blob: 3ec37c2fc86e24d63935819aacfbc4d896c32e82 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'package:_fe_analyzer_shared/src/scanner/string_canonicalizer.dart';
import 'package:_fe_analyzer_shared/src/type_inference/type_analyzer.dart'
as shared;
import 'package:_fe_analyzer_shared/src/type_inference/type_analyzer_operations.dart'
as shared;
import 'package:_fe_analyzer_shared/src/types/shared_type.dart';
import 'package:analyzer/dart/analysis/features.dart';
import 'package:analyzer/dart/analysis/session.dart';
import 'package:analyzer/dart/ast/token.dart';
import 'package:analyzer/dart/constant/value.dart';
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/nullability_suffix.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/error/error.dart';
import 'package:analyzer/source/line_info.dart';
import 'package:analyzer/source/source.dart';
import 'package:analyzer/src/dart/analysis/experiments.dart';
import 'package:analyzer/src/dart/analysis/session.dart';
import 'package:analyzer/src/dart/ast/ast.dart';
import 'package:analyzer/src/dart/ast/token.dart';
import 'package:analyzer/src/dart/constant/compute.dart';
import 'package:analyzer/src/dart/constant/evaluation.dart';
import 'package:analyzer/src/dart/constant/value.dart';
import 'package:analyzer/src/dart/element/display_string_builder.dart';
import 'package:analyzer/src/dart/element/field_name_non_promotability_info.dart';
import 'package:analyzer/src/dart/element/inheritance_manager3.dart';
import 'package:analyzer/src/dart/element/member.dart';
import 'package:analyzer/src/dart/element/name_union.dart';
import 'package:analyzer/src/dart/element/scope.dart';
import 'package:analyzer/src/dart/element/since_sdk_version.dart';
import 'package:analyzer/src/dart/element/type.dart';
import 'package:analyzer/src/dart/element/type_algebra.dart';
import 'package:analyzer/src/dart/element/type_provider.dart';
import 'package:analyzer/src/dart/element/type_system.dart';
import 'package:analyzer/src/dart/resolver/scope.dart'
show Namespace, NamespaceBuilder;
import 'package:analyzer/src/error/inference_error.dart';
import 'package:analyzer/src/fine/library_manifest.dart';
import 'package:analyzer/src/fine/requirements.dart';
import 'package:analyzer/src/generated/engine.dart' show AnalysisContext;
import 'package:analyzer/src/generated/source.dart' show DartUriResolver;
import 'package:analyzer/src/generated/utilities_collection.dart';
import 'package:analyzer/src/generated/utilities_dart.dart';
import 'package:analyzer/src/summary2/ast_binary_tokens.dart';
import 'package:analyzer/src/summary2/bundle_reader.dart';
import 'package:analyzer/src/summary2/export.dart';
import 'package:analyzer/src/summary2/reference.dart';
import 'package:analyzer/src/util/file_paths.dart' as file_paths;
import 'package:analyzer/src/utilities/extensions/collection.dart';
import 'package:analyzer/src/utilities/extensions/element.dart';
import 'package:analyzer/src/utilities/extensions/object.dart';
import 'package:analyzer/src/utilities/extensions/string.dart';
import 'package:collection/collection.dart';
import 'package:pub_semver/pub_semver.dart';
const String elementModelDeprecationMsg = '''
This is part of the old analyzer element model. Please see
https://github.com/dart-lang/sdk/blob/main/pkg/analyzer/doc/element_model_migration_guide.md
for information about how to migrate to the new element model.''';
abstract class AnnotatableElement implements Element, Annotatable {
@override
MetadataImpl get metadata2;
}
abstract class AnnotatableElementImpl
implements ElementImpl2, AnnotatableElement {}
/// Shared implementation for an augmentable [Fragment].
mixin AugmentableFragment on ElementImpl {
bool get isAugmentation {
return hasModifier(Modifier.AUGMENTATION);
}
set isAugmentation(bool value) {
setModifier(Modifier.AUGMENTATION, value);
}
}
class BindPatternVariableElementImpl extends PatternVariableElementImpl
implements BindPatternVariableFragment {
final DeclaredVariablePatternImpl node;
/// This flag is set to `true` if this variable clashes with another
/// pattern variable with the same name within the same pattern.
bool isDuplicate = false;
BindPatternVariableElementImpl(this.node, super.name, super.offset) {
_element2 = BindPatternVariableElementImpl2(this);
}
@override
BindPatternVariableElementImpl2 get element =>
super.element as BindPatternVariableElementImpl2;
@override
BindPatternVariableElementImpl? get nextFragment =>
super.nextFragment as BindPatternVariableElementImpl?;
@override
BindPatternVariableElementImpl? get previousFragment =>
super.previousFragment as BindPatternVariableElementImpl?;
}
class BindPatternVariableElementImpl2 extends PatternVariableElementImpl2
implements BindPatternVariableElement {
BindPatternVariableElementImpl2(super._wrappedElement);
@override
BindPatternVariableElementImpl get firstFragment =>
super.firstFragment as BindPatternVariableElementImpl;
@override
List<BindPatternVariableElementImpl> get fragments {
return [
for (
BindPatternVariableElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
/// Whether this variable clashes with another pattern variable with the same
/// name within the same pattern.
bool get isDuplicate => _wrappedElement.isDuplicate;
/// Set whether this variable clashes with another pattern variable with the
/// same name within the same pattern.
set isDuplicate(bool value) => _wrappedElement.isDuplicate = value;
DeclaredVariablePatternImpl get node => _wrappedElement.node;
@override
BindPatternVariableElementImpl get _wrappedElement =>
super._wrappedElement as BindPatternVariableElementImpl;
}
/// An [InterfaceElementImpl] which is a class.
class ClassElementImpl extends ClassOrMixinElementImpl
implements ClassFragment {
late ClassElementImpl2 augmentedInternal;
/// Initialize a newly created class element to have the given [name] at the
/// given [offset] in the file that contains the declaration of this element.
ClassElementImpl(super.name, super.offset);
@override
set accessors(List<PropertyAccessorElementImpl> accessors) {
assert(!isMixinApplication);
super.accessors = accessors;
}
@override
set constructors(List<ConstructorElementImpl> constructors) {
assert(!isMixinApplication);
super.constructors = constructors;
}
@override
ClassElementImpl2 get element {
linkedData?.read(this);
return augmentedInternal;
}
@override
set fields(List<FieldElementImpl> fields) {
assert(!isMixinApplication);
super.fields = fields;
}
bool get hasExtendsClause {
return hasModifier(Modifier.HAS_EXTENDS_CLAUSE);
}
set hasExtendsClause(bool value) {
setModifier(Modifier.HAS_EXTENDS_CLAUSE, value);
}
bool get hasGenerativeConstConstructor {
return constructors.any((c) => !c.isFactory && c.isConst);
}
bool get isAbstract {
return hasModifier(Modifier.ABSTRACT);
}
set isAbstract(bool isAbstract) {
setModifier(Modifier.ABSTRACT, isAbstract);
}
@override
bool get isBase {
return hasModifier(Modifier.BASE);
}
bool get isConstructable => !isSealed && !isAbstract;
bool get isDartCoreEnum {
return name == 'Enum' && library.isDartCore;
}
bool get isDartCoreObject {
return name == 'Object' && library.isDartCore;
}
bool get isDartCoreRecord {
return name == 'Record' && library.isDartCore;
}
bool get isExhaustive => isSealed;
bool get isFinal {
return hasModifier(Modifier.FINAL);
}
set isFinal(bool isFinal) {
setModifier(Modifier.FINAL, isFinal);
}
bool get isInterface {
return hasModifier(Modifier.INTERFACE);
}
set isInterface(bool isInterface) {
setModifier(Modifier.INTERFACE, isInterface);
}
bool get isMixinApplication {
return hasModifier(Modifier.MIXIN_APPLICATION);
}
/// Set whether this class is a mixin application.
