blob: 92597c32b07f5b27e4c6a1b42c4dc61be8e14322 [file] [log] [blame]
import 'dart:math' as math;
import 'package:flutter/material.dart';
/// A rectangle with a smooth circular notch.
///
/// See also:
///
/// * [CircleBorder], a [ShapeBorder] that describes a circle.
class WaterfallNotchedRectangle extends NotchedShape {
/// Creates a [WaterfallNotchedRectangle].
///
/// The same object can be used to create multiple shapes.
const WaterfallNotchedRectangle();
/// Creates a [Path] that describes a rectangle with a smooth circular notch.
///
/// `host` is the bounding box for the returned shape. Conceptually this is
/// the rectangle to which the notch will be applied.
///
/// `guest` is the bounding box of a circle that the notch accommodates. All
/// points in the circle bounded by `guest` will be outside of the returned
/// path.
///
/// The notch is curve that smoothly connects the host's top edge and
/// the guest circle.
@override
Path getOuterPath(Rect host, Rect guest) {
if (guest == null || !host.overlaps(guest)) return Path()..addRect(host);
// The guest's shape is a circle bounded by the guest rectangle.
// So the guest's radius is half the guest width.
final notchRadius = guest.width / 2.0;
// We build a path for the notch from 3 segments:
// Segment A - a Bezier curve from the host's top edge to segment B.
// Segment B - an arc with radius notchRadius.
// Segment C - a Bezier curve from segment B back to the host's top edge.
//
// A detailed explanation and the derivation of the formulas below is
// available at: https://goo.gl/Ufzrqn
// s1, s2 are the two knobs controlling the behavior of the bezzier curve.
const s1 = 21.0;
const s2 = 6.0;
final r = notchRadius;
final a = -1.0 * r - s2;
final b = host.top - guest.center.dy;
final n2 = math.sqrt(b * b * r * r * (a * a + b * b - r * r));
final p2xA = ((a * r * r) - n2) / (a * a + b * b);
final p2xB = ((a * r * r) + n2) / (a * a + b * b);
final p2yA = math.sqrt(r * r - p2xA * p2xA);
final p2yB = math.sqrt(r * r - p2xB * p2xB);
final p = List<Offset>.filled(6, null, growable: false);
// p0, p1, and p2 are the control points for segment A.
p[0] = Offset(a - s1, b);
p[1] = Offset(a, b);
final cmp = b < 0 ? -1.0 : 1.0;
p[2] = cmp * p2yA > cmp * p2yB ? Offset(p2xA, p2yA) : Offset(p2xB, p2yB);
// p3, p4, and p5 are the control points for segment B, which is a mirror
// of segment A around the y axis.
p[3] = Offset(-1.0 * p[2].dx, p[2].dy);
p[4] = Offset(-1.0 * p[1].dx, p[1].dy);
p[5] = Offset(-1.0 * p[0].dx, p[0].dy);
// translate all points back to the absolute coordinate system.
for (var i = 0; i < p.length; i += 1) {
p[i] = p[i] + guest.center;
}
return Path()
..moveTo(host.left, host.top)
..lineTo(p[0].dx, p[0].dy)
..quadraticBezierTo(p[1].dx, p[1].dy, p[2].dx, p[2].dy)
..arcToPoint(
p[3],
radius: Radius.circular(notchRadius),
clockwise: false,
)
..quadraticBezierTo(p[4].dx, p[4].dy, p[5].dx, p[5].dy)
..lineTo(host.right, host.top)
..lineTo(host.right, host.bottom)
..lineTo(host.left, host.bottom)
..close();
}
}