blob: 5478553778d84b880e11b92c90202b196d904670 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_LINUX) || \
defined(DART_HOST_OS_MACOS)
#include "vm/virtual_memory.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <unistd.h>
#if defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_LINUX)
#include <sys/prctl.h>
#endif
#if defined(DART_HOST_OS_MACOS)
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#endif
#include "platform/assert.h"
#include "platform/utils.h"
#include "vm/heap/pages.h"
#include "vm/isolate.h"
#include "vm/virtual_memory_compressed.h"
// #define VIRTUAL_MEMORY_LOGGING 1
#if defined(VIRTUAL_MEMORY_LOGGING)
#define LOG_INFO(msg, ...) OS::PrintErr(msg, ##__VA_ARGS__)
#else
#define LOG_INFO(msg, ...)
#endif // defined(VIRTUAL_MEMORY_LOGGING)
namespace dart {
// standard MAP_FAILED causes "error: use of old-style cast" as it
// defines MAP_FAILED as ((void *) -1)
#undef MAP_FAILED
#define MAP_FAILED reinterpret_cast<void*>(-1)
#if defined(DART_HOST_OS_IOS)
#define LARGE_RESERVATIONS_MAY_FAIL
#endif
DECLARE_FLAG(bool, write_protect_code);
#if defined(DART_HOST_OS_MACOS)
// For testing on Mac OS.
DEFINE_FLAG(bool,
force_dual_mapping_of_code_pages,
false,
"Force dual mapping of RX pages");
#endif
#if defined(DART_TARGET_OS_LINUX)
DECLARE_FLAG(bool, generate_perf_events_symbols);
DECLARE_FLAG(bool, generate_perf_jitdump);
#endif
uword VirtualMemory::page_size_ = 0;
VirtualMemory* VirtualMemory::compressed_heap_ = nullptr;
#if defined(DART_HOST_OS_IOS) && !defined(DART_PRECOMPILED_RUNTIME)
bool VirtualMemory::notify_debugger_about_rx_pages_ = false;
#endif
#if defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
bool VirtualMemory::should_dual_map_executable_pages_ = false;
#endif // defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
static void* Map(void* addr,
size_t length,
int prot,
int flags,
int fd,
off_t offset) {
void* result = mmap(addr, length, prot, flags, fd, offset);
int error = errno;
LOG_INFO("mmap(%p, 0x%" Px ", %u, ...): %p\n", addr, length, prot, result);
if ((result == MAP_FAILED) && (error != ENOMEM)) {
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("mmap failed: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
return result;
}
static void Unmap(uword start, uword end) {
ASSERT(start <= end);
uword size = end - start;
if (size == 0) {
return;
}
if (munmap(reinterpret_cast<void*>(start), size) != 0) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("munmap failed: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
}
static void* GenericMapAligned(void* hint,
int prot,
intptr_t size,
intptr_t alignment,
intptr_t allocated_size,
int map_flags) {
void* address = Map(hint, allocated_size, prot, map_flags, -1, 0);
if (address == MAP_FAILED) {
return nullptr;
}
const uword base = reinterpret_cast<uword>(address);
const uword aligned_base = Utils::RoundUp(base, alignment);
Unmap(base, aligned_base);
Unmap(aligned_base + size, base + allocated_size);
return reinterpret_cast<void*>(aligned_base);
}
intptr_t VirtualMemory::CalculatePageSize() {
const intptr_t page_size = getpagesize();
ASSERT(page_size != 0);
ASSERT(Utils::IsPowerOfTwo(page_size));
return page_size;
}
#if defined(DART_COMPRESSED_POINTERS) && defined(LARGE_RESERVATIONS_MAY_FAIL)
// Truncate to the largest subregion in [region] that doesn't cross an
// [alignment] boundary.
