| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_X64. |
| #if defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME) |
| |
| #include "vm/compiler/backend/il.h" |
| |
| #include "vm/compiler/backend/flow_graph.h" |
| #include "vm/compiler/backend/flow_graph_compiler.h" |
| #include "vm/compiler/backend/locations.h" |
| #include "vm/compiler/backend/locations_helpers.h" |
| #include "vm/compiler/backend/range_analysis.h" |
| #include "vm/compiler/jit/compiler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/parser.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| #include "vm/symbols.h" |
| #include "vm/type_testing_stubs.h" |
| |
| #define __ compiler->assembler()-> |
| #define Z (compiler->zone()) |
| |
| namespace dart { |
| |
| // Generic summary for call instructions that have all arguments pushed |
| // on the stack and return the result in a fixed register RAX. |
| LocationSummary* Instruction::MakeCallSummary(Zone* zone) { |
| LocationSummary* result = |
| new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall); |
| result->set_out(0, Location::RegisterLocation(RAX)); |
| return result; |
| } |
| |
| DEFINE_BACKEND(LoadIndexedUnsafe, (Register out, Register index)) { |
| ASSERT(instr->RequiredInputRepresentation(0) == kTagged); // It is a Smi. |
| __ movq(out, Address(instr->base_reg(), index, TIMES_4, instr->offset())); |
| |
| ASSERT(kSmiTag == 0); |
| ASSERT(kSmiTagSize == 1); |
| } |
| |
| DEFINE_BACKEND(StoreIndexedUnsafe, |
| (NoLocation, Register index, Register value)) { |
| ASSERT(instr->RequiredInputRepresentation( |
| StoreIndexedUnsafeInstr::kIndexPos) == kTagged); // It is a Smi. |
| __ movq(Address(instr->base_reg(), index, TIMES_4, instr->offset()), value); |
| |
| ASSERT(kSmiTag == 0); |
| ASSERT(kSmiTagSize == 1); |
| } |
| |
| DEFINE_BACKEND(TailCall, (NoLocation, Fixed<Register, ARGS_DESC_REG>)) { |
| __ LoadObject(CODE_REG, instr->code()); |
| __ LeaveDartFrame(); // The arguments are still on the stack. |
| __ jmp(FieldAddress(CODE_REG, Code::entry_point_offset())); |
| |
| // Even though the TailCallInstr will be the last instruction in a basic |
| // block, the flow graph compiler will emit native code for other blocks after |
| // the one containing this instruction and needs to be able to use the pool. |
| // (The `LeaveDartFrame` above disables usages of the pool.) |
| __ set_constant_pool_allowed(true); |
| } |
| |
| LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::AnyOrConstant(value())); |
| return locs; |
| } |
| |
| void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // In SSA mode, we need an explicit push. Nothing to do in non-SSA mode |
| // where PushArgument is handled by BindInstr::EmitNativeCode. |
| if (compiler->is_optimizing()) { |
| Location value = locs()->in(0); |
| if (value.IsRegister()) { |
| __ pushq(value.reg()); |
| } else if (value.IsConstant()) { |
| __ PushObject(value.constant()); |
| } else { |
| ASSERT(value.IsStackSlot()); |
| __ pushq(value.ToStackSlotAddress()); |
| } |
| } |
| } |
| |
| LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| // Attempt optimized compilation at return instruction instead of at the entry. |
| // The entry needs to be patchable, no inlined objects are allowed in the area |
| // that will be overwritten by the patch instruction: a jump). |
| void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register result = locs()->in(0).reg(); |
| ASSERT(result == RAX); |
| |
| if (compiler->intrinsic_mode()) { |
| // Intrinsics don't have a frame. |
| __ ret(); |
| return; |
| } |
| |
| #if defined(DEBUG) |
| __ Comment("Stack Check"); |
| Label done; |
| const intptr_t fp_sp_dist = |
| (compiler_frame_layout.first_local_from_fp + 1 - compiler->StackSize()) * |
| kWordSize; |
| ASSERT(fp_sp_dist <= 0); |
| __ movq(RDI, RSP); |
| __ subq(RDI, RBP); |
| __ CompareImmediate(RDI, Immediate(fp_sp_dist)); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| __ int3(); |
| __ Bind(&done); |
| #endif |
| ASSERT(__ constant_pool_allowed()); |
| __ LeaveDartFrame(); // Disallows constant pool use. |
| __ ret(); |
| // This ReturnInstr may be emitted out of order by the optimizer. The next |
| // block may be a target expecting a properly set constant pool pointer. |
| __ set_constant_pool_allowed(true); |
| } |
| |
| static Condition NegateCondition(Condition condition) { |
| switch (condition) { |
| case EQUAL: |
| return NOT_EQUAL; |
| case NOT_EQUAL: |
| return EQUAL; |
| case LESS: |
| return GREATER_EQUAL; |
| case LESS_EQUAL: |
| return GREATER; |
| case GREATER: |
| return LESS_EQUAL; |
| case GREATER_EQUAL: |
| return LESS; |
| case BELOW: |
| return ABOVE_EQUAL; |
| case BELOW_EQUAL: |
| return ABOVE; |
| case ABOVE: |
| return BELOW_EQUAL; |
| case ABOVE_EQUAL: |
| return BELOW; |
| case PARITY_EVEN: |
| return PARITY_ODD; |
| case PARITY_ODD: |
| return PARITY_EVEN; |
| default: |
| UNIMPLEMENTED(); |
| return EQUAL; |
| } |
| } |
| |
| // Detect pattern when one value is zero and another is a power of 2. |
| static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) { |
| return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) || |
| (Utils::IsPowerOfTwo(v2) && (v1 == 0)); |
| } |
| |
| LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| comparison()->InitializeLocationSummary(zone, opt); |
| // TODO(dartbug.com/30952) support convertion of Register to corresponding |
| // least significant byte register (e.g. RAX -> AL, RSI -> SIL, r15 -> r15b). |
| comparison()->locs()->set_out(0, Location::RegisterLocation(RDX)); |
| return comparison()->locs(); |
| } |
| |
| void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(locs()->out(0).reg() == RDX); |
| |
| // Clear upper part of the out register. We are going to use setcc on it |
| // which is a byte move. |
| __ xorq(RDX, RDX); |
| |
| // Emit comparison code. This must not overwrite the result register. |
| // IfThenElseInstr::Supports() should prevent EmitComparisonCode from using |
| // the labels or returning an invalid condition. |
| BranchLabels labels = {NULL, NULL, NULL}; |
| Condition true_condition = comparison()->EmitComparisonCode(compiler, labels); |
| ASSERT(true_condition != INVALID_CONDITION); |
| |
| const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_); |
| |
| intptr_t true_value = if_true_; |
| intptr_t false_value = if_false_; |
| |
| if (is_power_of_two_kind) { |
| if (true_value == 0) { |
| // We need to have zero in RDX on true_condition. |
| true_condition = NegateCondition(true_condition); |
| } |
| } else { |
| if (true_value == 0) { |
| // Swap values so that false_value is zero. |
| intptr_t temp = true_value; |
| true_value = false_value; |
| false_value = temp; |
| } else { |
| true_condition = NegateCondition(true_condition); |
| } |
| } |
| |
| __ setcc(true_condition, DL); |
| |
| if (is_power_of_two_kind) { |
| const intptr_t shift = |
| Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value)); |
| __ shlq(RDX, Immediate(shift + kSmiTagSize)); |
| } else { |
| __ decq(RDX); |
| __ AndImmediate( |
| RDX, Immediate(Smi::RawValue(true_value) - Smi::RawValue(false_value))); |
| if (false_value != 0) { |
| __ AddImmediate(RDX, Immediate(Smi::RawValue(false_value))); |
| } |
| } |
| } |
| |
| LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t stack_index = |
| compiler_frame_layout.FrameSlotForVariable(&local()); |
| return LocationSummary::Make(zone, kNumInputs, |
| Location::StackSlot(stack_index), |
| LocationSummary::kNoCall); |
| } |
| |
| void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(!compiler->is_optimizing()); |
| // Nothing to do. |
| } |
| |
| LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(), |
| LocationSummary::kNoCall); |
| } |
| |
| void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register value = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| ASSERT(result == value); // Assert that register assignment is correct. |
| __ movq(Address(RBP, compiler_frame_layout.FrameOffsetInBytesForVariable( |
| &local())), |
| value); |
| } |
| |
| LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| return LocationSummary::Make(zone, kNumInputs, |
| Assembler::IsSafe(value()) |
| ? Location::Constant(this) |
| : Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The register allocator drops constant definitions that have no uses. |
| Location out = locs()->out(0); |
| ASSERT(out.IsRegister() || out.IsConstant() || out.IsInvalid()); |
| if (out.IsRegister()) { |
| Register result = out.reg(); |
| __ LoadObject(result, value()); |
| } |
| } |
| |
| void ConstantInstr::EmitMoveToLocation(FlowGraphCompiler* compiler, |
| const Location& destination, |
| Register tmp) { |
| if (destination.IsRegister()) { |
| if (representation() == kUnboxedInt32 || |
| representation() == kUnboxedInt64) { |
| const int64_t value = value_.IsSmi() ? Smi::Cast(value_).Value() |
| : Mint::Cast(value_).value(); |
| if (value == 0) { |
| __ xorl(destination.reg(), destination.reg()); |
| } else { |
| __ movq(destination.reg(), Immediate(value)); |
| } |
| } else { |
| ASSERT(representation() == kTagged); |
| __ LoadObject(destination.reg(), value_); |
| } |
| } else if (destination.IsFpuRegister()) { |
| if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0)) { |
| __ xorps(destination.fpu_reg(), destination.fpu_reg()); |
| } else { |
| ASSERT(tmp != kNoRegister); |
| __ LoadObject(tmp, value_); |
| __ movsd(destination.fpu_reg(), |
| FieldAddress(tmp, Double::value_offset())); |
| } |
| } else if (destination.IsDoubleStackSlot()) { |
| if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0)) { |
| __ xorps(XMM0, XMM0); |
| } else { |
| ASSERT(tmp != kNoRegister); |
| __ LoadObject(tmp, value_); |
| __ movsd(XMM0, FieldAddress(tmp, Double::value_offset())); |
| } |
| __ movsd(destination.ToStackSlotAddress(), XMM0); |
| } else { |
| ASSERT(destination.IsStackSlot()); |
| if (value_.IsSmi() && representation() == kUnboxedInt32) { |
| __ movl(destination.ToStackSlotAddress(), |
| Immediate(Smi::Cast(value_).Value())); |
| } else { |
| __ StoreObject(destination.ToStackSlotAddress(), value_); |
| } |
| } |
| } |
| |
| LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = IsUnboxedSignedIntegerConstant() ? 0 : 1; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| switch (representation()) { |
| case kUnboxedDouble: |
| locs->set_out(0, Location::RequiresFpuRegister()); |
| locs->set_temp(0, Location::RequiresRegister()); |
| break; |
