd, 'imm"); |
| alu_out = shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case BIC: { |
| // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MVN: { |
| // Format(instr, "mvn'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mvn'cond's 'rd, 'imm"); |
| alu_out = ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| DART_FORCE_INLINE void Simulator::DecodeType2(Instr* instr) { |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| int32_t im_val = instr->Offset12Field(); |
| uword addr = 0; |
| bool write_back = false; |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= im_val; |
| write_back = true; |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += im_val; |
| write_back = true; |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
| rn_val -= im_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
| rn_val += im_val; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (write_back) { |
| ASSERT(rd != rn); // Unpredictable. |
| set_register(rn, rn_val); |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| unsigned char val = ReadBU(addr); |
| set_register(rd, val); |
| } else { |
| unsigned char val = get_register(rd); |
| WriteB(addr, val); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr, instr)); |
| } else { |
| WriteW(addr, get_register(rd), instr); |
| } |
| } |
| } |
| } |
| |
| void Simulator::DoDivision(Instr* instr) { |
| const Register rd = instr->DivRdField(); |
| const Register rn = instr->DivRnField(); |
| const Register rm = instr->DivRmField(); |
| |
| if (!TargetCPUFeatures::integer_division_supported()) { |
| UnimplementedInstruction(instr); |
| return; |
| } |
| |
| // ARMv7-a does not trap on divide-by-zero. The destination register is just |
| // set to 0. |
| if (get_register(rm) == 0) { |
| set_register(rd, 0); |
| return; |
| } |
| |
| if (instr->IsDivUnsigned()) { |
| // unsigned division. |
| uint32_t rn_val = static_cast<uint32_t>(get_register(rn)); |
| uint32_t rm_val = static_cast<uint32_t>(get_register(rm)); |
| uint32_t result = rn_val / rm_val; |
| set_register(rd, static_cast<int32_t>(result)); |
| } else { |
| // signed division. |
| int32_t rn_val = get_register(rn); |
| int32_t rm_val = get_register(rm); |
| int32_t result; |
| if ((rn_val == static_cast<int32_t>(0x80000000)) && |
| (rm_val == static_cast<int32_t>(0xffffffff))) { |
| result = 0x80000000; |
| } else { |
| result = rn_val / rm_val; |
| } |
| set_register(rd, result); |
| } |
| } |
| |
| void Simulator::DecodeType3(Instr* instr) { |
| if (instr->IsMedia()) { |
| if (instr->IsDivision()) { |
| DoDivision(instr); |
| return; |
| } else if (instr->IsRbit()) { |
| // Format(instr, "rbit'cond 'rd, 'rm"); |
| Register rm = instr->RmField(); |
| Register rd = instr->RdField(); |
| set_register(rd, Utils::ReverseBits32(get_register(rm))); |
| return; |
| } else if (instr->IsBitFieldExtract()) { |
| // Format(instr, "sbfx'cond 'rd, 'rn, 'lsb, 'width") |
| const Register rd = instr->RdField(); |
| const Register rn = instr->BitFieldExtractRnField(); |
| const uint8_t width = instr->BitFieldExtractWidthField() + 1; |
| const uint8_t lsb = instr->BitFieldExtractLSBField(); |
| const int32_t rn_val = get_register(rn); |
| const uint32_t extracted_bitfield = |
| ((rn_val >> lsb) & Utils::NBitMask(width)); |
| const uint32_t sign_extension = |
| (instr->IsBitFieldExtractSignExtended() && |
| Utils::TestBit(extracted_bitfield, width - 1)) |
| ? ~Utils::NBitMask(width) |
| : 0; |
| set_register(rd, sign_extension | extracted_bitfield); |
| } else { |
| UNREACHABLE(); |
| } |
| return; |
| } |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| int32_t rn_val = get_register(rn); |
| bool shifter_carry_out = 0; |
| int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| uword addr = 0; |
| bool write_back = false; |
| switch (instr->PUField()) { |
| case 0: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= shifter_operand; |
| write_back = true; |
| break; |
| } |
| case 1: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); |
| ASSERT(!instr->HasW()); |
| addr = rn_val; |
| rn_val += shifter_operand; |
| write_back = true; |
| break; |
| } |
| case 2: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); |
| rn_val -= shifter_operand; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| case 3: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); |
| rn_val += shifter_operand; |
| addr = rn_val; |
| write_back = instr->HasW(); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (write_back) { |
| ASSERT(rd != rn); // Unpredictable. |
| set_register(rn, rn_val); |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| unsigned char val = ReadBU(addr); |
| set_register(rd, val); |
| } else { |
| unsigned char val = get_register(rd); |
| WriteB(addr, val); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr, instr)); |
| } else { |
| WriteW(addr, get_register(rd), instr); |
| } |
| } |
| } |
| } |
| |
| void Simulator::DecodeType4(Instr* instr) { |
| ASSERT(instr->Bit(22) == 0); // only allowed to be set in privileged mode |
| if (instr->HasL()) { |
| // Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); |
| HandleRList(instr, true); |
| } else { |
| // Format(instr, "stm'cond'pu 'rn'w, 'rlist"); |
| HandleRList(instr, false); |
| } |
| } |
| |
| void Simulator::DecodeType5(Instr* instr) { |
| // Format(instr, "b'l'cond 'target"); |
| uint32_t off = (static_cast<uint32_t>(instr->SImmed24Field()) << 2) + 8; |
| uint32_t pc = get_pc(); |
| if (instr->HasLink()) { |
| set_register(LR, pc + Instr::kInstrSize); |
| } |
| set_pc(pc + off); |
| } |
| |
| void Simulator::DecodeType6(Instr* instr) { |
| if (instr->IsVFPDoubleTransfer()) { |
| Register rd = instr->RdField(); |
| Register rn = instr->RnField(); |
| if (instr->Bit(8) == 0) { |
| SRegister sm = instr->SmField(); |
| SRegister sm1 = static_cast<SRegister>(sm + 1); |
| ASSERT(sm1 < kNumberOfSRegisters); |
