| // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| // part of "collection_patch.dart"; |
| |
| // Hash table with open addressing that separates the index from keys/values. |
| |
| // This function takes care of rehashing of the linked hashmaps in [objects]. We |
| // do this eagerly after snapshot deserialization. |
| @pragma("vm:entry-point") |
| void _rehashObjects(List objects) { |
| final int length = objects.length; |
| for (int i = 0; i < length; ++i) { |
| objects[i]._regenerateIndex(); |
| } |
| } |
| |
| abstract class _HashFieldBase { |
| // Each occupied entry in _index is a fixed-size integer that encodes a pair: |
| // [ hash pattern for key | index of entry in _data ] |
| // The hash pattern is based on hashCode, but is guaranteed to be non-zero. |
| // The length of _index is always a power of two, and there is always at |
| // least one unoccupied entry. |
| // NOTE: When maps are deserialized, their _index and _hashMask is regenerated |
| // eagerly by _regenerateIndex. |
| Uint32List _index = new Uint32List(_HashBase._INITIAL_INDEX_SIZE); |
| |
| // Cached in-place mask for the hash pattern component. |
| int _hashMask = _HashBase._indexSizeToHashMask(_HashBase._INITIAL_INDEX_SIZE); |
| |
| // Fixed-length list of keys (set) or key/value at even/odd indices (map). |
| List _data; |
| |
| // Length of _data that is used (i.e., keys + values for a map). |
| int _usedData = 0; |
| |
| // Number of deleted keys. |
| int _deletedKeys = 0; |
| |
| // Note: All fields are initialized in a single constructor so that the VM |
| // recognizes they cannot hold null values. This makes a big (20%) performance |
| // difference on some operations. |
| _HashFieldBase(int dataSize) : this._data = new List(dataSize); |
| } |
| |
| // Base class for VM-internal classes; keep in sync with _HashFieldBase. |
| abstract class _HashVMBase { |
| @pragma("vm:exact-result-type", "dart:typed_data#_Uint32List") |
| Uint32List get _index native "LinkedHashMap_getIndex"; |
| void set _index(Uint32List value) native "LinkedHashMap_setIndex"; |
| |
| @pragma("vm:exact-result-type", "dart:core#_Smi") |
| int get _hashMask native "LinkedHashMap_getHashMask"; |
| void set _hashMask(int value) native "LinkedHashMap_setHashMask"; |
| |
| @pragma("vm:exact-result-type", "dart:core#_List") |
| List get _data native "LinkedHashMap_getData"; |
| void set _data(List value) native "LinkedHashMap_setData"; |
| |
| @pragma("vm:exact-result-type", "dart:core#_Smi") |
| int get _usedData native "LinkedHashMap_getUsedData"; |
| void set _usedData(int value) native "LinkedHashMap_setUsedData"; |
| |
| @pragma("vm:exact-result-type", "dart:core#_Smi") |
| int get _deletedKeys native "LinkedHashMap_getDeletedKeys"; |
| void set _deletedKeys(int value) native "LinkedHashMap_setDeletedKeys"; |
| } |
| |
| // This mixin can be applied to _HashFieldBase or _HashVMBase (for |
| // normal and VM-internalized classes, respectiveley), which provide the |
| // actual fields/accessors that this mixin assumes. |
| // TODO(koda): Consider moving field comments to _HashFieldBase. |
| abstract class _HashBase implements _HashVMBase { |
| // The number of bits used for each component is determined by table size. |
| // The length of _index is twice the number of entries in _data, and both |
| // are doubled when _data is full. Thus, _index will have a max load factor |
| // of 1/2, which enables one more bit to be used for the hash. |
| // TODO(koda): Consider growing _data by factor sqrt(2), twice as often. |