| case kUnboxedInt32: |
| case kUnboxedInt64: |
| locs->set_out(0, Location::RequiresRegister()); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| return locs; |
| } |
| |
| void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The register allocator drops constant definitions that have no uses. |
| if (!locs()->out(0).IsInvalid()) { |
| const Register scratch = |
| IsUnboxedSignedIntegerConstant() ? kNoRegister : locs()->temp(0).reg(); |
| EmitMoveToLocation(compiler, locs()->out(0), scratch); |
| } |
| } |
| |
| LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| // When using a type testing stub, we want to prevent spilling of the |
| // function/instantiator type argument vectors, since stub preserves them. So |
| // we make this a `kNoCall` summary, even though most other registers can be |
| // modified by the stub. To tell the register allocator about it, we reserve |
| // all the other registers as temporary registers. |
| // TODO(http://dartbug.com/32788): Simplify this. |
| const Register kInstanceReg = RAX; |
| const Register kInstantiatorTypeArgumentsReg = RDX; |
| const Register kFunctionTypeArgumentsReg = RCX; |
| |
| const bool using_stub = |
| FlowGraphCompiler::ShouldUseTypeTestingStubFor(opt, dst_type()); |
| |
| const intptr_t kNonChangeableInputRegs = |
| (1 << kInstanceReg) | (1 << kInstantiatorTypeArgumentsReg) | |
| (1 << kFunctionTypeArgumentsReg); |
| |
| const intptr_t kNumInputs = 3; |
| |
| // We invoke a stub that can potentially clobber any CPU register |
| // but can only clobber FPU registers on the slow path when |
| // entering runtime. Preserve all FPU registers that are |
| // not guarateed to be preserved by the ABI. |
| const intptr_t kCpuRegistersToPreserve = |
| kDartAvailableCpuRegs & ~kNonChangeableInputRegs; |
| const intptr_t kFpuRegistersToPreserve = |
| CallingConventions::kVolatileXmmRegisters & ~(1 << FpuTMP); |
| |
| const intptr_t kNumTemps = |
| using_stub ? (Utils::CountOneBits64(kCpuRegistersToPreserve) + |
| Utils::CountOneBits64(kFpuRegistersToPreserve)) |
| : 0; |
| |
| LocationSummary* summary = new (zone) LocationSummary( |
| zone, kNumInputs, kNumTemps, |
| using_stub ? LocationSummary::kCallCalleeSafe : LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(kInstanceReg)); // Value. |
| summary->set_in(1, |
| Location::RegisterLocation( |
| kInstantiatorTypeArgumentsReg)); // Instant. type args. |
| summary->set_in(2, Location::RegisterLocation( |
| kFunctionTypeArgumentsReg)); // Function type args. |
| |
| // TODO(http://dartbug.com/32787): Use Location::SameAsFirstInput() instead, |
| // once register allocator no longer hits assertion. |
| summary->set_out(0, Location::RegisterLocation(kInstanceReg)); |
| |
| if (using_stub) { |
| // Let's reserve all registers except for the input ones. |
| intptr_t next_temp = 0; |
| for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
| const bool should_preserve = ((1 << i) & kCpuRegistersToPreserve) != 0; |
| if (should_preserve) { |
| summary->set_temp(next_temp++, |
| Location::RegisterLocation(static_cast<Register>(i))); |
| } |
| } |
| |
| for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) { |
| const bool should_preserve = ((1 << i) & kFpuRegistersToPreserve) != 0; |
| if (should_preserve) { |
| summary->set_temp(next_temp++, Location::FpuRegisterLocation( |
| static_cast<FpuRegister>(i))); |
| } |
| } |
| } |
| |
| return summary; |
| } |
| |
| LocationSummary* AssertSubtypeInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(RDX)); // Instant. type args |
| summary->set_in(1, Location::RegisterLocation(RCX)); // Function type args |
| return summary; |
| } |
| |
| LocationSummary* AssertBooleanInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| static void EmitAssertBoolean(Register reg, |
| TokenPosition token_pos, |
| intptr_t deopt_id, |
| LocationSummary* locs, |
| FlowGraphCompiler* compiler) { |
| // Check that the type of the value is allowed in conditional context. |
| // Call the runtime if the object is not bool::true or bool::false. |
| ASSERT(locs->always_calls()); |
| Label done; |
| Isolate* isolate = Isolate::Current(); |
| |
| if (isolate->type_checks()) { |
| __ CompareObject(reg, Bool::True()); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| __ CompareObject(reg, Bool::False()); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| } else { |
| ASSERT(isolate->asserts() || FLAG_strong); |
| __ CompareObject(reg, Object::null_instance()); |
| __ j(NOT_EQUAL, &done, Assembler::kNearJump); |
| } |
| |
| __ pushq(reg); // Push the source object. |
| compiler->GenerateRuntimeCall(token_pos, deopt_id, |
| kNonBoolTypeErrorRuntimeEntry, 1, locs); |
| // We should never return here. |
| __ int3(); |
| __ Bind(&done); |
| } |
| |
| void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register obj = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| |
| EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler); |
| ASSERT(obj == result); |
| } |
| |
| static Condition TokenKindToIntCondition(Token::Kind kind) { |
| switch (kind) { |
| case Token::kEQ: |
| return EQUAL; |
| case Token::kNE: |
| return NOT_EQUAL; |
| case Token::kLT: |
| return LESS; |
| case Token::kGT: |
| return GREATER; |
| case Token::kLTE: |
| return LESS_EQUAL; |
| case Token::kGTE: |
| return GREATER_EQUAL; |
| default: |
| UNREACHABLE(); |
| return OVERFLOW; |
| } |
| } |
| |
| LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| if (operation_cid() == kDoubleCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresFpuRegister()); |
| locs->set_in(1, Location::RequiresFpuRegister()); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| if (operation_cid() == kSmiCid || operation_cid() == kMintCid) { |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RegisterOrConstant(left())); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| // Only right can be a stack slot. |
| locs->set_in(1, locs->in(0).IsConstant() |
| ? Location::RequiresRegister() |
| : Location::RegisterOrConstant(right())); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| static void LoadValueCid(FlowGraphCompiler* compiler, |
| Register value_cid_reg, |
| Register value_reg, |
| Label* value_is_smi = NULL) { |
| Label done; |
| if (value_is_smi == NULL) { |
| __ LoadImmediate(value_cid_reg, Immediate(kSmiCid)); |
| } |
| __ testq(value_reg, Immediate(kSmiTagMask)); |
| if (value_is_smi == NULL) { |
| __ j(ZERO, &done, Assembler::kNearJump); |
| } else { |
| __ j(ZERO, value_is_smi); |
| } |
| __ LoadClassId(value_cid_reg, value_reg); |
| __ Bind(&done); |
| } |
| |
| static Condition FlipCondition(Condition condition) { |
| switch (condition) { |
| case EQUAL: |
| return EQUAL; |
| case NOT_EQUAL: |
| return NOT_EQUAL; |
| case LESS: |
| return GREATER; |
| case LESS_EQUAL: |
| return GREATER_EQUAL; |
| case GREATER: |
| return LESS; |
| case GREATER_EQUAL: |
| return LESS_EQUAL; |
| case BELOW: |
| return ABOVE; |
| case BELOW_EQUAL: |
| return ABOVE_EQUAL; |
| case ABOVE: |
| return BELOW; |
| case ABOVE_EQUAL: |
| return BELOW_EQUAL; |
| default: |
| UNIMPLEMENTED(); |
| return EQUAL; |
| } |
| } |
| |
| static void EmitBranchOnCondition(FlowGraphCompiler* compiler, |
| Condition true_condition, |
| BranchLabels labels) { |
| if (labels.fall_through == labels.false_label) { |
| // If the next block is the false successor, fall through to it. |
| __ j(true_condition, labels.true_label); |
| } else { |
| // If the next block is not the false successor, branch to it. |
| Condition false_condition = NegateCondition(true_condition); |
| __ j(false_condition, labels.false_label); |
| |
| // Fall through or jump to the true successor. |
| if (labels.fall_through != labels.true_label) { |
| __ jmp(labels.true_label); |
| } |
| } |
| } |
| |
| static Condition EmitInt64ComparisonOp(FlowGraphCompiler* compiler, |
| const LocationSummary& locs, |
| Token::Kind kind) { |
| Location left = locs.in(0); |
| Location right = locs.in(1); |
| ASSERT(!left.IsConstant() || !right.IsConstant()); |
| |
| Condition true_condition = TokenKindToIntCondition(kind); |
| if (left.IsConstant() || right.IsConstant()) { |
| // Ensure constant is on the right. |
| ConstantInstr* constant = NULL; |
| if (left.IsConstant()) { |
| constant = left.constant_instruction(); |
| Location tmp = right; |
| right = left; |
| left = tmp; |
| true_condition = FlipCondition(true_condition); |
| } else { |
| constant = right.constant_instruction(); |
| } |
| |
| if (constant->IsUnboxedSignedIntegerConstant()) { |
| __ cmpq(left.reg(), |
| Immediate(constant->GetUnboxedSignedIntegerConstantValue())); |
| } else { |
| ASSERT(constant->representation() == kTagged); |
| __ CompareObject(left.reg(), right.constant()); |
| } |
| } else if (right.IsStackSlot()) { |
| __ cmpq(left.reg(), right.ToStackSlotAddress()); |
| } else { |
| __ cmpq(left.reg(), right.reg()); |
| } |
| return true_condition; |
| } |
| |
| static Condition TokenKindToDoubleCondition(Token::Kind kind) { |
| switch (kind) { |
| case Token::kEQ: |
| return EQUAL; |
| case Token::kNE: |
| return NOT_EQUAL; |
| case Token::kLT: |
| return BELOW; |
| case Token::kGT: |
| return ABOVE; |
| case Token::kLTE: |
| return BELOW_EQUAL; |
| case Token::kGTE: |
| return ABOVE_EQUAL; |
| default: |
| UNREACHABLE(); |
| return OVERFLOW; |
| } |
| } |
| |
| static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler, |
| const LocationSummary& locs, |
| Token::Kind kind, |
| BranchLabels labels) { |
| XmmRegister left = locs.in(0).fpu_reg(); |
| XmmRegister right = locs.in(1).fpu_reg(); |
| |
| __ comisd(left, right); |
| |
| Condition true_condition = TokenKindToDoubleCondition(kind); |
| Label* nan_result = |
| (true_condition == NOT_EQUAL) ? labels.true_label : labels.false_label; |
| __ j(PARITY_EVEN, nan_result); |
| return true_condition; |
| } |
| |
| Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| if ((operation_cid() == kSmiCid) || (operation_cid() == kMintCid)) { |
| return EmitInt64ComparisonOp(compiler, *locs(), kind()); |
| } else { |
| ASSERT(operation_cid() == kDoubleCid); |
| return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); |
| } |
| } |
| |
| void ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Label is_true, is_false; |
| BranchLabels labels = {&is_true, &is_false, &is_false}; |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| if (true_condition != INVALID_CONDITION) { |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| } |
