blob: 12ed7a448e16e3b76a7a7b8e03385568cef082e1 [file] [log] [blame] [edit]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_LINUX) || \
defined(DART_HOST_OS_MACOS)
#include "vm/virtual_memory.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <unistd.h>
#if defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_LINUX)
#include <sys/prctl.h>
#endif
#if defined(DART_HOST_OS_MACOS)
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#endif
#if defined(DART_ENABLE_RX_WORKAROUNDS)
#include <dispatch/dispatch.h>
#include <dispatch/source.h>
#include <mach/mach.h>
#include <mach/mach_port.h>
#include <mach/thread_act.h>
#include "platform/syslog.h"
#include "vm/cpu.h"
#endif
#include "platform/assert.h"
#include "platform/utils.h"
#include "vm/heap/pages.h"
#include "vm/isolate.h"
#include "vm/virtual_memory_compressed.h"
// #define VIRTUAL_MEMORY_LOGGING 1
#if defined(VIRTUAL_MEMORY_LOGGING)
#define LOG_INFO(msg, ...) OS::PrintErr(msg, ##__VA_ARGS__)
#else
#define LOG_INFO(msg, ...)
#endif // defined(VIRTUAL_MEMORY_LOGGING)
namespace dart {
// standard MAP_FAILED causes "error: use of old-style cast" as it
// defines MAP_FAILED as ((void *) -1)
#undef MAP_FAILED
#define MAP_FAILED reinterpret_cast<void*>(-1)
#if defined(DART_HOST_OS_IOS)
#define LARGE_RESERVATIONS_MAY_FAIL
#endif
DECLARE_FLAG(bool, write_protect_code);
#if defined(DART_TARGET_OS_LINUX)
DECLARE_FLAG(bool, generate_perf_events_symbols);
DECLARE_FLAG(bool, generate_perf_jitdump);
#endif
uword VirtualMemory::page_size_ = 0;
VirtualMemory* VirtualMemory::compressed_heap_ = nullptr;
#if defined(DART_ENABLE_RX_WORKAROUNDS)
bool VirtualMemory::should_dual_map_executable_pages_ = false;
#endif // defined(DART_ENABLE_RX_WORKAROUNDS)
static void* Map(void* addr,
size_t length,
int prot,
int flags,
int fd,
off_t offset) {
void* result = mmap(addr, length, prot, flags, fd, offset);
int error = errno;
LOG_INFO("mmap(%p, 0x%" Px ", %u, ...): %p\n", addr, length, prot, result);
if ((result == MAP_FAILED) && (error != ENOMEM)) {
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("mmap failed: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
return result;
}
static void Unmap(uword start, uword end) {
ASSERT(start <= end);
uword size = end - start;
if (size == 0) {
return;
}
if (munmap(reinterpret_cast<void*>(start), size) != 0) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("munmap failed: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
}
static void* GenericMapAligned(void* hint,
int prot,
intptr_t size,
intptr_t alignment,
intptr_t allocated_size,
int map_flags) {
#if defined(DART_HOST_OS_MACOS)
// vm_map doesn't support MAP_JIT.
if ((map_flags & MAP_JIT) == 0) {
vm_address_t address = 0;
vm_prot_t cur_prot = 0;
if ((prot & PROT_READ) != 0) cur_prot |= VM_PROT_READ;
if ((prot & PROT_WRITE) != 0) cur_prot |= VM_PROT_WRITE;
if ((prot & PROT_EXEC) != 0) cur_prot |= VM_PROT_EXECUTE;
vm_prot_t max_prot = VM_PROT_ALL;
const kern_return_t result =
vm_map(mach_task_self(), &address, size, /*mask=*/alignment - 1,
VM_FLAGS_ANYWHERE, MEMORY_OBJECT_NULL, /*offset=*/0,
/*copy=*/FALSE, cur_prot, max_prot, VM_INHERIT_DEFAULT);
if (result != KERN_SUCCESS) {
return nullptr;
}
return reinterpret_cast<void*>(address);
}
#endif
void* address = Map(hint, allocated_size, prot, map_flags, -1, 0);
if (address == MAP_FAILED) {
return nullptr;
}
const uword base = reinterpret_cast<uword>(address);
const uword aligned_base = Utils::RoundUp(base, alignment);
Unmap(base, aligned_base);
Unmap(aligned_base + size, base + allocated_size);
return reinterpret_cast<void*>(aligned_base);
}
intptr_t VirtualMemory::CalculatePageSize() {
const intptr_t page_size = getpagesize();
ASSERT(page_size != 0);
ASSERT(Utils::IsPowerOfTwo(page_size));
return page_size;
}
#if defined(DART_COMPRESSED_POINTERS) && defined(LARGE_RESERVATIONS_MAY_FAIL)
// Truncate to the largest subregion in [region] that doesn't cross an
// [alignment] boundary.