static MemoryRegion ClipToAlignedRegion(MemoryRegion region, size_t alignment) {
uword base = region.start();
uword aligned_base = Utils::RoundUp(base, alignment);
uword size_below =
region.end() >= aligned_base ? aligned_base - base : region.size();
uword size_above =
region.end() >= aligned_base ? region.end() - aligned_base : 0;
ASSERT(size_below + size_above == region.size());
if (size_below >= size_above) {
Unmap(aligned_base, aligned_base + size_above);
return MemoryRegion(reinterpret_cast<void*>(base), size_below);
}
Unmap(base, base + size_below);
if (size_above > alignment) {
Unmap(aligned_base + alignment, aligned_base + size_above);
size_above = alignment;
}
return MemoryRegion(reinterpret_cast<void*>(aligned_base), size_above);
}
#endif // LARGE_RESERVATIONS_MAY_FAIL
#if defined(DART_HOST_OS_IOS) && !defined(DART_PRECOMPILED_RUNTIME)
// The function NOTIFY_DEBUGGER_ABOUT_RX_PAGES is a hook point for the debugger.
//
// We expect that LLBD is configured to intercept calls to this function and
// takes care of writing into all pages covered by [base, base+size) address
// range.
//
// For example, you can define the following Python helper script:
//
// ```python
// # rx_helper.py
// import lldb
//
// def handle_new_rx_page(frame: lldb.SBFrame, bp_loc, extra_args, intern_dict):
// """Intercept NOTIFY_DEBUGGER_ABOUT_RX_PAGES and touch the pages."""
// base = frame.register["x0"].GetValueAsAddress()
// page_len = frame.register["x1"].GetValueAsUnsigned()
// # Note: NOTIFY_DEBUGGER_ABOUT_RX_PAGES will check contents of the
// # first page to see if handled it correctly. This makes diagnosing
// # misconfiguration (e.g. missing breakpoint) easier.
// data = bytearray(page_len)
// data[0:8] = b'IHELPED!';
// error = lldb.SBError()
// frame.GetThread().GetProcess().WriteMemory(base, data, error)
// if not error.Success():
// print(f'Failed to write into {base}[+{page_len}]', error)
// return
//
// def __lldb_init_module(debugger: lldb.SBDebugger, _):
// target = debugger.GetDummyTarget()
// # Caveat: must use BreakpointCreateByRegEx here and not
// # BreakpointCreateByName. For some reasons callback function does not
// # get carried over from dummy target for the later.
// bp = target.bpCreateByRegex("^NOTIFY_DEBUGGER_ABOUT_RX_PAGES$")
// bp.SetScriptCallbackFunction('{}.handle_new_rx_page'.format(__name__))
// bp.SetAutoContinue(True)
// print("-- LLDB integration loaded --")
// ```
//
// Which is then imported into LLDB via `.lldbinit` script:
//
// ```
// # .lldbinit
// command script import --relative-to-command-file rx_helper.py
// ```
//
// XCode allows configuring custom LLDB Init Files: see Product -> Scheme ->
// Run -> Info -> LLDB Init File, you can use `$(SRCROOT)/...` to place LLDB
// script inside project directory itself.
//
__attribute__((noinline)) __attribute__((visibility("default"))) extern "C" void
NOTIFY_DEBUGGER_ABOUT_RX_PAGES(void* base, size_t size) {
// Note: need this to prevent LLVM from optimizing it away even with
// noinline.
asm volatile("" ::"r"(base), "r"(size) : "memory");
}
namespace {
bool CheckIfNeedDebuggerHelpWithRX() {
// Do not expect any problems before iOS 18.4.
if (!IsAtLeastIOS18_4()) {
return false;
}
if (!FLAG_write_protect_code) {
FATAL("Must run with --write-protect-code on this OS");
}
// Helper to check if RX->RW->RX->RW->RX flip works, with and without
// debugger assistance.
const auto does_rx_rw_rx_flip_work = [](bool notify_debugger) {
const intptr_t size = VirtualMemory::PageSize();
void* page = Map(NULL, size, PROT_READ | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (page == MAP_FAILED) {
FATAL("Failed to map a test RX page (ENOMEM)");
}
if (notify_debugger) {
NOTIFY_DEBUGGER_ABOUT_RX_PAGES(page, size);
if (strncmp(reinterpret_cast<const char*>(page), "IHELPED!", 8) != 0) {
FATAL("NOTIFY_DEBUGGER_ABOUT_RX_PAGES was not intercepted as expected");
}
}
bool failed_to_return_to_rx = false;
// Need to try twice: the first RW->RX flip might work, some lazy checking
// is involved.
for (intptr_t i = 0; i < 2; i++) {
// Do not expect this one to fail.
