| // Copyright (c) 2019, the Dart project authors.  Please see the AUTHORS file | 
 | // for details. All rights reserved. Use of this source code is governed by a | 
 | // BSD-style license that can be found in the LICENSE file. | 
 |  | 
 | #include "vm/globals.h"  // Needed here to get TARGET_ARCH_ARM. | 
 | #if defined(TARGET_ARCH_ARM) | 
 |  | 
 | #define SHOULD_NOT_INCLUDE_RUNTIME | 
 |  | 
 | #include "vm/class_id.h" | 
 | #include "vm/compiler/asm_intrinsifier.h" | 
 | #include "vm/compiler/assembler/assembler.h" | 
 |  | 
 | namespace dart { | 
 | namespace compiler { | 
 |  | 
 | // When entering intrinsics code: | 
 | // PP: Caller's ObjectPool in JIT / global ObjectPool in AOT | 
 | // CODE_REG: Callee's Code in JIT / not passed in AOT | 
 | // R4: Arguments descriptor | 
 | // LR: Return address | 
 | // The R4 and CODE_REG registers can be destroyed only if there is no slow-path, | 
 | // i.e. if the intrinsified method always executes a return. | 
 | // The FP register should not be modified, because it is used by the profiler. | 
 | // The PP and THR registers (see constants_arm.h) must be preserved. | 
 |  | 
 | #define __ assembler-> | 
 |  | 
 | // Loads args from stack into R0 and R1 | 
 | // Tests if they are smis, jumps to label not_smi if not. | 
 | static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { | 
 |   __ ldr(R0, Address(SP, +0 * target::kWordSize)); | 
 |   __ ldr(R1, Address(SP, +1 * target::kWordSize)); | 
 |   __ orr(TMP, R0, Operand(R1)); | 
 |   __ tst(TMP, Operand(kSmiTagMask)); | 
 |   __ b(not_smi, NE); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { | 
 |   ASSERT(kSmiTagShift == 1); | 
 |   ASSERT(kSmiTag == 0); | 
 |   TestBothArgumentsSmis(assembler, normal_ir_body); | 
 |   __ CompareImmediate(R0, target::ToRawSmi(target::kSmiBits)); | 
 |   __ b(normal_ir_body, HI); | 
 |  | 
 |   __ SmiUntag(R0); | 
 |  | 
 |   // Check for overflow by shifting left and shifting back arithmetically. | 
 |   // If the result is different from the original, there was overflow. | 
 |   __ mov(IP, Operand(R1, LSL, R0)); | 
 |   __ cmp(R1, Operand(IP, ASR, R0)); | 
 |  | 
 |   // No overflow, result in R0. | 
 |   __ mov(R0, Operand(R1, LSL, R0), EQ); | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, EQ)); | 
 |   // Arguments are Smi but the shift produced an overflow to Mint. | 
 |   __ CompareImmediate(R1, 0); | 
 |   __ b(normal_ir_body, LT); | 
 |   __ SmiUntag(R1); | 
 |  | 
 |   // Pull off high bits that will be shifted off of R1 by making a mask | 
 |   // ((1 << R0) - 1), shifting it to the left, masking R1, then shifting back. | 
 |   // high bits = (((1 << R0) - 1) << (32 - R0)) & R1) >> (32 - R0) | 
 |   // lo bits = R1 << R0 | 
 |   __ LoadImmediate(R8, 1); | 
 |   __ mov(R8, Operand(R8, LSL, R0));        // R8 <- 1 << R0 | 
 |   __ sub(R8, R8, Operand(1));              // R8 <- R8 - 1 | 
 |   __ rsb(R3, R0, Operand(32));             // R3 <- 32 - R0 | 
 |   __ mov(R8, Operand(R8, LSL, R3));        // R8 <- R8 << R3 | 
 |   __ and_(R8, R1, Operand(R8));            // R8 <- R8 & R1 | 
 |   __ mov(R8, Operand(R8, LSR, R3));        // R8 <- R8 >> R3 | 
 |   // Now R8 has the bits that fall off of R1 on a left shift. | 
 |   __ mov(R1, Operand(R1, LSL, R0));  // R1 gets the low bits. | 
 |  | 
 |   const Class& mint_class = MintClass(); | 
 |   __ TryAllocate(mint_class, normal_ir_body, Assembler::kFarJump, R0, R2); | 
 |  | 
 |   __ str(R1, FieldAddress(R0, target::Mint::value_offset())); | 
 |   __ str(R8, | 
 |          FieldAddress(R0, target::Mint::value_offset() + target::kWordSize)); | 
 |   __ Ret(); | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | static void Get64SmiOrMint(Assembler* assembler, | 
 |                            Register res_hi, | 
 |                            Register res_lo, | 
 |                            Register reg, | 
 |                            Label* not_smi_or_mint) { | 
 |   Label not_smi, done; | 
 |   __ tst(reg, Operand(kSmiTagMask)); | 
 |   __ b(¬_smi, NE); | 
 |   __ SmiUntag(reg); | 
 |  | 
 |   // Sign extend to 64 bit | 
 |   __ mov(res_lo, Operand(reg)); | 
 |   __ mov(res_hi, Operand(res_lo, ASR, 31)); | 
 |   __ b(&done); | 
 |  | 
 |   __ Bind(¬_smi); | 
 |   __ CompareClassId(reg, kMintCid, res_lo); | 
 |   __ b(not_smi_or_mint, NE); | 
 |  | 
 |   // Mint. | 
 |   __ ldr(res_lo, FieldAddress(reg, target::Mint::value_offset())); | 
 |   __ ldr(res_hi, | 
 |          FieldAddress(reg, target::Mint::value_offset() + target::kWordSize)); | 
 |   __ Bind(&done); | 
 | } | 
 |  | 
 | static void CompareIntegers(Assembler* assembler, | 
 |                             Label* normal_ir_body, | 
 |                             Condition true_condition) { | 
 |   Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; | 
 |   TestBothArgumentsSmis(assembler, &try_mint_smi); | 
 |   // R0 contains the right argument. R1 contains left argument | 
 |  | 
 |   __ cmp(R1, Operand(R0)); | 
 |   __ b(&is_true, true_condition); | 
 |   __ Bind(&is_false); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   __ Ret(); | 
 |   __ Bind(&is_true); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 |  | 
 |   // 64-bit comparison | 
 |   Condition hi_true_cond, hi_false_cond, lo_false_cond; | 
 |   switch (true_condition) { | 
 |     case LT: | 
 |     case LE: | 
 |       hi_true_cond = LT; | 
 |       hi_false_cond = GT; | 
 |       lo_false_cond = (true_condition == LT) ? CS : HI; | 
 |       break; | 
 |     case GT: | 
 |     case GE: | 
 |       hi_true_cond = GT; | 
 |       hi_false_cond = LT; | 
 |       lo_false_cond = (true_condition == GT) ? LS : CC; | 
 |       break; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |       hi_true_cond = hi_false_cond = lo_false_cond = VS; | 
 |   } | 
 |  | 
 |   __ Bind(&try_mint_smi); | 
 |   // Get left as 64 bit integer. | 
 |   Get64SmiOrMint(assembler, R3, R2, R1, normal_ir_body); | 
 |   // Get right as 64 bit integer. | 
 |   Get64SmiOrMint(assembler, R1, R8, R0, normal_ir_body); | 
 |   // R3: left high. | 
 |   // R2: left low. | 
 |   // R1: right high. | 
 |   // R8: right low. | 
 |  | 
 |   __ cmp(R3, Operand(R1));  // Compare left hi, right high. | 
 |   __ b(&is_false, hi_false_cond); | 
 |   __ b(&is_true, hi_true_cond); | 
 |   __ cmp(R2, Operand(R8));  // Compare left lo, right lo. | 
 |   __ b(&is_false, lo_false_cond); | 
 |   // Else is true. | 
 |   __ b(&is_true); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, | 
 |                                        Label* normal_ir_body) { | 
 |   CompareIntegers(assembler, normal_ir_body, LT); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, | 
 |                                           Label* normal_ir_body) { | 
 |   CompareIntegers(assembler, normal_ir_body, GT); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, | 
 |                                             Label* normal_ir_body) { | 
 |   CompareIntegers(assembler, normal_ir_body, LE); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, | 
 |                                                Label* normal_ir_body) { | 
 |   CompareIntegers(assembler, normal_ir_body, GE); | 
 | } | 
 |  | 
 | // This is called for Smi and Mint receivers. The right argument | 
 | // can be Smi, Mint or double. | 
 | void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, | 
 |                                              Label* normal_ir_body) { | 
 |   Label true_label, check_for_mint; | 
 |   // For integer receiver '===' check first. | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ ldr(R1, Address(SP, 1 * target::kWordSize)); | 
 |   __ cmp(R0, Operand(R1)); | 
 |   __ b(&true_label, EQ); | 
 |  | 
 |   __ orr(R2, R0, Operand(R1)); | 
 |   __ tst(R2, Operand(kSmiTagMask)); | 
 |   __ b(&check_for_mint, NE);  // If R0 or R1 is not a smi do Mint checks. | 
 |  | 
 |   // Both arguments are smi, '===' is good enough. | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   __ Ret(); | 
 |   __ Bind(&true_label); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 |  | 
 |   // At least one of the arguments was not Smi. | 
 |   Label receiver_not_smi; | 
 |   __ Bind(&check_for_mint); | 
 |  | 
 |   __ tst(R1, Operand(kSmiTagMask));  // Check receiver. | 
 |   __ b(&receiver_not_smi, NE); | 
 |  | 
 |   // Left (receiver) is Smi, return false if right is not Double. | 
 |   // Note that an instance of Mint never contains a value that can be | 
 |   // represented by Smi. | 
 |  | 
 |   __ CompareClassId(R0, kDoubleCid, R2); | 
 |   __ b(normal_ir_body, EQ); | 
 |   __ LoadObject(R0, | 
 |                 CastHandle<Object>(FalseObject()));  // Smi == Mint -> false. | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(&receiver_not_smi); | 
 |   // R1:: receiver. | 
 |  | 
 |   __ CompareClassId(R1, kMintCid, R2); | 
 |   __ b(normal_ir_body, NE); | 
 |   // Receiver is Mint, return false if right is Smi. | 
 |   __ tst(R0, Operand(kSmiTagMask)); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject()), EQ); | 
 |   READS_RETURN_ADDRESS_FROM_LR( | 
 |       __ bx(LR, EQ));  // TODO(srdjan): Implement Mint == Mint comparison. | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Integer_equal(Assembler* assembler, | 