| |
| Register result = locs()->out(0).reg(); |
| Label done; |
| __ Bind(&is_false); |
| __ LoadObject(result, Bool::False()); |
| __ jmp(&done); |
| __ Bind(&is_true); |
| __ LoadObject(result, Bool::True()); |
| __ Bind(&done); |
| } |
| |
| void ComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler, |
| BranchInstr* branch) { |
| BranchLabels labels = compiler->CreateBranchLabels(branch); |
| Condition true_condition = EmitComparisonCode(compiler, labels); |
| if (true_condition != INVALID_CONDITION) { |
| EmitBranchOnCondition(compiler, true_condition, labels); |
| } |
| } |
| |
| LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone, bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| locs->set_in(1, Location::RegisterOrConstant(right())); |
| return locs; |
| } |
| |
| Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| Register left_reg = locs()->in(0).reg(); |
| Location right = locs()->in(1); |
| if (right.IsConstant()) { |
| ASSERT(right.constant().IsSmi()); |
| const int64_t imm = reinterpret_cast<int64_t>(right.constant().raw()); |
| __ TestImmediate(left_reg, Immediate(imm)); |
| } else { |
| __ testq(left_reg, right.reg()); |
| } |
| Condition true_condition = (kind() == Token::kNE) ? NOT_ZERO : ZERO; |
| return true_condition; |
| } |
| |
| LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| locs->set_temp(0, Location::RequiresRegister()); |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT)); |
| Register val_reg = locs()->in(0).reg(); |
| Register cid_reg = locs()->temp(0).reg(); |
| |
| Label* deopt = CanDeoptimize() ? compiler->AddDeoptStub( |
| deopt_id(), ICData::kDeoptTestCids, |
| licm_hoisted_ ? ICData::kHoisted : 0) |
| : NULL; |
| |
| const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0; |
| const ZoneGrowableArray<intptr_t>& data = cid_results(); |
| ASSERT(data[0] == kSmiCid); |
| bool result = data[1] == true_result; |
| __ testq(val_reg, Immediate(kSmiTagMask)); |
| __ j(ZERO, result ? labels.true_label : labels.false_label); |
| __ LoadClassId(cid_reg, val_reg); |
| for (intptr_t i = 2; i < data.length(); i += 2) { |
| const intptr_t test_cid = data[i]; |
| ASSERT(test_cid != kSmiCid); |
| result = data[i + 1] == true_result; |
| __ cmpq(cid_reg, Immediate(test_cid)); |
| __ j(EQUAL, result ? labels.true_label : labels.false_label); |
| } |
| // No match found, deoptimize or default action. |
| if (deopt == NULL) { |
| // If the cid is not in the list, jump to the opposite label from the cids |
| // that are in the list. These must be all the same (see asserts in the |
| // constructor). |
| Label* target = result ? labels.false_label : labels.true_label; |
| if (target != labels.fall_through) { |
| __ jmp(target); |
| } |
| } else { |
| __ jmp(deopt); |
| } |
| // Dummy result as this method already did the jump, there's no need |
| // for the caller to branch on a condition. |
| return INVALID_CONDITION; |
| } |
| |
| LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| if (operation_cid() == kDoubleCid) { |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresFpuRegister()); |
| summary->set_in(1, Location::RequiresFpuRegister()); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| if (operation_cid() == kSmiCid || operation_cid() == kMintCid) { |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RegisterOrConstant(left())); |
| // Only one input can be a constant operand. The case of two constant |
| // operands should be handled by constant propagation. |
| summary->set_in(1, summary->in(0).IsConstant() |
| ? Location::RequiresRegister() |
| : Location::RegisterOrConstant(right())); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler, |
| BranchLabels labels) { |
| if (operation_cid() == kSmiCid || operation_cid() == kMintCid) { |
| return EmitInt64ComparisonOp(compiler, *locs(), kind()); |
| } else { |
| ASSERT(operation_cid() == kDoubleCid); |
| return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); |
| } |
| } |
| |
| LocationSummary* NativeCallInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| return MakeCallSummary(zone); |
| } |
| |
| void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| SetupNative(); |
| Register result = locs()->out(0).reg(); |
| const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function()); |
| |
| // All arguments are already @RSP due to preceding PushArgument()s. |
| ASSERT(ArgumentCount() == |
| function().NumParameters() + |
| (function().IsGeneric() && FLAG_reify_generic_functions) |
| ? 1 |
| : 0); |
| |
| // Push the result place holder initialized to NULL. |
| __ PushObject(Object::null_object()); |
| |
| // Pass a pointer to the first argument in RAX. |
| __ leaq(RAX, Address(RSP, ArgumentCount() * kWordSize)); |
| |
| __ LoadImmediate(R10, Immediate(argc_tag)); |
| const StubEntry* stub_entry; |
| if (link_lazily()) { |
| stub_entry = StubCode::CallBootstrapNative_entry(); |
| ExternalLabel label(NativeEntry::LinkNativeCallEntry()); |
| __ LoadNativeEntry(RBX, &label, ObjectPool::kPatchable); |
| compiler->GeneratePatchableCall(token_pos(), *stub_entry, |
| RawPcDescriptors::kOther, locs()); |
| } else { |
| if (is_bootstrap_native()) { |
| stub_entry = StubCode::CallBootstrapNative_entry(); |
| } else if (is_auto_scope()) { |
| stub_entry = StubCode::CallAutoScopeNative_entry(); |
| } else { |
| stub_entry = StubCode::CallNoScopeNative_entry(); |
| } |
| const ExternalLabel label(reinterpret_cast<uword>(native_c_function())); |
| __ LoadNativeEntry(RBX, &label, ObjectPool::kNotPatchable); |
| compiler->GenerateCall(token_pos(), *stub_entry, RawPcDescriptors::kOther, |
| locs()); |
| } |
| __ popq(result); |
| |
| __ Drop(ArgumentCount()); // Drop the arguments. |
| } |
| |
| static bool CanBeImmediateIndex(Value* index, intptr_t cid) { |
| if (!index->definition()->IsConstant()) return false; |
| const Object& constant = index->definition()->AsConstant()->value(); |
| if (!constant.IsSmi()) return false; |
| const Smi& smi_const = Smi::Cast(constant); |
| const intptr_t scale = Instance::ElementSizeFor(cid); |
| const intptr_t data_offset = Instance::DataOffsetFor(cid); |
| const int64_t disp = smi_const.AsInt64Value() * scale + data_offset; |
| return Utils::IsInt(32, disp); |
| } |
| |
| LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary( |
| Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| // TODO(fschneider): Allow immediate operands for the char code. |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void OneByteStringFromCharCodeInstr::EmitNativeCode( |
| FlowGraphCompiler* compiler) { |
| ASSERT(compiler->is_optimizing()); |
| Register char_code = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| |
| __ movq(result, Address(THR, Thread::predefined_symbols_address_offset())); |
| __ movq(result, Address(result, char_code, |
| TIMES_HALF_WORD_SIZE, // Char code is a smi. |
| Symbols::kNullCharCodeSymbolOffset * kWordSize)); |
| } |
| |
| LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(cid_ == kOneByteStringCid); |
| Register str = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| Label is_one, done; |
| __ movq(result, FieldAddress(str, String::length_offset())); |
| __ cmpq(result, Immediate(Smi::RawValue(1))); |
| __ j(EQUAL, &is_one, Assembler::kNearJump); |
| __ movq(result, Immediate(Smi::RawValue(-1))); |
| __ jmp(&done); |
| __ Bind(&is_one); |
| __ movzxb(result, FieldAddress(str, OneByteString::data_offset())); |
| __ SmiTag(result); |
| __ Bind(&done); |
| } |
| |
| LocationSummary* StringInterpolateInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(RAX)); |
| summary->set_out(0, Location::RegisterLocation(RAX)); |
| return summary; |
| } |
| |
| void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register array = locs()->in(0).reg(); |
| __ pushq(array); |
| const int kTypeArgsLen = 0; |
| const int kNumberOfArguments = 1; |
| const Array& kNoArgumentNames = Object::null_array(); |
| ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kNoArgumentNames); |
| compiler->GenerateStaticCall(deopt_id(), token_pos(), CallFunction(), |
| args_info, locs(), ICData::Handle(), |
| ICData::kStatic); |
| ASSERT(locs()->out(0).reg() == RAX); |
| } |
| |
| LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register obj = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| if (object()->definition()->representation() == kUntagged) { |
| __ movq(result, Address(obj, offset())); |
| } else { |
| ASSERT(object()->definition()->representation() == kTagged); |
| __ movq(result, FieldAddress(obj, offset())); |
| } |
| } |
| |
| LocationSummary* LoadClassIdInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), |
| LocationSummary::kNoCall); |
| } |
| |
| void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| const Register object = locs()->in(0).reg(); |
| const Register result = locs()->out(0).reg(); |
| const AbstractType& value_type = *this->object()->Type()->ToAbstractType(); |
| if (CompileType::Smi().IsAssignableTo(value_type) || |
| value_type.IsTypeParameter()) { |
| // We don't use Assembler::LoadTaggedClassIdMayBeSmi() here---which uses |
| // a conditional move instead---because it is slower, probably due to |
| // branch prediction usually working just fine in this case. |
| Label load, done; |
| __ testq(object, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &load, Assembler::kNearJump); |
| __ LoadImmediate(result, Immediate(Smi::RawValue(kSmiCid))); |
| __ jmp(&done); |
| __ Bind(&load); |
| __ LoadClassId(result, object); |
| __ SmiTag(result); |
| __ Bind(&done); |
| } else { |
| __ LoadClassId(result, object); |
| __ SmiTag(result); |
| } |
| } |
| |
| class BoxAllocationSlowPath : public TemplateSlowPathCode<Instruction> { |
| public: |
| BoxAllocationSlowPath(Instruction* instruction, |
| const Class& cls, |
| Register result) |
| : TemplateSlowPathCode(instruction), cls_(cls), result_(result) {} |
| |
| virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| if (Assembler::EmittingComments()) { |
| __ Comment("%s slow path allocation of %s", instruction()->DebugName(), |
| String::Handle(cls_.ScrubbedName()).ToCString()); |
| } |
| __ Bind(entry_label()); |
| const Code& stub = Code::ZoneHandle( |
| compiler->zone(), StubCode::GetAllocationStubForClass(cls_)); |
| const StubEntry stub_entry(stub); |
| |
| LocationSummary* locs = instruction()->locs(); |
| |
| locs->live_registers()->Remove(Location::RegisterLocation(result_)); |
| |