set isMixinApplication(bool isMixinApplication) {
setModifier(Modifier.MIXIN_APPLICATION, isMixinApplication);
}
bool get isMixinClass {
return hasModifier(Modifier.MIXIN_CLASS);
}
set isMixinClass(bool isMixinClass) {
setModifier(Modifier.MIXIN_CLASS, isMixinClass);
}
bool get isSealed {
return hasModifier(Modifier.SEALED);
}
set isSealed(bool isSealed) {
setModifier(Modifier.SEALED, isSealed);
}
bool get isValidMixin {
var supertype = this.supertype;
if (supertype != null && !supertype.isDartCoreObject) {
return false;
}
for (var constructor in constructors) {
if (!constructor.isSynthetic && !constructor.isFactory) {
return false;
}
}
return true;
}
@override
ElementKind get kind => ElementKind.CLASS;
@override
set methods(List<MethodElementImpl> methods) {
assert(!isMixinApplication);
super.methods = methods;
}
@override
ClassElementImpl? get nextFragment {
return super.nextFragment as ClassElementImpl?;
}
@override
ClassElementImpl? get previousFragment {
return super.previousFragment as ClassElementImpl?;
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeClassElement(this);
}
@override
void _buildMixinAppConstructors() {
// Do nothing if not a mixin application.
if (!isMixinApplication) {
return;
}
var superType = supertype;
if (superType == null) {
// Shouldn't ever happen, since the only classes with no supertype are
// Object and mixins, and they aren't a mixin application. But for
// safety's sake just assume an empty list.
assert(false);
_constructors = <ConstructorElementImpl>[];
return;
}
// Assign to break a possible infinite recursion during computing.
_constructors = const <ConstructorElementImpl>[];
var superElement2 = superType.element3 as ClassElementImpl2;
var superElement = superElement2.firstFragment;
var constructorsToForward = superElement.constructors
.where((constructor) => constructor.asElement2.isAccessibleIn2(library))
.where((constructor) => !constructor.isFactory);
// Figure out the type parameter substitution we need to perform in order
// to produce constructors for this class. We want to be robust in the
// face of errors, so drop any extra type arguments and fill in any missing
// ones with `dynamic`.
var superClassParameters = superElement.typeParameters;
List<DartType> argumentTypes = List<DartType>.filled(
superClassParameters.length,
DynamicTypeImpl.instance,
);
for (int i = 0; i < superType.typeArguments.length; i++) {
if (i >= argumentTypes.length) {
break;
}
argumentTypes[i] = superType.typeArguments[i];
}
var substitution = Substitution.fromPairs(
superClassParameters,
argumentTypes,
);
bool typeHasInstanceVariables(InterfaceTypeImpl type) =>
type.element3.fields2.any((e) => !e.isSynthetic);
// Now create an implicit constructor for every constructor found above,
// substituting type parameters as appropriate.
_constructors = constructorsToForward
.map((superclassConstructor) {
var name = superclassConstructor.name;
var implicitConstructor = ConstructorElementImpl(name, -1);
implicitConstructor.isSynthetic = true;
implicitConstructor.typeName = name2;
implicitConstructor.name = name;
implicitConstructor.nameOffset = -1;
implicitConstructor.name2 = superclassConstructor.name2;
var containerRef = reference!.getChild('@constructor');
var referenceName = name.ifNotEmptyOrElse('new');
var implicitReference = containerRef.getChild(referenceName);
implicitConstructor.reference = implicitReference;
implicitReference.element = implicitConstructor;
var hasMixinWithInstanceVariables = mixins.any(
typeHasInstanceVariables,
);
implicitConstructor.isConst =
superclassConstructor.isConst && !hasMixinWithInstanceVariables;
var superParameters = superclassConstructor.parameters;
int count = superParameters.length;
var argumentsForSuperInvocation = <ExpressionImpl>[];
if (count > 0) {
var implicitParameters = <ParameterElementImpl>[];
for (int i = 0; i < count; i++) {
var superParameter = superParameters[i];
ParameterElementImpl implicitParameter;
if (superParameter is ConstVariableElement) {
var constVariable = superParameter as ConstVariableElement;
implicitParameter = DefaultParameterElementImpl(
name: superParameter.name,
nameOffset: -1,
name2: superParameter.name.nullIfEmpty,
nameOffset2: null,
parameterKind: superParameter.parameterKind,
)..constantInitializer = constVariable.constantInitializer;
if (superParameter.isNamed) {
var reference = implicitReference
.getChild('@parameter')
.getChild(implicitParameter.name);
implicitParameter.reference = reference;
reference.element = implicitParameter;
}
} else {
implicitParameter = ParameterElementImpl(
name: superParameter.name,
nameOffset: -1,
name2: superParameter.name.nullIfEmpty,
nameOffset2: null,
parameterKind: superParameter.parameterKind,
);
}
implicitParameter.isConst = superParameter.isConst;
implicitParameter.isFinal = superParameter.isFinal;
implicitParameter.isSynthetic = true;
implicitParameter.type = substitution.substituteType(
superParameter.type,
);
implicitParameters.add(implicitParameter);
argumentsForSuperInvocation.add(
SimpleIdentifierImpl(
StringToken(TokenType.STRING, implicitParameter.name, -1),
)
..element = implicitParameter.asElement2
..setPseudoExpressionStaticType(implicitParameter.type),
);
}
implicitConstructor.parameters = implicitParameters.toFixedList();
}
implicitConstructor.enclosingElement3 = this;
// TODO(scheglov): Why do we manually map parameters types above?
implicitConstructor.superConstructor = ConstructorMember.from(
superclassConstructor,
superType,
);
var isNamed = superclassConstructor.name.isNotEmpty;
var superInvocation = SuperConstructorInvocationImpl(
superKeyword: Tokens.super_(),
period: isNamed ? Tokens.period() : null,
constructorName:
isNamed
? (SimpleIdentifierImpl(
StringToken(
TokenType.STRING,
superclassConstructor.name,
-1,
),
)..element = superclassConstructor.asElement2)
: null,
argumentList: ArgumentListImpl(
leftParenthesis: Tokens.openParenthesis(),
arguments: argumentsForSuperInvocation,
rightParenthesis: Tokens.closeParenthesis(),
),
);
_linkTokens(superInvocation);
superInvocation.element = superclassConstructor.asElement2;
implicitConstructor.constantInitializers = [superInvocation];
return implicitConstructor;
})
.toList(growable: false);
}
static void _linkTokens(AstNode parent) {
Token? lastToken;
for (var entity in parent.childEntities) {
switch (entity) {
case Token token:
lastToken?.next = token;
token.previous = lastToken;
lastToken = token;
case AstNode node:
_linkTokens(node);
lastToken?.next = node.beginToken;
node.beginToken.previous = lastToken;
lastToken = node.endToken;
}
}
}
}
class ClassElementImpl2 extends InterfaceElementImpl2 implements ClassElement {
@override
final Reference reference;
@override
final ClassElementImpl firstFragment;
ClassElementImpl2(this.reference, this.firstFragment) {
reference.element2 = this;
firstFragment.augmentedInternal = this;
}
/// If we can find all possible subtypes of this class, return them.