 |                                     Label* normal_ir_body) { | 
 |   Integer_equalToInteger(assembler, normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, | 
 |                                     Label* normal_ir_body) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ SmiUntag(R0); | 
 |   // XOR with sign bit to complement bits if value is negative. | 
 |   __ eor(R0, R0, Operand(R0, ASR, 31)); | 
 |   __ clz(R0, R0); | 
 |   __ rsb(R0, R0, Operand(32)); | 
 |   __ SmiTag(R0); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { | 
 |   // static void _lsh(Uint32List x_digits, int x_used, int n, | 
 |   //                  Uint32List r_digits) | 
 |  | 
 |   // R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi. | 
 |   __ ldrd(R0, R1, SP, 2 * target::kWordSize); | 
 |   // R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0. | 
 |   __ ldrd(R2, R3, SP, 0 * target::kWordSize); | 
 |   __ SmiUntag(R3); | 
 |   // R4 = n ~/ _DIGIT_BITS | 
 |   __ Asr(R4, R3, Operand(5)); | 
 |   // R8 = &x_digits[0] | 
 |   __ add(R8, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |   // R6 = &r_digits[1] | 
 |   __ add(R6, R2, | 
 |          Operand(target::TypedData::payload_offset() - kHeapObjectTag + | 
 |                  kBytesPerBigIntDigit)); | 
 |   // R2 = &x_digits[x_used] | 
 |   __ add(R2, R8, Operand(R0, LSL, 1)); | 
 |   // R6 = &r_digits[x_used + n ~/ _DIGIT_BITS + 1] | 
 |   __ add(R4, R4, Operand(R0, ASR, 1)); | 
 |   __ add(R6, R6, Operand(R4, LSL, 2)); | 
 |   // R1 = n % _DIGIT_BITS | 
 |   __ and_(R1, R3, Operand(31)); | 
 |   // R0 = 32 - R1 | 
 |   __ rsb(R0, R1, Operand(32)); | 
 |   __ mov(R9, Operand(0)); | 
 |   Label loop; | 
 |   __ Bind(&loop); | 
 |   __ ldr(R4, Address(R2, -kBytesPerBigIntDigit, Address::PreIndex)); | 
 |   __ orr(R9, R9, Operand(R4, LSR, R0)); | 
 |   __ str(R9, Address(R6, -kBytesPerBigIntDigit, Address::PreIndex)); | 
 |   __ mov(R9, Operand(R4, LSL, R1)); | 
 |   __ teq(R2, Operand(R8)); | 
 |   __ b(&loop, NE); | 
 |   __ str(R9, Address(R6, -kBytesPerBigIntDigit, Address::PreIndex)); | 
 |   __ LoadObject(R0, NullObject()); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { | 
 |   // static void _lsh(Uint32List x_digits, int x_used, int n, | 
 |   //                  Uint32List r_digits) | 
 |  | 
 |   // R0 = x_used, R1 = x_digits, x_used > 0, x_used is Smi. | 
 |   __ ldrd(R0, R1, SP, 2 * target::kWordSize); | 
 |   // R2 = r_digits, R3 = n, n is Smi, n % _DIGIT_BITS != 0. | 
 |   __ ldrd(R2, R3, SP, 0 * target::kWordSize); | 
 |   __ SmiUntag(R3); | 
 |   // R4 = n ~/ _DIGIT_BITS | 
 |   __ Asr(R4, R3, Operand(5)); | 
 |   // R6 = &r_digits[0] | 
 |   __ add(R6, R2, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |   // R2 = &x_digits[n ~/ _DIGIT_BITS] | 
 |   __ add(R2, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |   __ add(R2, R2, Operand(R4, LSL, 2)); | 
 |   // R8 = &r_digits[x_used - n ~/ _DIGIT_BITS - 1] | 
 |   __ add(R4, R4, Operand(1)); | 
 |   __ rsb(R4, R4, Operand(R0, ASR, 1)); | 
 |   __ add(R8, R6, Operand(R4, LSL, 2)); | 
 |   // R1 = n % _DIGIT_BITS | 
 |   __ and_(R1, R3, Operand(31)); | 
 |   // R0 = 32 - R1 | 
 |   __ rsb(R0, R1, Operand(32)); | 
 |   // R9 = x_digits[n ~/ _DIGIT_BITS] >> (n % _DIGIT_BITS) | 
 |   __ ldr(R9, Address(R2, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ mov(R9, Operand(R9, LSR, R1)); | 
 |   Label loop_entry; | 
 |   __ b(&loop_entry); | 
 |   Label loop; | 
 |   __ Bind(&loop); | 
 |   __ ldr(R4, Address(R2, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ orr(R9, R9, Operand(R4, LSL, R0)); | 
 |   __ str(R9, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ mov(R9, Operand(R4, LSR, R1)); | 
 |   __ Bind(&loop_entry); | 
 |   __ teq(R6, Operand(R8)); | 
 |   __ b(&loop, NE); | 
 |   __ str(R9, Address(R6, 0)); | 
 |   __ LoadObject(R0, NullObject()); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, | 
 |                                     Label* normal_ir_body) { | 
 |   // static void _absAdd(Uint32List digits, int used, | 
 |   //                     Uint32List a_digits, int a_used, | 
 |   //                     Uint32List r_digits) | 
 |  | 
 |   // R0 = used, R1 = digits | 
 |   __ ldrd(R0, R1, SP, 3 * target::kWordSize); | 
 |   // R1 = &digits[0] | 
 |   __ add(R1, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R2 = a_used, R3 = a_digits | 
 |   __ ldrd(R2, R3, SP, 1 * target::kWordSize); | 
 |   // R3 = &a_digits[0] | 
 |   __ add(R3, R3, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R8 = r_digits | 
 |   __ ldr(R8, Address(SP, 0 * target::kWordSize)); | 
 |   // R8 = &r_digits[0] | 
 |   __ add(R8, R8, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R2 = &digits[a_used >> 1], a_used is Smi. | 
 |   __ add(R2, R1, Operand(R2, LSL, 1)); | 
 |  | 
 |   // R6 = &digits[used >> 1], used is Smi. | 
 |   __ add(R6, R1, Operand(R0, LSL, 1)); | 
 |  | 
 |   __ adds(R4, R4, Operand(0));  // carry flag = 0 | 
 |   Label add_loop; | 
 |   __ Bind(&add_loop); | 
 |   // Loop a_used times, a_used > 0. | 
 |   __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ ldr(R9, Address(R3, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ adcs(R4, R4, Operand(R9)); | 
 |   __ teq(R1, Operand(R2));  // Does not affect carry flag. | 
 |   __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ b(&add_loop, NE); | 
 |  | 
 |   Label last_carry; | 
 |   __ teq(R1, Operand(R6));  // Does not affect carry flag. | 
 |   __ b(&last_carry, EQ);    // If used - a_used == 0. | 
 |  | 
 |   Label carry_loop; | 
 |   __ Bind(&carry_loop); | 
 |   // Loop used - a_used times, used - a_used > 0. | 
 |   __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ adcs(R4, R4, Operand(0)); | 
 |   __ teq(R1, Operand(R6));  // Does not affect carry flag. | 
 |   __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ b(&carry_loop, NE); | 
 |  | 
 |   __ Bind(&last_carry); | 
 |   __ mov(R4, Operand(0)); | 
 |   __ adc(R4, R4, Operand(0)); | 
 |   __ str(R4, Address(R8, 0)); | 
 |  | 
 |   __ LoadObject(R0, NullObject()); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, | 
 |                                     Label* normal_ir_body) { | 
 |   // static void _absSub(Uint32List digits, int used, | 
 |   //                     Uint32List a_digits, int a_used, | 
 |   //                     Uint32List r_digits) | 
 |  | 
 |   // R0 = used, R1 = digits | 
 |   __ ldrd(R0, R1, SP, 3 * target::kWordSize); | 
 |   // R1 = &digits[0] | 
 |   __ add(R1, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R2 = a_used, R3 = a_digits | 
 |   __ ldrd(R2, R3, SP, 1 * target::kWordSize); | 
 |   // R3 = &a_digits[0] | 
 |   __ add(R3, R3, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R8 = r_digits | 
 |   __ ldr(R8, Address(SP, 0 * target::kWordSize)); | 
 |   // R8 = &r_digits[0] | 
 |   __ add(R8, R8, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R2 = &digits[a_used >> 1], a_used is Smi. | 
 |   __ add(R2, R1, Operand(R2, LSL, 1)); | 
 |  | 
 |   // R6 = &digits[used >> 1], used is Smi. | 
 |   __ add(R6, R1, Operand(R0, LSL, 1)); | 
 |  | 
 |   __ subs(R4, R4, Operand(0));  // carry flag = 1 | 
 |   Label sub_loop; | 
 |   __ Bind(&sub_loop); | 
 |   // Loop a_used times, a_used > 0. | 
 |   __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ ldr(R9, Address(R3, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ sbcs(R4, R4, Operand(R9)); | 
 |   __ teq(R1, Operand(R2));  // Does not affect carry flag. | 
 |   __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ b(&sub_loop, NE); | 
 |  | 
 |   Label done; | 
 |   __ teq(R1, Operand(R6));  // Does not affect carry flag. | 
 |   __ b(&done, EQ);          // If used - a_used == 0. | 
 |  | 
 |   Label carry_loop; | 
 |   __ Bind(&carry_loop); | 
 |   // Loop used - a_used times, used - a_used > 0. | 
 |   __ ldr(R4, Address(R1, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ sbcs(R4, R4, Operand(0)); | 
 |   __ teq(R1, Operand(R6));  // Does not affect carry flag. | 
 |   __ str(R4, Address(R8, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ b(&carry_loop, NE); | 
 |  | 
 |   __ Bind(&done); | 
 |   __ LoadObject(R0, NullObject()); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, | 
 |                                     Label* normal_ir_body) { | 
 |   // Pseudo code: | 
 |   // static int _mulAdd(Uint32List x_digits, int xi, | 
 |   //                    Uint32List m_digits, int i, | 
 |   //                    Uint32List a_digits, int j, int n) { | 
 |   //   uint32_t x = x_digits[xi >> 1];  // xi is Smi. | 
 |   //   if (x == 0 || n == 0) { | 
 |   //     return 1; | 
 |   //   } | 
 |   //   uint32_t* mip = &m_digits[i >> 1];  // i is Smi. | 
 |   //   uint32_t* ajp = &a_digits[j >> 1];  // j is Smi. | 
 |   //   uint32_t c = 0; | 
 |   //   SmiUntag(n); | 
 |   //   do { | 
 |   //     uint32_t mi = *mip++; | 
 |   //     uint32_t aj = *ajp; | 
 |   //     uint64_t t = x*mi + aj + c;  // 32-bit * 32-bit -> 64-bit. | 
 |   //     *ajp++ = low32(t); | 
 |   //     c = high32(t); | 
 |   //   } while (--n > 0); | 
 |   //   while (c != 0) { | 
 |   //     uint64_t t = *ajp + c; | 
 |   //     *ajp++ = low32(t); | 
 |   //     c = high32(t);  // c == 0 or 1. | 
 |   //   } | 
 |   //   return 1; | 
 |   // } | 
 |  | 