| if (instr->Bit(20) == 1) { |
| // Format(instr, "vmovrrs'cond 'rd, 'rn, {'sm', 'sm1}"); |
| set_register(rd, get_sregister_bits(sm)); |
| set_register(rn, get_sregister_bits(sm1)); |
| } else { |
| // Format(instr, "vmovsrr'cond {'sm, 'sm1}, 'rd', 'rn"); |
| set_sregister_bits(sm, get_register(rd)); |
| set_sregister_bits(sm1, get_register(rn)); |
| } |
| } else { |
| DRegister dm = instr->DmField(); |
| if (instr->Bit(20) == 1) { |
| // Format(instr, "vmovrrd'cond 'rd, 'rn, 'dm"); |
| int64_t dm_val = get_dregister_bits(dm); |
| set_register(rd, Utils::Low32Bits(dm_val)); |
| set_register(rn, Utils::High32Bits(dm_val)); |
| } else { |
| // Format(instr, "vmovdrr'cond 'dm, 'rd, 'rn"); |
| int64_t dm_val = |
| Utils::LowHighTo64Bits(get_register(rd), get_register(rn)); |
| set_dregister_bits(dm, dm_val); |
| } |
| } |
| } else if (instr->IsVFPLoadStore()) { |
| Register rn = instr->RnField(); |
| int32_t addr = get_register(rn); |
| int32_t imm_val = instr->Bits(0, 8) << 2; |
| if (instr->Bit(23) == 1) { |
| addr += imm_val; |
| } else { |
| addr -= imm_val; |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (instr->Bit(8) == 0) { |
| SRegister sd = instr->SdField(); |
| if (instr->Bit(20) == 1) { // vldrs |
| // Format(instr, "vldrs'cond 'sd, ['rn, #+'off10]"); |
| // Format(instr, "vldrs'cond 'sd, ['rn, #-'off10]"); |
| set_sregister_bits(sd, ReadW(addr, instr)); |
| } else { // vstrs |
| // Format(instr, "vstrs'cond 'sd, ['rn, #+'off10]"); |
| // Format(instr, "vstrs'cond 'sd, ['rn, #-'off10]"); |
| WriteW(addr, get_sregister_bits(sd), instr); |
| } |
| } else { |
| DRegister dd = instr->DdField(); |
| if (instr->Bit(20) == 1) { // vldrd |
| // Format(instr, "vldrd'cond 'dd, ['rn, #+'off10]"); |
| // Format(instr, "vldrd'cond 'dd, ['rn, #-'off10]"); |
| int64_t dd_val = Utils::LowHighTo64Bits(ReadW(addr, instr), |
| ReadW(addr + 4, instr)); |
| set_dregister_bits(dd, dd_val); |
| } else { // vstrd |
| // Format(instr, "vstrd'cond 'dd, ['rn, #+'off10]"); |
| // Format(instr, "vstrd'cond 'dd, ['rn, #-'off10]"); |
| int64_t dd_val = get_dregister_bits(dd); |
| WriteW(addr, Utils::Low32Bits(dd_val), instr); |
| WriteW(addr + 4, Utils::High32Bits(dd_val), instr); |
| } |
| } |
| } |
| } else if (instr->IsVFPMultipleLoadStore()) { |
| Register rn = instr->RnField(); |
| int32_t addr = get_register(rn); |
| int32_t imm_val = instr->Bits(0, 8); |
| if (instr->Bit(23) == 0) { |
| addr -= (imm_val << 2); |
| } |
| if (instr->HasW()) { |
| if (instr->Bit(23) == 1) { |
| set_register(rn, addr + (imm_val << 2)); |
| } else { |
| set_register(rn, addr); // already subtracted from addr |
| } |
| } |
| if (IsIllegalAddress(addr)) { |
| HandleIllegalAccess(addr, instr); |
| } else { |
| if (instr->Bit(8) == 0) { |
| int32_t regs_cnt = imm_val; |
| int32_t start = instr->Bit(22) | (instr->Bits(12, 4) << 1); |
| for (int i = start; i < start + regs_cnt; i++) { |
| SRegister sd = static_cast<SRegister>(i); |
| if (instr->Bit(20) == 1) { |
| // Format(instr, "vldms'cond'pu 'rn'w, 'slist"); |
| set_sregister_bits(sd, ReadW(addr, instr)); |
| } else { |
| // Format(instr, "vstms'cond'pu 'rn'w, 'slist"); |
| WriteW(addr, get_sregister_bits(sd), instr); |
| } |
| addr += 4; |
| } |
| } else { |
| int32_t regs_cnt = imm_val >> 1; |
| int32_t start = (instr->Bit(22) << 4) | instr->Bits(12, 4); |
| if ((regs_cnt <= 16) && (start + regs_cnt <= kNumberOfDRegisters)) { |
| for (int i = start; i < start + regs_cnt; i++) { |
| DRegister dd = static_cast<DRegister>(i); |
| if (instr->Bit(20) == 1) { |
| // Format(instr, "vldmd'cond'pu 'rn'w, 'dlist"); |
| int64_t dd_val = Utils::LowHighTo64Bits(ReadW(addr, instr), |
| ReadW(addr + 4, instr)); |
| set_dregister_bits(dd, dd_val); |
| } else { |
| // Format(instr, "vstmd'cond'pu 'rn'w, 'dlist"); |
| int64_t dd_val = get_dregister_bits(dd); |
| WriteW(addr, Utils::Low32Bits(dd_val), instr); |
| WriteW(addr + 4, Utils::High32Bits(dd_val), instr); |
| } |
| addr += 8; |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| void Simulator::DecodeType7(Instr* instr) { |
| if (instr->Bit(24) == 1) { |
| // Format(instr, "svc #'svc"); |
| SupervisorCall(instr); |
| } else if (instr->IsVFPDataProcessingOrSingleTransfer()) { |
| if (instr->Bit(4) == 0) { |
| // VFP Data Processing |
| SRegister sd; |
| SRegister sn; |
| SRegister sm; |
| DRegister dd; |
| DRegister dn; |
| DRegister dm; |
| if (instr->Bit(8) == 0) { |
| sd = instr->SdField(); |
| sn = instr->SnField(); |
| sm = instr->SmField(); |
| dd = kNoDRegister; |
| dn = kNoDRegister; |
| dm = kNoDRegister; |
| } else { |
| sd = kNoSRegister; |
| sn = kNoSRegister; |
| sm = kNoSRegister; |
| dd = instr->DdField(); |
| dn = instr->DnField(); |
| dm = instr->DmField(); |
| } |
| switch (instr->Bits(20, 4) & 0xb) { |
| case 1: // vnmla, vnmls, vnmul |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| case 0: { // vmla, vmls floating-point |
| if (instr->Bit(8) == 0) { |
| float addend = get_sregister(sn) * get_sregister(sm); |
| float sd_val = get_sregister(sd); |
| if (instr->Bit(6) == 0) { |
| // Format(instr, "vmlas'cond 'sd, 'sn, 'sm"); |
| } else { |
| // Format(instr, "vmlss'cond 'sd, 'sn, 'sm"); |
| addend = -addend; |
| } |
| set_sregister(sd, sd_val + addend); |
| } else { |
| double addend = get_dregister(dn) * get_dregister(dm); |
| double dd_val = get_dregister(dd); |
| if (instr->Bit(6) == 0) { |
| // Format(instr, "vmlad'cond 'dd, 'dn, 'dm"); |
| } else { |
| // Format(instr, "vmlsd'cond 'dd, 'dn, 'dm"); |
| addend = -addend; |
| } |
| set_dregister(dd, dd_val + addend); |
| } |
| break; |
| } |
| case 2: { // vmul |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vmuls'cond 'sd, 'sn, 'sm"); |
| set_sregister(sd, get_sregister(sn) * get_sregister(sm)); |
| } else { |
| // Format(instr, "vmuld'cond 'dd, 'dn, 'dm"); |
| set_dregister(dd, get_dregister(dn) * get_dregister(dm)); |
| } |