///
/// If the class is final, all its subtypes are declared in this library.
///
/// If the class is sealed, and all its subtypes are either final or sealed,
/// then these subtypes are all subtypes that are possible.
List<InterfaceTypeImpl>? get allSubtypes {
if (isFinal) {
var result = <InterfaceTypeImpl>[];
for (var element in library2.children2) {
if (element is InterfaceElementImpl2 && element != this) {
var elementThis = element.thisType;
if (elementThis.asInstanceOf2(this) != null) {
result.add(elementThis);
}
}
}
return result;
}
if (isSealed) {
var result = <InterfaceTypeImpl>[];
for (var element in library2.children2) {
if (element is! InterfaceElementImpl2 || identical(element, this)) {
continue;
}
var elementThis = element.thisType;
if (elementThis.asInstanceOf2(this) == null) {
continue;
}
switch (element) {
case ClassElementImpl2 _:
if (element.isFinal || element.isSealed) {
result.add(elementThis);
} else {
return null;
}
case EnumElement _:
result.add(elementThis);
case MixinElement _:
return null;
}
}
return result;
}
return null;
}
@override
List<ClassElementImpl> get fragments {
return [
for (
ClassElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
@override
bool get hasNonFinalField {
var classesToVisit = <InterfaceElementImpl2>[];
var visitedClasses = <InterfaceElementImpl2>{};
classesToVisit.add(this);
while (classesToVisit.isNotEmpty) {
var currentElement = classesToVisit.removeAt(0);
if (visitedClasses.add(currentElement)) {
// check fields
for (var field in currentElement.fields2) {
if (!field.isFinal &&
!field.isConst &&
!field.isStatic &&
!field.isSynthetic) {
return true;
}
}
// check mixins
for (var mixinType in currentElement.mixins) {
classesToVisit.add(mixinType.element3);
}
// check super
var supertype = currentElement.supertype;
if (supertype != null) {
classesToVisit.add(supertype.element3);
}
}
}
// not found
return false;
}
@override
bool get isAbstract => firstFragment.isAbstract;
@override
bool get isBase => firstFragment.isBase;
@override
bool get isConstructable => firstFragment.isConstructable;
@override
bool get isDartCoreEnum => firstFragment.isDartCoreEnum;
@override
bool get isDartCoreObject => firstFragment.isDartCoreObject;
bool get isDartCoreRecord {
return name3 == 'Record' && library2.isDartCore;
}
bool get isEnumLike {
// Must be a concrete class.
if (isAbstract) {
return false;
}
// With only private non-factory constructors.
for (var constructor in constructors2) {
if (constructor.isPublic || constructor.isFactory) {
return false;
}
}
// With 2+ static const fields with the type of this class.
var numberOfElements = 0;
for (var field in fields2) {
if (field.isStatic && field.isConst && field.type == thisType) {
numberOfElements++;
}
}
if (numberOfElements < 2) {
return false;
}
// No subclasses in the library.
for (var class_ in library2.classes) {
if (class_.supertype?.element3 == this) {
return false;
}
}
return true;
}
@override
bool get isExhaustive => firstFragment.isExhaustive;
@override
bool get isFinal => firstFragment.isFinal;
@override
bool get isInterface => firstFragment.isInterface;
@override
bool get isMixinApplication => firstFragment.isMixinApplication;
@override
bool get isMixinClass => firstFragment.isMixinClass;
@override
bool get isSealed => firstFragment.isSealed;
@override
bool get isValidMixin => firstFragment.isValidMixin;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitClassElement(this);
}
@override
bool isExtendableIn2(LibraryElement library) {
if (library == library2) {
return true;
}
return !isInterface && !isFinal && !isSealed;
}
@override
bool isImplementableIn2(LibraryElement library) {
if (library == library2) {
return true;
}
return !isBase && !isFinal && !isSealed;
}
@override
bool isMixableIn2(LibraryElement library) {
if (library == library2) {
return true;
} else if (library2.featureSet.isEnabled(Feature.class_modifiers)) {
return isMixinClass && !isInterface && !isFinal && !isSealed;
}
return true;
}
}
abstract class ClassOrMixinElementImpl extends InterfaceElementImpl {
/// Initialize a newly created class element to have the given [name] at the
/// given [offset] in the file that contains the declaration of this element.
ClassOrMixinElementImpl(super.name, super.offset);
bool get isBase {
return hasModifier(Modifier.BASE);
}
set isBase(bool isBase) {
setModifier(Modifier.BASE, isBase);
}
}
/// A concrete implementation of [LibraryFragment].
class CompilationUnitElementImpl extends _ExistingElementImpl
implements LibraryFragment {
/// The source that corresponds to this compilation unit.
@override
final Source source;
@override
LineInfo lineInfo;
@override
final LibraryElementImpl library;
/// The libraries exported by this unit.
List<LibraryExportElementImpl> _libraryExports =
_Sentinel.libraryExportElement;
/// The libraries imported by this unit.
List<LibraryImportElementImpl> _libraryImports =
_Sentinel.libraryImportElement;
/// The cached list of prefixes from [prefixes].
List<PrefixElementImpl2>? _libraryImportPrefixes2;
/// The parts included by this unit.
List<PartElementImpl> _parts = const <PartElementImpl>[];
/// A list containing all of the top-level accessors (getters and setters)
/// contained in this compilation unit.
List<PropertyAccessorElementImpl> _accessors = const [];
List<ClassElementImpl> _classes = const [];
/// A list containing all of the enums contained in this compilation unit.
List<EnumElementImpl> _enums = const [];
/// A list containing all of the extensions contained in this compilation
/// unit.
List<ExtensionElementImpl> _extensions = const [];
List<ExtensionTypeElementImpl> _extensionTypes = const [];
/// A list containing all of the top-level functions contained in this
/// compilation unit.
List<TopLevelFunctionFragmentImpl> _functions = const [];
List<MixinElementImpl> _mixins = const [];
/// A list containing all of the type aliases contained in this compilation
/// unit.
List<TypeAliasElementImpl> _typeAliases = const [];
/// A list containing all of the variables contained in this compilation unit.
List<TopLevelVariableElementImpl> _variables = const [];
/// The scope of this fragment, `null` if it has not been created yet.
LibraryFragmentScope? _scope;
ElementLinkedData? linkedData;
/// Initialize a newly created compilation unit element to have the given
/// [name].