 |   Label done; | 
 |   // R3 = x, no_op if x == 0 | 
 |   __ ldrd(R0, R1, SP, 5 * target::kWordSize);  // R0 = xi as Smi, R1 = x_digits. | 
 |   __ add(R1, R1, Operand(R0, LSL, 1)); | 
 |   __ ldr(R3, FieldAddress(R1, target::TypedData::payload_offset())); | 
 |   __ tst(R3, Operand(R3)); | 
 |   __ b(&done, EQ); | 
 |  | 
 |   // R8 = SmiUntag(n), no_op if n == 0 | 
 |   __ ldr(R8, Address(SP, 0 * target::kWordSize)); | 
 |   __ Asrs(R8, R8, Operand(kSmiTagSize)); | 
 |   __ b(&done, EQ); | 
 |  | 
 |   // R4 = mip = &m_digits[i >> 1] | 
 |   __ ldrd(R0, R1, SP, 3 * target::kWordSize);  // R0 = i as Smi, R1 = m_digits. | 
 |   __ add(R1, R1, Operand(R0, LSL, 1)); | 
 |   __ add(R4, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R9 = ajp = &a_digits[j >> 1] | 
 |   __ ldrd(R0, R1, SP, 1 * target::kWordSize);  // R0 = j as Smi, R1 = a_digits. | 
 |   __ add(R1, R1, Operand(R0, LSL, 1)); | 
 |   __ add(R9, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R1 = c = 0 | 
 |   __ mov(R1, Operand(0)); | 
 |  | 
 |   Label muladd_loop; | 
 |   __ Bind(&muladd_loop); | 
 |   // x:   R3 | 
 |   // mip: R4 | 
 |   // ajp: R9 | 
 |   // c:   R1 | 
 |   // n:   R8 | 
 |  | 
 |   // uint32_t mi = *mip++ | 
 |   __ ldr(R2, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |  | 
 |   // uint32_t aj = *ajp | 
 |   __ ldr(R0, Address(R9, 0)); | 
 |  | 
 |   // uint64_t t = x*mi + aj + c | 
 |   __ umaal(R0, R1, R2, R3);  // R1:R0 = R2*R3 + R1 + R0. | 
 |  | 
 |   // *ajp++ = low32(t) = R0 | 
 |   __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |  | 
 |   // c = high32(t) = R1 | 
 |  | 
 |   // while (--n > 0) | 
 |   __ subs(R8, R8, Operand(1));  // --n | 
 |   __ b(&muladd_loop, NE); | 
 |  | 
 |   __ tst(R1, Operand(R1)); | 
 |   __ b(&done, EQ); | 
 |  | 
 |   // *ajp++ += c | 
 |   __ ldr(R0, Address(R9, 0)); | 
 |   __ adds(R0, R0, Operand(R1)); | 
 |   __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ b(&done, CC); | 
 |  | 
 |   Label propagate_carry_loop; | 
 |   __ Bind(&propagate_carry_loop); | 
 |   __ ldr(R0, Address(R9, 0)); | 
 |   __ adds(R0, R0, Operand(1)); | 
 |   __ str(R0, Address(R9, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ b(&propagate_carry_loop, CS); | 
 |  | 
 |   __ Bind(&done); | 
 |   __ mov(R0, Operand(target::ToRawSmi(1)));  // One digit processed. | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, | 
 |                                     Label* normal_ir_body) { | 
 |   // Pseudo code: | 
 |   // static int _sqrAdd(Uint32List x_digits, int i, | 
 |   //                    Uint32List a_digits, int used) { | 
 |   //   uint32_t* xip = &x_digits[i >> 1];  // i is Smi. | 
 |   //   uint32_t x = *xip++; | 
 |   //   if (x == 0) return 1; | 
 |   //   uint32_t* ajp = &a_digits[i];  // j == 2*i, i is Smi. | 
 |   //   uint32_t aj = *ajp; | 
 |   //   uint64_t t = x*x + aj; | 
 |   //   *ajp++ = low32(t); | 
 |   //   uint64_t c = high32(t); | 
 |   //   int n = ((used - i) >> 1) - 1;  // used and i are Smi. | 
 |   //   while (--n >= 0) { | 
 |   //     uint32_t xi = *xip++; | 
 |   //     uint32_t aj = *ajp; | 
 |   //     uint96_t t = 2*x*xi + aj + c;  // 2-bit * 32-bit * 32-bit -> 65-bit. | 
 |   //     *ajp++ = low32(t); | 
 |   //     c = high64(t);  // 33-bit. | 
 |   //   } | 
 |   //   uint32_t aj = *ajp; | 
 |   //   uint64_t t = aj + c;  // 32-bit + 33-bit -> 34-bit. | 
 |   //   *ajp++ = low32(t); | 
 |   //   *ajp = high32(t); | 
 |   //   return 1; | 
 |   // } | 
 |  | 
 |   // The code has no bailout path, so we can use R6 (CODE_REG) freely. | 
 |  | 
 |   // R4 = xip = &x_digits[i >> 1] | 
 |   __ ldrd(R2, R3, SP, 2 * target::kWordSize);  // R2 = i as Smi, R3 = x_digits | 
 |   __ add(R3, R3, Operand(R2, LSL, 1)); | 
 |   __ add(R4, R3, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R3 = x = *xip++, return if x == 0 | 
 |   Label x_zero; | 
 |   __ ldr(R3, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |   __ tst(R3, Operand(R3)); | 
 |   __ b(&x_zero, EQ); | 
 |  | 
 |   // R6 = ajp = &a_digits[i] | 
 |   __ ldr(R1, Address(SP, 1 * target::kWordSize));  // a_digits | 
 |   __ add(R1, R1, Operand(R2, LSL, 2));             // j == 2*i, i is Smi. | 
 |   __ add(R6, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
 |  | 
 |   // R8:R0 = t = x*x + *ajp | 
 |   __ ldr(R0, Address(R6, 0)); | 
 |   __ mov(R8, Operand(0)); | 
 |   __ umaal(R0, R8, R3, R3);  // R8:R0 = R3*R3 + R8 + R0. | 
 |  | 
 |   // *ajp++ = low32(t) = R0 | 
 |   __ str(R0, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |  | 
 |   // R8 = low32(c) = high32(t) | 
 |   // R9 = high32(c) = 0 | 
 |   __ mov(R9, Operand(0)); | 
 |  | 
 |   // int n = used - i - 1; while (--n >= 0) ... | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize));  // used is Smi | 
 |   __ sub(TMP, R0, Operand(R2)); | 
 |   __ mov(R0, Operand(2));  // n = used - i - 2; if (n >= 0) ... while (--n >= 0) | 
 |   __ rsbs(TMP, R0, Operand(TMP, ASR, kSmiTagSize)); | 
 |  | 
 |   Label loop, done; | 
 |   __ b(&done, MI); | 
 |  | 
 |   __ Bind(&loop); | 
 |   // x:   R3 | 
 |   // xip: R4 | 
 |   // ajp: R6 | 
 |   // c:   R9:R8 | 
 |   // t:   R2:R1:R0 (not live at loop entry) | 
 |   // n:   TMP | 
 |  | 
 |   // uint32_t xi = *xip++ | 
 |   __ ldr(R2, Address(R4, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |  | 
 |   // uint96_t t = R9:R8:R0 = 2*x*xi + aj + c | 
 |   __ umull(R0, R1, R2, R3);  // R1:R0 = R2*R3. | 
 |   __ adds(R0, R0, Operand(R0)); | 
 |   __ adcs(R1, R1, Operand(R1)); | 
 |   __ mov(R2, Operand(0)); | 
 |   __ adc(R2, R2, Operand(0));  // R2:R1:R0 = 2*x*xi. | 
 |   __ adds(R0, R0, Operand(R8)); | 
 |   __ adcs(R1, R1, Operand(R9)); | 
 |   __ adc(R2, R2, Operand(0));  // R2:R1:R0 = 2*x*xi + c. | 
 |   __ ldr(R8, Address(R6, 0));  // R8 = aj = *ajp. | 
 |   __ adds(R0, R0, Operand(R8)); | 
 |   __ adcs(R8, R1, Operand(0)); | 
 |   __ adc(R9, R2, Operand(0));  // R9:R8:R0 = 2*x*xi + c + aj. | 
 |  | 
 |   // *ajp++ = low32(t) = R0 | 
 |   __ str(R0, Address(R6, kBytesPerBigIntDigit, Address::PostIndex)); | 
 |  | 
 |   // while (--n >= 0) | 
 |   __ subs(TMP, TMP, Operand(1));  // --n | 
 |   __ b(&loop, PL); | 
 |  | 
 |   __ Bind(&done); | 
 |   // uint32_t aj = *ajp | 
 |   __ ldr(R0, Address(R6, 0)); | 
 |  | 
 |   // uint64_t t = aj + c | 
 |   __ adds(R8, R8, Operand(R0)); | 
 |   __ adc(R9, R9, Operand(0)); | 
 |  | 
 |   // *ajp = low32(t) = R8 | 
 |   // *(ajp + 1) = high32(t) = R9 | 
 |   __ strd(R8, R9, R6, 0); | 
 |  | 
 |   __ Bind(&x_zero); | 
 |   __ mov(R0, Operand(target::ToRawSmi(1)));  // One digit processed. | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, | 
 |                                                    Label* normal_ir_body) { | 
 |   // No unsigned 64-bit / 32-bit divide instruction. | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, | 
 |                                         Label* normal_ir_body) { | 
 |   // Pseudo code: | 
 |   // static int _mulMod(Uint32List args, Uint32List digits, int i) { | 
 |   //   uint32_t rho = args[_RHO];  // _RHO == 2. | 
 |   //   uint32_t d = digits[i >> 1];  // i is Smi. | 
 |   //   uint64_t t = rho*d; | 
 |   //   args[_MU] = t mod DIGIT_BASE;  // _MU == 4. | 
 |   //   return 1; | 
 |   // } | 
 |  | 
 |   // R4 = args | 
 |   __ ldr(R4, Address(SP, 2 * target::kWordSize));  // args | 
 |  | 
 |   // R3 = rho = args[2] | 
 |   __ ldr(R3, FieldAddress(R4, target::TypedData::payload_offset() + | 
 |                                   2 * kBytesPerBigIntDigit)); | 
 |  | 
 |   // R2 = digits[i >> 1] | 
 |   __ ldrd(R0, R1, SP, 0 * target::kWordSize);  // R0 = i as Smi, R1 = digits | 
 |   __ add(R1, R1, Operand(R0, LSL, 1)); | 
 |   __ ldr(R2, FieldAddress(R1, target::TypedData::payload_offset())); | 
 |  | 
 |   // R1:R0 = t = rho*d | 
 |   __ umull(R0, R1, R2, R3); | 
 |  | 
 |   // args[4] = t mod DIGIT_BASE = low32(t) | 
 |   __ str(R0, FieldAddress(R4, target::TypedData::payload_offset() + | 
 |                                   4 * kBytesPerBigIntDigit)); | 
 |  | 
 |   __ mov(R0, Operand(target::ToRawSmi(1)));  // One digit processed. | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | // Check if the last argument is a double, jump to label 'is_smi' if smi | 
 | // (easy to convert to double), otherwise jump to label 'not_double_smi', | 
 | // Returns the last argument in R0. | 
 | static void TestLastArgumentIsDouble(Assembler* assembler, | 
 |                                      Label* is_smi, | 
 |                                      Label* not_double_smi) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ tst(R0, Operand(kSmiTagMask)); | 
 |   __ b(is_smi, EQ); | 
 |   __ CompareClassId(R0, kDoubleCid, R1); | 
 |   __ b(not_double_smi, NE); | 
 |   // Fall through with Double in R0. | 
 | } | 
 |  | 
 | // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown | 
 | // type. Return true or false object in the register R0. Any NaN argument | 
 | // returns false. Any non-double arg1 causes control flow to fall through to the | 
 | // slow case (compiled method body). | 
 | static void CompareDoubles(Assembler* assembler, | 
 |                            Label* normal_ir_body, | 
 |                            Condition true_condition) { | 
 |   Label is_smi, double_op; | 