static MemoryRegion ClipToAlignedRegion(MemoryRegion region, size_t alignment) {
uword base = region.start();
uword aligned_base = Utils::RoundUp(base, alignment);
uword size_below =
region.end() >= aligned_base ? aligned_base - base : region.size();
uword size_above =
region.end() >= aligned_base ? region.end() - aligned_base : 0;
ASSERT(size_below + size_above == region.size());
if (size_below >= size_above) {
Unmap(aligned_base, aligned_base + size_above);
return MemoryRegion(reinterpret_cast<void*>(base), size_below);
}
Unmap(base, base + size_below);
if (size_above > alignment) {
Unmap(aligned_base + alignment, aligned_base + size_above);
size_above = alignment;
}
return MemoryRegion(reinterpret_cast<void*>(aligned_base), size_above);
}
#endif // LARGE_RESERVATIONS_MAY_FAIL
#if defined(DART_ENABLE_RX_WORKAROUNDS)
// The function NOTIFY_DEBUGGER_ABOUT_RX_PAGES is a hook point for the debugger.
//
// We expect that LLBD is configured to intercept calls to this function and
// takes care of writing into all pages covered by [base, base+size) address
// range.
//
// For example, you can define the following Python helper script:
//
// ```python
// # rx_helper.py
// import lldb
//
// def handle_new_rx_page(frame: lldb.SBFrame, bp_loc, extra_args, intern_dict):
// """Intercept NOTIFY_DEBUGGER_ABOUT_RX_PAGES and touch the pages."""
// base = frame.register["x0"].GetValueAsAddress()
// page_len = frame.register["x1"].GetValueAsUnsigned()
// # Note: NOTIFY_DEBUGGER_ABOUT_RX_PAGES will check contents of the
// # first page to see if handled it correctly. This makes diagnosing
// # misconfiguration (e.g. missing breakpoint) easier.
// data = bytearray(page_len)
// data[0:8] = b'IHELPED!';
// error = lldb.SBError()
// frame.GetThread().GetProcess().WriteMemory(base, data, error)
// if not error.Success():
// print(f'Failed to write into {base}[+{page_len}]', error)
// return
//
// def __lldb_init_module(debugger: lldb.SBDebugger, _):
// target = debugger.GetDummyTarget()
// # Caveat: must use BreakpointCreateByRegEx here and not
// # BreakpointCreateByName. For some reasons callback function does not
// # get carried over from dummy target for the later.
// bp = target.bpCreateByRegex("^NOTIFY_DEBUGGER_ABOUT_RX_PAGES$")
// bp.SetScriptCallbackFunction('{}.handle_new_rx_page'.format(__name__))
// bp.SetAutoContinue(True)
// print("-- LLDB integration loaded --")
// ```
//
// Which is then imported into LLDB via `.lldbinit` script:
//
// ```
// # .lldbinit
// command script import --relative-to-command-file rx_helper.py
// ```
//
// XCode allows configuring custom LLDB Init Files: see Product -> Scheme ->
// Run -> Info -> LLDB Init File, you can use `$(SRCROOT)/...` to place LLDB
// script inside project directory itself.
//
__attribute__((noinline)) __attribute__((visibility("default"))) extern "C" void
NOTIFY_DEBUGGER_ABOUT_RX_PAGES(void* base, size_t size) {
// Note: need this to prevent LLVM from optimizing it away even with
// noinline.
asm volatile("" ::"r"(base), "r"(size) : "memory");
}
namespace {
// Handler for EXC_BAD_ACCESS which resumes the thread at the caller of the
// function (sets PC = LR and R0 = kExceptionalReturnValue). This exception
// handler is used to check if we can successfully create executable code
// dynamically: see |CheckIfRXWorks| below.