| break; |
| } |
| case 8: { // vdiv |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vdivs'cond 'sd, 'sn, 'sm"); |
| set_sregister(sd, get_sregister(sn) / get_sregister(sm)); |
| } else { |
| // Format(instr, "vdivd'cond 'dd, 'dn, 'dm"); |
| set_dregister(dd, get_dregister(dn) / get_dregister(dm)); |
| } |
| break; |
| } |
| case 3: { // vadd, vsub floating-point |
| if (instr->Bit(8) == 0) { |
| if (instr->Bit(6) == 0) { |
| // Format(instr, "vadds'cond 'sd, 'sn, 'sm"); |
| set_sregister(sd, get_sregister(sn) + get_sregister(sm)); |
| } else { |
| // Format(instr, "vsubs'cond 'sd, 'sn, 'sm"); |
| set_sregister(sd, get_sregister(sn) - get_sregister(sm)); |
| } |
| } else { |
| if (instr->Bit(6) == 0) { |
| // Format(instr, "vaddd'cond 'dd, 'dn, 'dm"); |
| set_dregister(dd, get_dregister(dn) + get_dregister(dm)); |
| } else { |
| // Format(instr, "vsubd'cond 'dd, 'dn, 'dm"); |
| set_dregister(dd, get_dregister(dn) - get_dregister(dm)); |
| } |
| } |
| break; |
| } |
| case 0xb: { // Other VFP data-processing instructions |
| if (instr->Bit(6) == 0) { // vmov immediate |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vmovs'cond 'sd, #'immf"); |
| set_sregister(sd, instr->ImmFloatField()); |
| } else { |
| // Format(instr, "vmovd'cond 'dd, #'immd"); |
| set_dregister(dd, instr->ImmDoubleField()); |
| } |
| break; |
| } |
| switch (instr->Bits(16, 4)) { |
| case 0: { // vmov immediate, vmov register, vabs |
| switch (instr->Bits(6, 2)) { |
| case 1: { // vmov register |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vmovs'cond 'sd, 'sm"); |
| set_sregister(sd, get_sregister(sm)); |
| } else { |
| // Format(instr, "vmovd'cond 'dd, 'dm"); |
| set_dregister(dd, get_dregister(dm)); |
| } |
| break; |
| } |
| case 3: { // vabs |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vabss'cond 'sd, 'sm"); |
| set_sregister(sd, fabsf(get_sregister(sm))); |
| } else { |
| // Format(instr, "vabsd'cond 'dd, 'dm"); |
| set_dregister(dd, fabs(get_dregister(dm))); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| break; |
| } |
| case 1: { // vneg, vsqrt |
| switch (instr->Bits(6, 2)) { |
| case 1: { // vneg |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vnegs'cond 'sd, 'sm"); |
| set_sregister(sd, -get_sregister(sm)); |
| } else { |
| // Format(instr, "vnegd'cond 'dd, 'dm"); |
| set_dregister(dd, -get_dregister(dm)); |
| } |
| break; |
| } |
| case 3: { // vsqrt |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vsqrts'cond 'sd, 'sm"); |
| set_sregister(sd, sqrtf(get_sregister(sm))); |
| } else { |
| // Format(instr, "vsqrtd'cond 'dd, 'dm"); |
| set_dregister(dd, sqrt(get_dregister(dm))); |
| } |
| break; |
| } |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| break; |
| } |
| case 4: // vcmp, vcmpe |
| case 5: { // vcmp #0.0, vcmpe #0.0 |
| if (instr->Bit(7) == 1) { // vcmpe |
| UnimplementedInstruction(instr); |
| } else { |
| fp_n_flag_ = false; |
| fp_z_flag_ = false; |
| fp_c_flag_ = false; |
| fp_v_flag_ = false; |
| if (instr->Bit(8) == 0) { // vcmps |
| float sd_val = get_sregister(sd); |
| float sm_val; |
| if (instr->Bit(16) == 0) { |
| // Format(instr, "vcmps'cond 'sd, 'sm"); |
| sm_val = get_sregister(sm); |
| } else { |
| // Format(instr, "vcmps'cond 'sd, #0.0"); |
| sm_val = 0.0f; |
| } |
| if (isnan(sd_val) || isnan(sm_val)) { |
| fp_c_flag_ = true; |
| fp_v_flag_ = true; |
| } else if (sd_val == sm_val) { |
| fp_z_flag_ = true; |
| fp_c_flag_ = true; |
| } else if (sd_val < sm_val) { |
| fp_n_flag_ = true; |
| } else { |
| fp_c_flag_ = true; |
| } |
| } else { // vcmpd |
| double dd_val = get_dregister(dd); |
| double dm_val; |
| if (instr->Bit(16) == 0) { |
| // Format(instr, "vcmpd'cond 'dd, 'dm"); |
| dm_val = get_dregister(dm); |
| } else { |
| // Format(instr, "vcmpd'cond 'dd, #0.0"); |
| dm_val = 0.0; |
| } |
| if (isnan(dd_val) || isnan(dm_val)) { |
| fp_c_flag_ = true; |
| fp_v_flag_ = true; |
| } else if (dd_val == dm_val) { |
| fp_z_flag_ = true; |
| fp_c_flag_ = true; |
| } else if (dd_val < dm_val) { |
| fp_n_flag_ = true; |
| } else { |
| fp_c_flag_ = true; |
| } |
| } |
| } |
| break; |
| } |
| case 7: { // vcvt between double-precision and single-precision |
| if (instr->Bit(8) == 0) { |
| // Format(instr, "vcvtds'cond 'dd, 'sm"); |
| dd = instr->DdField(); |
| set_dregister(dd, static_cast<double>(get_sregister(sm))); |
| } else { |
| // Format(instr, "vcvtsd'cond 'sd, 'dm"); |
| sd = instr->SdField(); |
| set_sregister(sd, static_cast<float>(get_dregister(dm))); |
| } |
| break; |
| } |
| case 8: { // vcvt, vcvtr between floating-point and integer |
| sm = instr->SmField(); |
| int32_t sm_int = get_sregister_bits(sm); |
| uint32_t ud_val = 0; |
| int32_t id_val = 0; |
| if (instr->Bit(7) == 0) { // vcvtsu, vcvtdu |
| ud_val = static_cast<uint32_t>(sm_int); |
| } else { // vcvtsi, vcvtdi |
| id_val = sm_int; |
| } |
| if (instr->Bit(8) == 0) { |
| float sd_val; |
| if (instr->Bit(7) == 0) { |
| // Format(instr, "vcvtsu'cond 'sd, 'sm"); |
| sd_val = static_cast<float>(ud_val); |
| } else { |
| // Format(instr, "vcvtsi'cond 'sd, 'sm"); |
| sd_val = static_cast<float>(id_val); |
| } |
| set_sregister(sd, sd_val); |
| } else { |
| double dd_val; |
| if (instr->Bit(7) == 0) { |
| // Format(instr, "vcvtdu'cond 'dd, 'sm"); |
| dd_val = static_cast<double>(ud_val); |
| } else { |
| // Format(instr, "vcvtdi'cond 'dd, 'sm"); |
| dd_val = static_cast<double>(id_val); |
| } |
| set_dregister(dd, dd_val); |
| } |
| break; |
| } |
| case 12: |
| case 13: { // vcvt, vcvtr between floating-point and integer |
| // We do not need to record exceptions in the FPSCR cumulative |
| // flags, because we do not use them. |
| if (instr->Bit(7) == 0) { |
| // We only support round-to-zero mode |
| UnimplementedInstruction(instr); |
| break; |
| } |
| int32_t id_val = 0; |
| uint32_t ud_val = 0; |
| if (instr->Bit(8) == 0) { |
| float sm_val = get_sregister(sm); |