| compiler->SaveLiveRegisters(locs); |
| compiler->GenerateCall(TokenPosition::kNoSource, // No token position. |
| stub_entry, RawPcDescriptors::kOther, locs); |
| __ MoveRegister(result_, RAX); |
| compiler->RestoreLiveRegisters(locs); |
| __ jmp(exit_label()); |
| } |
| |
| static void Allocate(FlowGraphCompiler* compiler, |
| Instruction* instruction, |
| const Class& cls, |
| Register result, |
| Register temp) { |
| if (compiler->intrinsic_mode()) { |
| __ TryAllocate(cls, compiler->intrinsic_slow_path_label(), |
| Assembler::kFarJump, result, temp); |
| } else { |
| BoxAllocationSlowPath* slow_path = |
| new BoxAllocationSlowPath(instruction, cls, result); |
| compiler->AddSlowPathCode(slow_path); |
| |
| __ TryAllocate(cls, slow_path->entry_label(), Assembler::kFarJump, result, |
| temp); |
| __ Bind(slow_path->exit_label()); |
| } |
| } |
| |
| private: |
| const Class& cls_; |
| const Register result_; |
| }; |
| |
| CompileType LoadIndexedInstr::ComputeType() const { |
| switch (class_id_) { |
| case kArrayCid: |
| case kImmutableArrayCid: |
| return CompileType::Dynamic(); |
| |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return CompileType::FromCid(kDoubleCid); |
| case kTypedDataFloat32x4ArrayCid: |
| return CompileType::FromCid(kFloat32x4Cid); |
| case kTypedDataInt32x4ArrayCid: |
| return CompileType::FromCid(kInt32x4Cid); |
| case kTypedDataFloat64x2ArrayCid: |
| return CompileType::FromCid(kFloat64x2Cid); |
| |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| case kOneByteStringCid: |
| case kTwoByteStringCid: |
| case kExternalOneByteStringCid: |
| case kExternalTwoByteStringCid: |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: |
| return CompileType::FromCid(kSmiCid); |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| return CompileType::Int(); |
| |
| default: |
| UNIMPLEMENTED(); |
| return CompileType::Dynamic(); |
| } |
| } |
| |
| Representation LoadIndexedInstr::representation() const { |
| switch (class_id_) { |
| case kArrayCid: |
| case kImmutableArrayCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| case kOneByteStringCid: |
| case kTwoByteStringCid: |
| case kExternalOneByteStringCid: |
| case kExternalTwoByteStringCid: |
| return kTagged; |
| case kTypedDataInt32ArrayCid: |
| return kUnboxedInt32; |
| case kTypedDataUint32ArrayCid: |
| return kUnboxedUint32; |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| return kUnboxedInt64; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return kUnboxedDouble; |
| case kTypedDataInt32x4ArrayCid: |
| return kUnboxedInt32x4; |
| case kTypedDataFloat32x4ArrayCid: |
| return kUnboxedFloat32x4; |
| case kTypedDataFloat64x2ArrayCid: |
| return kUnboxedFloat64x2; |
| default: |
| UNIMPLEMENTED(); |
| return kTagged; |
| } |
| } |
| |
| LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| // The smi index is either untagged (element size == 1), or it is left smi |
| // tagged (for all element sizes > 1). |
| if (index_scale() == 1) { |
| locs->set_in(1, |
| CanBeImmediateIndex(index(), class_id()) |
| ? Location::Constant(index()->definition()->AsConstant()) |
| : Location::WritableRegister()); |
| } else { |
| locs->set_in(1, |
| CanBeImmediateIndex(index(), class_id()) |
| ? Location::Constant(index()->definition()->AsConstant()) |
| : Location::RequiresRegister()); |
| } |
| if ((representation() == kUnboxedDouble) || |
| (representation() == kUnboxedFloat32x4) || |
| (representation() == kUnboxedInt32x4) || |
| (representation() == kUnboxedFloat64x2)) { |
| locs->set_out(0, Location::RequiresFpuRegister()); |
| } else { |
| locs->set_out(0, Location::RequiresRegister()); |
| } |
| return locs; |
| } |
| |
| void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The array register points to the backing store for external arrays. |
| const Register array = locs()->in(0).reg(); |
| const Location index = locs()->in(1); |
| |
| Address element_address = |
| index.IsRegister() |
| ? Assembler::ElementAddressForRegIndex( |
| IsExternal(), class_id(), index_scale(), array, index.reg()) |
| : Assembler::ElementAddressForIntIndex( |
| IsExternal(), class_id(), index_scale(), array, |
| Smi::Cast(index.constant()).Value()); |
| |
| if ((representation() == kUnboxedDouble) || |
| (representation() == kUnboxedFloat32x4) || |
| (representation() == kUnboxedInt32x4) || |
| (representation() == kUnboxedFloat64x2)) { |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| |
| XmmRegister result = locs()->out(0).fpu_reg(); |
| if (class_id() == kTypedDataFloat32ArrayCid) { |
| // Load single precision float. |
| __ movss(result, element_address); |
| } else if (class_id() == kTypedDataFloat64ArrayCid) { |
| __ movsd(result, element_address); |
| } else { |
| ASSERT((class_id() == kTypedDataInt32x4ArrayCid) || |
| (class_id() == kTypedDataFloat32x4ArrayCid) || |
| (class_id() == kTypedDataFloat64x2ArrayCid)); |
| __ movups(result, element_address); |
| } |
| return; |
| } |
| |
| if ((representation() == kUnboxedUint32) || |
| (representation() == kUnboxedInt32)) { |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| Register result = locs()->out(0).reg(); |
| switch (class_id()) { |
| case kTypedDataInt32ArrayCid: |
| ASSERT(representation() == kUnboxedInt32); |
| __ movsxd(result, element_address); |
| break; |
| case kTypedDataUint32ArrayCid: |
| ASSERT(representation() == kUnboxedUint32); |
| __ movl(result, element_address); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| if (representation() == kUnboxedInt64) { |
| ASSERT(class_id() == kTypedDataInt64ArrayCid || |
| class_id() == kTypedDataUint64ArrayCid); |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| Register result = locs()->out(0).reg(); |
| __ movq(result, element_address); |
| return; |
| } |
| |
| ASSERT(representation() == kTagged); |
| |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| Register result = locs()->out(0).reg(); |
| switch (class_id()) { |
| case kTypedDataInt8ArrayCid: |
| __ movsxb(result, element_address); |
| __ SmiTag(result); |
| break; |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kOneByteStringCid: |
| case kExternalOneByteStringCid: |
| __ movzxb(result, element_address); |
| __ SmiTag(result); |
| break; |
| case kTypedDataInt16ArrayCid: |
| __ movsxw(result, element_address); |
| __ SmiTag(result); |
| break; |
| case kTypedDataUint16ArrayCid: |
| case kTwoByteStringCid: |
| case kExternalTwoByteStringCid: |
| __ movzxw(result, element_address); |
| __ SmiTag(result); |
| break; |
| default: |
| ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid)); |
| __ movq(result, element_address); |
| break; |
| } |
| } |
| |
| LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| // The smi index is either untagged (element size == 1), or it is left smi |
| // tagged (for all element sizes > 1). |
| summary->set_in(1, index_scale() == 1 ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| |
| void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The string register points to the backing store for external strings. |
| const Register str = locs()->in(0).reg(); |
| const Location index = locs()->in(1); |
| |
| Address element_address = Assembler::ElementAddressForRegIndex( |
| IsExternal(), class_id(), index_scale(), str, index.reg()); |
| |
| if ((index_scale() == 1)) { |
| __ SmiUntag(index.reg()); |
| } |
| Register result = locs()->out(0).reg(); |
| switch (class_id()) { |
| case kOneByteStringCid: |
| case kExternalOneByteStringCid: |
| switch (element_count()) { |
| case 1: |
| __ movzxb(result, element_address); |
| break; |
| case 2: |
| __ movzxw(result, element_address); |
| break; |
| case 4: |
| __ movl(result, element_address); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ SmiTag(result); |
| break; |
| case kTwoByteStringCid: |
| case kExternalTwoByteStringCid: |
| switch (element_count()) { |
| case 1: |
| __ movzxw(result, element_address); |
| break; |
| case 2: |
| __ movl(result, element_address); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| __ SmiTag(result); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| Representation StoreIndexedInstr::RequiredInputRepresentation( |
| intptr_t idx) const { |
| if (idx == 0) return kNoRepresentation; |
| if (idx == 1) return kTagged; |
| ASSERT(idx == 2); |
| switch (class_id_) { |
| case kArrayCid: |
| case kOneByteStringCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| return kTagged; |
| case kTypedDataInt32ArrayCid: |
| return kUnboxedInt32; |
| case kTypedDataUint32ArrayCid: |
| return kUnboxedUint32; |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| return kUnboxedInt64; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| return kUnboxedDouble; |
| case kTypedDataFloat32x4ArrayCid: |
| return kUnboxedFloat32x4; |
| case kTypedDataInt32x4ArrayCid: |
| return kUnboxedInt32x4; |
| case kTypedDataFloat64x2ArrayCid: |
| return kUnboxedFloat64x2; |
| default: |
| UNIMPLEMENTED(); |
| return kTagged; |
| } |
| } |
| |
| LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 3; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| locs->set_in(0, Location::RequiresRegister()); |
| // The smi index is either untagged (element size == 1), or it is left smi |
| // tagged (for all element sizes > 1). |
| if (index_scale() == 1) { |
| locs->set_in(1, |
| CanBeImmediateIndex(index(), class_id()) |
| ? Location::Constant(index()->definition()->AsConstant()) |
| : Location::WritableRegister()); |
| } else { |
| locs->set_in(1, |
| CanBeImmediateIndex(index(), class_id()) |
| ? Location::Constant(index()->definition()->AsConstant()) |
| : Location::RequiresRegister()); |
| } |
| switch (class_id()) { |
| case kArrayCid: |
| #if defined(CONCURRENT_MARKING) |
| locs->set_in(2, ShouldEmitStoreBarrier() |
| ? Location::RegisterLocation(kWriteBarrierValueReg) |
| : Location::RegisterOrConstant(value())); |
| #else |
| locs->set_in(2, ShouldEmitStoreBarrier() |
| ? Location::WritableRegister() |
| : Location::RegisterOrConstant(value())); |
| #endif |
| break; |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kOneByteStringCid: |
| // TODO(fschneider): Add location constraint for byte registers (RAX, |
| // RBX, RCX, RDX) instead of using a fixed register. |
| locs->set_in(2, Location::FixedRegisterOrSmiConstant(value(), RAX)); |
| break; |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| // Writable register because the value must be untagged before storing. |
| locs->set_in(2, Location::WritableRegister()); |