//
// Note: the handler is using Mach kernel APIs for exception handling instead
// of POSIX signals because using Mach APIs allows to intercept EXC_BAD_ACCESS
// before it stops the debugger.
class ScopedExcBadAccessHandler {
public:
static constexpr int32_t kExceptionalReturnValue = 0xDEADDEAD;
ScopedExcBadAccessHandler() {
mach_port_options_t options;
memset(&options, 0, sizeof(options));
options.flags = MPO_INSERT_SEND_RIGHT;
mach_port_t exception_port = MACH_PORT_NULL;
kern_return_t kr =
mach_port_construct(mach_task_self(), &options, 0, &exception_port);
RELEASE_ASSERT(kr == KERN_SUCCESS);
dispatch_source_t source = source_ =
dispatch_source_create(DISPATCH_SOURCE_TYPE_MACH_RECV, exception_port,
0, DISPATCH_TARGET_QUEUE_DEFAULT);
RELEASE_ASSERT(source);
// Process exceptions: ProcessMachExceptionRaiseStateMessage decodes
// the message and forwards it to IgnoreExceptionAndReturnToCaller.
dispatch_source_set_event_handler(source, ^{
constexpr mach_msg_size_t kMaxMessageSize = 5 * KB;
mach_msg_server_once(ProcessMachExceptionRaiseStateMessage,
kMaxMessageSize, exception_port,
MACH_MSG_TIMEOUT_NONE);
});
// When this handler is no longer needed destroy the port.
dispatch_source_set_cancel_handler(source, ^{
mach_port_deallocate(mach_task_self(), exception_port);
// Note: don't capture this because it will be invalid by the time
// cancelation handler is called.
dispatch_release(source);
});
dispatch_resume(source);
old_mask_count_ = 1; // We expect at most one old handler.
kern_return_t result = thread_swap_exception_ports(
mach_thread_self(), EXC_MASK_BAD_ACCESS, exception_port,
MACH_EXCEPTION_CODES | EXCEPTION_STATE, MACHINE_THREAD_STATE,
&old_exception_mask_, &old_mask_count_, &old_handler_, &old_behavior_,
&old_flavor_);
RELEASE_ASSERT(result == KERN_SUCCESS);
RELEASE_ASSERT(old_mask_count_ == 1);
}
~ScopedExcBadAccessHandler() {
kern_return_t result =
thread_set_exception_ports(mach_thread_self(), old_exception_mask_,
old_handler_, old_behavior_, old_flavor_);
RELEASE_ASSERT(result == KERN_SUCCESS);
dispatch_source_cancel(source_);
}
private:
// This exception handler simply ignores the EXC_BAD_ACCESS and
// makes the thread continue at the caller frame by setting PC to LR and
// X0 to a special signal value.
//
// The signature of this handler matches |catch_exception_raise_state|.
//
// See https://developer.apple.com/documentation/kernel/1537255-catch_exception_raise_state
static kern_return_t IgnoreExceptionAndReturnToCaller(
mach_port_t exception_port,
exception_type_t exception,
const mach_exception_data_t code,
mach_msg_type_number_t code_count,
int* flavor,
const thread_state_t old_state,
mach_msg_type_number_t old_state_count,
thread_state_t new_state,
mach_msg_type_number_t* new_state_count) {
// Copy old_state into new_state.
memmove(new_state, old_state, sizeof(*old_state) * old_state_count);
*new_state_count = old_state_count;
// Update X0 and PC so that we can successfully resume execution.
auto arm_new_state =
reinterpret_cast<arm_unified_thread_state_t*>(new_state);
arm_new_state->ts_64.__x[0] = kExceptionalReturnValue;
arm_new_state->ts_64.__pc = arm_new_state->ts_64.__lr;
return KERN_SUCCESS;
}
// The code in |ProcessMachExceptionRaiseStateMessage| and corresponding
// structure definitions are based on output of the mig
// (Mach Interface Generator, see |man mig|) applied to mach/mach_exc.defs.
//
// Including mig output directly is undesirable because it relies on
// linking to exception handling routines by name (e.g. it expects
// special symbols like mach_catch_exception_raise_state,
// mach_catch_exception_raise_state_identity, to be defined). This might
// make Dart VM harder to embed - as some other part of the code base might
// want to use mig generated exception handling code and already define
// this symbols.
//
// Thus we rewrite that code dropping all irrelevant bits and making the
// code more readable.
//
// Request message for mach_exception_raise_state has two variadic arrays
// inside, so we split it into two chunks each ending with a corresponding
// variadic array.