| if (instr->Bit(16) == 0) { |
| // Format(instr, "vcvtus'cond 'sd, 'sm"); |
| if (sm_val >= static_cast<float>(INT32_MAX)) { |
| ud_val = INT32_MAX; |
| } else if (sm_val > 0.0) { |
| ud_val = static_cast<uint32_t>(sm_val); |
| } |
| } else { |
| // Format(instr, "vcvtis'cond 'sd, 'sm"); |
| if (sm_val <= static_cast<float>(INT32_MIN)) { |
| id_val = INT32_MIN; |
| } else if (sm_val >= static_cast<float>(INT32_MAX)) { |
| id_val = INT32_MAX; |
| } else { |
| id_val = static_cast<int32_t>(sm_val); |
| } |
| ASSERT((id_val >= 0) || !(sm_val >= 0.0)); |
| } |
| } else { |
| sd = instr->SdField(); |
| double dm_val = get_dregister(dm); |
| if (instr->Bit(16) == 0) { |
| // Format(instr, "vcvtud'cond 'sd, 'dm"); |
| if (dm_val >= static_cast<double>(INT32_MAX)) { |
| ud_val = INT32_MAX; |
| } else if (dm_val > 0.0) { |
| ud_val = static_cast<uint32_t>(dm_val); |
| } |
| } else { |
| // Format(instr, "vcvtid'cond 'sd, 'dm"); |
| if (dm_val <= static_cast<double>(INT32_MIN)) { |
| id_val = INT32_MIN; |
| } else if (dm_val >= static_cast<double>(INT32_MAX)) { |
| id_val = INT32_MAX; |
| } else if (isnan(dm_val)) { |
| id_val = 0; |
| } else { |
| id_val = static_cast<int32_t>(dm_val); |
| } |
| ASSERT((id_val >= 0) || !(dm_val >= 0.0)); |
| } |
| } |
| int32_t sd_val; |
| if (instr->Bit(16) == 0) { |
| sd_val = static_cast<int32_t>(ud_val); |
| } else { |
| sd_val = id_val; |
| } |
| set_sregister_bits(sd, sd_val); |
| break; |
| } |
| case 2: // vcvtb, vcvtt |
| case 3: // vcvtb, vcvtt |
| case 9: // undefined |
| case 10: // vcvt between floating-point and fixed-point |
| case 11: // vcvt between floating-point and fixed-point |
| case 14: // vcvt between floating-point and fixed-point |
| case 15: // vcvt between floating-point and fixed-point |
| default: { |
| UnimplementedInstruction(instr); |
| break; |
| } |
| } |
| } break; |
| } |
| } else { |
| // 8, 16, or 32-bit Transfer between ARM Core and VFP |
| if ((instr->Bits(21, 3) == 0) && (instr->Bit(8) == 0)) { |
| Register rd = instr->RdField(); |
| SRegister sn = instr->SnField(); |
| if (instr->Bit(20) == 0) { |
| // Format(instr, "vmovs'cond 'sn, 'rd"); |
| set_sregister_bits(sn, get_register(rd)); |
| } else { |
| // Format(instr, "vmovr'cond 'rd, 'sn"); |
| set_register(rd, get_sregister_bits(sn)); |
| } |
| } else if ((instr->Bits(22, 3) == 0) && (instr->Bit(20) == 0) && |
| (instr->Bit(8) == 1) && (instr->Bits(5, 2) == 0)) { |
| DRegister dn = instr->DnField(); |
| Register rd = instr->RdField(); |
| const int32_t src_value = get_register(rd); |
| const int64_t dst_value = get_dregister_bits(dn); |
| int32_t dst_lo = Utils::Low32Bits(dst_value); |
| int32_t dst_hi = Utils::High32Bits(dst_value); |
| if (instr->Bit(21) == 0) { |
| // Format(instr, "vmovd'cond 'dn[0], 'rd"); |
| dst_lo = src_value; |
| } else { |
| // Format(instr, "vmovd'cond 'dn[1], 'rd"); |
| dst_hi = src_value; |
| } |
| set_dregister_bits(dn, Utils::LowHighTo64Bits(dst_lo, dst_hi)); |
| } else if ((instr->Bits(20, 4) == 0xf) && (instr->Bit(8) == 0)) { |
| if (instr->Bits(12, 4) == 0xf) { |
| // Format(instr, "vmrs'cond APSR, FPSCR"); |
| n_flag_ = fp_n_flag_; |
| z_flag_ = fp_z_flag_; |
| c_flag_ = fp_c_flag_; |
| v_flag_ = fp_v_flag_; |
| } else { |
| // Format(instr, "vmrs'cond 'rd, FPSCR"); |
| const int32_t n_flag = fp_n_flag_ ? (1 << 31) : 0; |
| const int32_t z_flag = fp_z_flag_ ? (1 << 30) : 0; |
| const int32_t c_flag = fp_c_flag_ ? (1 << 29) : 0; |
| const int32_t v_flag = fp_v_flag_ ? (1 << 28) : 0; |
| set_register(instr->RdField(), n_flag | z_flag | c_flag | v_flag); |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| |
| static void simd_value_swap(simd_value_t* s1, |
| int i1, |
| simd_value_t* s2, |
| int i2) { |
| uint32_t tmp; |
| tmp = s1->u32[i1]; |
| s1->u32[i1] = s2->u32[i2]; |
| s2->u32[i2] = tmp; |
| } |
| |
| static float vminf(float f1, float f2) { |
| if (f1 == f2) { |
| // take care of (-0.0) < 0.0, (they are equal according to minss) |
| return signbit(f1) ? f1 : f2; |
| } |
| return f1 > f2 ? f2 : f1; |
| } |
| |
| static float vmaxf(float f1, float f2) { |
| if (f1 == f2) { |
| // take care of (-0.0) < 0.0, (they are equal according to minss) |
| return signbit(f1) ? f2 : f1; |
| } |
| return f1 < f2 ? f2 : f1; |
| } |
| |
| void Simulator::DecodeSIMDDataProcessing(Instr* instr) { |
| ASSERT(instr->ConditionField() == kSpecialCondition); |
| |
| if (instr->Bit(6) == 1) { |
| // Q = 1, Using 128-bit Q registers. |
| const QRegister qd = instr->QdField(); |
| const QRegister qn = instr->QnField(); |
| const QRegister qm = instr->QmField(); |
| simd_value_t s8d; |
| simd_value_t s8n; |
| simd_value_t s8m; |
| |
| get_qregister(qn, &s8n); |
| get_qregister(qm, &s8m); |
| |
| if ((instr->Bits(8, 4) == 8) && (instr->Bit(4) == 0) && |
| (instr->Bits(23, 2) == 0)) { |
| // Uses q registers. |
| // Format(instr, "vadd.'sz 'qd, 'qn, 'qm"); |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| s8d.u8[i] = s8n.u8[i] + s8m.u8[i]; |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| s8d.u16[i] = s8n.u16[i] + s8m.u16[i]; |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] + s8m.u32[i]; |
| } |
| } else if (size == 3) { |
| for (int i = 0; i < 2; i++) { |
| s8d.u64[i] = s8n.u64[i] + s8m.u64[i]; |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| } else if ((instr->Bits(8, 4) == 13) && (instr->Bit(4) == 0) && |
| (instr->Bits(23, 2) == 0) && (instr->Bit(21) == 0)) { |
| // Format(instr, "vadd.F32 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = s8n.f32[i] + s8m.f32[i]; |
| } |
| } else if ((instr->Bits(8, 4) == 8) && (instr->Bit(4) == 0) && |
| (instr->Bits(23, 2) == 2)) { |
| // Format(instr, "vsub.'sz 'qd, 'qn, 'qm"); |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| s8d.u8[i] = s8n.u8[i] - s8m.u8[i]; |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| s8d.u16[i] = s8n.u16[i] - s8m.u16[i]; |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] - s8m.u32[i]; |