CompilationUnitElementImpl({
required this.library,
required this.source,
required this.lineInfo,
}) : super(null, -1);
@override
List<ExtensionElement> get accessibleExtensions2 {
return scope.accessibleExtensions;
}
List<PropertyAccessorElementImpl> get accessors {
return _accessors;
}
/// Set the top-level accessors (getters and setters) contained in this
/// compilation unit to the given [accessors].
set accessors(List<PropertyAccessorElementImpl> accessors) {
for (var accessor in accessors) {
accessor.enclosingElement3 = this;
}
_accessors = accessors;
}
@override
List<Fragment> get children3 {
return [
...accessors,
...classes,
...enums,
...extensions,
...extensionTypes,
...functions,
...mixins,
...typeAliases,
...topLevelVariables,
];
}
List<ClassElementImpl> get classes {
return _classes;
}
/// Set the classes contained in this compilation unit to [classes].
set classes(List<ClassElementImpl> classes) {
for (var class_ in classes) {
class_.enclosingElement3 = this;
}
_classes = classes;
}
@override
List<ClassFragment> get classes2 => classes.cast<ClassFragment>();
@override
LibraryElementImpl get element => library;
@override
CompilationUnitElementImpl? get enclosingElement3 {
return super.enclosingElement3 as CompilationUnitElementImpl?;
}
@override
CompilationUnitElementImpl? get enclosingFragment {
return enclosingElement3;
}
@override
CompilationUnitElementImpl get enclosingUnit {
return this;
}
List<EnumElementImpl> get enums {
return _enums;
}
/// Set the enums contained in this compilation unit to the given [enums].
set enums(List<EnumElementImpl> enums) {
for (var element in enums) {
element.enclosingElement3 = this;
}
_enums = enums;
}
@override
List<EnumFragment> get enums2 => enums.cast<EnumFragment>();
List<ExtensionElementImpl> get extensions {
return _extensions;
}
/// Set the extensions contained in this compilation unit to the given
/// [extensions].
set extensions(List<ExtensionElementImpl> extensions) {
for (var extension in extensions) {
extension.enclosingElement3 = this;
}
_extensions = extensions;
}
@override
List<ExtensionFragment> get extensions2 =>
extensions.cast<ExtensionFragment>();
List<ExtensionTypeElementImpl> get extensionTypes {
return _extensionTypes;
}
set extensionTypes(List<ExtensionTypeElementImpl> elements) {
for (var element in elements) {
element.enclosingElement3 = this;
}
_extensionTypes = elements;
}
@override
List<ExtensionTypeFragment> get extensionTypes2 =>
extensionTypes.cast<ExtensionTypeFragment>();
List<TopLevelFunctionFragmentImpl> get functions {
return _functions;
}
/// Set the top-level functions contained in this compilation unit to the
/// given[functions].
set functions(List<TopLevelFunctionFragmentImpl> functions) {
for (var function in functions) {
function.enclosingElement3 = this;
}
_functions = functions;
}
@override
List<TopLevelFunctionFragment> get functions2 =>
functions.cast<TopLevelFunctionFragment>();
@override
List<GetterFragment> get getters =>
accessors
.where((element) => element.isGetter)
.cast<GetterFragment>()
.toList();
@override
int get hashCode => source.hashCode;
@override
String get identifier => '${source.uri}';
@override
List<LibraryElement> get importedLibraries2 {
return libraryImports2
.map((import) => import.importedLibrary2)
.nonNulls
.toSet()
.toList();
}
@override
ElementKind get kind => ElementKind.COMPILATION_UNIT;
/// The libraries exported by this unit.
List<LibraryExportElementImpl> get libraryExports {
linkedData?.read(this);
return _libraryExports;
}
set libraryExports(List<LibraryExportElementImpl> exports) {
for (var exportElement in exports) {
exportElement.enclosingElement3 = this;
}
_libraryExports = exports;
}
@override
List<LibraryExport> get libraryExports2 =>
libraryExports.cast<LibraryExport>();
List<LibraryExportElementImpl> get libraryExports_unresolved {
return _libraryExports;
}
@override
LibraryFragment get libraryFragment => this;
/// The libraries imported by this unit.
List<LibraryImportElementImpl> get libraryImports {
linkedData?.read(this);
return _libraryImports;
}
set libraryImports(List<LibraryImportElementImpl> imports) {
for (var importElement in imports) {
importElement.enclosingElement3 = this;
}
_libraryImports = imports;
}
@override
List<LibraryImportElementImpl> get libraryImports2 =>
libraryImports.cast<LibraryImportElementImpl>();
List<LibraryImportElementImpl> get libraryImports_unresolved {
return _libraryImports;
}
@override
Source get librarySource => library.source;
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
List<MixinElementImpl> get mixins {
return _mixins;
}
/// Set the mixins contained in this compilation unit to the given [mixins].
set mixins(List<MixinElementImpl> mixins) {
for (var mixin_ in mixins) {
mixin_.enclosingElement3 = this;
}
_mixins = mixins;
}
@override
List<MixinFragment> get mixins2 => mixins.cast<MixinFragment>();
@override
String? get name2 => null;
@override
int? get nameOffset2 => null;
@override
LibraryFragment? get nextFragment {
var units = library.units;
var index = units.indexOf(this);
return units.elementAtOrNull(index + 1);
}
@override
int get offset {
if (!identical(this, library.definingCompilationUnit)) {
// Not the first fragment, so there is no name; return an offset of 0
return 0;
}
if (library.nameOffset < 0) {
// There is no name, so return an offset of 0
return 0;
}
return library.nameOffset;
}
@override
List<PartInclude> get partIncludes => parts.cast<PartInclude>();
/// The parts included by this unit.
List<PartElementImpl> get parts => _parts;
set parts(List<PartElementImpl> parts) {
for (var part in parts) {
part.enclosingElement3 = this;
var uri = part.uri;
if (uri is DirectiveUriWithUnitImpl) {
uri.libraryFragment.enclosingElement3 = this;
}
}
_parts = parts;
}
@override
List<PrefixElementImpl2> get prefixes {
return _libraryImportPrefixes2 ??= _buildLibraryImportPrefixes2();
}
@override
LibraryFragment? get previousFragment {
var units = library.units;
var index = units.indexOf(this);
if (index >= 1) {
return units[index - 1];
}
return null;
}
@override
LibraryFragmentScope get scope {
return _scope ??= LibraryFragmentScope(this);
}
@override
AnalysisSession get session => library.session;
@override
List<SetterFragment> get setters =>
accessors
.where((element) => element.isSetter)
.cast<SetterFragment>()
.toList();
List<TopLevelVariableElementImpl> get topLevelVariables {
return _variables;
}
/// Set the top-level variables contained in this compilation unit to the
/// given[variables].
set topLevelVariables(List<TopLevelVariableElementImpl> variables) {
for (var variable in variables) {
variable.enclosingElement3 = this;
}
_variables = variables;
}
@override
List<TopLevelVariableFragment> get topLevelVariables2 =>
topLevelVariables.cast<TopLevelVariableFragment>();
List<TypeAliasElementImpl> get typeAliases {
return _typeAliases;
}
/// Set the type aliases contained in this compilation unit to [typeAliases].
set typeAliases(List<TypeAliasElementImpl> typeAliases) {
for (var typeAlias in typeAliases) {
typeAlias.enclosingElement3 = this;
}
_typeAliases = typeAliases;
}
@override
List<TypeAliasFragment> get typeAliases2 =>
typeAliases.cast<TypeAliasFragment>();
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeCompilationUnitElement(this);
}
void setLinkedData(Reference reference, ElementLinkedData linkedData) {
this.reference = reference;
reference.element = this;
this.linkedData = linkedData;
}
/// Indicates whether it is unnecessary to report an undefined identifier
/// error for an identifier reference with the given [name] and optional
/// [prefix].