#define TRAILING_ARRAY(Type, name, count, max_count) \
Type* name() { return reinterpret_cast<Type*>(this + 1); } \
bool IsValid() const { return count <= max_count; } \
mach_msg_size_t Size() const { return sizeof(*this) + sizeof(Type) * count; }
// A helper method for parsing a message which contains variadic arrays
// inside. Such message is split into separate chunks each ending with
// a trailing array.
template <typename... Ts>
static std::tuple<bool, Ts*...> ParseMessage(mach_msg_header_t* header) {
uword current = reinterpret_cast<uword>(header);
mach_msg_size_t remaining = header->msgh_size;
const uword message_end = current + remaining;
std::tuple<bool, Ts*...> result{
true, [&current, &remaining]() -> Ts* {
if (remaining >= sizeof(Ts)) {
Ts* chunk = reinterpret_cast<Ts*>(current);
const auto chunk_size = chunk->Size();
if (chunk->IsValid() && chunk_size <= remaining) {
current += chunk_size;
remaining -= chunk_size;
return chunk;
}
}
// Once an error is encountered shortcut the rest of the parsing
// by setting number of remaining bytes to 0.
remaining = 0;
current = 0;
return nullptr;
}()...};
// If we did not fully parse the message - we have either failed or
// we have unparsed bytes. Either case is an error.
if (current != message_end) {
return {false, static_cast<Ts*>(nullptr)...};
}
return result;
}
#pragma pack(push, 4)
static constexpr natural_t kMaxCodeCount = 2;
static constexpr natural_t kMaxStateCount = 1296;
struct RequestChunk0 {
mach_msg_header_t Head;
NDR_record_t NDR;
exception_type_t exception;
mach_msg_type_number_t code_count; // <= kMaxCodeCount
TRAILING_ARRAY(int64_t, code, code_count, kMaxCodeCount);
};
struct RequestChunk1 {
int flavor;
mach_msg_type_number_t old_state_count; // <= kMaxStateCount
TRAILING_ARRAY(natural_t, old_state, old_state_count, kMaxStateCount);
};
struct Reply {
mach_msg_header_t Head;
NDR_record_t NDR;
kern_return_t RetCode;
int flavor;
mach_msg_type_number_t new_state_count;
TRAILING_ARRAY(natural_t, new_state, new_state_count, kMaxStateCount);
};
#pragma pack(pop)
static boolean_t ReplyWithError(mach_msg_header_t* reply_header,
kern_return_t code) {
auto reply = reinterpret_cast<mig_reply_error_t*>(reply_header);
reply->RetCode = code;
reply->NDR = NDR_record;
return FALSE;
}
static boolean_t ProcessMachExceptionRaiseStateMessage(
mach_msg_header_t* request_header,
mach_msg_header_t* reply_header) {
reply_header->msgh_bits =
MACH_MSGH_BITS(MACH_MSGH_BITS_REMOTE(request_header->msgh_bits), 0);
reply_header->msgh_remote_port = request_header->msgh_remote_port;
// Minimal size: will update later if success.
reply_header->msgh_size =
static_cast<mach_msg_size_t>(sizeof(mig_reply_error_t));
reply_header->msgh_local_port = MACH_PORT_NULL;
reply_header->msgh_id = request_header->msgh_id + 100;
reply_header->msgh_reserved = 0;
if (request_header->msgh_id != 2406) {
return ReplyWithError(reply_header, MIG_BAD_ID);
}
if (request_header->msgh_bits & MACH_MSGH_BITS_COMPLEX) {
return ReplyWithError(reply_header, MIG_BAD_ARGUMENTS);
}
auto [ok, req0, req1] =
ParseMessage<RequestChunk0, RequestChunk1>(request_header);
if (!ok) {
return ReplyWithError(reply_header, MIG_BAD_ARGUMENTS);
}
auto reply = reinterpret_cast<Reply*>(reply_header);
reply->new_state_count = kMaxStateCount;
reply->RetCode = IgnoreExceptionAndReturnToCaller(
request_header->msgh_local_port, req0->exception, req0->code(),
req0->code_count, &req1->flavor, req1->old_state(),
req1->old_state_count, reply->new_state(), &reply->new_state_count);
if (reply->RetCode != KERN_SUCCESS) {
return ReplyWithError(reply_header, reply->RetCode);
}
reply->NDR = NDR_record;
reply->flavor = req1->flavor;
reply->Head.msgh_size = reply->Size();
return TRUE;
}
dispatch_source_t source_ = nullptr;
// Old exception handler (e.g. one installed by the debugger or some
// other library).
natural_t old_mask_count_ = 0;
exception_mask_t old_exception_mask_ = 0;
mach_port_t old_handler_ = MACH_PORT_NULL;
exception_behavior_t old_behavior_ = 0;
thread_state_flavor_t old_flavor_ = 0;
DISALLOW_COPY_AND_ASSIGN(ScopedExcBadAccessHandler);
};
// Check if we can generate machine code dynamically by creating a small
// function in memory and then trying to execute it.