| } |
| } else if (size == 3) { |
| for (int i = 0; i < 2; i++) { |
| s8d.u64[i] = s8n.u64[i] - s8m.u64[i]; |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| } else if ((instr->Bits(8, 4) == 13) && (instr->Bit(4) == 0) && |
| (instr->Bits(23, 2) == 0) && (instr->Bit(21) == 1)) { |
| // Format(instr, "vsub.F32 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = s8n.f32[i] - s8m.f32[i]; |
| } |
| } else if ((instr->Bits(8, 4) == 9) && (instr->Bit(4) == 1) && |
| (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vmul.'sz 'qd, 'qn, 'qm"); |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| s8d.i8[i] = s8n.i8[i] * s8m.i8[i]; |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| s8d.i16[i] = s8n.i16[i] * s8m.i16[i]; |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] * s8m.u32[i]; |
| } |
| } else if (size == 3) { |
| UnimplementedInstruction(instr); |
| } else { |
| UNREACHABLE(); |
| } |
| } else if ((instr->Bits(8, 4) == 13) && (instr->Bit(4) == 1) && |
| (instr->Bits(23, 2) == 2) && (instr->Bit(21) == 0)) { |
| // Format(instr, "vmul.F32 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = s8n.f32[i] * s8m.f32[i]; |
| } |
| } else if ((instr->Bits(8, 4) == 4) && (instr->Bit(4) == 0) && |
| (instr->Bit(23) == 0) && (instr->Bits(25, 3) == 1)) { |
| // Format(instr, "vshlqu'sz 'qd, 'qm, 'qn"); |
| // Format(instr, "vshlqi'sz 'qd, 'qm, 'qn"); |
| const bool is_signed = instr->Bit(24) == 0; |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| int8_t shift = s8n.i8[i]; |
| if (shift > 0) { |
| s8d.u8[i] = s8m.u8[i] << shift; |
| } else if (shift < 0) { |
| if (is_signed) { |
| s8d.i8[i] = s8m.i8[i] >> (-shift); |
| } else { |
| s8d.u8[i] = s8m.u8[i] >> (-shift); |
| } |
| } |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| int8_t shift = s8n.i8[i * 2]; |
| if (shift > 0) { |
| s8d.u16[i] = s8m.u16[i] << shift; |
| } else if (shift < 0) { |
| if (is_signed) { |
| s8d.i16[i] = s8m.i16[i] >> (-shift); |
| } else { |
| s8d.u16[i] = s8m.u16[i] >> (-shift); |
| } |
| } |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| int8_t shift = s8n.i8[i * 4]; |
| if (shift > 0) { |
| s8d.u32[i] = s8m.u32[i] << shift; |
| } else if (shift < 0) { |
| if (is_signed) { |
| s8d.i32[i] = s8m.i32[i] >> (-shift); |
| } else { |
| s8d.u32[i] = s8m.u32[i] >> (-shift); |
| } |
| } |
| } |
| } else { |
| ASSERT(size == 3); |
| for (int i = 0; i < 2; i++) { |
| int8_t shift = s8n.i8[i * 8]; |
| if (shift > 0) { |
| s8d.u64[i] = s8m.u64[i] << shift; |
| } else if (shift < 0) { |
| if (is_signed) { |
| s8d.i64[i] = s8m.i64[i] >> (-shift); |
| } else { |
| s8d.u64[i] = s8m.u64[i] >> (-shift); |
| } |
| } |
| } |
| } |
| } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 1) && |
| (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 2)) { |
| // Format(instr, "veorq 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] ^ s8m.u32[i]; |
| } |
| } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 1) && |
| (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vornq 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] | ~s8m.u32[i]; |
| } |
| } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 1) && |
| (instr->Bits(20, 2) == 2) && (instr->Bits(23, 2) == 0)) { |
| if (qm == qn) { |
| // Format(instr, "vmovq 'qd, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8m.u32[i]; |
| } |
| } else { |
| // Format(instr, "vorrq 'qd, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] | s8m.u32[i]; |
| } |
| } |
| } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 1) && |
| (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vandq 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] & s8m.u32[i]; |
| } |
| } else if ((instr->Bits(7, 5) == 11) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 3) && (instr->Bits(23, 5) == 7) && |
| (instr->Bits(16, 4) == 0)) { |
| // Format(instr, "vmvnq 'qd, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = ~s8m.u32[i]; |
| } |
| } else if ((instr->Bits(8, 4) == 15) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 2) && (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vminqs 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = vminf(s8n.f32[i], s8m.f32[i]); |
| } |
| } else if ((instr->Bits(8, 4) == 15) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vmaxqs 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = vmaxf(s8n.f32[i], s8m.f32[i]); |
| } |
| } else if ((instr->Bits(8, 4) == 7) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| (instr->Bit(7) == 0) && (instr->Bits(16, 4) == 9)) { |
| // Format(instr, "vabsqs 'qd, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = fabsf(s8m.f32[i]); |
| } |
| } else if ((instr->Bits(8, 4) == 7) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| (instr->Bit(7) == 1) && (instr->Bits(16, 4) == 9)) { |
| // Format(instr, "vnegqs 'qd, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = -s8m.f32[i]; |
| } |
| } else if ((instr->Bits(7, 5) == 10) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| (instr->Bits(16, 4) == 11)) { |
| // Format(instr, "vrecpeq 'qd, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = ReciprocalEstimate(s8m.f32[i]); |
| } |
| } else if ((instr->Bits(8, 4) == 15) && (instr->Bit(4) == 1) && |
| (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vrecpsq 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = ReciprocalStep(s8n.f32[i], s8m.f32[i]); |
| } |
| } else if ((instr->Bits(8, 4) == 5) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| (instr->Bit(7) == 1) && (instr->Bits(16, 4) == 11)) { |
| // Format(instr, "vrsqrteqs 'qd, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = ReciprocalSqrtEstimate(s8m.f32[i]); |
| } |
| } else if ((instr->Bits(8, 4) == 15) && (instr->Bit(4) == 1) && |