///
/// This method is intended to reduce spurious errors in circumstances where
/// an undefined identifier occurs as the result of a missing (most likely
/// code generated) file. It will only return `true` in a circumstance where
/// the current library is guaranteed to have at least one other error (due to
/// a missing part or import), so there is no risk that ignoring the undefined
/// identifier would cause an invalid program to be treated as valid.
bool shouldIgnoreUndefined({required String? prefix, required String name}) {
for (var libraryFragment in withEnclosing) {
for (var importElement in libraryFragment.libraryImports) {
if (importElement.prefix2?.element.name3 == prefix &&
importElement.importedLibrary2?.isSynthetic != false) {
var showCombinators =
importElement.combinators
.whereType<ShowElementCombinator>()
.toList();
if (prefix != null && showCombinators.isEmpty) {
return true;
}
for (var combinator in showCombinators) {
if (combinator.shownNames.contains(name)) {
return true;
}
}
}
}
}
if (prefix == null && name.startsWith(r'_$')) {
for (var partElement in parts) {
var uri = partElement.uri;
if (uri is DirectiveUriWithSourceImpl &&
uri is! DirectiveUriWithUnitImpl &&
file_paths.isGenerated(uri.relativeUriString)) {
return true;
}
}
}
return false;
}
/// Convenience wrapper around [shouldIgnoreUndefined] that calls it for a
/// given (possibly prefixed) identifier [node].
bool shouldIgnoreUndefinedIdentifier(Identifier node) {
if (node is PrefixedIdentifier) {
return shouldIgnoreUndefined(
prefix: node.prefix.name,
name: node.identifier.name,
);
}
return shouldIgnoreUndefined(
prefix: null,
name: (node as SimpleIdentifier).name,
);
}
/// Convenience wrapper around [shouldIgnoreUndefined] that calls it for a
/// given (possibly prefixed) named type [node].
bool shouldIgnoreUndefinedNamedType(NamedType node) {
return shouldIgnoreUndefined(
prefix: node.importPrefix?.name.lexeme,
name: node.name2.lexeme,
);
}
List<PrefixElementImpl2> _buildLibraryImportPrefixes2() {
var prefixes = <PrefixElementImpl2>{};
for (var import in libraryImports2) {
var prefix = import.prefix2?.element;
if (prefix != null) {
prefixes.add(prefix);
}
}
return prefixes.toFixedList();
}
}
class ConstantInitializerImpl implements ConstantInitializer {
@override
final VariableElementImpl fragment;
@override
final ExpressionImpl expression;
/// The cached result of [evaluate].
Constant? _evaluationResult;
ConstantInitializerImpl({required this.fragment, required this.expression});
@override
DartObject? evaluate() {
if (_evaluationResult case DartObjectImpl result) {
return result;
}
// TODO(scheglov): implement it
throw UnimplementedError();
}
}
/// A [FieldElementImpl] for a 'const' or 'final' field that has an initializer.
///
// TODO(paulberry): we should rename this class to reflect the fact that it's
// used for both const and final fields. However, we shouldn't do so until
// we've created an API for reading the values of constants; until that API is
// available, clients are likely to read constant values by casting to
// ConstFieldElementImpl, so it would be a breaking change to rename this
// class.
class ConstFieldElementImpl extends FieldElementImpl with ConstVariableElement {
/// Initialize a newly created synthetic field element to have the given
/// [name] and [offset].
ConstFieldElementImpl(super.name, super.offset);
@override
ExpressionImpl? get constantInitializer {
linkedData?.read(this);
return super.constantInitializer;
}
}
/// A `LocalVariableElement` for a local 'const' variable that has an
/// initializer.
class ConstLocalVariableElementImpl extends LocalVariableElementImpl
with ConstVariableElement {
/// Initialize a newly created local variable element to have the given [name]
/// and [offset].
ConstLocalVariableElementImpl(super.name, super.offset);
}
/// A concrete implementation of a [ConstructorFragment].
class ConstructorElementImpl extends ExecutableElementImpl
with ConstructorElementMixin
implements ConstructorFragment {
late final ConstructorElementImpl2 element = ConstructorElementImpl2(
name.ifNotEmptyOrElse('new'),
this,
);
/// The super-constructor which this constructor is invoking, or `null` if
/// this constructor is not generative, or is redirecting, or the
/// super-constructor is not resolved, or the enclosing class is `Object`.
///
// TODO(scheglov): We cannot have both super and redirecting constructors.
// So, ideally we should have some kind of "either" or "variant" here.
ConstructorElementMixin? _superConstructor;
/// The constructor to which this constructor is redirecting.
ConstructorElementMixin? _redirectedConstructor;
/// The initializers for this constructor (used for evaluating constant
/// instance creation expressions).
List<ConstructorInitializer> _constantInitializers = const [];
@override
String? typeName;
@override
int? typeNameOffset;
@override
int? periodOffset;
int? nameEnd;
@override
late String name2;
@override
int? nameOffset2;
@override
ConstructorElementImpl? previousFragment;
@override
ConstructorElementImpl? nextFragment;
/// For every constructor we initially set this flag to `true`, and then
/// set it to `false` during computing constant values if we detect that it
/// is a part of a cycle.
bool isCycleFree = true;
@override
bool isConstantEvaluated = false;
/// Initialize a newly created constructor element to have the given [name]
/// and [offset].
ConstructorElementImpl(super.name, super.offset);
/// Return the constant initializers for this element, which will be empty if
/// there are no initializers, or `null` if there was an error in the source.
List<ConstructorInitializer> get constantInitializers {
linkedData?.read(this);
return _constantInitializers;
}
set constantInitializers(List<ConstructorInitializer> constantInitializers) {
_constantInitializers = constantInitializers;
}
@override
ConstructorElementImpl get declaration => this;
@override
String get displayName {
var className = enclosingElement3.name;
var name = this.name;
if (name.isNotEmpty) {
return '$className.$name';
} else {
return className;
}
}
@override
InterfaceElementImpl get enclosingElement3 =>
super.enclosingElement3 as InterfaceElementImpl;
@override
InstanceFragment? get enclosingFragment =>
enclosingElement3 as InstanceFragment;
@override
bool get isConst {
return hasModifier(Modifier.CONST);
}
/// Set whether this constructor represents a 'const' constructor.
set isConst(bool isConst) {
setModifier(Modifier.CONST, isConst);
}
@override
bool get isFactory {
return hasModifier(Modifier.FACTORY);
}
/// Set whether this constructor represents a factory method.