| static const int _INITIAL_INDEX_BITS = 3; |
| static const int _INITIAL_INDEX_SIZE = 1 << (_INITIAL_INDEX_BITS + 1); |
| |
| // Unused and deleted entries are marked by 0 and 1, respectively. |
| static const int _UNUSED_PAIR = 0; |
| static const int _DELETED_PAIR = 1; |
| |
| // On 32-bit, the top bits are wasted to avoid Mint allocation. |
| // TODO(koda): Reclaim the bits by making the compiler treat hash patterns |
| // as unsigned words. |
| static int _indexSizeToHashMask(int indexSize) { |
| int indexBits = indexSize.bitLength - 2; |
| return internal.is64Bit |
| ? (1 << (32 - indexBits)) - 1 |
| : (1 << (30 - indexBits)) - 1; |
| } |
| |
| static int _hashPattern(int fullHash, int hashMask, int size) { |
| final int maskedHash = fullHash & hashMask; |
| // TODO(koda): Consider keeping bit length and use left shift. |
| return (maskedHash == 0) ? (size >> 1) : maskedHash * (size >> 1); |
| } |
| |
| // Linear probing. |
| static int _firstProbe(int fullHash, int sizeMask) { |
| final int i = fullHash & sizeMask; |
| // Light, fast shuffle to mitigate bad hashCode (e.g., sequential). |
| return ((i << 1) + i) & sizeMask; |
| } |
| |
| static int _nextProbe(int i, int sizeMask) => (i + 1) & sizeMask; |
| |
| // A self-loop is used to mark a deleted key or value. |
| static bool _isDeleted(List data, Object keyOrValue) => |
| identical(keyOrValue, data); |
| static void _setDeletedAt(List data, int d) { |
| data[d] = data; |
| } |
| |
| // Concurrent modification detection relies on this checksum monotonically |
| // increasing between reallocations of _data. |
| int get _checkSum => _usedData + _deletedKeys; |
| bool _isModifiedSince(List oldData, int oldCheckSum) => |
| !identical(_data, oldData) || (_checkSum != oldCheckSum); |
| |
| int get length; |
| } |
| |
| class _OperatorEqualsAndHashCode { |
| int _hashCode(e) => e.hashCode; |
| bool _equals(e1, e2) => e1 == e2; |
| } |
| |
| class _IdenticalAndIdentityHashCode { |
| int _hashCode(e) => identityHashCode(e); |
| bool _equals(e1, e2) => identical(e1, e2); |
| } |
| |
| // VM-internalized implementation of a default-constructed LinkedHashMap. |
| @pragma("vm:entry-point") |
| class _InternalLinkedHashMap<K, V> extends _HashVMBase |
| with |
| MapMixin<K, V>, |
| _LinkedHashMapMixin<K, V>, |
| _HashBase, |
| _OperatorEqualsAndHashCode |
| implements LinkedHashMap<K, V> { |
| _InternalLinkedHashMap() { |
| _index = new Uint32List(_HashBase._INITIAL_INDEX_SIZE); |
| _hashMask = _HashBase._indexSizeToHashMask(_HashBase._INITIAL_INDEX_SIZE); |
| _data = new List(_HashBase._INITIAL_INDEX_SIZE); |
| _usedData = 0; |
| _deletedKeys = 0; |
| } |
| } |
| |
| abstract class _LinkedHashMapMixin<K, V> implements _HashBase { |
| int _hashCode(e); |
| bool _equals(e1, e2); |
| int get _checkSum; |
| bool _isModifiedSince(List oldData, int oldCheckSum); |
| |
| int get length => (_usedData >> 1) - _deletedKeys; |
| bool get isEmpty => length == 0; |
| bool get isNotEmpty => !isEmpty; |
| |
| void _rehash() { |
| if ((_deletedKeys << 2) > _usedData) { |
| // TODO(koda): Consider shrinking. |
| // TODO(koda): Consider in-place compaction and more costly CME check. |
| _init(_index.length, _hashMask, _data, _usedData); |
| } else { |
| // TODO(koda): Support 32->64 bit transition (and adjust _hashMask). |
| _init(_index.length << 1, _hashMask >> 1, _data, _usedData); |
| } |
| } |
| |
| void clear() { |
| if (!isEmpty) { |
| _init(_HashBase._INITIAL_INDEX_SIZE, _hashMask, null, 0); |
| } |
| } |
| |