//
// Returns true if that was successful.
//
// Note: we use Syslog::PrintErr below instead of OS::PrintErr to send
// output to the same location where FATAL message would be reported to if any.
bool CheckIfRXWorks() {
// Try creating executable VirtualMemory.
std::unique_ptr<VirtualMemory> mem{
VirtualMemory::Allocate(VirtualMemory::PageSize(), /*is_executable=*/true,
/*is_compressed=*/false, /*name=*/nullptr)};
if (mem == nullptr) {
Syslog::PrintErr("Failed to map a test RX page");
return false;
}
// Freshly created virtual memory should have signs of debugger script
// working. See the comment above for the example of an LLDB script.
const bool debugger_script_loaded =
memcmp(mem->address(), "IHELPED!", 8) == 0;
// Flip memory to RW write a simple function that computes a 32-bit integer
// square and then flip protection back to R/RX.
mem->Protect(VirtualMemory::kReadWrite);
constexpr uint32_t kSquareFunctionCode[] = {
0x1b007c00, // mul w0, w0, w0
0xd65f03c0 // ret
};
memmove(mem->address(), kSquareFunctionCode, sizeof(kSquareFunctionCode));
VirtualMemory::WriteProtectCode(mem->address(), mem->size());
// Get executable entry point and check that write have succeeded.
const uword entry_point = mem->start() + mem->OffsetToExecutableAlias();
if (memcmp(reinterpret_cast<void*>(entry_point), kSquareFunctionCode,
sizeof(kSquareFunctionCode)) != 0) {
Syslog::PrintErr("Failed to write executable code: code mismatch");
return false;
}
CPU::FlushICache(entry_point, sizeof(kSquareFunctionCode));
constexpr int32_t kInput = 11;
constexpr int32_t kExpectedOutput = kInput * kInput;
// Invoke square function and catch any potential EXC_BAD_ACCESS.
int32_t result = 0;
{
ScopedExcBadAccessHandler exception_handler;
auto square = reinterpret_cast<int32_t (*)(int32_t)>(entry_point);
result = square(kInput);
}
// Validate that the code we have generated produced expected result.
if (result != kExpectedOutput) {
Syslog::PrintErr(
"Failed to execute code (error: %s, debugger assist: %s)\n",
result == ScopedExcBadAccessHandler::kExceptionalReturnValue
? "EXC_BAD_ACCESS"
: "unknown",
debugger_script_loaded ? "ok" : "not detected");
return false;
}
return true;
}
} // namespace
#endif
void VirtualMemory::Init() {
if (FLAG_old_gen_heap_size < 0 || FLAG_old_gen_heap_size > kMaxAddrSpaceMB) {
OS::PrintErr(
"warning: value specified for --old_gen_heap_size %d is larger than"
" the physically addressable range, using 0(unlimited) instead.`\n",
FLAG_old_gen_heap_size);
FLAG_old_gen_heap_size = 0;
}
if (FLAG_new_gen_semi_max_size < 0 ||
FLAG_new_gen_semi_max_size > kMaxAddrSpaceMB) {
OS::PrintErr(
"warning: value specified for --new_gen_semi_max_size %d is larger"
" than the physically addressable range, using %" Pd " instead.`\n",
FLAG_new_gen_semi_max_size, kDefaultNewGenSemiMaxSize);
FLAG_new_gen_semi_max_size = kDefaultNewGenSemiMaxSize;
}
page_size_ = CalculatePageSize();
#if defined(DART_ENABLE_RX_WORKAROUNDS)
bool can_jit = true;
if (IsAtLeastIOS26_0()) {
should_dual_map_executable_pages_ = true;
can_jit = CheckIfRXWorks();
}
#if defined(DART_INCLUDE_SIMULATOR)
FLAG_use_simulator = !can_jit;
Syslog::PrintErr("Dart execution mode: %s\n",
FLAG_use_simulator ? "simulator" : "JIT");
#else
if (!can_jit) {
FATAL(
"Unable to JIT: failed to create executable machine code dynamically "
"due to OS restrictions");
}
#endif
#endif
#if defined(DART_COMPRESSED_POINTERS)
ASSERT(compressed_heap_ == nullptr);
#if defined(LARGE_RESERVATIONS_MAY_FAIL)
// Try to reserve a region for the compressed heap by requesting decreasing
// powers-of-two until one succeeds, and use the largest subregion that does
// not cross a 4GB boundary. The subregion itself is not necessarily
// 4GB-aligned.