| (instr->Bits(20, 2) == 2) && (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vrsqrtsqs 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.f32[i] = ReciprocalSqrtStep(s8n.f32[i], s8m.f32[i]); |
| } |
| } else if ((instr->Bits(8, 4) == 12) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| (instr->Bit(7) == 0)) { |
| DRegister dm = instr->DmField(); |
| int64_t dm_value = get_dregister_bits(dm); |
| int32_t imm4 = instr->Bits(16, 4); |
| int32_t idx; |
| if ((imm4 & 1) != 0) { |
| // Format(instr, "vdupb 'qd, 'dm['imm4_vdup]"); |
| int8_t dm_b[8]; |
| memcpy(dm_b, &dm_value, sizeof(dm_b)); // NOLINT |
| idx = imm4 >> 1; |
| int8_t val = dm_b[idx]; |
| for (int i = 0; i < 16; i++) { |
| s8d.i8[i] = val; |
| } |
| } else if ((imm4 & 2) != 0) { |
| // Format(instr, "vduph 'qd, 'dm['imm4_vdup]"); |
| int16_t dm_h[4]; |
| memcpy(dm_h, &dm_value, sizeof(dm_h)); // NOLINT |
| idx = imm4 >> 2; |
| int16_t val = dm_h[idx]; |
| for (int i = 0; i < 8; i++) { |
| s8d.i16[i] = val; |
| } |
| } else if ((imm4 & 4) != 0) { |
| // Format(instr, "vdupw 'qd, 'dm['imm4_vdup]"); |
| int32_t dm_w[2]; |
| memcpy(dm_w, &dm_value, sizeof(dm_w)); // NOLINT |
| idx = imm4 >> 3; |
| int32_t val = dm_w[idx]; |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = val; |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } else if ((instr->Bits(8, 4) == 1) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 3) && (instr->Bits(23, 2) == 3) && |
| (instr->Bit(7) == 1) && (instr->Bits(16, 4) == 10)) { |
| // Format(instr, "vzipqw 'qd, 'qm"); |
| get_qregister(qd, &s8d); |
| |
| // Interleave the elements with the low words in qd, and the high words |
| // in qm. |
| simd_value_swap(&s8d, 3, &s8m, 2); |
| simd_value_swap(&s8d, 3, &s8m, 1); |
| simd_value_swap(&s8d, 2, &s8m, 0); |
| simd_value_swap(&s8d, 2, &s8d, 1); |
| |
| set_qregister(qm, s8m); // Writes both qd and qm. |
| } else if ((instr->Bits(8, 4) == 8) && (instr->Bit(4) == 1) && |
| (instr->Bits(23, 2) == 2)) { |
| // Format(instr, "vceqq'sz 'qd, 'qn, 'qm"); |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| s8d.i8[i] = s8n.i8[i] == s8m.i8[i] ? 0xff : 0; |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| s8d.i16[i] = s8n.i16[i] == s8m.i16[i] ? 0xffff : 0; |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] == s8m.u32[i] ? 0xffffffff : 0; |
| } |
| } else if (size == 3) { |
| UnimplementedInstruction(instr); |
| } else { |
| UNREACHABLE(); |
| } |
| } else if ((instr->Bits(8, 4) == 14) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vceqqs 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.f32[i] == s8m.f32[i] ? 0xffffffff : 0; |
| } |
| } else if ((instr->Bits(8, 4) == 3) && (instr->Bit(4) == 1) && |
| (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vcgeq'sz 'qd, 'qn, 'qm"); |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| s8d.i8[i] = s8n.i8[i] >= s8m.i8[i] ? 0xff : 0; |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| s8d.i16[i] = s8n.i16[i] >= s8m.i16[i] ? 0xffff : 0; |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.i32[i] >= s8m.i32[i] ? 0xffffffff : 0; |
| } |
| } else if (size == 3) { |
| UnimplementedInstruction(instr); |
| } else { |
| UNREACHABLE(); |
| } |
| } else if ((instr->Bits(8, 4) == 3) && (instr->Bit(4) == 1) && |
| (instr->Bits(23, 2) == 2)) { |
| // Format(instr, "vcugeq'sz 'qd, 'qn, 'qm"); |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| s8d.i8[i] = s8n.u8[i] >= s8m.u8[i] ? 0xff : 0; |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| s8d.i16[i] = s8n.u16[i] >= s8m.u16[i] ? 0xffff : 0; |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] >= s8m.u32[i] ? 0xffffffff : 0; |
| } |
| } else if (size == 3) { |
| UnimplementedInstruction(instr); |
| } else { |
| UNREACHABLE(); |
| } |
| } else if ((instr->Bits(8, 4) == 14) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 0) && (instr->Bits(23, 2) == 2)) { |
| // Format(instr, "vcgeqs 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.f32[i] >= s8m.f32[i] ? 0xffffffff : 0; |
| } |
| } else if ((instr->Bits(8, 4) == 3) && (instr->Bit(4) == 0) && |
| (instr->Bits(23, 2) == 0)) { |
| // Format(instr, "vcgtq'sz 'qd, 'qn, 'qm"); |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| s8d.i8[i] = s8n.i8[i] > s8m.i8[i] ? 0xff : 0; |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| s8d.i16[i] = s8n.i16[i] > s8m.i16[i] ? 0xffff : 0; |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.i32[i] > s8m.i32[i] ? 0xffffffff : 0; |
| } |
| } else if (size == 3) { |
| UnimplementedInstruction(instr); |
| } else { |
| UNREACHABLE(); |
| } |
| } else if ((instr->Bits(8, 4) == 3) && (instr->Bit(4) == 0) && |
| (instr->Bits(23, 2) == 2)) { |
| // Format(instr, "vcugtq'sz 'qd, 'qn, 'qm"); |
| const int size = instr->Bits(20, 2); |
| if (size == 0) { |
| for (int i = 0; i < 16; i++) { |
| s8d.i8[i] = s8n.u8[i] > s8m.u8[i] ? 0xff : 0; |
| } |
| } else if (size == 1) { |
| for (int i = 0; i < 8; i++) { |
| s8d.i16[i] = s8n.u16[i] > s8m.u16[i] ? 0xffff : 0; |
| } |
| } else if (size == 2) { |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.u32[i] > s8m.u32[i] ? 0xffffffff : 0; |
| } |
| } else if (size == 3) { |
| UnimplementedInstruction(instr); |
| } else { |
| UNREACHABLE(); |
| } |
| } else if ((instr->Bits(8, 4) == 14) && (instr->Bit(4) == 0) && |
| (instr->Bits(20, 2) == 2) && (instr->Bits(23, 2) == 2)) { |
| // Format(instr, "vcgtqs 'qd, 'qn, 'qm"); |
| for (int i = 0; i < 4; i++) { |
| s8d.u32[i] = s8n.f32[i] > s8m.f32[i] ? 0xffffffff : 0; |
| } |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| |
| set_qregister(qd, s8d); |
| } else { |
| // Q == 0, Uses 64-bit D registers. |
| if ((instr->Bits(23, 2) == 3) && (instr->Bits(20, 2) == 3) && |
| (instr->Bits(10, 2) == 2) && (instr->Bit(4) == 0)) { |
| // Format(instr, "vtbl 'dd, 'dtbllist, 'dm"); |
| DRegister dd = instr->DdField(); |
| DRegister dm = instr->DmField(); |
| int reg_count = instr->Bits(8, 2) + 1; |
| int start = (instr->Bit(7) << 4) | instr->Bits(16, 4); |