| // Allocate new _index and _data, and optionally copy existing contents. |
| void _init(int size, int hashMask, List oldData, int oldUsed) { |
| assert(size & (size - 1) == 0); |
| assert(_HashBase._UNUSED_PAIR == 0); |
| _index = new Uint32List(size); |
| _hashMask = hashMask; |
| _data = new List(size); |
| _usedData = 0; |
| _deletedKeys = 0; |
| if (oldData != null) { |
| for (int i = 0; i < oldUsed; i += 2) { |
| var key = oldData[i]; |
| if (!_HashBase._isDeleted(oldData, key)) { |
| // TODO(koda): While there are enough hash bits, avoid hashCode calls. |
| this[key] = oldData[i + 1]; |
| } |
| } |
| } |
| } |
| |
| // This method is called by [_rehashObjects] (see above). |
| void _regenerateIndex() { |
| _index = new Uint32List(_data.length); |
| assert(_hashMask == 0); |
| _hashMask = _HashBase._indexSizeToHashMask(_index.length); |
| final int tmpUsed = _usedData; |
| _usedData = 0; |
| for (int i = 0; i < tmpUsed; i += 2) { |
| this[_data[i]] = _data[i + 1]; |
| } |
| } |
| |
| void _insert(K key, V value, int hashPattern, int i) { |
| if (_usedData == _data.length) { |
| _rehash(); |
| this[key] = value; |
| } else { |
| assert(1 <= hashPattern && hashPattern < (1 << 32)); |
| final int index = _usedData >> 1; |
| assert((index & hashPattern) == 0); |
| _index[i] = hashPattern | index; |
| _data[_usedData++] = key; |
| _data[_usedData++] = value; |
| } |
| } |
| |
| // If key is present, returns the index of the value in _data, else returns |
| // the negated insertion point in _index. |
| int _findValueOrInsertPoint(K key, int fullHash, int hashPattern, int size) { |
| final int sizeMask = size - 1; |
| final int maxEntries = size >> 1; |
| int i = _HashBase._firstProbe(fullHash, sizeMask); |
| int firstDeleted = -1; |
| int pair = _index[i]; |
| while (pair != _HashBase._UNUSED_PAIR) { |
| if (pair == _HashBase._DELETED_PAIR) { |
| if (firstDeleted < 0) { |
| firstDeleted = i; |
| } |
| } else { |
| final int entry = hashPattern ^ pair; |
| if (entry < maxEntries) { |
| final int d = entry << 1; |
| if (_equals(key, _data[d])) { |
| return d + 1; |
| } |
| } |
| } |
| i = _HashBase._nextProbe(i, sizeMask); |
| pair = _index[i]; |
| } |
| return firstDeleted >= 0 ? -firstDeleted : -i; |
| } |
| |
| void operator []=(K key, V value) { |
| final int size = _index.length; |
| final int fullHash = _hashCode(key); |
| final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size); |
| final int d = _findValueOrInsertPoint(key, fullHash, hashPattern, size); |
| if (d > 0) { |
| _data[d] = value; |
| } else { |
| final int i = -d; |
| _insert(key, value, hashPattern, i); |
| } |
| } |
| |
| V putIfAbsent(K key, V ifAbsent()) { |
| final int size = _index.length; |
| final int fullHash = _hashCode(key); |
| final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size); |
| final int d = _findValueOrInsertPoint(key, fullHash, hashPattern, size); |
| if (d > 0) { |
| return _data[d]; |
| } |
| // 'ifAbsent' is allowed to modify the map. |
| List oldData = _data; |
| int oldCheckSum = _checkSum; |
| V value = ifAbsent(); |
| if (_isModifiedSince(oldData, oldCheckSum)) { |
| this[key] = value; |
| } else { |
| final int i = -d; |
| _insert(key, value, hashPattern, i); |
| } |
| return value; |
| } |
| |
| V remove(Object key) { |
| final int size = _index.length; |
| final int sizeMask = size - 1; |
| final int maxEntries = size >> 1; |
| final int fullHash = _hashCode(key); |
| final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size); |
| int i = _HashBase._firstProbe(fullHash, sizeMask); |