for (size_t allocated_size = kCompressedHeapSize + kCompressedHeapAlignment;
allocated_size >= kCompressedPageSize; allocated_size >>= 1) {
void* address = GenericMapAligned(
nullptr, PROT_NONE, allocated_size, kCompressedPageSize,
allocated_size + kCompressedPageSize,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE);
if (address == nullptr) continue;
MemoryRegion region(address, allocated_size);
region = ClipToAlignedRegion(region, kCompressedHeapAlignment);
compressed_heap_ = new VirtualMemory(region, region);
break;
}
#else
compressed_heap_ = Reserve(kCompressedHeapSize, kCompressedHeapAlignment);
#endif
if (compressed_heap_ == nullptr) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("Failed to reserve region for compressed heap: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
VirtualMemoryCompressedHeap::Init(compressed_heap_->address(),
compressed_heap_->size());
#endif // defined(DART_COMPRESSED_POINTERS)
#if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_ANDROID)
FILE* fp = fopen("/proc/sys/vm/max_map_count", "r");
if (fp != nullptr) {
size_t max_map_count = 0;
int count = fscanf(fp, "%zu", &max_map_count);
fclose(fp);
if (count == 1) {
size_t max_heap_pages = FLAG_old_gen_heap_size * MB / kPageSize;
if (max_map_count < max_heap_pages) {
OS::PrintErr(
"warning: vm.max_map_count (%zu) is not large enough to support "
"--old_gen_heap_size=%d. Consider increasing it with `sysctl -w "
"vm.max_map_count=%zu`\n",
max_map_count, FLAG_old_gen_heap_size, max_heap_pages);
}
}
}
#endif
}
void VirtualMemory::Cleanup() {
#if defined(DART_COMPRESSED_POINTERS)
delete compressed_heap_;
#endif // defined(DART_COMPRESSED_POINTERS)
page_size_ = 0;
#if defined(DART_COMPRESSED_POINTERS)
compressed_heap_ = nullptr;
VirtualMemoryCompressedHeap::Cleanup();
#endif // defined(DART_COMPRESSED_POINTERS)
}
VirtualMemory* VirtualMemory::AllocateAligned(intptr_t size,
intptr_t alignment,
bool is_executable,
bool is_compressed,
const char* name) {
// When FLAG_write_protect_code is active, code memory (indicated by
// is_executable = true) is allocated as non-executable and later
// changed to executable via VirtualMemory::Protect.
ASSERT(Utils::IsAligned(size, PageSize()));
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(Utils::IsAligned(alignment, PageSize()));
ASSERT(name != nullptr);
#if defined(DART_COMPRESSED_POINTERS)
if (is_compressed) {
RELEASE_ASSERT(!is_executable);
MemoryRegion region =
VirtualMemoryCompressedHeap::Allocate(size, alignment);
if (region.pointer() == nullptr) {
#if defined(LARGE_RESERVATIONS_MAY_FAIL)
// Try a fresh allocation and hope it ends up in the right region. On
// macOS/iOS, this works surprisingly often.
void* address =
GenericMapAligned(nullptr, PROT_READ | PROT_WRITE, size, alignment,
size + alignment, MAP_PRIVATE | MAP_ANONYMOUS);
if (address != nullptr) {
uword ok_start = Utils::RoundDown(compressed_heap_->start(),
kCompressedHeapAlignment);
uword ok_end = ok_start + kCompressedHeapSize;
uword start = reinterpret_cast<uword>(address);
uword end = start + size;
if ((start >= ok_start) && (end <= ok_end)) {
MemoryRegion region(address, size);
return new VirtualMemory(region, region);
}
munmap(address, size);
}
#endif
return nullptr;
}
Commit(region.pointer(), region.size());
return new VirtualMemory(region, region);
}
#endif // defined(DART_COMPRESSED_POINTERS)
const intptr_t allocated_size = size + alignment - PageSize();
#if defined(DART_ENABLE_RX_WORKAROUNDS)
// We need to map the original page using RX for dual mapping to have
// effect on iOS.