set isFactory(bool isFactory) {
setModifier(Modifier.FACTORY, isFactory);
}
@override
ElementKind get kind => ElementKind.CONSTRUCTOR;
@override
LibraryElementImpl get library2 => library;
@override
int get nameLength {
var nameEnd = this.nameEnd;
if (nameEnd == null) {
return 0;
} else {
return nameEnd - nameOffset;
}
}
@override
ElementImpl get nonSynthetic {
return isSynthetic ? enclosingElement3 : this;
}
@override
int get offset => isSynthetic ? enclosingElement3.offset : _nameOffset;
@override
ConstructorElementMixin? get redirectedConstructor {
linkedData?.read(this);
return _redirectedConstructor;
}
set redirectedConstructor(ConstructorElementMixin? redirectedConstructor) {
_redirectedConstructor = redirectedConstructor;
}
@override
InterfaceTypeImpl get returnType {
var result = _returnType;
if (result != null) {
return result as InterfaceTypeImpl;
}
result = enclosingElement3.element.thisType;
return _returnType = result as InterfaceTypeImpl;
}
@override
set returnType(DartType returnType) {
assert(false);
}
ConstructorElementMixin? get superConstructor {
linkedData?.read(this);
return _superConstructor;
}
set superConstructor(ConstructorElementMixin? superConstructor) {
_superConstructor = superConstructor;
}
@override
FunctionTypeImpl get type {
// TODO(scheglov): Remove "element" in the breaking changes branch.
return _type ??= FunctionTypeImpl(
typeFormals: typeParameters,
parameters: parameters,
returnType: returnType,
nullabilitySuffix: NullabilitySuffix.none,
);
}
@override
set type(FunctionType type) {
assert(false);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeConstructorElement(this);
}
/// Ensures that dependencies of this constructor, such as default values
/// of formal parameters, are evaluated.
void computeConstantDependencies() {
if (!isConstantEvaluated) {
computeConstants(
declaredVariables: context.declaredVariables,
constants: [this],
featureSet: library.featureSet,
configuration: ConstantEvaluationConfiguration(),
);
}
}
}
class ConstructorElementImpl2 extends ExecutableElementImpl2
with
FragmentedExecutableElementMixin<ConstructorElementImpl>,
FragmentedFunctionTypedElementMixin<ConstructorElementImpl>,
FragmentedTypeParameterizedElementMixin<ConstructorElementImpl>,
FragmentedAnnotatableElementMixin<ConstructorElementImpl>,
FragmentedElementMixin<ConstructorElementImpl>,
ConstructorElementMixin2,
_HasSinceSdkVersionMixin
implements ConstructorElement {
@override
final String? name3;
@override
final ConstructorElementImpl firstFragment;
ConstructorElementImpl2(this.name3, this.firstFragment);
@override
ConstructorElementImpl2 get baseElement => this;
/// The constant initializers for this element, from all fragments.
List<ConstructorInitializer> get constantInitializers {
return fragments
.expand((fragment) => fragment.constantInitializers)
.toList(growable: false);
}
@override
String get displayName {
var className = enclosingElement2.name3 ?? '<null>';
var name = name3 ?? '<null>';
if (name != 'new') {
return '$className.$name';
} else {
return className;
}
}
@override
InterfaceElementImpl2 get enclosingElement2 =>
firstFragment.enclosingElement3.element;
@override
List<ConstructorElementImpl> get fragments {
return [
for (
ConstructorElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
bool get isConst => firstFragment.isConst;
@override
bool get isDefaultConstructor => firstFragment.isDefaultConstructor;
@override
bool get isFactory => firstFragment.isFactory;
@override
bool get isGenerative => firstFragment.isGenerative;
@override
ElementKind get kind => ElementKind.CONSTRUCTOR;
@override
ConstructorElementImpl get lastFragment {
return super.lastFragment as ConstructorElementImpl;
}
@override
Element get nonSynthetic2 {
if (isSynthetic) {
return enclosingElement2;
} else {
return this;
}
}
@override
ConstructorElementMixin2? get redirectedConstructor2 {
return firstFragment.redirectedConstructor?.asElement2;
}
set redirectedConstructor2(ConstructorElementMixin2? value) {
firstFragment.redirectedConstructor = value?.asElement;
}
@override
InterfaceTypeImpl get returnType {
return firstFragment.returnType;
}
@override
ConstructorElementMixin2? get superConstructor2 =>
firstFragment.superConstructor?.declaration.element;
set superConstructor2(ConstructorElementMixin2? value) {
firstFragment.superConstructor = value?.asElement;
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitConstructorElement(this);
}
/// Ensures that dependencies of this constructor, such as default values
/// of formal parameters, are evaluated.
void computeConstantDependencies() {
firstFragment.computeConstantDependencies();
}
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
}
mixin ConstructorElementMixin
implements ConstantEvaluationTarget, ExecutableElementOrMember {
@override
ConstructorElementImpl get declaration;
/// Whether the constructor is a const constructor.
bool get isConst;
/// Whether the constructor can be used as a default constructor - unnamed,
/// and has no required parameters.
bool get isDefaultConstructor {
// unnamed
if (name.isNotEmpty) {
return false;
}
// no required parameters
for (var parameter in parameters) {
if (parameter.isRequired) {
return false;
}
}
// OK, can be used as default constructor
return true;
}
/// Whether the constructor represents a factory constructor.
bool get isFactory;
/// Whether the constructor represents a generative constructor.
bool get isGenerative {
return !isFactory;
}
@override
LibraryElementImpl get library2;
ConstructorElementMixin? get redirectedConstructor;
@override
InterfaceTypeImpl get returnType;
}
/// Common implementation for methods defined in [ConstructorElement].
mixin ConstructorElementMixin2
implements ExecutableElement2OrMember, ConstructorElement {
@override
ConstructorElementImpl2 get baseElement;
@override
InterfaceElementImpl2 get enclosingElement2;
@override
InterfaceTypeImpl get returnType;
}
class ConstTopLevelVariableElementImpl extends TopLevelVariableElementImpl
with ConstVariableElement {
/// Initialize a newly created synthetic top-level variable element to have
/// the given [name] and [offset].
ConstTopLevelVariableElementImpl(super.name, super.offset);
@override
ExpressionImpl? get constantInitializer {
linkedData?.read(this);
return super.constantInitializer;
}
}
/// Mixin used by elements that represent constant variables and have
/// initializers.
///
/// Note that in correct Dart code, all constant variables must have
/// initializers. However, analyzer also needs to handle incorrect Dart code,
/// in which case there might be some constant variables that lack initializers.
/// This interface is only used for constant variables that have initializers.
///
/// This class is not intended to be part of the public API for analyzer.
mixin ConstVariableElement implements ElementImpl, ConstantEvaluationTarget {
/// If this element represents a constant variable, and it has an initializer,
/// a copy of the initializer for the constant. Otherwise `null`.
///
/// Note that in correct Dart code, all constant variables must have
/// initializers. However, analyzer also needs to handle incorrect Dart code,
/// in which case there might be some constant variables that lack
/// initializers.
ExpressionImpl? constantInitializer;
Constant? _evaluationResult;
Constant? get evaluationResult => _evaluationResult;
set evaluationResult(Constant? evaluationResult) {
_evaluationResult = evaluationResult;
}
@override
bool get isConstantEvaluated => _evaluationResult != null;
/// Return a representation of the value of this variable, forcing the value
/// to be computed if it had not previously been computed, or `null` if either
/// this variable was not declared with the 'const' modifier or if the value
/// of this variable could not be computed because of errors.