| int pair = _index[i]; |
| while (pair != _HashBase._UNUSED_PAIR) { |
| if (pair != _HashBase._DELETED_PAIR) { |
| final int entry = hashPattern ^ pair; |
| if (entry < maxEntries) { |
| final int d = entry << 1; |
| if (_equals(key, _data[d])) { |
| _index[i] = _HashBase._DELETED_PAIR; |
| _HashBase._setDeletedAt(_data, d); |
| V value = _data[d + 1]; |
| _HashBase._setDeletedAt(_data, d + 1); |
| ++_deletedKeys; |
| return value; |
| } |
| } |
| } |
| i = _HashBase._nextProbe(i, sizeMask); |
| pair = _index[i]; |
| } |
| return null; |
| } |
| |
| // If key is absent, return _data (which is never a value). |
| Object _getValueOrData(Object key) { |
| final int size = _index.length; |
| final int sizeMask = size - 1; |
| final int maxEntries = size >> 1; |
| final int fullHash = _hashCode(key); |
| final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size); |
| int i = _HashBase._firstProbe(fullHash, sizeMask); |
| int pair = _index[i]; |
| while (pair != _HashBase._UNUSED_PAIR) { |
| if (pair != _HashBase._DELETED_PAIR) { |
| final int entry = hashPattern ^ pair; |
| if (entry < maxEntries) { |
| final int d = entry << 1; |
| if (_equals(key, _data[d])) { |
| return _data[d + 1]; |
| } |
| } |
| } |
| i = _HashBase._nextProbe(i, sizeMask); |
| pair = _index[i]; |
| } |
| return _data; |
| } |
| |
| bool containsKey(Object key) => !identical(_data, _getValueOrData(key)); |
| |
| V operator [](Object key) { |
| var v = _getValueOrData(key); |
| return identical(_data, v) ? null : internal.unsafeCast<V>(v); |
| } |
| |
| bool containsValue(Object value) { |
| for (var v in values) { |
| // Spec. says this should always use "==", also for identity maps, etc. |
| if (v == value) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void forEach(void f(K key, V value)) { |
| var ki = keys.iterator; |
| var vi = values.iterator; |
| while (ki.moveNext()) { |
| vi.moveNext(); |
| f(ki.current, vi.current); |
| } |
| } |
| |
| Iterable<K> get keys => |
| new _CompactIterable<K>(this, _data, _usedData, -2, 2); |
| Iterable<V> get values => |
| new _CompactIterable<V>(this, _data, _usedData, -1, 2); |
| } |
| |
| class _CompactLinkedIdentityHashMap<K, V> extends _HashFieldBase |
| with |
| MapMixin<K, V>, |
| _LinkedHashMapMixin<K, V>, |
| _HashBase, |
| _IdenticalAndIdentityHashCode |
| implements LinkedHashMap<K, V> { |
| _CompactLinkedIdentityHashMap() : super(_HashBase._INITIAL_INDEX_SIZE); |
| } |
| |
| class _CompactLinkedCustomHashMap<K, V> extends _HashFieldBase |
| with MapMixin<K, V>, _LinkedHashMapMixin<K, V>, _HashBase |
| implements LinkedHashMap<K, V> { |
| final _equality; |
| final _hasher; |
| final _validKey; |
| |
| // TODO(koda): Ask gbracha why I cannot have fields _equals/_hashCode. |
| int _hashCode(e) => _hasher(e); |
| bool _equals(e1, e2) => _equality(e1, e2); |
| |
| bool containsKey(Object o) => _validKey(o) ? super.containsKey(o) : false; |
| V operator [](Object o) => _validKey(o) ? super[o] : null; |
| V remove(Object o) => _validKey(o) ? super.remove(o) : null; |
| |
| _CompactLinkedCustomHashMap(this._equality, this._hasher, validKey) |
| : _validKey = (validKey != null) ? validKey : new _TypeTest<K>().test, |
| super(_HashBase._INITIAL_INDEX_SIZE); |
| } |
| |
| // Iterates through _data[_offset + _step], _data[_offset + 2*_step], ... |
| // and checks for concurrent modification. |
| class _CompactIterable<E> extends Iterable<E> { |
| final _HashBase _table; |
| final List _data; |
| final int _len; |
| final int _offset; |
| final int _step; |