| break; |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: |
| locs->set_in(2, Location::RequiresRegister()); |
| break; |
| case kTypedDataFloat32ArrayCid: |
| case kTypedDataFloat64ArrayCid: |
| // TODO(srdjan): Support Float64 constants. |
| locs->set_in(2, Location::RequiresFpuRegister()); |
| break; |
| case kTypedDataInt32x4ArrayCid: |
| case kTypedDataFloat64x2ArrayCid: |
| case kTypedDataFloat32x4ArrayCid: |
| locs->set_in(2, Location::RequiresFpuRegister()); |
| break; |
| default: |
| UNREACHABLE(); |
| return NULL; |
| } |
| return locs; |
| } |
| |
| void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // The array register points to the backing store for external arrays. |
| const Register array = locs()->in(0).reg(); |
| const Location index = locs()->in(1); |
| |
| Address element_address = |
| index.IsRegister() |
| ? Assembler::ElementAddressForRegIndex( |
| IsExternal(), class_id(), index_scale(), array, index.reg()) |
| : Assembler::ElementAddressForIntIndex( |
| IsExternal(), class_id(), index_scale(), array, |
| Smi::Cast(index.constant()).Value()); |
| |
| if ((index_scale() == 1) && index.IsRegister()) { |
| __ SmiUntag(index.reg()); |
| } |
| switch (class_id()) { |
| case kArrayCid: |
| if (ShouldEmitStoreBarrier()) { |
| Register value = locs()->in(2).reg(); |
| __ StoreIntoObject(array, element_address, value, CanValueBeSmi()); |
| } else if (locs()->in(2).IsConstant()) { |
| const Object& constant = locs()->in(2).constant(); |
| __ StoreIntoObjectNoBarrier(array, element_address, constant); |
| } else { |
| Register value = locs()->in(2).reg(); |
| __ StoreIntoObjectNoBarrier(array, element_address, value); |
| } |
| break; |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kOneByteStringCid: |
| if (locs()->in(2).IsConstant()) { |
| const Smi& constant = Smi::Cast(locs()->in(2).constant()); |
| __ movb(element_address, |
| Immediate(static_cast<int8_t>(constant.Value()))); |
| } else { |
| ASSERT(locs()->in(2).reg() == RAX); |
| __ SmiUntag(RAX); |
| __ movb(element_address, RAX); |
| } |
| break; |
| case kTypedDataUint8ClampedArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: { |
| if (locs()->in(2).IsConstant()) { |
| const Smi& constant = Smi::Cast(locs()->in(2).constant()); |
| intptr_t value = constant.Value(); |
| // Clamp to 0x0 or 0xFF respectively. |
| if (value > 0xFF) { |
| value = 0xFF; |
| } else if (value < 0) { |
| value = 0; |
| } |
| __ movb(element_address, Immediate(static_cast<int8_t>(value))); |
| } else { |
| ASSERT(locs()->in(2).reg() == RAX); |
| Label store_value, store_0xff; |
| __ SmiUntag(RAX); |
| __ CompareImmediate(RAX, Immediate(0xFF)); |
| __ j(BELOW_EQUAL, &store_value, Assembler::kNearJump); |
| // Clamp to 0x0 or 0xFF respectively. |
| __ j(GREATER, &store_0xff); |
| __ xorq(RAX, RAX); |
| __ jmp(&store_value, Assembler::kNearJump); |
| __ Bind(&store_0xff); |
| __ LoadImmediate(RAX, Immediate(0xFF)); |
| __ Bind(&store_value); |
| __ movb(element_address, RAX); |
| } |
| break; |
| } |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: { |
| Register value = locs()->in(2).reg(); |
| __ SmiUntag(value); |
| __ movw(element_address, value); |
| break; |
| } |
| case kTypedDataInt32ArrayCid: |
| case kTypedDataUint32ArrayCid: { |
| Register value = locs()->in(2).reg(); |
| __ movl(element_address, value); |
| break; |
| } |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: { |
| Register value = locs()->in(2).reg(); |
| __ movq(element_address, value); |
| break; |
| } |
| case kTypedDataFloat32ArrayCid: |
| __ movss(element_address, locs()->in(2).fpu_reg()); |
| break; |
| case kTypedDataFloat64ArrayCid: |
| __ movsd(element_address, locs()->in(2).fpu_reg()); |
| break; |
| case kTypedDataInt32x4ArrayCid: |
| case kTypedDataFloat64x2ArrayCid: |
| case kTypedDataFloat32x4ArrayCid: |
| __ movups(element_address, locs()->in(2).fpu_reg()); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| |
| const intptr_t value_cid = value()->Type()->ToCid(); |
| const intptr_t field_cid = field().guarded_cid(); |
| |
| const bool emit_full_guard = !opt || (field_cid == kIllegalCid); |
| const bool needs_value_cid_temp_reg = |
| (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); |
| const bool needs_field_temp_reg = emit_full_guard; |
| |
| intptr_t num_temps = 0; |
| if (needs_value_cid_temp_reg) { |
| num_temps++; |
| } |
| if (needs_field_temp_reg) { |
| num_temps++; |
| } |
| |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| |
| for (intptr_t i = 0; i < num_temps; i++) { |
| summary->set_temp(i, Location::RequiresRegister()); |
| } |
| |
| return summary; |
| } |
| |
| void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt16Size); |
| const intptr_t value_cid = value()->Type()->ToCid(); |
| const intptr_t field_cid = field().guarded_cid(); |
| const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid; |
| |
| if (field_cid == kDynamicCid) { |
| if (Compiler::IsBackgroundCompilation()) { |
| // Field state changed while compiling. |
| Compiler::AbortBackgroundCompilation( |
| deopt_id(), |
| "GuardFieldClassInstr: field state changed while compiling"); |
| } |
| ASSERT(!compiler->is_optimizing()); |
| return; // Nothing to emit. |
| } |
| |
| const bool emit_full_guard = |
| !compiler->is_optimizing() || (field_cid == kIllegalCid); |
| |
| const bool needs_value_cid_temp_reg = |
| (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); |
| |
| const bool needs_field_temp_reg = emit_full_guard; |
| |
| const Register value_reg = locs()->in(0).reg(); |
| |
| const Register value_cid_reg = |
| needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister; |
| |
| const Register field_reg = needs_field_temp_reg |
| ? locs()->temp(locs()->temp_count() - 1).reg() |
| : kNoRegister; |
| |
| Label ok, fail_label; |
| |
| Label* deopt = |
| compiler->is_optimizing() |
| ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) |
| : NULL; |
| |
| Label* fail = (deopt != NULL) ? deopt : &fail_label; |
| |
| if (emit_full_guard) { |
| __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); |
| |
| FieldAddress field_cid_operand(field_reg, Field::guarded_cid_offset()); |
| FieldAddress field_nullability_operand(field_reg, |
| Field::is_nullable_offset()); |
| |
| if (value_cid == kDynamicCid) { |
| LoadValueCid(compiler, value_cid_reg, value_reg); |
| |
| __ cmpw(value_cid_reg, field_cid_operand); |
| __ j(EQUAL, &ok); |
| __ cmpw(value_cid_reg, field_nullability_operand); |
| } else if (value_cid == kNullCid) { |
| __ cmpw(field_nullability_operand, Immediate(value_cid)); |
| } else { |
| __ cmpw(field_cid_operand, Immediate(value_cid)); |
| } |
| __ j(EQUAL, &ok); |
| |
| // Check if the tracked state of the guarded field can be initialized |
| // inline. If the field needs length check or requires type arguments and |
| // class hierarchy processing for exactness tracking then we fall through |
| // into runtime which is responsible for computing offset of the length |
| // field based on the class id. |
| const bool is_complicated_field = |
| field().needs_length_check() || |
| field().static_type_exactness_state().IsUninitialized(); |
| if (!is_complicated_field) { |
| // Uninitialized field can be handled inline. Check if the |
| // field is still unitialized. |
| __ cmpw(field_cid_operand, Immediate(kIllegalCid)); |
| __ j(NOT_EQUAL, fail); |
| |
| if (value_cid == kDynamicCid) { |
| __ movw(field_cid_operand, value_cid_reg); |
| __ movw(field_nullability_operand, value_cid_reg); |
| } else { |
| ASSERT(field_reg != kNoRegister); |
| __ movw(field_cid_operand, Immediate(value_cid)); |
| __ movw(field_nullability_operand, Immediate(value_cid)); |
| } |
| |
| if (deopt == NULL) { |
| ASSERT(!compiler->is_optimizing()); |
| __ jmp(&ok); |
| } |
| } |
| |
| if (deopt == NULL) { |
| ASSERT(!compiler->is_optimizing()); |
| __ Bind(fail); |
| |
| __ cmpw(FieldAddress(field_reg, Field::guarded_cid_offset()), |
| Immediate(kDynamicCid)); |
| __ j(EQUAL, &ok); |
| |
| __ pushq(field_reg); |
| __ pushq(value_reg); |
| __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| __ Drop(2); // Drop the field and the value. |
| } |
| } else { |
| ASSERT(compiler->is_optimizing()); |
| ASSERT(deopt != NULL); |
| |
| // Field guard class has been initialized and is known. |
| if (value_cid == kDynamicCid) { |
| // Value's class id is not known. |
| __ testq(value_reg, Immediate(kSmiTagMask)); |
| |
| if (field_cid != kSmiCid) { |
| __ j(ZERO, fail); |
| __ LoadClassId(value_cid_reg, value_reg); |
| __ CompareImmediate(value_cid_reg, Immediate(field_cid)); |
| } |
| |
| if (field().is_nullable() && (field_cid != kNullCid)) { |
| __ j(EQUAL, &ok); |
| __ CompareObject(value_reg, Object::null_object()); |
| } |
| |
| __ j(NOT_EQUAL, fail); |
| } else { |
| // Both value's and field's class id is known. |
| ASSERT((value_cid != field_cid) && (value_cid != nullability)); |
| __ jmp(fail); |
| } |
| } |
| __ Bind(&ok); |
| } |
| |
| LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) { |
| const intptr_t kNumTemps = 3; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| // We need temporaries for field object, length offset and expected length. |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| summary->set_temp(2, Location::RequiresRegister()); |
| return summary; |
| } else { |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| return summary; |
| } |
| UNREACHABLE(); |
| } |
| |
| void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| if (field().guarded_list_length() == Field::kNoFixedLength) { |
| if (Compiler::IsBackgroundCompilation()) { |
| // Field state changed while compiling. |
| Compiler::AbortBackgroundCompilation( |
| deopt_id(), |
| "GuardFieldLengthInstr: field state changed while compiling"); |
| } |
| ASSERT(!compiler->is_optimizing()); |
| return; // Nothing to emit. |
| } |
| |
| Label* deopt = |
| compiler->is_optimizing() |
| ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) |
| : NULL; |
| |
| const Register value_reg = locs()->in(0).reg(); |
| |
| if (!compiler->is_optimizing() || |
| (field().guarded_list_length() == Field::kUnknownFixedLength)) { |
| const Register field_reg = locs()->temp(0).reg(); |
| const Register offset_reg = locs()->temp(1).reg(); |
| const Register length_reg = locs()->temp(2).reg(); |
| |
| Label ok; |
| |
| __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); |
| |
| __ movsxb( |
| offset_reg, |
| FieldAddress(field_reg, |