DartObject? computeConstantValue() {
if (evaluationResult == null) {
var library = this.library;
// TODO(scheglov): https://github.com/dart-lang/sdk/issues/47915
if (library == null) {
throw StateError(
'[library: null][this: ($runtimeType) $this]'
'[enclosingElement: $enclosingElement3]'
'[reference: $reference]',
);
}
computeConstants(
declaredVariables: context.declaredVariables,
constants: [this],
featureSet: library.featureSet,
configuration: ConstantEvaluationConfiguration(),
);
}
if (evaluationResult case DartObjectImpl result) {
return result;
}
return null;
}
}
/// A [FieldFormalParameterElementImpl] for parameters that have an initializer.
class DefaultFieldFormalParameterElementImpl
extends FieldFormalParameterElementImpl
with ConstVariableElement {
/// Initialize a newly created parameter element to have the given [name] and
/// [nameOffset].
DefaultFieldFormalParameterElementImpl({
required super.name,
required super.nameOffset,
required super.name2,
required super.nameOffset2,
required super.parameterKind,
});
@override
String? get defaultValueCode {
return constantInitializer?.toSource();
}
}
/// A [ParameterElementImpl] for parameters that have an initializer.
class DefaultParameterElementImpl extends ParameterElementImpl
with ConstVariableElement {
/// Initialize a newly created parameter element to have the given [name] and
/// [nameOffset].
DefaultParameterElementImpl({
required super.name,
required super.nameOffset,
required super.name2,
required super.nameOffset2,
required super.parameterKind,
});
@override
String? get defaultValueCode {
return constantInitializer?.toSource();
}
}
class DefaultSuperFormalParameterElementImpl
extends SuperFormalParameterElementImpl
with ConstVariableElement {
/// Initialize a newly created parameter element to have the given [name] and
/// [nameOffset].
DefaultSuperFormalParameterElementImpl({
required super.name,
required super.nameOffset,
required super.name2,
required super.nameOffset2,
required super.parameterKind,
});
@override
String? get defaultValueCode {
if (isRequired) {
return null;
}
var constantInitializer = this.constantInitializer;
if (constantInitializer != null) {
return constantInitializer.toSource();
}
if (_superConstructorParameterDefaultValue != null) {
return superConstructorParameter?.defaultValueCode;
}
return null;
}
@override
Constant? get evaluationResult {
if (constantInitializer != null) {
return super.evaluationResult;
}
var superConstructorParameter = this.superConstructorParameter?.declaration;
if (superConstructorParameter is ParameterElementImpl) {
return superConstructorParameter.evaluationResult;
}
return null;
}
DartObject? get _superConstructorParameterDefaultValue {
var superDefault = superConstructorParameter?.computeConstantValue();
if (superDefault == null) {
return null;
}
// TODO(scheglov): eliminate this cast
superDefault as DartObjectImpl;
var superDefaultType = superDefault.type;
var typeSystem = library?.typeSystem;
if (typeSystem == null) {
return null;
}
var requiredType = type.extensionTypeErasure;
if (typeSystem.isSubtypeOf(superDefaultType, requiredType)) {
return superDefault;
}
return null;
}
@override
DartObject? computeConstantValue() {
if (constantInitializer != null) {
return super.computeConstantValue();
}
return _superConstructorParameterDefaultValue;
}
}
class DirectiveUriImpl implements DirectiveUri {}
class DirectiveUriWithLibraryImpl extends DirectiveUriWithSourceImpl
implements DirectiveUriWithLibrary {
@override
late LibraryElementImpl library2;
DirectiveUriWithLibraryImpl({
required super.relativeUriString,
required super.relativeUri,
required super.source,
required this.library2,
});
DirectiveUriWithLibraryImpl.read({
required super.relativeUriString,
required super.relativeUri,
required super.source,
});
}
class DirectiveUriWithRelativeUriImpl
extends DirectiveUriWithRelativeUriStringImpl
implements DirectiveUriWithRelativeUri {
@override
final Uri relativeUri;
DirectiveUriWithRelativeUriImpl({
required super.relativeUriString,
required this.relativeUri,
});
}
class DirectiveUriWithRelativeUriStringImpl extends DirectiveUriImpl
implements DirectiveUriWithRelativeUriString {
@override
final String relativeUriString;
DirectiveUriWithRelativeUriStringImpl({required this.relativeUriString});
}
class DirectiveUriWithSourceImpl extends DirectiveUriWithRelativeUriImpl
implements DirectiveUriWithSource {
@override
final Source source;
DirectiveUriWithSourceImpl({
required super.relativeUriString,
required super.relativeUri,
required this.source,
});
}
class DirectiveUriWithUnitImpl extends DirectiveUriWithRelativeUriImpl
implements DirectiveUriWithUnit {
@override
final CompilationUnitElementImpl libraryFragment;
DirectiveUriWithUnitImpl({
required super.relativeUriString,
required super.relativeUri,
required this.libraryFragment,
});
@override
Source get source => libraryFragment.source;
}
/// The synthetic element representing the declaration of the type `dynamic`.
class DynamicElementImpl extends ElementImpl implements TypeDefiningFragment {
/// The unique instance of this class.
static final DynamicElementImpl instance = DynamicElementImpl._();
/// Initialize a newly created instance of this class. Instances of this class
/// should <b>not</b> be created except as part of creating the type
/// associated with this element. The single instance of this class should be
/// accessed through the method [instance].
DynamicElementImpl._() : super(Keyword.DYNAMIC.lexeme, -1) {
setModifier(Modifier.SYNTHETIC, true);
}
@override
List<Fragment> get children3 => const [];
@override
DynamicElementImpl2 get element => DynamicElementImpl2.instance;
@override
Null get enclosingFragment => null;
@override
ElementKind get kind => ElementKind.DYNAMIC;
@override
Null get library => null;
@override
Null get libraryFragment => null;
@override
String get name2 => 'dynamic';
@override
Null get nameOffset2 => null;
@override
Null get nextFragment => null;
@override
int get offset => 0;
@override
Null get previousFragment => null;
}
/// The synthetic element representing the declaration of the type `dynamic`.
class DynamicElementImpl2 extends TypeDefiningElementImpl2 {
/// The unique instance of this class.
static final DynamicElementImpl2 instance = DynamicElementImpl2._();
DynamicElementImpl2._();
@override
Null get documentationComment => null;
@override
Element? get enclosingElement2 => null;
@override
DynamicElementImpl get firstFragment => DynamicElementImpl.instance;
@override
List<DynamicElementImpl> get fragments {
return [
for (
DynamicElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
bool get isSynthetic => true;
@override
ElementKind get kind => ElementKind.DYNAMIC;
@override
Null get library2 => null;
@override
Metadata get metadata2 {
return MetadataImpl(0, const []);
}
@override
String get name3 => 'dynamic';
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return null;
}
}
/// A concrete implementation of an [ElementAnnotation].
class ElementAnnotationImpl implements ElementAnnotation {
/// The name of the top-level variable used to mark that a function always
/// throws, for dead code purposes.