 |  | 
 |   TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); | 
 |   // Both arguments are double, right operand is in R0. | 
 |  | 
 |   __ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ Bind(&double_op); | 
 |   __ ldr(R0, Address(SP, 1 * target::kWordSize));  // Left argument. | 
 |   __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |  | 
 |   __ vcmpd(D0, D1); | 
 |   __ vmstat(); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   // Return false if D0 or D1 was NaN before checking true condition. | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, VS)); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject()), true_condition); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(&is_smi);  // Convert R0 to a double. | 
 |   __ SmiUntag(R0); | 
 |   __ vmovsr(S0, R0); | 
 |   __ vcvtdi(D1, S0); | 
 |   __ b(&double_op);  // Then do the comparison. | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, | 
 |                                          Label* normal_ir_body) { | 
 |   CompareDoubles(assembler, normal_ir_body, HI); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, | 
 |                                               Label* normal_ir_body) { | 
 |   CompareDoubles(assembler, normal_ir_body, CS); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_lessThan(Assembler* assembler, | 
 |                                       Label* normal_ir_body) { | 
 |   CompareDoubles(assembler, normal_ir_body, CC); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_equal(Assembler* assembler, | 
 |                                    Label* normal_ir_body) { | 
 |   CompareDoubles(assembler, normal_ir_body, EQ); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, | 
 |                                            Label* normal_ir_body) { | 
 |   CompareDoubles(assembler, normal_ir_body, LS); | 
 | } | 
 |  | 
 | // Expects left argument to be double (receiver). Right argument is unknown. | 
 | // Both arguments are on stack. | 
 | static void DoubleArithmeticOperations(Assembler* assembler, | 
 |                                        Label* normal_ir_body, | 
 |                                        Token::Kind kind) { | 
 |   Label is_smi, double_op; | 
 |  | 
 |   TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); | 
 |   // Both arguments are double, right operand is in R0. | 
 |   __ LoadDFromOffset(D1, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ Bind(&double_op); | 
 |   __ ldr(R0, Address(SP, 1 * target::kWordSize));  // Left argument. | 
 |   __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   switch (kind) { | 
 |     case Token::kADD: | 
 |       __ vaddd(D0, D0, D1); | 
 |       break; | 
 |     case Token::kSUB: | 
 |       __ vsubd(D0, D0, D1); | 
 |       break; | 
 |     case Token::kMUL: | 
 |       __ vmuld(D0, D0, D1); | 
 |       break; | 
 |     case Token::kDIV: | 
 |       __ vdivd(D0, D0, D1); | 
 |       break; | 
 |     default: | 
 |       UNREACHABLE(); | 
 |   } | 
 |   const Class& double_class = DoubleClass(); | 
 |   __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, R0, | 
 |                  R1);  // Result register. | 
 |   __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ Ret(); | 
 |   __ Bind(&is_smi);  // Convert R0 to a double. | 
 |   __ SmiUntag(R0); | 
 |   __ vmovsr(S0, R0); | 
 |   __ vcvtdi(D1, S0); | 
 |   __ b(&double_op); | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { | 
 |   DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { | 
 |   DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { | 
 |   DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { | 
 |   DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); | 
 | } | 
 |  | 
 | // Left is double, right is integer (Mint or Smi) | 
 | void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, | 
 |                                             Label* normal_ir_body) { | 
 |   Label fall_through; | 
 |   // Only smis allowed. | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ tst(R0, Operand(kSmiTagMask)); | 
 |   __ b(normal_ir_body, NE); | 
 |   // Is Smi. | 
 |   __ SmiUntag(R0); | 
 |   __ vmovsr(S0, R0); | 
 |   __ vcvtdi(D1, S0); | 
 |   __ ldr(R0, Address(SP, 1 * target::kWordSize)); | 
 |   __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ vmuld(D0, D0, D1); | 
 |   const Class& double_class = DoubleClass(); | 
 |   __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, R0, | 
 |                  R1);  // Result register. | 
 |   __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ Ret(); | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, | 
 |                                         Label* normal_ir_body) { | 
 |   Label fall_through; | 
 |  | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ tst(R0, Operand(kSmiTagMask)); | 
 |   __ b(normal_ir_body, NE); | 
 |   // Is Smi. | 
 |   __ SmiUntag(R0); | 
 |   __ vmovsr(S0, R0); | 
 |   __ vcvtdi(D0, S0); | 
 |   const Class& double_class = DoubleClass(); | 
 |   __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, R0, | 
 |                  R1);  // Result register. | 
 |   __ StoreDToOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ Ret(); | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, | 
 |                                       Label* normal_ir_body) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ vcmpd(D0, D0); | 
 |   __ vmstat(); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject()), VC); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject()), VS); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, | 
 |                                            Label* normal_ir_body) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   // R1 <- value[0:31], R2 <- value[32:63] | 
 |   __ LoadFieldFromOffset(R1, R0, target::Double::value_offset()); | 
 |   __ LoadFieldFromOffset(R2, R0, | 
 |                          target::Double::value_offset() + target::kWordSize); | 
 |  | 
 |   // If the low word isn't 0, then it isn't infinity. | 
 |   __ cmp(R1, Operand(0)); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, NE));  // Return if NE. | 
 |  | 
 |   // Mask off the sign bit. | 
 |   __ AndImmediate(R2, R2, 0x7FFFFFFF); | 
 |   // Compare with +infinity. | 
 |   __ CompareImmediate(R2, 0x7FF00000); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, NE)); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, | 
 |                                            Label* normal_ir_body) { | 
 |   Label is_false, is_true, is_zero; | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ LoadDFromOffset(D0, R0, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ vcmpdz(D0); | 
 |   __ vmstat(); | 
 |   __ b(&is_false, VS);  // NaN -> false. | 
 |   __ b(&is_zero, EQ);   // Check for negative zero. | 
 |   __ b(&is_false, CS);  // >= 0 -> false. | 
 |  | 
 |   __ Bind(&is_true); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(&is_false); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(&is_zero); | 
 |   // Check for negative zero by looking at the sign bit. | 
 |   __ vmovrrd(R0, R1, D0);  // R1:R0 <- D0, so sign bit is in bit 31 of R1. | 
 |   __ mov(R1, Operand(R1, LSR, 31)); | 
 |   __ tst(R1, Operand(1)); | 
 |   __ b(&is_true, NE);  // Sign bit set. | 
 |   __ b(&is_false); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Double_hashCode(Assembler* assembler, | 
 |                                       Label* normal_ir_body) { | 
 |   // TODO(dartbug.com/31174): Convert this to a graph intrinsic. | 
 |  | 
 |   // Load double value and check that it isn't NaN, since ARM gives an | 
 |   // FPU exception if you try to convert NaN to an int. | 
 |   Label double_hash; | 
 |   __ ldr(R1, Address(SP, 0 * target::kWordSize)); | 
 |   __ LoadDFromOffset(D0, R1, target::Double::value_offset() - kHeapObjectTag); | 
 |   __ vcmpd(D0, D0); | 
 |   __ vmstat(); | 
 |   __ b(&double_hash, VS); | 
 |  | 
 |   // Convert double value to signed 32-bit int in R0. | 
 |   __ vcvtid(S2, D0); | 
 |   __ vmovrs(R0, S2); | 
 |  | 
 |   // Tag the int as a Smi, making sure that it fits; this checks for | 
 |   // overflow in the conversion from double to int. Conversion | 
 |   // overflow is signalled by vcvt through clamping R0 to either | 
 |   // INT32_MAX or INT32_MIN (saturation). | 
 |   ASSERT(kSmiTag == 0 && kSmiTagShift == 1); | 
 |   __ adds(R0, R0, Operand(R0)); | 
 |   __ b(normal_ir_body, VS); | 
 |  | 
 |   // Compare the two double values. If they are equal, we return the | 
 |   // Smi tagged result immediately as the hash code. | 
 |   __ vcvtdi(D1, S2); | 
 |   __ vcmpd(D0, D1); | 
 |   __ vmstat(); | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, EQ)); | 
 |   // Convert the double bits to a hash code that fits in a Smi. | 
 |   __ Bind(&double_hash); | 
 |   __ ldr(R0, FieldAddress(R1, target::Double::value_offset())); | 
 |   __ ldr(R1, FieldAddress(R1, target::Double::value_offset() + 4)); | 
 |   __ eor(R0, R0, Operand(R1)); | 
 |   __ AndImmediate(R0, R0, target::kSmiMax); | 
 |   __ SmiTag(R0); | 
 |   __ Ret(); | 
 |  | 
 |   // Fall into the native C++ implementation. | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::ObjectEquals(Assembler* assembler, | 