VirtualMemory::Protect(page, size, VirtualMemory::kReadWrite);
reinterpret_cast<int64_t*>(page)[i] = kBreakInstructionFiller;
// This one might fail so we call mprotect directly and check if
// it failed.
if (mprotect(page, size, PROT_READ | PROT_EXEC) != 0) {
failed_to_return_to_rx = true;
}
}
munmap(page, size);
return !failed_to_return_to_rx;
};
// First try without debugger assistance.
if (does_rx_rw_rx_flip_work(/*notify_debugger=*/false)) {
return false; // All works.
}
// RX->RW->RX->RW->RX does not seem to work. Try asking debugger for help.
if (!does_rx_rw_rx_flip_work(/*notify_debugger=*/true)) {
FATAL("Unable to flip between RX and RW memory protection on pages");
}
return true; // Debugger can help us.
}
} // namespace
#endif
void VirtualMemory::Init() {
if (FLAG_old_gen_heap_size < 0 || FLAG_old_gen_heap_size > kMaxAddrSpaceMB) {
OS::PrintErr(
"warning: value specified for --old_gen_heap_size %d is larger than"
" the physically addressable range, using 0(unlimited) instead.`\n",
FLAG_old_gen_heap_size);
FLAG_old_gen_heap_size = 0;
}
if (FLAG_new_gen_semi_max_size < 0 ||
FLAG_new_gen_semi_max_size > kMaxAddrSpaceMB) {
OS::PrintErr(
"warning: value specified for --new_gen_semi_max_size %d is larger"
" than the physically addressable range, using %" Pd " instead.`\n",
FLAG_new_gen_semi_max_size, kDefaultNewGenSemiMaxSize);
FLAG_new_gen_semi_max_size = kDefaultNewGenSemiMaxSize;
}
page_size_ = CalculatePageSize();
#if defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
if (FLAG_force_dual_mapping_of_code_pages) {
should_dual_map_executable_pages_ = true;
}
#endif // defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
#if defined(DART_HOST_OS_IOS) && !defined(DART_PRECOMPILED_RUNTIME)
if (IsAtLeastIOS26_0()) {
// Ideally we would want to test if dual mapping works or not and give a
// meaningful error message (i.e. assembling and then calling a simple
// function and then catching a SIGBUG signal if that fails). However
// setting signal handler does not prevent debugger from breaking on
// exception. It is possible to use Mach exception ports to suppress
// exception EXC_BAD_ACCESS from reaching the debugger but required
// code is rather complicated - so we simply turn dual mapping on
// and expect it to work.
should_dual_map_executable_pages_ = true;
} else {
notify_debugger_about_rx_pages_ = CheckIfNeedDebuggerHelpWithRX();
}
#endif
#if defined(DART_COMPRESSED_POINTERS)
ASSERT(compressed_heap_ == nullptr);
#if defined(LARGE_RESERVATIONS_MAY_FAIL)
// Try to reserve a region for the compressed heap by requesting decreasing
// powers-of-two until one succeeds, and use the largest subregion that does
// not cross a 4GB boundary. The subregion itself is not necessarily
// 4GB-aligned.