| int64_t table[4]; |
| |
| for (int i = 0; i < reg_count; i++) { |
| DRegister d = static_cast<DRegister>(start + i); |
| table[i] = get_dregister_bits(d); |
| } |
| for (int i = reg_count; i < 4; i++) { |
| table[i] = 0; |
| } |
| |
| int64_t dm_value = get_dregister_bits(dm); |
| int64_t result; |
| int8_t* dm_bytes = reinterpret_cast<int8_t*>(&dm_value); |
| int8_t* result_bytes = reinterpret_cast<int8_t*>(&result); |
| int8_t* table_bytes = reinterpret_cast<int8_t*>(&table[0]); |
| for (int i = 0; i < 8; i++) { |
| int idx = dm_bytes[i]; |
| if ((idx >= 0) && (idx < 256)) { |
| result_bytes[i] = table_bytes[idx]; |
| } else { |
| result_bytes[i] = 0; |
| } |
| } |
| |
| set_dregister_bits(dd, result); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| } |
| |
| // Executes the current instruction. |
| DART_FORCE_INLINE void Simulator::InstructionDecodeImpl(Instr* instr) { |
| pc_modified_ = false; |
| if (instr->ConditionField() == kSpecialCondition) { |
| if (instr->InstructionBits() == static_cast<int32_t>(0xf57ff01f)) { |
| // Format(instr, "clrex"); |
| ClearExclusive(); |
| } else if (instr->InstructionBits() == |
| static_cast<int32_t>(kDataMemoryBarrier)) { |
| // Format(instr, "dmb ish"); |
| memory_.FlushAll(); |
| std::atomic_thread_fence(std::memory_order_seq_cst); |
| } else { |
| if (instr->IsSIMDDataProcessing()) { |
| DecodeSIMDDataProcessing(instr); |
| } else { |
| UnimplementedInstruction(instr); |
| } |
| } |
| } else if (ConditionallyExecute(instr)) { |
| switch (instr->TypeField()) { |
| case 0: |
| case 1: { |
| DecodeType01(instr); |
| break; |
| } |
| case 2: { |
| DecodeType2(instr); |
| break; |
| } |
| case 3: { |
| DecodeType3(instr); |
| break; |
| } |
| case 4: { |
| DecodeType4(instr); |
| break; |
| } |
| case 5: { |
| DecodeType5(instr); |
| break; |
| } |
| case 6: { |
| DecodeType6(instr); |
| break; |
| } |
| case 7: { |
| DecodeType7(instr); |
| break; |
| } |
| default: { |
| // Type field is three bits. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| if (!pc_modified_) { |
| set_register(PC, reinterpret_cast<int32_t>(instr) + Instr::kInstrSize); |
| } |
| } |
| |
| void Simulator::InstructionDecode(Instr* instr) { |
| if (IsTracingExecution()) { |
| THR_Print("%" Pu64 " ", icount_); |
| const uword start = reinterpret_cast<uword>(instr); |
| const uword end = start + Instr::kInstrSize; |
| if (FLAG_support_disassembler) { |
| Disassembler::Disassemble(start, end); |
| } else { |
| THR_Print("Disassembler not supported in this mode.\n"); |
| } |
| } |
| InstructionDecodeImpl(instr); |
| } |
| |
| void Simulator::Execute() { |
| if (LIKELY(FLAG_stop_sim_at == ULLONG_MAX && |
| FLAG_trace_sim_after == ULLONG_MAX)) { |
| ExecuteNoTrace(); |
| } else { |
| ExecuteTrace(); |
| } |
| } |
| |
| void Simulator::ExecuteNoTrace() { |
| // Get the PC to simulate. Cannot use the accessor here as we need the |
| // raw PC value and not the one used as input to arithmetic instructions. |
| uword program_counter = get_pc(); |
| |
| // Fast version of the dispatch loop without checking whether the simulator |
| // should be stopping at a particular executed instruction. |
| while (program_counter != kEndSimulatingPC) { |
| Instr* instr = reinterpret_cast<Instr*>(program_counter); |
| icount_++; |
| InstructionDecodeImpl(instr); |
| program_counter = get_pc(); |
| } |
| } |
| |
| void Simulator::ExecuteTrace() { |
| // Get the PC to simulate. Cannot use the accessor here as we need the |
| // raw PC value and not the one used as input to arithmetic instructions. |
| uword program_counter = get_pc(); |
| |
| // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| // we reach the particular instruction count or address. |
| while (program_counter != kEndSimulatingPC) { |
| Instr* instr = reinterpret_cast<Instr*>(program_counter); |
| icount_++; |
| if (icount_ == FLAG_stop_sim_at) { |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, "Instruction count reached"); |
| } else if (reinterpret_cast<uint64_t>(instr) == FLAG_stop_sim_at) { |
| SimulatorDebugger dbg(this); |
| dbg.Stop(instr, "Instruction address reached"); |
| } else if (IsIllegalAddress(program_counter)) { |
| HandleIllegalAccess(program_counter, instr); |
| } else { |
| InstructionDecode(instr); |
| } |
| program_counter = get_pc(); |
| } |
| } |
| |
| int64_t Simulator::Call(int32_t entry, |
| int32_t parameter0, |
| int32_t parameter1, |
| int32_t parameter2, |
| int32_t parameter3, |
| bool fp_return, |
| bool fp_args) { |
| // Save the SP register before the call so we can restore it. |
| int32_t sp_before_call = get_register(SP); |
| |
| // Setup parameters. |
| if (fp_args) { |
| set_sregister(S0, bit_cast<float, int32_t>(parameter0)); |
| set_sregister(S1, bit_cast<float, int32_t>(parameter1)); |
| set_sregister(S2, bit_cast<float, int32_t>(parameter2)); |
| set_sregister(S3, bit_cast<float, int32_t>(parameter3)); |
| } else { |
| set_register(R0, parameter0); |
| set_register(R1, parameter1); |
| set_register(R2, parameter2); |
| set_register(R3, parameter3); |
| } |
| |
| // Make sure the activation frames are properly aligned. |
| int32_t stack_pointer = sp_before_call; |
| if (OS::ActivationFrameAlignment() > 1) { |
| stack_pointer = |
| Utils::RoundDown(stack_pointer, OS::ActivationFrameAlignment()); |
| } |
| set_register(SP, stack_pointer); |
| |
| // Prepare to execute the code at entry. |
| set_register(PC, entry); |
| // Put down marker for end of simulation. The simulator will stop simulation |
| // when the PC reaches this value. By saving the "end simulation" value into |
| // the LR the simulation stops when returning to this call point. |
| set_register(LR, kEndSimulatingPC); |
| |
| // Remember the values of callee-saved registers. |
| // The code below assumes that r9 is not used as sb (static base) in |