 |                                    Label* normal_ir_body) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ ldr(R1, Address(SP, 1 * target::kWordSize)); | 
 |   __ cmp(R0, Operand(R1)); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | static void RangeCheck(Assembler* assembler, | 
 |                        Register val, | 
 |                        Register tmp, | 
 |                        intptr_t low, | 
 |                        intptr_t high, | 
 |                        Condition cc, | 
 |                        Label* target) { | 
 |   __ AddImmediate(tmp, val, -low); | 
 |   __ CompareImmediate(tmp, high - low); | 
 |   __ b(target, cc); | 
 | } | 
 |  | 
 | const Condition kIfNotInRange = HI; | 
 | const Condition kIfInRange = LS; | 
 |  | 
 | static void JumpIfInteger(Assembler* assembler, | 
 |                           Register cid, | 
 |                           Register tmp, | 
 |                           Label* target) { | 
 |   RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfInRange, target); | 
 | } | 
 |  | 
 | static void JumpIfNotInteger(Assembler* assembler, | 
 |                              Register cid, | 
 |                              Register tmp, | 
 |                              Label* target) { | 
 |   RangeCheck(assembler, cid, tmp, kSmiCid, kMintCid, kIfNotInRange, target); | 
 | } | 
 |  | 
 | static void JumpIfString(Assembler* assembler, | 
 |                          Register cid, | 
 |                          Register tmp, | 
 |                          Label* target) { | 
 |   RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, | 
 |              kIfInRange, target); | 
 | } | 
 |  | 
 | static void JumpIfNotString(Assembler* assembler, | 
 |                             Register cid, | 
 |                             Register tmp, | 
 |                             Label* target) { | 
 |   RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid, | 
 |              kIfNotInRange, target); | 
 | } | 
 |  | 
 | static void JumpIfNotList(Assembler* assembler, | 
 |                           Register cid, | 
 |                           Register tmp, | 
 |                           Label* target) { | 
 |   RangeCheck(assembler, cid, tmp, kArrayCid, kGrowableObjectArrayCid, | 
 |              kIfNotInRange, target); | 
 | } | 
 |  | 
 | static void JumpIfType(Assembler* assembler, | 
 |                        Register cid, | 
 |                        Register tmp, | 
 |                        Label* target) { | 
 |   RangeCheck(assembler, cid, tmp, kTypeCid, kFunctionTypeCid, kIfInRange, | 
 |              target); | 
 | } | 
 |  | 
 | static void JumpIfNotType(Assembler* assembler, | 
 |                           Register cid, | 
 |                           Register tmp, | 
 |                           Label* target) { | 
 |   RangeCheck(assembler, cid, tmp, kTypeCid, kFunctionTypeCid, kIfNotInRange, | 
 |              target); | 
 | } | 
 |  | 
 | // Return type quickly for simple types (not parameterized and not signature). | 
 | void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, | 
 |                                         Label* normal_ir_body) { | 
 |   Label use_declaration_type, not_double, not_integer, not_string; | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ LoadClassIdMayBeSmi(R1, R0); | 
 |  | 
 |   __ CompareImmediate(R1, kClosureCid); | 
 |   __ b(normal_ir_body, EQ);  // Instance is a closure. | 
 |  | 
 |   __ CompareImmediate(R1, kNumPredefinedCids); | 
 |   __ b(&use_declaration_type, HI); | 
 |  | 
 |   __ LoadIsolateGroup(R2); | 
 |   __ LoadFromOffset(R2, R2, target::IsolateGroup::object_store_offset()); | 
 |  | 
 |   __ CompareImmediate(R1, kDoubleCid); | 
 |   __ b(¬_double, NE); | 
 |   __ LoadFromOffset(R0, R2, target::ObjectStore::double_type_offset()); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(¬_double); | 
 |   JumpIfNotInteger(assembler, R1, R0, ¬_integer); | 
 |   __ LoadFromOffset(R0, R2, target::ObjectStore::int_type_offset()); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(¬_integer); | 
 |   JumpIfNotString(assembler, R1, R0, ¬_string); | 
 |   __ LoadFromOffset(R0, R2, target::ObjectStore::string_type_offset()); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(¬_string); | 
 |   JumpIfNotType(assembler, R1, R0, &use_declaration_type); | 
 |   __ LoadFromOffset(R0, R2, target::ObjectStore::type_type_offset()); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(&use_declaration_type); | 
 |   __ LoadClassById(R2, R1); | 
 |   __ ldrh(R3, FieldAddress(R2, target::Class::num_type_arguments_offset())); | 
 |   __ CompareImmediate(R3, 0); | 
 |   __ b(normal_ir_body, NE); | 
 |  | 
 |   __ ldr(R0, FieldAddress(R2, target::Class::declaration_type_offset())); | 
 |   __ CompareObject(R0, NullObject()); | 
 |   __ b(normal_ir_body, EQ); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | // Compares cid1 and cid2 to see if they're syntactically equivalent. If this | 
 | // can be determined by this fast path, it jumps to either equal_* or not_equal. | 
 | // If classes are equivalent but may be generic, then jumps to | 
 | // equal_may_be_generic. Clobbers scratch. | 
 | static void EquivalentClassIds(Assembler* assembler, | 
 |                                Label* normal_ir_body, | 
 |                                Label* equal_may_be_generic, | 
 |                                Label* equal_not_generic, | 
 |                                Label* not_equal, | 
 |                                Register cid1, | 
 |                                Register cid2, | 
 |                                Register scratch, | 
 |                                bool testing_instance_cids) { | 
 |   Label not_integer, not_integer_or_string, not_integer_or_string_or_list; | 
 |  | 
 |   // Check if left hand side is a closure. Closures are handled in the runtime. | 
 |   __ CompareImmediate(cid1, kClosureCid); | 
 |   __ b(normal_ir_body, EQ); | 
 |  | 
 |   // Check whether class ids match. If class ids don't match types may still be | 
 |   // considered equivalent (e.g. multiple string implementation classes map to a | 
 |   // single String type). | 
 |   __ cmp(cid1, Operand(cid2)); | 
 |   __ b(equal_may_be_generic, EQ); | 
 |  | 
 |   // Class ids are different. Check if we are comparing two string types (with | 
 |   // different representations), two integer types, two list types or two type | 
 |   // types. | 
 |   __ CompareImmediate(cid1, kNumPredefinedCids); | 
 |   __ b(not_equal, HI); | 
 |  | 
 |   // Check if both are integer types. | 
 |   JumpIfNotInteger(assembler, cid1, scratch, ¬_integer); | 
 |  | 
 |   // First type is an integer. Check if the second is an integer too. | 
 |   JumpIfInteger(assembler, cid2, scratch, equal_not_generic); | 
 |   // Integer types are only equivalent to other integer types. | 
 |   __ b(not_equal); | 
 |  | 
 |   __ Bind(¬_integer); | 
 |   // Check if both are String types. | 
 |   JumpIfNotString(assembler, cid1, scratch, | 
 |                   testing_instance_cids ? ¬_integer_or_string : not_equal); | 
 |  | 
 |   // First type is String. Check if the second is a string too. | 
 |   JumpIfString(assembler, cid2, scratch, equal_not_generic); | 
 |   // String types are only equivalent to other String types. | 
 |   __ b(not_equal); | 
 |  | 
 |   if (testing_instance_cids) { | 
 |     __ Bind(¬_integer_or_string); | 
 |     // Check if both are List types. | 
 |     JumpIfNotList(assembler, cid1, scratch, ¬_integer_or_string_or_list); | 
 |  | 
 |     // First type is a List. Check if the second is a List too. | 
 |     JumpIfNotList(assembler, cid2, scratch, not_equal); | 
 |     ASSERT(compiler::target::Array::type_arguments_offset() == | 
 |            compiler::target::GrowableObjectArray::type_arguments_offset()); | 
 |     __ b(equal_may_be_generic); | 
 |  | 
 |     __ Bind(¬_integer_or_string_or_list); | 
 |     // Check if the first type is a Type. If it is not then types are not | 
 |     // equivalent because they have different class ids and they are not String | 
 |     // or integer or List or Type. | 
 |     JumpIfNotType(assembler, cid1, scratch, not_equal); | 
 |  | 
 |     // First type is a Type. Check if the second is a Type too. | 
 |     JumpIfType(assembler, cid2, scratch, equal_not_generic); | 
 |     // Type types are only equivalent to other Type types. | 
 |     __ b(not_equal); | 
 |   } | 
 | } | 
 |  | 
 | void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, | 
 |                                                 Label* normal_ir_body) { | 
 |   __ ldm(IA, SP, (1 << R1 | 1 << R2)); | 
 |   __ LoadClassIdMayBeSmi(R1, R1); | 
 |   __ LoadClassIdMayBeSmi(R2, R2); | 
 |  | 
 |   Label equal_may_be_generic, equal, not_equal; | 
 |   EquivalentClassIds(assembler, normal_ir_body, &equal_may_be_generic, &equal, | 
 |                      ¬_equal, R1, R2, R0, | 
 |                      /* testing_instance_cids = */ true); | 
 |  | 
 |   __ Bind(&equal_may_be_generic); | 
 |   // Classes are equivalent and neither is a closure class. | 
 |   // Check if there are no type arguments. In this case we can return true. | 
 |   // Otherwise fall through into the runtime to handle comparison. | 
 |   __ LoadClassById(R0, R1); | 
 |   __ ldr( | 
 |       R0, | 