| |
| _CompactIterable( |
| this._table, this._data, this._len, this._offset, this._step); |
| |
| Iterator<E> get iterator => |
| new _CompactIterator<E>(_table, _data, _len, _offset, _step); |
| |
| int get length => _table.length; |
| bool get isEmpty => length == 0; |
| bool get isNotEmpty => !isEmpty; |
| } |
| |
| class _CompactIterator<E> implements Iterator<E> { |
| final _HashBase _table; |
| final List _data; |
| final int _len; |
| int _offset; |
| final int _step; |
| final int _checkSum; |
| E current; |
| |
| _CompactIterator( |
| _HashBase table, this._data, this._len, this._offset, this._step) |
| : _table = table, |
| _checkSum = table._checkSum; |
| |
| bool moveNext() { |
| if (_table._isModifiedSince(_data, _checkSum)) { |
| throw new ConcurrentModificationError(_table); |
| } |
| do { |
| _offset += _step; |
| } while (_offset < _len && _HashBase._isDeleted(_data, _data[_offset])); |
| if (_offset < _len) { |
| current = internal.unsafeCast<E>(_data[_offset]); |
| return true; |
| } else { |
| current = null; |
| return false; |
| } |
| } |
| } |
| |
| // Set implementation, analogous to _CompactLinkedHashMap. |
| class _CompactLinkedHashSet<E> extends _HashFieldBase |
| with _HashBase, _OperatorEqualsAndHashCode, SetMixin<E> |
| implements LinkedHashSet<E> { |
| _CompactLinkedHashSet() : super(_HashBase._INITIAL_INDEX_SIZE >> 1) { |
| assert(_HashBase._UNUSED_PAIR == 0); |
| } |
| |
| static Set<R> _newEmpty<R>() => new _CompactLinkedHashSet<R>(); |
| |
| Set<R> cast<R>() => Set.castFrom<E, R>(this, newSet: _newEmpty); |
| int get length => _usedData - _deletedKeys; |
| |
| E get first { |
| for (int offset = 0; offset < _usedData; offset++) { |
| Object current = _data[offset]; |
| if (!_HashBase._isDeleted(_data, current)) { |
| return current; |
| } |
| } |
| throw IterableElementError.noElement(); |
| } |
| |
| E get last { |
| for (int offset = _usedData - 1; offset >= 0; offset--) { |
| Object current = _data[offset]; |
| if (!_HashBase._isDeleted(_data, current)) { |
| return current; |
| } |
| } |
| throw IterableElementError.noElement(); |
| } |
| |
| void _rehash() { |
| if ((_deletedKeys << 1) > _usedData) { |
| _init(_index.length, _hashMask, _data, _usedData); |
| } else { |
| _init(_index.length << 1, _hashMask >> 1, _data, _usedData); |
| } |
| } |
| |
| void clear() { |
| if (!isEmpty) { |
| _init(_HashBase._INITIAL_INDEX_SIZE, _hashMask, null, 0); |
| } |
| } |
| |
| void _init(int size, int hashMask, List oldData, int oldUsed) { |
| _index = new Uint32List(size); |
| _hashMask = hashMask; |
| _data = new List(size >> 1); |
| _usedData = 0; |
| _deletedKeys = 0; |
| if (oldData != null) { |
| for (int i = 0; i < oldUsed; i += 1) { |
| var key = oldData[i]; |
| if (!_HashBase._isDeleted(oldData, key)) { |
| add(key); |
| } |
| } |
| } |
| } |
| |
| bool add(E key) { |
| final int size = _index.length; |
| final int sizeMask = size - 1; |
| final int maxEntries = size >> 1; |
| final int fullHash = _hashCode(key); |
| final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size); |
| int i = _HashBase._firstProbe(fullHash, sizeMask); |
| int firstDeleted = -1; |
| int pair = _index[i]; |
| while (pair != _HashBase._UNUSED_PAIR) { |
| if (pair == _HashBase._DELETED_PAIR) { |
| if (firstDeleted < 0) { |
| firstDeleted = i; |
| } |
| } else { |
| final int d = hashPattern ^ pair; |
| if (d < maxEntries && _equals(key, _data[d])) { |
| return false; |
| } |
| } |
| i = _HashBase._nextProbe(i, sizeMask); |
| pair = _index[i]; |