for (size_t allocated_size = kCompressedHeapSize + kCompressedHeapAlignment;
allocated_size >= kCompressedPageSize; allocated_size >>= 1) {
void* address = GenericMapAligned(
nullptr, PROT_NONE, allocated_size, kCompressedPageSize,
allocated_size + kCompressedPageSize,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE);
if (address == nullptr) continue;
MemoryRegion region(address, allocated_size);
region = ClipToAlignedRegion(region, kCompressedHeapAlignment);
compressed_heap_ = new VirtualMemory(region, region);
break;
}
#else
compressed_heap_ = Reserve(kCompressedHeapSize, kCompressedHeapAlignment);
#endif
if (compressed_heap_ == nullptr) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("Failed to reserve region for compressed heap: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
VirtualMemoryCompressedHeap::Init(compressed_heap_->address(),
compressed_heap_->size());
#endif // defined(DART_COMPRESSED_POINTERS)
#if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_ANDROID)
FILE* fp = fopen("/proc/sys/vm/max_map_count", "r");
if (fp != nullptr) {
size_t max_map_count = 0;
int count = fscanf(fp, "%zu", &max_map_count);
fclose(fp);
if (count == 1) {
size_t max_heap_pages = FLAG_old_gen_heap_size * MB / kPageSize;
if (max_map_count < max_heap_pages) {
OS::PrintErr(
"warning: vm.max_map_count (%zu) is not large enough to support "
"--old_gen_heap_size=%d. Consider increasing it with `sysctl -w "
"vm.max_map_count=%zu`\n",
max_map_count, FLAG_old_gen_heap_size, max_heap_pages);
}
}
}
#endif
}
void VirtualMemory::Cleanup() {
#if defined(DART_COMPRESSED_POINTERS)
delete compressed_heap_;
#endif // defined(DART_COMPRESSED_POINTERS)
page_size_ = 0;
#if defined(DART_COMPRESSED_POINTERS)
compressed_heap_ = nullptr;
VirtualMemoryCompressedHeap::Cleanup();
#endif // defined(DART_COMPRESSED_POINTERS)
}
VirtualMemory* VirtualMemory::AllocateAligned(intptr_t size,
intptr_t alignment,
bool is_executable,
bool is_compressed,
const char* name) {
// When FLAG_write_protect_code is active, code memory (indicated by
// is_executable = true) is allocated as non-executable and later
// changed to executable via VirtualMemory::Protect.
ASSERT(Utils::IsAligned(size, PageSize()));
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(Utils::IsAligned(alignment, PageSize()));
ASSERT(name != nullptr);
#if defined(DART_COMPRESSED_POINTERS)
if (is_compressed) {
RELEASE_ASSERT(!is_executable);
MemoryRegion region =
VirtualMemoryCompressedHeap::Allocate(size, alignment);
if (region.pointer() == nullptr) {
#if defined(LARGE_RESERVATIONS_MAY_FAIL)
// Try a fresh allocation and hope it ends up in the right region. On
// macOS/iOS, this works surprisingly often.
void* address =
GenericMapAligned(nullptr, PROT_READ | PROT_WRITE, size, alignment,
size + alignment, MAP_PRIVATE | MAP_ANONYMOUS);
if (address != nullptr) {
uword ok_start = Utils::RoundDown(compressed_heap_->start(),
kCompressedHeapAlignment);
uword ok_end = ok_start + kCompressedHeapSize;
uword start = reinterpret_cast<uword>(address);
uword end = start + size;
if ((start >= ok_start) && (end <= ok_end)) {
MemoryRegion region(address, size);
return new VirtualMemory(region, region);
}
munmap(address, size);
}
#endif
return nullptr;
}
Commit(region.pointer(), region.size());
return new VirtualMemory(region, region);
}
#endif // defined(DART_COMPRESSED_POINTERS)
const intptr_t allocated_size = size + alignment - PageSize();
#if defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
#if defined(DART_HOST_OS_IOS)
const bool notify_debugger_about_rx_pages = notify_debugger_about_rx_pages_;
#else
const bool notify_debugger_about_rx_pages = false;
#endif
// We need to map the original page using RX for dual mapping to have
// effect on iOS.