 |       FieldAddress( | 
 |           R0, | 
 |           target::Class::host_type_arguments_field_offset_in_words_offset())); | 
 |   __ CompareImmediate(R0, target::Class::kNoTypeArguments); | 
 |   __ b(&equal, EQ); | 
 |  | 
 |   // Compare type arguments, host_type_arguments_field_offset_in_words in R0. | 
 |   __ ldm(IA, SP, (1 << R1 | 1 << R2)); | 
 |   __ AddImmediate(R1, -kHeapObjectTag); | 
 |   __ ldr(R1, Address(R1, R0, LSL, target::kWordSizeLog2)); | 
 |   __ AddImmediate(R2, -kHeapObjectTag); | 
 |   __ ldr(R2, Address(R2, R0, LSL, target::kWordSizeLog2)); | 
 |   __ cmp(R1, Operand(R2)); | 
 |   __ b(normal_ir_body, NE); | 
 |   // Fall through to equal case if type arguments are equal. | 
 |  | 
 |   __ Bind(&equal); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(¬_equal); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::String_getHashCode(Assembler* assembler, | 
 |                                          Label* normal_ir_body) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ ldr(R0, FieldAddress(R0, target::String::hash_offset())); | 
 |   __ cmp(R0, Operand(0)); | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, NE)); | 
 |   __ Bind(normal_ir_body);  // Hash not yet computed. | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Type_getHashCode(Assembler* assembler, | 
 |                                        Label* normal_ir_body) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ ldr(R0, FieldAddress(R0, target::Type::hash_offset())); | 
 |   __ cmp(R0, Operand(0)); | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, NE)); | 
 |   __ Bind(normal_ir_body);  // Hash not yet computed. | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Type_equality(Assembler* assembler, | 
 |                                     Label* normal_ir_body) { | 
 |   Label equal, not_equal, equiv_cids_may_be_generic, equiv_cids, check_legacy; | 
 |  | 
 |   __ ldm(IA, SP, (1 << R1 | 1 << R2)); | 
 |   __ cmp(R1, Operand(R2)); | 
 |   __ b(&equal, EQ); | 
 |  | 
 |   // R1 might not be a Type object, so check that first (R2 should be though, | 
 |   // since this is a method on the Type class). | 
 |   __ LoadClassIdMayBeSmi(R0, R1); | 
 |   __ CompareImmediate(R0, kTypeCid); | 
 |   __ b(normal_ir_body, NE); | 
 |  | 
 |   // Check if types are syntactically equal. | 
 |   __ LoadTypeClassId(R3, R1); | 
 |   __ LoadTypeClassId(R4, R2); | 
 |   // We are not testing instance cids, but type class cids of Type instances. | 
 |   EquivalentClassIds(assembler, normal_ir_body, &equiv_cids_may_be_generic, | 
 |                      &equiv_cids, ¬_equal, R3, R4, R0, | 
 |                      /* testing_instance_cids = */ false); | 
 |  | 
 |   __ Bind(&equiv_cids_may_be_generic); | 
 |   // Compare type arguments in Type instances. | 
 |   __ ldr(R3, FieldAddress(R1, target::Type::arguments_offset())); | 
 |   __ ldr(R4, FieldAddress(R2, target::Type::arguments_offset())); | 
 |   __ cmp(R3, Operand(R4)); | 
 |   __ b(normal_ir_body, NE); | 
 |   // Fall through to check nullability if type arguments are equal. | 
 |  | 
 |   // Check nullability. | 
 |   __ Bind(&equiv_cids); | 
 |   __ ldrb(R1, FieldAddress(R1, target::Type::nullability_offset())); | 
 |   __ ldrb(R2, FieldAddress(R2, target::Type::nullability_offset())); | 
 |   __ cmp(R1, Operand(R2)); | 
 |   __ b(&check_legacy, NE); | 
 |   // Fall through to equal case if nullability is strictly equal. | 
 |  | 
 |   __ Bind(&equal); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 |  | 
 |   // At this point the nullabilities are different, so they can only be | 
 |   // syntactically equivalent if they're both either kNonNullable or kLegacy. | 
 |   // These are the two largest values of the enum, so we can just do a < check. | 
 |   ASSERT(target::Nullability::kNullable < target::Nullability::kNonNullable && | 
 |          target::Nullability::kNonNullable < target::Nullability::kLegacy); | 
 |   __ Bind(&check_legacy); | 
 |   __ CompareImmediate(R1, target::Nullability::kNonNullable); | 
 |   __ b(¬_equal, LT); | 
 |   __ CompareImmediate(R2, target::Nullability::kNonNullable); | 
 |   __ b(&equal, GE); | 
 |  | 
 |   __ Bind(¬_equal); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::FunctionType_getHashCode(Assembler* assembler, | 
 |                                                Label* normal_ir_body) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ ldr(R0, FieldAddress(R0, target::FunctionType::hash_offset())); | 
 |   __ cmp(R0, Operand(0)); | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, NE)); | 
 |   __ Bind(normal_ir_body);  // Hash not yet computed. | 
 | } | 
 |  | 
 | void AsmIntrinsifier::FunctionType_equality(Assembler* assembler, | 
 |                                             Label* normal_ir_body) { | 
 |   __ ldm(IA, SP, (1 << R1 | 1 << R2)); | 
 |   __ cmp(R1, Operand(R2)); | 
 |   __ b(normal_ir_body, NE); | 
 |  | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void GenerateSubstringMatchesSpecialization(Assembler* assembler, | 
 |                                             intptr_t receiver_cid, | 
 |                                             intptr_t other_cid, | 
 |                                             Label* return_true, | 
 |                                             Label* return_false) { | 
 |   __ SmiUntag(R1); | 
 |   __ ldr(R8, FieldAddress(R0, target::String::length_offset()));  // this.length | 
 |   __ SmiUntag(R8); | 
 |   __ ldr(R9, | 
 |          FieldAddress(R2, target::String::length_offset()));  // other.length | 
 |   __ SmiUntag(R9); | 
 |  | 
 |   // if (other.length == 0) return true; | 
 |   __ cmp(R9, Operand(0)); | 
 |   __ b(return_true, EQ); | 
 |  | 
 |   // if (start < 0) return false; | 
 |   __ cmp(R1, Operand(0)); | 
 |   __ b(return_false, LT); | 
 |  | 
 |   // if (start + other.length > this.length) return false; | 
 |   __ add(R3, R1, Operand(R9)); | 
 |   __ cmp(R3, Operand(R8)); | 
 |   __ b(return_false, GT); | 
 |  | 
 |   if (receiver_cid == kOneByteStringCid) { | 
 |     __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); | 
 |     __ add(R0, R0, Operand(R1)); | 
 |   } else { | 
 |     ASSERT(receiver_cid == kTwoByteStringCid); | 
 |     __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); | 
 |     __ add(R0, R0, Operand(R1)); | 
 |     __ add(R0, R0, Operand(R1)); | 
 |   } | 
 |   if (other_cid == kOneByteStringCid) { | 
 |     __ AddImmediate(R2, target::OneByteString::data_offset() - kHeapObjectTag); | 
 |   } else { | 
 |     ASSERT(other_cid == kTwoByteStringCid); | 
 |     __ AddImmediate(R2, target::TwoByteString::data_offset() - kHeapObjectTag); | 
 |   } | 
 |  | 
 |   // i = 0 | 
 |   __ LoadImmediate(R3, 0); | 
 |  | 
 |   // do | 
 |   Label loop; | 
 |   __ Bind(&loop); | 
 |  | 
 |   if (receiver_cid == kOneByteStringCid) { | 
 |     __ ldrb(R4, Address(R0, 0));  // this.codeUnitAt(i + start) | 
 |   } else { | 
 |     __ ldrh(R4, Address(R0, 0));  // this.codeUnitAt(i + start) | 
 |   } | 
 |   if (other_cid == kOneByteStringCid) { | 
 |     __ ldrb(TMP, Address(R2, 0));  // other.codeUnitAt(i) | 
 |   } else { | 
 |     __ ldrh(TMP, Address(R2, 0));  // other.codeUnitAt(i) | 
 |   } | 
 |   __ cmp(R4, Operand(TMP)); | 
 |   __ b(return_false, NE); | 
 |  | 
 |   // i++, while (i < len) | 
 |   __ AddImmediate(R3, 1); | 
 |   __ AddImmediate(R0, receiver_cid == kOneByteStringCid ? 1 : 2); | 
 |   __ AddImmediate(R2, other_cid == kOneByteStringCid ? 1 : 2); | 
 |   __ cmp(R3, Operand(R9)); | 
 |   __ b(&loop, LT); | 
 |  | 
 |   __ b(return_true); | 
 | } | 
 |  | 
 | // bool _substringMatches(int start, String other) | 
 | // This intrinsic handles a OneByteString or TwoByteString receiver with a | 
 | // OneByteString other. | 
 | void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, | 
 |                                                  Label* normal_ir_body) { | 
 |   Label return_true, return_false, try_two_byte; | 
 |   __ ldr(R0, Address(SP, 2 * target::kWordSize));  // this | 
 |   __ ldr(R1, Address(SP, 1 * target::kWordSize));  // start | 
 |   __ ldr(R2, Address(SP, 0 * target::kWordSize));  // other | 
 |   __ Push(R4);  // Make ARGS_DESC_REG available. | 
 |  | 
 |   __ tst(R1, Operand(kSmiTagMask)); | 
 |   __ b(normal_ir_body, NE);  // 'start' is not a Smi. | 
 |  | 
 |   __ CompareClassId(R2, kOneByteStringCid, R3); | 
 |   __ b(normal_ir_body, NE); | 
 |  | 
 |   __ CompareClassId(R0, kOneByteStringCid, R3); | 
 |   __ b(&try_two_byte, NE); | 
 |  | 
 |   GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, | 
 |                                          kOneByteStringCid, &return_true, | 
 |                                          &return_false); | 
 |  | 
 |   __ Bind(&try_two_byte); | 
 |   __ CompareClassId(R0, kTwoByteStringCid, R3); | 
 |   __ b(normal_ir_body, NE); | 
 |  | 
 |   GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, | 
 |                                          kOneByteStringCid, &return_true, | 
 |                                          &return_false); | 
 |  | 
 |   __ Bind(&return_true); | 
 |   __ Pop(R4); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(&return_false); | 