const int prot = (is_executable && should_dual_map_executable_pages_)
? PROT_READ | PROT_EXEC
: PROT_READ | PROT_WRITE;
#else
const int prot =
PROT_READ | PROT_WRITE |
((is_executable && !FLAG_write_protect_code) ? PROT_EXEC : 0);
#endif
int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if (defined(DART_HOST_OS_MACOS) && !defined(DART_HOST_OS_IOS))
if (is_executable && IsAtLeastMacOSX10_14() &&
!ShouldDualMapExecutablePages()) {
map_flags |= MAP_JIT;
}
#endif // defined(DART_HOST_OS_MACOS)
void* hint = nullptr;
// Some 64-bit microarchitectures store only the low 32-bits of targets as
// part of indirect branch prediction, predicting that the target's upper bits
// will be same as the call instruction's address. This leads to misprediction
// for indirect calls crossing a 4GB boundary. We ask mmap to place our
// generated code near the VM binary to avoid this.
if (is_executable) {
hint = reinterpret_cast<void*>(&Dart_Initialize);
}
void* address =
GenericMapAligned(hint, prot, size, alignment, allocated_size, map_flags);
#if defined(DART_HOST_OS_LINUX)
// On WSL 1 trying to allocate memory close to the binary by supplying a hint
// fails with ENOMEM for unclear reason. Some reports suggest that this might
// be related to the alignment of the hint but aligning it by 64Kb does not
// make the issue go away in our experiments. Instead just retry without any
// hint.
if (address == nullptr && hint != nullptr &&
Utils::IsWindowsSubsystemForLinux()) {
address = GenericMapAligned(nullptr, prot, size, alignment, allocated_size,
map_flags);
}
#endif
if (address == nullptr) {
return nullptr;
}
#if defined(DART_ENABLE_RX_WORKAROUNDS)
if (is_executable && should_dual_map_executable_pages_) {
// |address| is mapped RX, create a corresponding RW alias through which
// we will write into the executable mapping.
vm_address_t writable_address = 0;
vm_prot_t cur_protection, max_protection;
const kern_return_t result =
vm_remap(mach_task_self(), &writable_address, size,
/*mask=*/alignment - 1, VM_FLAGS_ANYWHERE, mach_task_self(),
reinterpret_cast<vm_address_t>(address), /*copy=*/FALSE,
&cur_protection, &max_protection, VM_INHERIT_NONE);
if (result != KERN_SUCCESS) {
munmap(address, size);
return nullptr;
}
NOTIFY_DEBUGGER_ABOUT_RX_PAGES(reinterpret_cast<void*>(address), size);
Protect(reinterpret_cast<void*>(writable_address), size, kReadWrite);
MemoryRegion region(address, size);
MemoryRegion writable_alias(reinterpret_cast<void*>(writable_address),
size);
return new VirtualMemory(writable_alias, region, writable_alias);
}
#endif // defined(DART_ENABLE_RX_WORKAROUNDS)
#if defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_LINUX)
// PR_SET_VMA was only added to mainline Linux in 5.17, and some versions of
// the Android NDK have incorrect headers, so we manually define it if absent.
#if !defined(PR_SET_VMA)
#define PR_SET_VMA 0x53564d41
#endif
#if !defined(PR_SET_VMA_ANON_NAME)
#define PR_SET_VMA_ANON_NAME 0
#endif
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, address, size, name);
#endif
MemoryRegion region(reinterpret_cast<void*>(address), size);
return new VirtualMemory(region, region);
}
VirtualMemory* VirtualMemory::Reserve(intptr_t size, intptr_t alignment) {
ASSERT(Utils::IsAligned(size, PageSize()));
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(Utils::IsAligned(alignment, PageSize()));
intptr_t allocated_size = size + alignment - PageSize();
void* address =
GenericMapAligned(nullptr, PROT_NONE, size, alignment, allocated_size,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE);
if (address == nullptr) {
return nullptr;
}
MemoryRegion region(address, size);
return new VirtualMemory(region, region);
}
void VirtualMemory::Commit(void* address, intptr_t size) {
ASSERT(Utils::IsAligned(address, PageSize()));
ASSERT(Utils::IsAligned(size, PageSize()));
void* result = mmap(address, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
if (result == MAP_FAILED) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("Failed to commit: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
}
void VirtualMemory::Decommit(void* address, intptr_t size) {
ASSERT(Utils::IsAligned(address, PageSize()));
ASSERT(Utils::IsAligned(size, PageSize()));
void* result =
mmap(address, size, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED, -1, 0);
if (result == MAP_FAILED) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("Failed to decommit: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
}
VirtualMemory::~VirtualMemory() {
#if defined(DART_COMPRESSED_POINTERS)
if (VirtualMemoryCompressedHeap::Contains(reserved_.pointer()) &&
(this != compressed_heap_)) {
Decommit(reserved_.pointer(), reserved_.size());
VirtualMemoryCompressedHeap::Free(reserved_.pointer(), reserved_.size());
return;
}
#endif // defined(DART_COMPRESSED_POINTERS)
if (vm_owns_region()) {
Unmap(reserved_.start(), reserved_.end());
#if defined(DART_ENABLE_RX_WORKAROUNDS)
if (reserved_.start() != executable_alias_.start()) {
Unmap(executable_alias_.start(), executable_alias_.end());
}
#endif // defined(DART_ENABLE_RX_WORKAROUNDS)
}
}
bool VirtualMemory::FreeSubSegment(void* address, intptr_t size) {
#if defined(DART_COMPRESSED_POINTERS)
// Don't free the sub segment if it's managed by the compressed pointer heap.