const int prot = (is_executable && (notify_debugger_about_rx_pages ||
should_dual_map_executable_pages_))
? PROT_READ | PROT_EXEC
: PROT_READ | PROT_WRITE;
#else
const int prot =
PROT_READ | PROT_WRITE |
((is_executable && !FLAG_write_protect_code) ? PROT_EXEC : 0);
#endif
int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
#if (defined(DART_HOST_OS_MACOS) && !defined(DART_HOST_OS_IOS))
if (is_executable && IsAtLeastMacOSX10_14() &&
!ShouldDualMapExecutablePages()) {
map_flags |= MAP_JIT;
}
#endif // defined(DART_HOST_OS_MACOS)
void* hint = nullptr;
// Some 64-bit microarchitectures store only the low 32-bits of targets as
// part of indirect branch prediction, predicting that the target's upper bits
// will be same as the call instruction's address. This leads to misprediction
// for indirect calls crossing a 4GB boundary. We ask mmap to place our
// generated code near the VM binary to avoid this.
if (is_executable) {
hint = reinterpret_cast<void*>(&Dart_Initialize);
}
void* address =
GenericMapAligned(hint, prot, size, alignment, allocated_size, map_flags);
#if defined(DART_HOST_OS_LINUX)
// On WSL 1 trying to allocate memory close to the binary by supplying a hint
// fails with ENOMEM for unclear reason. Some reports suggest that this might
// be related to the alignment of the hint but aligning it by 64Kb does not
// make the issue go away in our experiments. Instead just retry without any
// hint.
if (address == nullptr && hint != nullptr &&
Utils::IsWindowsSubsystemForLinux()) {
address = GenericMapAligned(nullptr, prot, size, alignment, allocated_size,
map_flags);
}
#endif
if (address == nullptr) {
return nullptr;
}
#if defined(DART_HOST_OS_IOS) && !defined(DART_PRECOMPILED_RUNTIME)
if (is_executable && notify_debugger_about_rx_pages_) {
NOTIFY_DEBUGGER_ABOUT_RX_PAGES(reinterpret_cast<void*>(address), size);
// Once debugger is notified we can flip RX to RW without loosing
// ability to flip back to RX.
Protect(address, size, kReadWrite);
}
#endif
#if defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
if (is_executable && should_dual_map_executable_pages_) {
// |address| is mapped RX, create a corresponding RW alias through which
// we will write into the executable mapping.
vm_address_t writable_address = 0;
vm_prot_t cur_protection, max_protection;
const kern_return_t result =
vm_remap(mach_task_self(), &writable_address, size,
/*mask=*/alignment - 1, VM_FLAGS_ANYWHERE, mach_task_self(),
reinterpret_cast<vm_address_t>(address), /*copy=*/FALSE,
&cur_protection, &max_protection, VM_INHERIT_NONE);
if (result != KERN_SUCCESS) {
munmap(address, size);
return nullptr;
}
Protect(reinterpret_cast<void*>(writable_address), size, kReadWrite);
MemoryRegion region(address, size);
MemoryRegion writable_alias(reinterpret_cast<void*>(writable_address),
size);
return new VirtualMemory(writable_alias, region, writable_alias);
}
#endif // defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
#if defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_LINUX)
// PR_SET_VMA was only added to mainline Linux in 5.17, and some versions of
// the Android NDK have incorrect headers, so we manually define it if absent.