| Field::guarded_list_length_in_object_offset_offset())); |
| __ movq(length_reg, |
| FieldAddress(field_reg, Field::guarded_list_length_offset())); |
| |
| __ cmpq(offset_reg, Immediate(0)); |
| __ j(NEGATIVE, &ok); |
| |
| // Load the length from the value. GuardFieldClass already verified that |
| // value's class matches guarded class id of the field. |
| // offset_reg contains offset already corrected by -kHeapObjectTag that is |
| // why we use Address instead of FieldAddress. |
| __ cmpq(length_reg, Address(value_reg, offset_reg, TIMES_1, 0)); |
| |
| if (deopt == NULL) { |
| __ j(EQUAL, &ok); |
| |
| __ pushq(field_reg); |
| __ pushq(value_reg); |
| __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| __ Drop(2); // Drop the field and the value. |
| } else { |
| __ j(NOT_EQUAL, deopt); |
| } |
| |
| __ Bind(&ok); |
| } else { |
| ASSERT(compiler->is_optimizing()); |
| ASSERT(field().guarded_list_length() >= 0); |
| ASSERT(field().guarded_list_length_in_object_offset() != |
| Field::kUnknownLengthOffset); |
| |
| __ CompareImmediate( |
| FieldAddress(value_reg, field().guarded_list_length_in_object_offset()), |
| Immediate(Smi::RawValue(field().guarded_list_length()))); |
| __ j(NOT_EQUAL, deopt); |
| } |
| } |
| |
| LocationSummary* GuardFieldTypeInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| summary->set_temp(0, Location::RequiresRegister()); |
| return summary; |
| } |
| |
| void GuardFieldTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| // Should never emit GuardFieldType for fields that are marked as NotTracking. |
| ASSERT(field().static_type_exactness_state().IsTracking()); |
| if (!field().static_type_exactness_state().NeedsFieldGuard()) { |
| // Nothing to do: we only need to perform checks for trivially invariant |
| // fields. If optimizing Canonicalize pass should have removed |
| // this instruction. |
| if (Compiler::IsBackgroundCompilation()) { |
| Compiler::AbortBackgroundCompilation( |
| deopt_id(), |
| "GuardFieldTypeInstr: field state changed during compilation"); |
| } |
| ASSERT(!compiler->is_optimizing()); |
| return; |
| } |
| |
| Label* deopt = |
| compiler->is_optimizing() |
| ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) |
| : NULL; |
| |
| Label ok; |
| |
| const Register value_reg = locs()->in(0).reg(); |
| const Register temp = locs()->temp(0).reg(); |
| |
| // Skip null values for nullable fields. |
| if (!compiler->is_optimizing() || field().is_nullable()) { |
| __ CompareObject(value_reg, Object::Handle()); |
| __ j(EQUAL, &ok); |
| } |
| |
| // Get the state. |
| __ LoadObject(temp, Field::ZoneHandle(compiler->zone(), field().Original())); |
| __ movsxb(temp, |
| FieldAddress(temp, Field::static_type_exactness_state_offset())); |
| |
| if (!compiler->is_optimizing()) { |
| // Check if field requires checking (it is in unitialized or trivially |
| // exact state). |
| __ cmpq(temp, Immediate(StaticTypeExactnessState::kUninitialized)); |
| __ j(LESS, &ok); |
| } |
| |
| Label call_runtime; |
| if (field().static_type_exactness_state().IsUninitialized()) { |
| // Can't initialize the field state inline in optimized code. |
| __ cmpq(temp, Immediate(StaticTypeExactnessState::kUninitialized)); |
| __ j(EQUAL, compiler->is_optimizing() ? deopt : &call_runtime); |
| } |
| |
| // At this point temp is known to be type arguments offset in words. |
| __ movq(temp, FieldAddress(value_reg, temp, TIMES_8, 0)); |
| __ CompareObject(temp, TypeArguments::ZoneHandle( |
| compiler->zone(), |
| AbstractType::Handle(field().type()).arguments())); |
| if (deopt != nullptr) { |
| __ j(NOT_EQUAL, deopt); |
| } else { |
| __ j(EQUAL, &ok); |
| |
| __ Bind(&call_runtime); |
| __ PushObject(field()); |
| __ pushq(value_reg); |
| __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); |
| __ Drop(2); |
| } |
| |
| __ Bind(&ok); |
| } |
| |
| LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = |
| (IsUnboxedStore() && opt) ? 2 : ((IsPotentialUnboxedStore()) ? 3 : 0); |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, |
| ((IsUnboxedStore() && opt && is_initialization()) || |
| IsPotentialUnboxedStore()) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| |
| summary->set_in(0, Location::RequiresRegister()); |
| if (IsUnboxedStore() && opt) { |
| summary->set_in(1, Location::RequiresFpuRegister()); |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| } else if (IsPotentialUnboxedStore()) { |
| summary->set_in(1, ShouldEmitStoreBarrier() ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| summary->set_temp(0, Location::RequiresRegister()); |
| summary->set_temp(1, Location::RequiresRegister()); |
| summary->set_temp(2, opt ? Location::RequiresFpuRegister() |
| : Location::FpuRegisterLocation(XMM1)); |
| } else { |
| #if defined(CONCURRENT_MARKING) |
| summary->set_in(1, ShouldEmitStoreBarrier() |
| ? Location::RegisterLocation(kWriteBarrierValueReg) |
| : Location::RegisterOrConstant(value())); |
| #else |
| summary->set_in(1, ShouldEmitStoreBarrier() |
| ? Location::WritableRegister() |
| : Location::RegisterOrConstant(value())); |
| #endif |
| } |
| return summary; |
| } |
| |
| static void EnsureMutableBox(FlowGraphCompiler* compiler, |
| StoreInstanceFieldInstr* instruction, |
| Register box_reg, |
| const Class& cls, |
| Register instance_reg, |
| intptr_t offset, |
| Register temp) { |
| Label done; |
| __ movq(box_reg, FieldAddress(instance_reg, offset)); |
| __ CompareObject(box_reg, Object::null_object()); |
| __ j(NOT_EQUAL, &done); |
| BoxAllocationSlowPath::Allocate(compiler, instruction, cls, box_reg, temp); |
| __ movq(temp, box_reg); |
| __ StoreIntoObject(instance_reg, FieldAddress(instance_reg, offset), temp, |
| Assembler::kValueIsNotSmi); |
| |
| __ Bind(&done); |
| } |
| |
| void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt16Size); |
| Label skip_store; |
| |
| Register instance_reg = locs()->in(0).reg(); |
| |
| if (IsUnboxedStore() && compiler->is_optimizing()) { |
| XmmRegister value = locs()->in(1).fpu_reg(); |
| Register temp = locs()->temp(0).reg(); |
| Register temp2 = locs()->temp(1).reg(); |
| const intptr_t cid = field().UnboxedFieldCid(); |
| |
| if (is_initialization()) { |
| const Class* cls = NULL; |
| switch (cid) { |
| case kDoubleCid: |
| cls = &compiler->double_class(); |
| break; |
| case kFloat32x4Cid: |
| cls = &compiler->float32x4_class(); |
| break; |
| case kFloat64x2Cid: |
| cls = &compiler->float64x2_class(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2); |
| __ movq(temp2, temp); |
| __ StoreIntoObject(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes_), temp2, |
| Assembler::kValueIsNotSmi); |
| } else { |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes_)); |
| } |
| switch (cid) { |
| case kDoubleCid: |
| __ Comment("UnboxedDoubleStoreInstanceFieldInstr"); |
| __ movsd(FieldAddress(temp, Double::value_offset()), value); |
| break; |
| case kFloat32x4Cid: |
| __ Comment("UnboxedFloat32x4StoreInstanceFieldInstr"); |
| __ movups(FieldAddress(temp, Float32x4::value_offset()), value); |
| break; |
| case kFloat64x2Cid: |
| __ Comment("UnboxedFloat64x2StoreInstanceFieldInstr"); |
| __ movups(FieldAddress(temp, Float64x2::value_offset()), value); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| if (IsPotentialUnboxedStore()) { |
| Register value_reg = locs()->in(1).reg(); |
| Register temp = locs()->temp(0).reg(); |
| Register temp2 = locs()->temp(1).reg(); |
| FpuRegister fpu_temp = locs()->temp(2).fpu_reg(); |
| |
| if (ShouldEmitStoreBarrier()) { |
| // Value input is a writable register and should be manually preserved |
| // across allocation slow-path. |
| locs()->live_registers()->Add(locs()->in(1), kTagged); |
| } |
| |
| Label store_pointer; |
| Label store_double; |
| Label store_float32x4; |
| Label store_float64x2; |
| |
| __ LoadObject(temp, Field::ZoneHandle(Z, field().Original())); |
| |
| __ cmpw(FieldAddress(temp, Field::is_nullable_offset()), |
| Immediate(kNullCid)); |
| __ j(EQUAL, &store_pointer); |
| |
| __ movzxb(temp2, FieldAddress(temp, Field::kind_bits_offset())); |
| __ testq(temp2, Immediate(1 << Field::kUnboxingCandidateBit)); |
| __ j(ZERO, &store_pointer); |
| |
| __ cmpw(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kDoubleCid)); |
| __ j(EQUAL, &store_double); |
| |
| __ cmpw(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kFloat32x4Cid)); |
| __ j(EQUAL, &store_float32x4); |
| |
| __ cmpw(FieldAddress(temp, Field::guarded_cid_offset()), |
| Immediate(kFloat64x2Cid)); |
| __ j(EQUAL, &store_float64x2); |
| |
| // Fall through. |
| __ jmp(&store_pointer); |
| |
| if (!compiler->is_optimizing()) { |
| locs()->live_registers()->Add(locs()->in(0)); |
| locs()->live_registers()->Add(locs()->in(1)); |
| } |
| |
| { |
| __ Bind(&store_double); |
| EnsureMutableBox(compiler, this, temp, compiler->double_class(), |
| instance_reg, offset_in_bytes_, temp2); |
| __ movsd(fpu_temp, FieldAddress(value_reg, Double::value_offset())); |
| __ movsd(FieldAddress(temp, Double::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| { |
| __ Bind(&store_float32x4); |
| EnsureMutableBox(compiler, this, temp, compiler->float32x4_class(), |
| instance_reg, offset_in_bytes_, temp2); |
| __ movups(fpu_temp, FieldAddress(value_reg, Float32x4::value_offset())); |
| __ movups(FieldAddress(temp, Float32x4::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| { |
| __ Bind(&store_float64x2); |
| EnsureMutableBox(compiler, this, temp, compiler->float64x2_class(), |
| instance_reg, offset_in_bytes_, temp2); |
| __ movups(fpu_temp, FieldAddress(value_reg, Float64x2::value_offset())); |
| __ movups(FieldAddress(temp, Float64x2::value_offset()), fpu_temp); |
| __ jmp(&skip_store); |
| } |
| |
| __ Bind(&store_pointer); |
| } |
| |
| if (ShouldEmitStoreBarrier()) { |
| Register value_reg = locs()->in(1).reg(); |
| __ StoreIntoObject(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes_), value_reg, |
| CanValueBeSmi()); |
| } else { |
| if (locs()->in(1).IsConstant()) { |
| __ StoreIntoObjectNoBarrier(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes_), |
| locs()->in(1).constant()); |
| } else { |
| Register value_reg = locs()->in(1).reg(); |
| __ StoreIntoObjectNoBarrier(instance_reg, |
| FieldAddress(instance_reg, offset_in_bytes_), |
| value_reg); |
| } |
| } |
| __ Bind(&skip_store); |
| } |
| |
| LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); |
| summary->set_in(0, Location::RequiresRegister()); |