| } |
| if (_usedData == _data.length) { |
| _rehash(); |
| add(key); |
| } else { |
| final int insertionPoint = (firstDeleted >= 0) ? firstDeleted : i; |
| assert(1 <= hashPattern && hashPattern < (1 << 32)); |
| assert((hashPattern & _usedData) == 0); |
| _index[insertionPoint] = hashPattern | _usedData; |
| _data[_usedData++] = key; |
| } |
| return true; |
| } |
| |
| // If key is absent, return _data (which is never a value). |
| Object _getKeyOrData(Object key) { |
| final int size = _index.length; |
| final int sizeMask = size - 1; |
| final int maxEntries = size >> 1; |
| final int fullHash = _hashCode(key); |
| final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size); |
| int i = _HashBase._firstProbe(fullHash, sizeMask); |
| int pair = _index[i]; |
| while (pair != _HashBase._UNUSED_PAIR) { |
| if (pair != _HashBase._DELETED_PAIR) { |
| final int d = hashPattern ^ pair; |
| if (d < maxEntries && _equals(key, _data[d])) { |
| return _data[d]; // Note: Must return the existing key. |
| } |
| } |
| i = _HashBase._nextProbe(i, sizeMask); |
| pair = _index[i]; |
| } |
| return _data; |
| } |
| |
| E lookup(Object key) { |
| var k = _getKeyOrData(key); |
| return identical(_data, k) ? null : k; |
| } |
| |
| bool contains(Object key) => !identical(_data, _getKeyOrData(key)); |
| |
| bool remove(Object key) { |
| final int size = _index.length; |
| final int sizeMask = size - 1; |
| final int maxEntries = size >> 1; |
| final int fullHash = _hashCode(key); |
| final int hashPattern = _HashBase._hashPattern(fullHash, _hashMask, size); |
| int i = _HashBase._firstProbe(fullHash, sizeMask); |
| int pair = _index[i]; |
| while (pair != _HashBase._UNUSED_PAIR) { |
| if (pair != _HashBase._DELETED_PAIR) { |
| final int d = hashPattern ^ pair; |
| if (d < maxEntries && _equals(key, _data[d])) { |
| _index[i] = _HashBase._DELETED_PAIR; |
| _HashBase._setDeletedAt(_data, d); |
| ++_deletedKeys; |
| return true; |
| } |
| } |
| i = _HashBase._nextProbe(i, sizeMask); |
| pair = _index[i]; |
| } |
| return false; |
| } |
| |
| Iterator<E> get iterator => |
| new _CompactIterator<E>(this, _data, _usedData, -1, 1); |
| |
| // Returns a set of the same type, although this |
| // is not required by the spec. (For instance, always using an identity set |
| // would be technically correct, albeit surprising.) |
| Set<E> toSet() => new _CompactLinkedHashSet<E>()..addAll(this); |
| } |
| |
| class _CompactLinkedIdentityHashSet<E> extends _CompactLinkedHashSet<E> |
| with _IdenticalAndIdentityHashCode { |
| Set<E> toSet() => new _CompactLinkedIdentityHashSet<E>()..addAll(this); |
| |
| static Set<R> _newEmpty<R>() => new _CompactLinkedIdentityHashSet<R>(); |
| |
| Set<R> cast<R>() => Set.castFrom<E, R>(this, newSet: _newEmpty); |
| } |
| |
| class _CompactLinkedCustomHashSet<E> extends _CompactLinkedHashSet<E> { |
| final _equality; |
| final _hasher; |
| final _validKey; |
| |
| int _hashCode(e) => _hasher(e); |
| bool _equals(e1, e2) => _equality(e1, e2); |
| |
| bool contains(Object o) => _validKey(o) ? super.contains(o) : false; |
| E lookup(Object o) => _validKey(o) ? super.lookup(o) : null; |
| bool remove(Object o) => _validKey(o) ? super.remove(o) : false; |
| |
| _CompactLinkedCustomHashSet(this._equality, this._hasher, validKey) |
| : _validKey = (validKey != null) ? validKey : new _TypeTest<E>().test; |
| |
| Set<R> cast<R>() => Set.castFrom<E, R>(this); |
| Set<E> toSet() => |
| new _CompactLinkedCustomHashSet<E>(_equality, _hasher, _validKey) |
| ..addAll(this); |
| } |