#if !defined(PR_SET_VMA)
#define PR_SET_VMA 0x53564d41
#endif
#if !defined(PR_SET_VMA_ANON_NAME)
#define PR_SET_VMA_ANON_NAME 0
#endif
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, address, size, name);
#endif
MemoryRegion region(reinterpret_cast<void*>(address), size);
return new VirtualMemory(region, region);
}
VirtualMemory* VirtualMemory::Reserve(intptr_t size, intptr_t alignment) {
ASSERT(Utils::IsAligned(size, PageSize()));
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(Utils::IsAligned(alignment, PageSize()));
intptr_t allocated_size = size + alignment - PageSize();
void* address =
GenericMapAligned(nullptr, PROT_NONE, size, alignment, allocated_size,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE);
if (address == nullptr) {
return nullptr;
}
MemoryRegion region(address, size);
return new VirtualMemory(region, region);
}
void VirtualMemory::Commit(void* address, intptr_t size) {
ASSERT(Utils::IsAligned(address, PageSize()));
ASSERT(Utils::IsAligned(size, PageSize()));
void* result = mmap(address, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
if (result == MAP_FAILED) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("Failed to commit: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
}
void VirtualMemory::Decommit(void* address, intptr_t size) {
ASSERT(Utils::IsAligned(address, PageSize()));
ASSERT(Utils::IsAligned(size, PageSize()));
void* result =
mmap(address, size, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED, -1, 0);
if (result == MAP_FAILED) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("Failed to decommit: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
}
VirtualMemory::~VirtualMemory() {
#if defined(DART_COMPRESSED_POINTERS)
if (VirtualMemoryCompressedHeap::Contains(reserved_.pointer()) &&
(this != compressed_heap_)) {
Decommit(reserved_.pointer(), reserved_.size());
VirtualMemoryCompressedHeap::Free(reserved_.pointer(), reserved_.size());
return;
}
#endif // defined(DART_COMPRESSED_POINTERS)
if (vm_owns_region()) {
Unmap(reserved_.start(), reserved_.end());
#if defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
if (reserved_.start() != executable_alias_.start()) {
Unmap(executable_alias_.start(), executable_alias_.end());
}
#endif // defined(DART_SUPPORT_DUAL_MAPPING_OF_CODE)
}
}
bool VirtualMemory::FreeSubSegment(void* address, intptr_t size) {
#if defined(DART_COMPRESSED_POINTERS)
// Don't free the sub segment if it's managed by the compressed pointer heap.
if (VirtualMemoryCompressedHeap::Contains(address)) {
return false;
}
#endif // defined(DART_COMPRESSED_POINTERS)
const uword start = reinterpret_cast<uword>(address);
Unmap(start, start + size);
return true;
}
void VirtualMemory::Protect(void* address, intptr_t size, Protection mode) {
#if defined(DEBUG)
Thread* thread = Thread::Current();
ASSERT(thread == nullptr || thread->IsDartMutatorThread() ||
thread->isolate() == nullptr ||
thread->isolate()->mutator_thread()->IsAtSafepoint());
#endif
uword start_address = reinterpret_cast<uword>(address);
uword end_address = start_address + size;
uword page_address = Utils::RoundDown(start_address, PageSize());
int prot = 0;
switch (mode) {
case kNoAccess:
prot = PROT_NONE;
break;
case kReadOnly:
prot = PROT_READ;
break;
case kReadWrite:
prot = PROT_READ | PROT_WRITE;
break;
case kReadExecute:
prot = PROT_READ | PROT_EXEC;
break;
case kReadWriteExecute:
prot = PROT_READ | PROT_WRITE | PROT_EXEC;
break;
}
if (mprotect(reinterpret_cast<void*>(page_address),
end_address - page_address, prot) != 0) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
LOG_INFO("mprotect(0x%" Px ", 0x%" Px ", %u) failed\n", page_address,
end_address - page_address, prot);
FATAL("mprotect failed: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
LOG_INFO("mprotect(0x%" Px ", 0x%" Px ", %u) ok\n", page_address,
end_address - page_address, prot);
}
void VirtualMemory::DontNeed(void* address, intptr_t size) {
uword start_address = reinterpret_cast<uword>(address);
uword end_address = start_address + size;
uword page_address = Utils::RoundDown(start_address, PageSize());
#if defined(DART_HOST_OS_MACOS)
int advice = MADV_FREE;
#else
int advice = MADV_DONTNEED;
#endif
if (madvise(reinterpret_cast<void*>(page_address), end_address - page_address,
advice) != 0) {
int error = errno;
const int kBufferSize = 1024;
char error_buf[kBufferSize];
FATAL("madvise failed: %d (%s)", error,
Utils::StrError(error, error_buf, kBufferSize));
}
}
} // namespace dart
#endif // defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_LINUX) || \
// defined(DART_HOST_OS_MACOS)