| // simulator code and therefore is regarded as a callee-saved register. |
| int32_t r4_val = get_register(R4); |
| int32_t r5_val = get_register(R5); |
| int32_t r6_val = get_register(R6); |
| int32_t r7_val = get_register(R7); |
| int32_t r8_val = get_register(R8); |
| #if !defined(DART_TARGET_OS_MACOS) && !defined(DART_TARGET_OS_MACOS_IOS) |
| int32_t r9_val = get_register(R9); |
| #endif |
| int32_t r10_val = get_register(R10); |
| int32_t r11_val = get_register(R11); |
| |
| double d8_val = 0.0; |
| double d9_val = 0.0; |
| double d10_val = 0.0; |
| double d11_val = 0.0; |
| double d12_val = 0.0; |
| double d13_val = 0.0; |
| double d14_val = 0.0; |
| double d15_val = 0.0; |
| |
| d8_val = get_dregister(D8); |
| d9_val = get_dregister(D9); |
| d10_val = get_dregister(D10); |
| d11_val = get_dregister(D11); |
| d12_val = get_dregister(D12); |
| d13_val = get_dregister(D13); |
| d14_val = get_dregister(D14); |
| d15_val = get_dregister(D15); |
| |
| // Setup the callee-saved registers with a known value. To be able to check |
| // that they are preserved properly across dart execution. |
| int32_t callee_saved_value = icount_; |
| set_register(R4, callee_saved_value); |
| set_register(R5, callee_saved_value); |
| set_register(R6, callee_saved_value); |
| set_register(R7, callee_saved_value); |
| set_register(R8, callee_saved_value); |
| #if !defined(DART_TARGET_OS_MACOS) && !defined(DART_TARGET_OS_MACOS_IOS) |
| set_register(R9, callee_saved_value); |
| #endif |
| set_register(R10, callee_saved_value); |
| set_register(R11, callee_saved_value); |
| |
| double callee_saved_dvalue = 0.0; |
| callee_saved_dvalue = static_cast<double>(icount_); |
| set_dregister(D8, callee_saved_dvalue); |
| set_dregister(D9, callee_saved_dvalue); |
| set_dregister(D10, callee_saved_dvalue); |
| set_dregister(D11, callee_saved_dvalue); |
| set_dregister(D12, callee_saved_dvalue); |
| set_dregister(D13, callee_saved_dvalue); |
| set_dregister(D14, callee_saved_dvalue); |
| set_dregister(D15, callee_saved_dvalue); |
| |
| // Start the simulation |
| Execute(); |
| |
| // Check that the callee-saved registers have been preserved. |
| ASSERT(callee_saved_value == get_register(R4)); |
| ASSERT(callee_saved_value == get_register(R5)); |
| ASSERT(callee_saved_value == get_register(R6)); |
| ASSERT(callee_saved_value == get_register(R7)); |
| ASSERT(callee_saved_value == get_register(R8)); |
| #if !defined(DART_TARGET_OS_MACOS) && !defined(DART_TARGET_OS_MACOS_IOS) |
| ASSERT(callee_saved_value == get_register(R9)); |
| #endif |
| ASSERT(callee_saved_value == get_register(R10)); |
| ASSERT(callee_saved_value == get_register(R11)); |
| |
| ASSERT(callee_saved_dvalue == get_dregister(D8)); |
| ASSERT(callee_saved_dvalue == get_dregister(D9)); |
| ASSERT(callee_saved_dvalue == get_dregister(D10)); |
| ASSERT(callee_saved_dvalue == get_dregister(D11)); |
| ASSERT(callee_saved_dvalue == get_dregister(D12)); |
| ASSERT(callee_saved_dvalue == get_dregister(D13)); |
| ASSERT(callee_saved_dvalue == get_dregister(D14)); |
| ASSERT(callee_saved_dvalue == get_dregister(D15)); |
| |
| // Restore callee-saved registers with the original value. |
| set_register(R4, r4_val); |
| set_register(R5, r5_val); |
| set_register(R6, r6_val); |
| set_register(R7, r7_val); |
| set_register(R8, r8_val); |
| #if !defined(DART_TARGET_OS_MACOS) && !defined(DART_TARGET_OS_MACOS_IOS) |
| set_register(R9, r9_val); |
| #endif |
| set_register(R10, r10_val); |
| set_register(R11, r11_val); |
| |
| set_dregister(D8, d8_val); |
| set_dregister(D9, d9_val); |
| set_dregister(D10, d10_val); |
| set_dregister(D11, d11_val); |
| set_dregister(D12, d12_val); |
| set_dregister(D13, d13_val); |
| set_dregister(D14, d14_val); |
| set_dregister(D15, d15_val); |
| |
| // Restore the SP register and return R1:R0. |
| set_register(SP, sp_before_call); |
| int64_t return_value; |
| if (fp_return) { |
| return_value = bit_cast<int64_t, double>(get_dregister(D0)); |
| } else { |
| return_value = Utils::LowHighTo64Bits(get_register(R0), get_register(R1)); |
| } |
| |
| // We can't instrument the runtime. |
| memory_.FlushAll(); |
| |
| return return_value; |
| } |
| |
| void Simulator::JumpToFrame(uword pc, uword sp, uword fp, Thread* thread) { |
| // Walk over all setjmp buffers (simulated --> C++ transitions) |
| // and try to find the setjmp associated with the simulated stack pointer. |
| SimulatorSetjmpBuffer* buf = last_setjmp_buffer(); |
| while (buf->link() != nullptr && buf->link()->sp() <= sp) { |
| buf = buf->link(); |
| } |
| ASSERT(buf != nullptr); |
| |
| // The C++ caller has not cleaned up the stack memory of C++ frames. |
| // Prepare for unwinding frames by destroying all the stack resources |
| // in the previous C++ frames. |
| StackResource::Unwind(thread); |
| |
| // Keep the following code in sync with `StubCode::JumpToFrameStub()`. |
| |
| // Unwind the C++ stack and continue simulation in the target frame. |
| set_register(PC, static_cast<int32_t>(pc)); |
| set_register(SP, static_cast<int32_t>(sp)); |
| set_register(FP, static_cast<int32_t>(fp)); |
| set_register(THR, reinterpret_cast<uword>(thread)); |
| // Set the tag. |
| thread->set_vm_tag(VMTag::kDartTagId); |
| // Clear top exit frame. |
| thread->set_top_exit_frame_info(0); |
| // Restore pool pointer. |
| int32_t code = |
| *reinterpret_cast<int32_t*>(fp + kPcMarkerSlotFromFp * kWordSize); |
| int32_t pp = FLAG_precompiled_mode |
| ? static_cast<int32_t>(thread->global_object_pool()) |
| : *reinterpret_cast<int32_t*>( |
| (code + Code::object_pool_offset() - kHeapObjectTag)); |
| |
| set_register(CODE_REG, code); |
| set_register(PP, pp); |
| if (FLAG_precompiled_mode) { |
| set_register(DISPATCH_TABLE_REG, |
| reinterpret_cast<int32_t>(thread->dispatch_table_array())); |
| } |
| buf->Longjmp(); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined(USING_SIMULATOR) |
| |
| #endif // defined TARGET_ARCH_ARM |