if (VirtualMemoryCompressedHeap::Contains(address)) {
return false;
}
#endif // defined(DART_COMPRESSED_POINTERS)
const uword start = reinterpret_cast<uword>(address);
Unmap(start, start + size);
return true;
}
void VirtualMemory::Protect(void* address, intptr_t size, Protection mode) {
#if defined(DEBUG)
Thread* thread = Thread::Current();
ASSERT(thread == nullptr || thread->IsDartMutatorThread() ||
thread->isolate() == nullptr ||
thread->isolate()->mutator_thread()->IsAtSafepoint());
#endif
uword start_address = reinterpret_cast<uword>(address);
uword end_address = start_address + size;
uword page_address = Utils::RoundDown(start_address, PageSize());
int prot = 0;
switch (mode) {
case kNoAccess:
prot = PROT_NONE;
break;
case kReadOnly:
prot = PROT_READ;
break;
case kReadWrite:
prot = PROT_READ | PROT_WRITE;
break;
case kReadExecute:
prot = PROT_READ | PROT_EXEC;
break;
case kReadWriteExecute:
prot = PROT_READ | PROT_WRITE | PROT_EXEC;
break;
}
if (mprotect(reinterpret_cast<void*>(page_address),
end_address - page_address, prot) != 0) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
LOG_INFO("mprotect(0x%" Px ", 0x%" Px ", %u) failed\n", page_address,
end_address - page_address, prot);
FATAL("mprotect failed: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
LOG_INFO("mprotect(0x%" Px ", 0x%" Px ", %u) ok\n", page_address,
end_address - page_address, prot);
}
void VirtualMemory::DontNeed(void* address, intptr_t size) {
uword start_address = reinterpret_cast<uword>(address);
uword end_address = start_address + size;
uword page_address = Utils::RoundDown(start_address, PageSize());
#if defined(DART_HOST_OS_MACOS)
int advice = MADV_FREE;
#else
int advice = MADV_DONTNEED;
#endif
if (madvise(reinterpret_cast<void*>(page_address), end_address - page_address,
advice) != 0) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("madvise failed: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
}
#if defined(DART_HOST_OS_MACOS)
// TODO(52579): Reenable on Fuchsia.
bool VirtualMemory::DuplicateRX(VirtualMemory* target) {
const intptr_t aligned_size = Utils::RoundUp(size(), PageSize());
ASSERT_LESS_OR_EQUAL(aligned_size, target->size());
// Mac is special cased because iOS doesn't allow allocating new executable
// memory, so the default approach would fail. We are allowed to make new
// mappings of existing executable memory using vm_remap though, which is
// effectively the same for non-writable memory.
const mach_port_t task = mach_task_self();
const vm_address_t source_address = reinterpret_cast<vm_address_t>(address());
const vm_size_t mem_size = aligned_size;
const vm_prot_t read_execute = VM_PROT_READ | VM_PROT_EXECUTE;
vm_prot_t current_protection = read_execute;
vm_prot_t max_protection = read_execute;
vm_address_t target_address =
reinterpret_cast<vm_address_t>(target->address());
kern_return_t status = vm_remap(
task, &target_address, mem_size,
/*mask=*/0,
/*flags=*/VM_FLAGS_FIXED | VM_FLAGS_OVERWRITE, task, source_address,
/*copy=*/true, &current_protection, &max_protection,
/*inheritance=*/VM_INHERIT_NONE);
if (status != KERN_SUCCESS) {
return false;
}
ASSERT(reinterpret_cast<void*>(target_address) == target->address());
ASSERT_EQUAL(current_protection & read_execute, read_execute);
ASSERT_EQUAL(max_protection & read_execute, read_execute);
return true;
}
#endif // defined(DART_HOST_OS_MACOS)
} // namespace dart
#endif // defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_LINUX) || \
// defined(DART_HOST_OS_MACOS)