 |   __ Pop(R4); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 |   __ Pop(R4); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Object_getHash(Assembler* assembler, | 
 |                                      Label* normal_ir_body) { | 
 |   UNREACHABLE(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, | 
 |                                        Label* normal_ir_body) { | 
 |   Label try_two_byte_string; | 
 |  | 
 |   __ ldr(R1, Address(SP, 0 * target::kWordSize));  // Index. | 
 |   __ ldr(R0, Address(SP, 1 * target::kWordSize));  // String. | 
 |   __ tst(R1, Operand(kSmiTagMask)); | 
 |   __ b(normal_ir_body, NE);  // Index is not a Smi. | 
 |   // Range check. | 
 |   __ ldr(R2, FieldAddress(R0, target::String::length_offset())); | 
 |   __ cmp(R1, Operand(R2)); | 
 |   __ b(normal_ir_body, CS);  // Runtime throws exception. | 
 |  | 
 |   __ CompareClassId(R0, kOneByteStringCid, R3); | 
 |   __ b(&try_two_byte_string, NE); | 
 |   __ SmiUntag(R1); | 
 |   __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); | 
 |   __ ldrb(R1, Address(R0, R1)); | 
 |   __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); | 
 |   __ b(normal_ir_body, GE); | 
 |   __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); | 
 |   __ AddImmediate( | 
 |       R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); | 
 |   __ ldr(R0, Address(R0, R1, LSL, 2)); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(&try_two_byte_string); | 
 |   __ CompareClassId(R0, kTwoByteStringCid, R3); | 
 |   __ b(normal_ir_body, NE); | 
 |   ASSERT(kSmiTagShift == 1); | 
 |   __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); | 
 |   __ ldrh(R1, Address(R0, R1)); | 
 |   __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); | 
 |   __ b(normal_ir_body, GE); | 
 |   __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); | 
 |   __ AddImmediate( | 
 |       R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); | 
 |   __ ldr(R0, Address(R0, R1, LSL, 2)); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, | 
 |                                         Label* normal_ir_body) { | 
 |   __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
 |   __ ldr(R0, FieldAddress(R0, target::String::length_offset())); | 
 |   __ cmp(R0, Operand(target::ToRawSmi(0))); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject()), EQ); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject()), NE); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, | 
 |                                                 Label* normal_ir_body) { | 
 |   __ ldr(R1, Address(SP, 0 * target::kWordSize)); | 
 |   __ ldr(R0, FieldAddress(R1, target::String::hash_offset())); | 
 |   __ cmp(R0, Operand(0)); | 
 |   READS_RETURN_ADDRESS_FROM_LR(__ bx(LR, NE));  // Return if already computed. | 
 |  | 
 |   __ ldr(R2, FieldAddress(R1, target::String::length_offset())); | 
 |  | 
 |   Label done; | 
 |   // If the string is empty, set the hash to 1, and return. | 
 |   __ cmp(R2, Operand(target::ToRawSmi(0))); | 
 |   __ b(&done, EQ); | 
 |  | 
 |   __ SmiUntag(R2); | 
 |   __ mov(R3, Operand(0)); | 
 |   __ AddImmediate(R8, R1, | 
 |                   target::OneByteString::data_offset() - kHeapObjectTag); | 
 |   // R1: Instance of OneByteString. | 
 |   // R2: String length, untagged integer. | 
 |   // R3: Loop counter, untagged integer. | 
 |   // R8: String data. | 
 |   // R0: Hash code, untagged integer. | 
 |  | 
 |   Label loop; | 
 |   // Add to hash code: (hash_ is uint32) | 
 |   // hash_ += ch; | 
 |   // hash_ += hash_ << 10; | 
 |   // hash_ ^= hash_ >> 6; | 
 |   // Get one characters (ch). | 
 |   __ Bind(&loop); | 
 |   __ ldrb(TMP, Address(R8, 0)); | 
 |   // TMP: ch. | 
 |   __ add(R3, R3, Operand(1)); | 
 |   __ add(R8, R8, Operand(1)); | 
 |   __ add(R0, R0, Operand(TMP)); | 
 |   __ add(R0, R0, Operand(R0, LSL, 10)); | 
 |   __ eor(R0, R0, Operand(R0, LSR, 6)); | 
 |   __ cmp(R3, Operand(R2)); | 
 |   __ b(&loop, NE); | 
 |  | 
 |   // Finalize. | 
 |   // hash_ += hash_ << 3; | 
 |   // hash_ ^= hash_ >> 11; | 
 |   // hash_ += hash_ << 15; | 
 |   __ add(R0, R0, Operand(R0, LSL, 3)); | 
 |   __ eor(R0, R0, Operand(R0, LSR, 11)); | 
 |   __ add(R0, R0, Operand(R0, LSL, 15)); | 
 |   // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); | 
 |   __ LoadImmediate(R2, | 
 |                    (static_cast<intptr_t>(1) << target::String::kHashBits) - 1); | 
 |   __ and_(R0, R0, Operand(R2)); | 
 |   __ cmp(R0, Operand(0)); | 
 |   // return hash_ == 0 ? 1 : hash_; | 
 |   __ Bind(&done); | 
 |   __ mov(R0, Operand(1), EQ); | 
 |   __ SmiTag(R0); | 
 |   __ StoreIntoSmiField(FieldAddress(R1, target::String::hash_offset()), R0); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | // Allocates a _OneByteString or _TwoByteString. The content is not initialized. | 
 | // 'length-reg' (R2) contains the desired length as a _Smi or _Mint. | 
 | // Returns new string as tagged pointer in R0. | 
 | static void TryAllocateString(Assembler* assembler, | 
 |                               classid_t cid, | 
 |                               Label* ok, | 
 |                               Label* failure) { | 
 |   ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); | 
 |   const Register length_reg = R2; | 
 |   // _Mint length: call to runtime to produce error. | 
 |   __ BranchIfNotSmi(length_reg, failure); | 
 |   // Negative length: call to runtime to produce error. | 
 |   __ cmp(length_reg, Operand(0)); | 
 |   __ b(failure, LT); | 
 |  | 
 |   NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, failure, R0)); | 
 |   __ mov(R8, Operand(length_reg));  // Save the length register. | 
 |   if (cid == kOneByteStringCid) { | 
 |     __ SmiUntag(length_reg); | 
 |   } else { | 
 |     // Untag length and multiply by element size -> no-op. | 
 |   } | 
 |   const intptr_t fixed_size_plus_alignment_padding = | 
 |       target::String::InstanceSize() + | 
 |       target::ObjectAlignment::kObjectAlignment - 1; | 
 |   __ AddImmediate(length_reg, fixed_size_plus_alignment_padding); | 
 |   __ bic(length_reg, length_reg, | 
 |          Operand(target::ObjectAlignment::kObjectAlignment - 1)); | 
 |  | 
 |   __ ldr(R0, Address(THR, target::Thread::top_offset())); | 
 |  | 
 |   // length_reg: allocation size. | 
 |   __ adds(R1, R0, Operand(length_reg)); | 
 |   __ b(failure, CS);  // Fail on unsigned overflow. | 
 |  | 
 |   // Check if the allocation fits into the remaining space. | 
 |   // R0: potential new object start. | 
 |   // R1: potential next object start. | 
 |   // R2: allocation size. | 
 |   __ ldr(TMP, Address(THR, target::Thread::end_offset())); | 
 |   __ cmp(R1, Operand(TMP)); | 
 |   __ b(failure, CS); | 
 |  | 
 |   // Successfully allocated the object(s), now update top to point to | 
 |   // next object start and initialize the object. | 
 |   __ str(R1, Address(THR, target::Thread::top_offset())); | 
 |   __ AddImmediate(R0, kHeapObjectTag); | 
 |  | 
 |   // Initialize the tags. | 
 |   // R0: new object start as a tagged pointer. | 
 |   // R1: new object end address. | 
 |   // R2: allocation size. | 
 |   { | 
 |     const intptr_t shift = target::UntaggedObject::kTagBitsSizeTagPos - | 
 |                            target::ObjectAlignment::kObjectAlignmentLog2; | 
 |  | 
 |     __ CompareImmediate(R2, target::UntaggedObject::kSizeTagMaxSizeTag); | 
 |     __ mov(R3, Operand(R2, LSL, shift), LS); | 
 |     __ mov(R3, Operand(0), HI); | 
 |  | 
 |     // Get the class index and insert it into the tags. | 
 |     // R3: size and bit tags. | 
 |     const uword tags = | 
 |         target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); | 
 |     __ LoadImmediate(TMP, tags); | 
 |     __ orr(R3, R3, Operand(TMP)); | 
 |     __ str(R3, FieldAddress(R0, target::Object::tags_offset()));  // Store tags. | 
 |   } | 
 |  | 
 |   // Set the length field using the saved length (R8). | 
 |   __ StoreIntoObjectNoBarrier( | 
 |       R0, FieldAddress(R0, target::String::length_offset()), R8); | 
 |   // Clear hash. | 
 |   __ LoadImmediate(TMP, 0); | 
 |   __ StoreIntoObjectNoBarrier( | 
 |       R0, FieldAddress(R0, target::String::hash_offset()), TMP); | 
 |  | 
 |   __ b(ok); | 
 | } | 
 |  | 
 | // Arg0: OneByteString (receiver). | 
 | // Arg1: Start index as Smi. | 
 | // Arg2: End index as Smi. | 
 | // The indexes must be valid. | 
 | void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, | 
 |                                                        Label* normal_ir_body) { | 
 |   const intptr_t kStringOffset = 2 * target::kWordSize; | 
 |   const intptr_t kStartIndexOffset = 1 * target::kWordSize; | 
 |   const intptr_t kEndIndexOffset = 0 * target::kWordSize; | 
 |   Label ok; | 
 |  | 
 |   __ ldr(R2, Address(SP, kEndIndexOffset)); | 
 |   __ ldr(TMP, Address(SP, kStartIndexOffset)); | 
 |   __ orr(R3, R2, Operand(TMP)); | 
 |   __ tst(R3, Operand(kSmiTagMask)); | 
 |   __ b(normal_ir_body, NE);  // 'start', 'end' not Smi. | 
 |  | 
 |   __ sub(R2, R2, Operand(TMP)); | 
 |   TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); | 
 |   __ Bind(&ok); | 
 |   // R0: new string as tagged pointer. | 
 |   // Copy string. | 
 |   __ ldr(R3, Address(SP, kStringOffset)); | 
 |   __ ldr(R1, Address(SP, kStartIndexOffset)); | 
 |   __ SmiUntag(R1); | 
 |   __ add(R3, R3, Operand(R1)); | 