| summary->set_out(0, Location::RequiresRegister()); |
| return summary; |
| } |
| |
| // When the parser is building an implicit static getter for optimization, |
| // it can generate a function body where deoptimization ids do not line up |
| // with the unoptimized code. |
| // |
| // This is safe only so long as LoadStaticFieldInstr cannot deoptimize. |
| void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register field = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| __ movq(result, FieldAddress(field, Field::static_value_offset())); |
| } |
| |
| LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| LocationSummary* locs = |
| new (zone) LocationSummary(zone, 1, 1, LocationSummary::kNoCall); |
| #if defined(CONCURRENT_MARKING) |
| locs->set_in(0, Location::RegisterLocation(kWriteBarrierValueReg)); |
| #else |
| locs->set_in(0, value()->NeedsWriteBarrier() ? Location::WritableRegister() |
| : Location::RequiresRegister()); |
| #endif |
| locs->set_temp(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register value = locs()->in(0).reg(); |
| Register temp = locs()->temp(0).reg(); |
| |
| __ LoadObject(temp, Field::ZoneHandle(Z, field().Original())); |
| if (this->value()->NeedsWriteBarrier()) { |
| __ StoreIntoObject(temp, FieldAddress(temp, Field::static_value_offset()), |
| value, CanValueBeSmi()); |
| } else { |
| __ StoreIntoObjectNoBarrier( |
| temp, FieldAddress(temp, Field::static_value_offset()), value); |
| } |
| } |
| |
| LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 3; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* summary = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| summary->set_in(0, Location::RegisterLocation(RAX)); // Instance. |
| summary->set_in(1, Location::RegisterLocation(RDX)); // Instant. type args. |
| summary->set_in(2, Location::RegisterLocation(RCX)); // Function type args. |
| summary->set_out(0, Location::RegisterLocation(RAX)); |
| return summary; |
| } |
| |
| void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(locs()->in(0).reg() == RAX); // Value. |
| ASSERT(locs()->in(1).reg() == RDX); // Instantiator type arguments. |
| ASSERT(locs()->in(2).reg() == RCX); // Function type arguments. |
| |
| compiler->GenerateInstanceOf(token_pos(), deopt_id(), type(), locs()); |
| ASSERT(locs()->out(0).reg() == RAX); |
| } |
| |
| // TODO(srdjan): In case of constant inputs make CreateArray kNoCall and |
| // use slow path stub. |
| LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RBX)); |
| locs->set_in(1, Location::RegisterLocation(R10)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| // Inlines array allocation for known constant values. |
| static void InlineArrayAllocation(FlowGraphCompiler* compiler, |
| intptr_t num_elements, |
| Label* slow_path, |
| Label* done) { |
| const int kInlineArraySize = 12; // Same as kInlineInstanceSize. |
| const Register kLengthReg = R10; |
| const Register kElemTypeReg = RBX; |
| const intptr_t instance_size = Array::InstanceSize(num_elements); |
| |
| __ TryAllocateArray(kArrayCid, instance_size, slow_path, Assembler::kFarJump, |
| RAX, // instance |
| RCX, // end address |
| R13); // temp |
| |
| // RAX: new object start as a tagged pointer. |
| // Store the type argument field. |
| __ StoreIntoObjectNoBarrier( |
| RAX, FieldAddress(RAX, Array::type_arguments_offset()), kElemTypeReg); |
| |
| // Set the length field. |
| __ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, Array::length_offset()), |
| kLengthReg); |
| |
| // Initialize all array elements to raw_null. |
| // RAX: new object start as a tagged pointer. |
| // RCX: new object end address. |
| // RDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| if (num_elements > 0) { |
| const intptr_t array_size = instance_size - sizeof(RawArray); |
| __ LoadObject(R12, Object::null_object()); |
| __ leaq(RDI, FieldAddress(RAX, sizeof(RawArray))); |
| if (array_size < (kInlineArraySize * kWordSize)) { |
| intptr_t current_offset = 0; |
| while (current_offset < array_size) { |
| __ StoreIntoObjectNoBarrier(RAX, Address(RDI, current_offset), R12); |
| current_offset += kWordSize; |
| } |
| } else { |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ StoreIntoObjectNoBarrier(RAX, Address(RDI, 0), R12); |
| __ addq(RDI, Immediate(kWordSize)); |
| __ cmpq(RDI, RCX); |
| __ j(BELOW, &init_loop, Assembler::kNearJump); |
| } |
| } |
| __ jmp(done, Assembler::kNearJump); |
| } |
| |
| void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info(); |
| if (type_usage_info != nullptr) { |
| const Class& list_class = Class::Handle( |
| compiler->thread()->isolate()->class_table()->At(kArrayCid)); |
| RegisterTypeArgumentsUse(compiler->function(), type_usage_info, list_class, |
| element_type()->definition()); |
| } |
| |
| // Allocate the array. R10 = length, RBX = element type. |
| const Register kLengthReg = R10; |
| const Register kElemTypeReg = RBX; |
| const Register kResultReg = RAX; |
| ASSERT(locs()->in(0).reg() == kElemTypeReg); |
| ASSERT(locs()->in(1).reg() == kLengthReg); |
| |
| Label slow_path, done; |
| if (compiler->is_optimizing() && !FLAG_precompiled_mode && |
| num_elements()->BindsToConstant() && |
| num_elements()->BoundConstant().IsSmi()) { |
| const intptr_t length = Smi::Cast(num_elements()->BoundConstant()).Value(); |
| if ((length >= 0) && (length <= Array::kMaxElements)) { |
| Label slow_path, done; |
| InlineArrayAllocation(compiler, length, &slow_path, &done); |
| __ Bind(&slow_path); |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ pushq(kLengthReg); |
| __ pushq(kElemTypeReg); |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kAllocateArrayRuntimeEntry, 2, locs()); |
| __ Drop(2); |
| __ popq(kResultReg); |
| __ Bind(&done); |
| return; |
| } |
| } |
| |
| __ Bind(&slow_path); |
| compiler->GenerateCallWithDeopt(token_pos(), deopt_id(), |
| *StubCode::AllocateArray_entry(), |
| RawPcDescriptors::kOther, locs()); |
| __ Bind(&done); |
| ASSERT(locs()->out(0).reg() == kResultReg); |
| } |
| |
| LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = |
| (IsUnboxedLoad() && opt) ? 1 : ((IsPotentialUnboxedLoad()) ? 2 : 0); |
| LocationSummary* locs = new (zone) LocationSummary( |
| zone, kNumInputs, kNumTemps, |
| (opt && !IsPotentialUnboxedLoad()) ? LocationSummary::kNoCall |
| : LocationSummary::kCallOnSlowPath); |
| |
| locs->set_in(0, Location::RequiresRegister()); |
| |
| if (IsUnboxedLoad() && opt) { |
| locs->set_temp(0, Location::RequiresRegister()); |
| } else if (IsPotentialUnboxedLoad()) { |
| locs->set_temp(0, opt ? Location::RequiresFpuRegister() |
| : Location::FpuRegisterLocation(XMM1)); |
| locs->set_temp(1, Location::RequiresRegister()); |
| } |
| locs->set_out(0, Location::RequiresRegister()); |
| return locs; |
| } |
| |
| void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(sizeof(classid_t) == kInt16Size); |
| Register instance_reg = locs()->in(0).reg(); |
| if (IsUnboxedLoad() && compiler->is_optimizing()) { |
| XmmRegister result = locs()->out(0).fpu_reg(); |
| Register temp = locs()->temp(0).reg(); |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes())); |
| intptr_t cid = field()->UnboxedFieldCid(); |
| switch (cid) { |
| case kDoubleCid: |
| __ Comment("UnboxedDoubleLoadFieldInstr"); |
| __ movsd(result, FieldAddress(temp, Double::value_offset())); |
| break; |
| case kFloat32x4Cid: |
| __ Comment("UnboxedFloat32x4LoadFieldInstr"); |
| __ movups(result, FieldAddress(temp, Float32x4::value_offset())); |
| break; |
| case kFloat64x2Cid: |
| __ Comment("UnboxedFloat64x2LoadFieldInstr"); |
| __ movups(result, FieldAddress(temp, Float64x2::value_offset())); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| return; |
| } |
| |
| Label done; |
| Register result = locs()->out(0).reg(); |
| if (IsPotentialUnboxedLoad()) { |
| Register temp = locs()->temp(1).reg(); |
| XmmRegister value = locs()->temp(0).fpu_reg(); |
| |
| Label load_pointer; |
| Label load_double; |
| Label load_float32x4; |
| Label load_float64x2; |
| |
| __ LoadObject(result, Field::ZoneHandle(field()->Original())); |
| |
| FieldAddress field_cid_operand(result, Field::guarded_cid_offset()); |
| FieldAddress field_nullability_operand(result, Field::is_nullable_offset()); |
| |
| __ cmpw(field_nullability_operand, Immediate(kNullCid)); |
| __ j(EQUAL, &load_pointer); |
| |
| __ cmpw(field_cid_operand, Immediate(kDoubleCid)); |
| __ j(EQUAL, &load_double); |
| |
| __ cmpw(field_cid_operand, Immediate(kFloat32x4Cid)); |
| __ j(EQUAL, &load_float32x4); |
| |
| __ cmpw(field_cid_operand, Immediate(kFloat64x2Cid)); |
| __ j(EQUAL, &load_float64x2); |
| |
| // Fall through. |
| __ jmp(&load_pointer); |
| |
| if (!compiler->is_optimizing()) { |
| locs()->live_registers()->Add(locs()->in(0)); |
| } |
| |
| { |
| __ Bind(&load_double); |
| BoxAllocationSlowPath::Allocate(compiler, this, compiler->double_class(), |
| result, temp); |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes())); |
| __ movsd(value, FieldAddress(temp, Double::value_offset())); |
| __ movsd(FieldAddress(result, Double::value_offset()), value); |
| __ jmp(&done); |
| } |
| |
| { |
| __ Bind(&load_float32x4); |
| BoxAllocationSlowPath::Allocate( |
| compiler, this, compiler->float32x4_class(), result, temp); |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes())); |
| __ movups(value, FieldAddress(temp, Float32x4::value_offset())); |
| __ movups(FieldAddress(result, Float32x4::value_offset()), value); |
| __ jmp(&done); |
| } |
| |
| { |
| __ Bind(&load_float64x2); |
| BoxAllocationSlowPath::Allocate( |
| compiler, this, compiler->float64x2_class(), result, temp); |
| __ movq(temp, FieldAddress(instance_reg, offset_in_bytes())); |
| __ movups(value, FieldAddress(temp, Float64x2::value_offset())); |
| __ movups(FieldAddress(result, Float64x2::value_offset()), value); |
| __ jmp(&done); |
| } |
| |
| __ Bind(&load_pointer); |
| } |
| __ movq(result, FieldAddress(instance_reg, offset_in_bytes())); |
| __ Bind(&done); |
| } |
| |
| LocationSummary* InstantiateTypeInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); // Instant. type args. |
| locs->set_in(1, Location::RegisterLocation(RDX)); // Function type args. |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register instantiator_type_args_reg = locs()->in(0).reg(); |
| Register function_type_args_reg = locs()->in(1).reg(); |
| Register result_reg = locs()->out(0).reg(); |
| |
| // 'instantiator_type_args_reg' is a TypeArguments object (or null). |