 |   // Calculate start address and untag (- 1). | 
 |   __ AddImmediate(R3, target::OneByteString::data_offset() - 1); | 
 |  | 
 |   // R3: Start address to copy from (untagged). | 
 |   // R1: Untagged start index. | 
 |   __ ldr(R2, Address(SP, kEndIndexOffset)); | 
 |   __ SmiUntag(R2); | 
 |   __ sub(R2, R2, Operand(R1)); | 
 |  | 
 |   // R3: Start address to copy from (untagged). | 
 |   // R2: Untagged number of bytes to copy. | 
 |   // R0: Tagged result string. | 
 |   // R8: Pointer into R3. | 
 |   // R1: Pointer into R0. | 
 |   // TMP: Scratch register. | 
 |   Label loop, done; | 
 |   __ cmp(R2, Operand(0)); | 
 |   __ b(&done, LE); | 
 |   __ mov(R8, Operand(R3)); | 
 |   __ mov(R1, Operand(R0)); | 
 |   __ Bind(&loop); | 
 |   __ ldrb(TMP, Address(R8, 1, Address::PostIndex)); | 
 |   __ sub(R2, R2, Operand(1)); | 
 |   __ cmp(R2, Operand(0)); | 
 |   __ strb(TMP, FieldAddress(R1, target::OneByteString::data_offset())); | 
 |   __ add(R1, R1, Operand(1)); | 
 |   __ b(&loop, GT); | 
 |  | 
 |   __ Bind(&done); | 
 |   __ Ret(); | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, | 
 |                                              Label* normal_ir_body) { | 
 |   __ ldr(R2, Address(SP, 0 * target::kWordSize));  // Value. | 
 |   __ ldr(R1, Address(SP, 1 * target::kWordSize));  // Index. | 
 |   __ ldr(R0, Address(SP, 2 * target::kWordSize));  // OneByteString. | 
 |   __ SmiUntag(R1); | 
 |   __ SmiUntag(R2); | 
 |   __ AddImmediate(R3, R0, | 
 |                   target::OneByteString::data_offset() - kHeapObjectTag); | 
 |   __ strb(R2, Address(R3, R1)); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, | 
 |                                              Label* normal_ir_body) { | 
 |   __ ldr(R2, Address(SP, 0 * target::kWordSize));  // Value. | 
 |   __ ldr(R1, Address(SP, 1 * target::kWordSize));  // Index. | 
 |   __ ldr(R0, Address(SP, 2 * target::kWordSize));  // TwoByteString. | 
 |   // Untag index and multiply by element size -> no-op. | 
 |   __ SmiUntag(R2); | 
 |   __ AddImmediate(R3, R0, | 
 |                   target::TwoByteString::data_offset() - kHeapObjectTag); | 
 |   __ strh(R2, Address(R3, R1)); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, | 
 |                                             Label* normal_ir_body) { | 
 |   __ ldr(R2, Address(SP, 0 * target::kWordSize));  // Length. | 
 |   Label ok; | 
 |   TryAllocateString(assembler, kOneByteStringCid, &ok, normal_ir_body); | 
 |  | 
 |   __ Bind(&ok); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, | 
 |                                             Label* normal_ir_body) { | 
 |   __ ldr(R2, Address(SP, 0 * target::kWordSize));  // Length. | 
 |   Label ok; | 
 |   TryAllocateString(assembler, kTwoByteStringCid, &ok, normal_ir_body); | 
 |  | 
 |   __ Bind(&ok); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). | 
 | static void StringEquality(Assembler* assembler, | 
 |                            Label* normal_ir_body, | 
 |                            intptr_t string_cid) { | 
 |   Label is_true, is_false, loop; | 
 |   __ ldr(R0, Address(SP, 1 * target::kWordSize));  // This. | 
 |   __ ldr(R1, Address(SP, 0 * target::kWordSize));  // Other. | 
 |  | 
 |   // Are identical? | 
 |   __ cmp(R0, Operand(R1)); | 
 |   __ b(&is_true, EQ); | 
 |  | 
 |   // Is other OneByteString? | 
 |   __ tst(R1, Operand(kSmiTagMask)); | 
 |   __ b(normal_ir_body, EQ); | 
 |   __ CompareClassId(R1, string_cid, R2); | 
 |   __ b(normal_ir_body, NE); | 
 |  | 
 |   // Have same length? | 
 |   __ ldr(R2, FieldAddress(R0, target::String::length_offset())); | 
 |   __ ldr(R3, FieldAddress(R1, target::String::length_offset())); | 
 |   __ cmp(R2, Operand(R3)); | 
 |   __ b(&is_false, NE); | 
 |  | 
 |   // Check contents, no fall-through possible. | 
 |   // TODO(zra): try out other sequences. | 
 |   ASSERT((string_cid == kOneByteStringCid) || | 
 |          (string_cid == kTwoByteStringCid)); | 
 |   const intptr_t offset = (string_cid == kOneByteStringCid) | 
 |                               ? target::OneByteString::data_offset() | 
 |                               : target::TwoByteString::data_offset(); | 
 |   __ AddImmediate(R0, offset - kHeapObjectTag); | 
 |   __ AddImmediate(R1, offset - kHeapObjectTag); | 
 |   __ SmiUntag(R2); | 
 |   __ Bind(&loop); | 
 |   __ AddImmediate(R2, -1); | 
 |   __ cmp(R2, Operand(0)); | 
 |   __ b(&is_true, LT); | 
 |   if (string_cid == kOneByteStringCid) { | 
 |     __ ldrb(R3, Address(R0)); | 
 |     __ ldrb(R4, Address(R1)); | 
 |     __ AddImmediate(R0, 1); | 
 |     __ AddImmediate(R1, 1); | 
 |   } else if (string_cid == kTwoByteStringCid) { | 
 |     __ ldrh(R3, Address(R0)); | 
 |     __ ldrh(R4, Address(R1)); | 
 |     __ AddImmediate(R0, 2); | 
 |     __ AddImmediate(R1, 2); | 
 |   } else { | 
 |     UNIMPLEMENTED(); | 
 |   } | 
 |   __ cmp(R3, Operand(R4)); | 
 |   __ b(&is_false, NE); | 
 |   __ b(&loop); | 
 |  | 
 |   __ Bind(&is_true); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(&is_false); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   __ Ret(); | 
 |  | 
 |   __ Bind(normal_ir_body); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, | 
 |                                              Label* normal_ir_body) { | 
 |   StringEquality(assembler, normal_ir_body, kOneByteStringCid); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, | 
 |                                              Label* normal_ir_body) { | 
 |   StringEquality(assembler, normal_ir_body, kTwoByteStringCid); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, | 
 |                                                    Label* normal_ir_body, | 
 |                                                    bool sticky) { | 
 |   if (FLAG_interpret_irregexp) return; | 
 |  | 
 |   static const intptr_t kRegExpParamOffset = 2 * target::kWordSize; | 
 |   static const intptr_t kStringParamOffset = 1 * target::kWordSize; | 
 |   // start_index smi is located at offset 0. | 
 |  | 
 |   // Incoming registers: | 
 |   // R0: Function. (Will be reloaded with the specialized matcher function.) | 
 |   // R4: Arguments descriptor. (Will be preserved.) | 
 |   // R9: Unknown. (Must be GC safe on tail call.) | 
 |  | 
 |   // Load the specialized function pointer into R0. Leverage the fact the | 
 |   // string CIDs as well as stored function pointers are in sequence. | 
 |   __ ldr(R2, Address(SP, kRegExpParamOffset)); | 
 |   __ ldr(R1, Address(SP, kStringParamOffset)); | 
 |   __ LoadClassId(R1, R1); | 
 |   __ AddImmediate(R1, -kOneByteStringCid); | 
 |   __ add(R1, R2, Operand(R1, LSL, target::kWordSizeLog2)); | 
 |   __ ldr(FUNCTION_REG, FieldAddress(R1, target::RegExp::function_offset( | 
 |                                             kOneByteStringCid, sticky))); | 
 |  | 
 |   // Registers are now set up for the lazy compile stub. It expects the function | 
 |   // in R0, the argument descriptor in R4, and IC-Data in R9. | 
 |   __ eor(R9, R9, Operand(R9)); | 
 |  | 
 |   // Tail-call the function. | 
 |   __ ldr(CODE_REG, FieldAddress(FUNCTION_REG, target::Function::code_offset())); | 
 |   __ Branch(FieldAddress(FUNCTION_REG, target::Function::entry_point_offset())); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, | 
 |                                          Label* normal_ir_body) { | 
 |   __ LoadIsolate(R0); | 
 |   __ ldr(R0, Address(R0, target::Isolate::default_tag_offset())); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, | 
 |                                              Label* normal_ir_body) { | 
 |   __ LoadIsolate(R0); | 
 |   __ ldr(R0, Address(R0, target::Isolate::current_tag_offset())); | 
 |   __ Ret(); | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, | 
 |                                                    Label* normal_ir_body) { | 
 | #if !defined(SUPPORT_TIMELINE) | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
 |   __ Ret(); | 
 | #else | 
 |   // Load TimelineStream*. | 
 |   __ ldr(R0, Address(THR, target::Thread::dart_stream_offset())); | 
 |   // Load uintptr_t from TimelineStream*. | 
 |   __ ldr(R0, Address(R0, target::TimelineStream::enabled_offset())); | 
 |   __ cmp(R0, Operand(0)); | 
 |   __ LoadObject(R0, CastHandle<Object>(TrueObject()), NE); | 
 |   __ LoadObject(R0, CastHandle<Object>(FalseObject()), EQ); | 
 |   __ Ret(); | 
 | #endif | 
 | } | 
 |  | 
 | void AsmIntrinsifier::Timeline_getNextTaskId(Assembler* assembler, | 
 |                                              Label* normal_ir_body) { | 
 | #if !defined(SUPPORT_TIMELINE) | 
 |   __ LoadImmediate(R0, target::ToRawSmi(0)); | 
 |   __ Ret(); | 
 | #else | 
 |   __ ldr(R1, Address(THR, target::Thread::next_task_id_offset())); | 
 |   __ ldr(R2, Address(THR, target::Thread::next_task_id_offset() + 4)); | 
 |   __ SmiTag(R0, R1);  // Ignore loss of precision. | 
 |   __ adds(R1, R1, Operand(1)); | 
 |   __ adcs(R2, R2, Operand(0)); | 
 |   __ str(R1, Address(THR, target::Thread::next_task_id_offset())); | 
 |   __ str(R2, Address(THR, target::Thread::next_task_id_offset() + 4)); | 
 |   __ Ret(); | 
 | #endif | 
 | } | 
 |  | 
 | #undef __ | 
 |  | 
 | }  // namespace compiler | 
 | }  // namespace dart | 
 |  | 
 | #endif  // defined(TARGET_ARCH_ARM) |