| // 'function_type_args_reg' is a TypeArguments object (or null). |
| // A runtime call to instantiate the type is required. |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ PushObject(type()); |
| __ pushq(instantiator_type_args_reg); // Push instantiator type arguments. |
| __ pushq(function_type_args_reg); // Push function type arguments. |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kInstantiateTypeRuntimeEntry, 3, locs()); |
| __ Drop(3); // Drop 2 type argument vectors and uninstantiated type. |
| __ popq(result_reg); // Pop instantiated type. |
| } |
| |
| LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary( |
| Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 2; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); // Instant. type args. |
| locs->set_in(1, Location::RegisterLocation(RCX)); // Function type args. |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| void InstantiateTypeArgumentsInstr::EmitNativeCode( |
| FlowGraphCompiler* compiler) { |
| Register instantiator_type_args_reg = locs()->in(0).reg(); |
| Register function_type_args_reg = locs()->in(1).reg(); |
| Register result_reg = locs()->out(0).reg(); |
| ASSERT(instantiator_type_args_reg == RAX); |
| ASSERT(instantiator_type_args_reg == result_reg); |
| |
| // 'instantiator_type_args_reg' is a TypeArguments object (or null). |
| // 'function_type_args_reg' is a TypeArguments object (or null). |
| ASSERT(!type_arguments().IsUninstantiatedIdentity() && |
| !type_arguments().CanShareInstantiatorTypeArguments( |
| instantiator_class())); |
| // If both the instantiator and function type arguments are null and if the |
| // type argument vector instantiated from null becomes a vector of dynamic, |
| // then use null as the type arguments. |
| Label type_arguments_instantiated; |
| const intptr_t len = type_arguments().Length(); |
| if (type_arguments().IsRawWhenInstantiatedFromRaw(len)) { |
| Label non_null_type_args; |
| __ CompareObject(instantiator_type_args_reg, Object::null_object()); |
| __ j(NOT_EQUAL, &non_null_type_args, Assembler::kNearJump); |
| __ CompareObject(function_type_args_reg, Object::null_object()); |
| __ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump); |
| __ Bind(&non_null_type_args); |
| } |
| |
| // Lookup cache before calling runtime. |
| // TODO(regis): Consider moving this into a shared stub to reduce |
| // generated code size. |
| __ LoadObject(RDI, type_arguments()); |
| __ movq(RDI, FieldAddress(RDI, TypeArguments::instantiations_offset())); |
| __ leaq(RDI, FieldAddress(RDI, Array::data_offset())); |
| // The instantiations cache is initialized with Object::zero_array() and is |
| // therefore guaranteed to contain kNoInstantiator. No length check needed. |
| Label loop, next, found, slow_case; |
| __ Bind(&loop); |
| __ movq(RDX, Address(RDI, 0 * kWordSize)); // Cached instantiator type args. |
| __ cmpq(RDX, instantiator_type_args_reg); |
| __ j(NOT_EQUAL, &next, Assembler::kNearJump); |
| __ movq(R10, Address(RDI, 1 * kWordSize)); // Cached function type args. |
| __ cmpq(R10, function_type_args_reg); |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| __ Bind(&next); |
| __ addq(RDI, Immediate(StubCode::kInstantiationSizeInWords * kWordSize)); |
| __ cmpq(RDX, Immediate(Smi::RawValue(StubCode::kNoInstantiator))); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| __ jmp(&slow_case, Assembler::kNearJump); |
| __ Bind(&found); |
| __ movq(result_reg, Address(RDI, 2 * kWordSize)); // Cached instantiated ta. |
| __ jmp(&type_arguments_instantiated, Assembler::kNearJump); |
| |
| __ Bind(&slow_case); |
| // Instantiate non-null type arguments. |
| // A runtime call to instantiate the type arguments is required. |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ PushObject(type_arguments()); |
| __ pushq(instantiator_type_args_reg); // Push instantiator type arguments. |
| __ pushq(function_type_args_reg); // Push function type arguments. |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kInstantiateTypeArgumentsRuntimeEntry, 3, |
| locs()); |
| __ Drop(3); // Drop 2 type argument vectors and uninstantiated args. |
| __ popq(result_reg); // Pop instantiated type arguments. |
| __ Bind(&type_arguments_instantiated); |
| } |
| |
| LocationSummary* AllocateUninitializedContextInstr::MakeLocationSummary( |
| Zone* zone, |
| bool opt) const { |
| ASSERT(opt); |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = 2; |
| LocationSummary* locs = new (zone) LocationSummary( |
| zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); |
| locs->set_temp(0, Location::RegisterLocation(R10)); |
| locs->set_temp(1, Location::RegisterLocation(R13)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| class AllocateContextSlowPath |
| : public TemplateSlowPathCode<AllocateUninitializedContextInstr> { |
| public: |
| explicit AllocateContextSlowPath( |
| AllocateUninitializedContextInstr* instruction) |
| : TemplateSlowPathCode(instruction) {} |
| |
| virtual void EmitNativeCode(FlowGraphCompiler* compiler) { |
| __ Comment("AllocateContextSlowPath"); |
| __ Bind(entry_label()); |
| |
| LocationSummary* locs = instruction()->locs(); |
| locs->live_registers()->Remove(locs->out(0)); |
| |
| compiler->SaveLiveRegisters(locs); |
| |
| __ LoadImmediate(R10, Immediate(instruction()->num_context_variables())); |
| compiler->GenerateCall(instruction()->token_pos(), |
| *StubCode::AllocateContext_entry(), |
| RawPcDescriptors::kOther, locs); |
| ASSERT(instruction()->locs()->out(0).reg() == RAX); |
| compiler->RestoreLiveRegisters(instruction()->locs()); |
| __ jmp(exit_label()); |
| } |
| }; |
| |
| void AllocateUninitializedContextInstr::EmitNativeCode( |
| FlowGraphCompiler* compiler) { |
| ASSERT(compiler->is_optimizing()); |
| Register temp = locs()->temp(0).reg(); |
| Register result = locs()->out(0).reg(); |
| // Try allocate the object. |
| AllocateContextSlowPath* slow_path = new AllocateContextSlowPath(this); |
| compiler->AddSlowPathCode(slow_path); |
| intptr_t instance_size = Context::InstanceSize(num_context_variables()); |
| |
| __ TryAllocateArray(kContextCid, instance_size, slow_path->entry_label(), |
| Assembler::kFarJump, |
| result, // instance |
| temp, // end address |
| locs()->temp(1).reg()); |
| |
| // Setup up number of context variables field. |
| __ movq(FieldAddress(result, Context::num_variables_offset()), |
| Immediate(num_context_variables())); |
| |
| __ Bind(slow_path->exit_label()); |
| } |
| |
| LocationSummary* AllocateContextInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_temp(0, Location::RegisterLocation(R10)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| ASSERT(locs()->temp(0).reg() == R10); |
| ASSERT(locs()->out(0).reg() == RAX); |
| |
| __ LoadImmediate(R10, Immediate(num_context_variables())); |
| compiler->GenerateCall(token_pos(), *StubCode::AllocateContext_entry(), |
| RawPcDescriptors::kOther, locs()); |
| } |
| |
| LocationSummary* InitStaticFieldInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 1; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| locs->set_temp(0, Location::RegisterLocation(RCX)); |
| return locs; |
| } |
| |
| void InitStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register field = locs()->in(0).reg(); |
| Register temp = locs()->temp(0).reg(); |
| |
| Label call_runtime, no_call; |
| |
| __ movq(temp, FieldAddress(field, Field::static_value_offset())); |
| __ CompareObject(temp, Object::sentinel()); |
| __ j(EQUAL, &call_runtime); |
| |
| __ CompareObject(temp, Object::transition_sentinel()); |
| __ j(NOT_EQUAL, &no_call); |
| |
| __ Bind(&call_runtime); |
| __ PushObject(Object::null_object()); // Make room for (unused) result. |
| __ pushq(field); |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kInitStaticFieldRuntimeEntry, 1, locs()); |
| __ Drop(2); // Remove argument and unused result. |
| __ Bind(&no_call); |
| } |
| |
| LocationSummary* CloneContextInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 1; |
| const intptr_t kNumTemps = 0; |
| LocationSummary* locs = new (zone) |
| LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); |
| locs->set_in(0, Location::RegisterLocation(RAX)); |
| locs->set_out(0, Location::RegisterLocation(RAX)); |
| return locs; |
| } |
| |
| void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| Register context_value = locs()->in(0).reg(); |
| Register result = locs()->out(0).reg(); |
| |
| __ PushObject(Object::null_object()); // Make room for the result. |
| __ pushq(context_value); |
| compiler->GenerateRuntimeCall(token_pos(), deopt_id(), |
| kCloneContextRuntimeEntry, 1, locs()); |
| __ popq(result); // Remove argument. |
| __ popq(result); // Get result (cloned context). |
| } |
| |
| LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| UNREACHABLE(); |
| return NULL; |
| } |
| |
| void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { |
| __ Bind(compiler->GetJumpLabel(this)); |
| compiler->AddExceptionHandler(catch_try_index(), try_index(), |
| compiler->assembler()->CodeSize(), |
| handler_token_pos(), is_generated(), |
| catch_handler_types_, needs_stacktrace()); |
| // On lazy deoptimization we patch the optimized code here to enter the |
| // deoptimization stub. |
| const intptr_t deopt_id = DeoptId::ToDeoptAfter(GetDeoptId()); |
| if (compiler->is_optimizing()) { |
| compiler->AddDeoptIndexAtCall(deopt_id); |
| } else { |
| compiler->AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id, |
| TokenPosition::kNoSource); |
| } |
| if (HasParallelMove()) { |
| compiler->parallel_move_resolver()->EmitNativeCode(parallel_move()); |
| } |
| |
| // Restore RSP from RBP as we are coming from a throw and the code for |
| // popping arguments has not been run. |
| const intptr_t fp_sp_dist = |
| (compiler_frame_layout.first_local_from_fp + 1 - compiler->StackSize()) * |
| kWordSize; |
| ASSERT(fp_sp_dist <= 0); |
| __ leaq(RSP, Address(RBP, fp_sp_dist)); |
| |
| if (!compiler->is_optimizing()) { |
| if (raw_exception_var_ != nullptr) { |
| __ movq(Address(RBP, compiler_frame_layout.FrameOffsetInBytesForVariable( |
| raw_exception_var_)), |
| kExceptionObjectReg); |
| } |
| if (raw_stacktrace_var_ != nullptr) { |
| __ movq(Address(RBP, compiler_frame_layout.FrameOffsetInBytesForVariable( |
| raw_stacktrace_var_)), |
| kStackTraceObjectReg); |
| } |
| } |
| } |
| |
| LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Zone* zone, |
| bool opt) const { |
| const intptr_t kNumInputs = 0; |
| |