static const String _alwaysThrowsVariableName = 'alwaysThrows';
/// The name of the top-level variable used to mark an element as not needing
/// to be awaited.
static const String _awaitNotRequiredVariableName = 'awaitNotRequired';
/// The name of the class used to mark an element as being deprecated.
static const String _deprecatedClassName = 'Deprecated';
/// The name of the top-level variable used to mark an element as being
/// deprecated.
static const String _deprecatedVariableName = 'deprecated';
/// The name of the top-level variable used to mark an element as not to be
/// stored.
static const String _doNotStoreVariableName = 'doNotStore';
/// The name of the top-level variable used to mark a declaration as not to be
/// used (for ephemeral testing and debugging only).
static const String _doNotSubmitVariableName = 'doNotSubmit';
/// The name of the top-level variable used to mark a method as being a
/// factory.
static const String _factoryVariableName = 'factory';
/// The name of the top-level variable used to mark a class and its subclasses
/// as being immutable.
static const String _immutableVariableName = 'immutable';
/// The name of the top-level variable used to mark an element as being
/// internal to its package.
static const String _internalVariableName = 'internal';
/// The name of the top-level variable used to mark a constructor as being
/// literal.
static const String _literalVariableName = 'literal';
/// The name of the top-level variable used to mark a returned element as
/// requiring use.
static const String _mustBeConstVariableName = 'mustBeConst';
/// The name of the top-level variable used to mark a type as having
/// "optional" type arguments.
static const String _optionalTypeArgsVariableName = 'optionalTypeArgs';
/// The name of the top-level variable used to mark a function as running
/// a single test.
static const String _isTestVariableName = 'isTest';
/// The name of the top-level variable used to mark a function as a Flutter
/// widget factory.
static const String _widgetFactoryName = 'widgetFactory';
/// The URI of the Flutter widget inspector library.
static final Uri _flutterWidgetInspectorLibraryUri = Uri.parse(
'package:flutter/src/widgets/widget_inspector.dart',
);
/// The name of the top-level variable used to mark a function as running
/// a test group.
static const String _isTestGroupVariableName = 'isTestGroup';
/// The name of the class used to JS annotate an element.
static const String _jsClassName = 'JS';
/// The name of `_js_annotations` library, used to define JS annotations.
static const String _jsLibName = '_js_annotations';
/// The name of `meta` library, used to define analysis annotations.
static const String _metaLibName = 'meta';
/// The name of `meta_meta` library, used to define annotations for other
/// annotations.
static const String _metaMetaLibName = 'meta_meta';
/// The name of the top-level variable used to mark a method as requiring
/// subclasses to override this method.
static const String _mustBeOverridden = 'mustBeOverridden';
/// The name of the top-level variable used to mark a method as requiring
/// overriders to call super.
static const String _mustCallSuperVariableName = 'mustCallSuper';
/// The name of `angular.meta` library, used to define angular analysis
/// annotations.
static const String _angularMetaLibName = 'angular.meta';
/// The name of the top-level variable used to mark a member as being nonVirtual.
static const String _nonVirtualVariableName = 'nonVirtual';
/// The name of the top-level variable used to mark a method as being expected
/// to override an inherited method.
static const String _overrideVariableName = 'override';
/// The name of the top-level variable used to mark a method as being
/// protected.
static const String _protectedVariableName = 'protected';
/// The name of the top-level variable used to mark a member as redeclaring.
static const String _redeclareVariableName = 'redeclare';
/// The name of the top-level variable used to mark a class or mixin as being
/// reopened.
static const String _reopenVariableName = 'reopen';
/// The name of the class used to mark a parameter as being required.
static const String _requiredClassName = 'Required';
/// The name of the top-level variable used to mark a parameter as being
/// required.
static const String _requiredVariableName = 'required';
/// The name of the top-level variable used to mark a class as being sealed.
static const String _sealedVariableName = 'sealed';
/// The name of the class used to annotate a class as an annotation with a
/// specific set of target element kinds.
static const String _targetClassName = 'Target';
/// The name of the class used to mark a returned element as requiring use.
static const String _useResultClassName = 'UseResult';
/// The name of the top-level variable used to mark a returned element as
/// requiring use.
static const String _useResultVariableName = 'useResult';
/// The name of the top-level variable used to mark a member as being visible
/// for overriding only.
static const String _visibleForOverridingName = 'visibleForOverriding';
/// The name of the top-level variable used to mark a method as being
/// visible for templates.
static const String _visibleForTemplateVariableName = 'visibleForTemplate';
/// The name of the top-level variable used to mark a method as being
/// visible for testing.
static const String _visibleForTestingVariableName = 'visibleForTesting';
/// The name of the top-level variable used to mark a method as being
/// visible outside of template files.
static const String _visibleOutsideTemplateVariableName =
'visibleOutsideTemplate';
@override
Element? element2;
/// The compilation unit in which this annotation appears.
CompilationUnitElementImpl compilationUnit;
/// The AST of the annotation itself, cloned from the resolved AST for the
/// source code.
late AnnotationImpl annotationAst;
/// The result of evaluating this annotation as a compile-time constant
/// expression, or `null` if the compilation unit containing the variable has
/// not been resolved.
Constant? evaluationResult;
/// Any additional errors, other than [evaluationResult] being an
/// [InvalidConstant], that came from evaluating the constant expression,
/// or `null` if the compilation unit containing the variable has
/// not been resolved.
///
// TODO(kallentu): Remove this field once we fix up g3's dependency on
// annotations having a valid result as well as unresolved errors.
List<AnalysisError>? additionalErrors;
/// Initialize a newly created annotation. The given [compilationUnit] is the
/// compilation unit in which the annotation appears.
ElementAnnotationImpl(this.compilationUnit);
@override
List<AnalysisError> get constantEvaluationErrors {
var evaluationResult = this.evaluationResult;
var additionalErrors = this.additionalErrors;
if (evaluationResult is InvalidConstant) {
// When we have an [InvalidConstant], we don't report the additional
// errors because this result contains the most relevant error.
return [
AnalysisError.tmp(
source: source,
offset: evaluationResult.offset,
length: evaluationResult.length,
errorCode: evaluationResult.errorCode,
arguments: evaluationResult.arguments,
contextMessages: evaluationResult.contextMessages,
),
];
}
return additionalErrors ?? const <AnalysisError>[];
}
@override
AnalysisContext get context => compilationUnit.library.context;
@override
bool get isAlwaysThrows => _isPackageMetaGetter(_alwaysThrowsVariableName);
@override
bool get isAwaitNotRequired =>
_isPackageMetaGetter(_awaitNotRequiredVariableName);
@override
bool get isConstantEvaluated => evaluationResult != null;
bool get isDartInternalSince {
var element2 = this.element2;
if (element2 is ConstructorElement) {
return element2.enclosingElement2.name3 == 'Since' &&
element2.library2.uri.toString() == 'dart:_internal';
}
return false;
}
@override
bool get isDeprecated {
var element2 = this.element2;
if (element2 is ConstructorElement) {
return element2.library2.isDartCore &&
element2.enclosingElement2.name3 == _deprecatedClassName;
} else if (element2 is PropertyAccessorElement) {
return element2.library2.isDartCore &&
element2.name3 == _deprecatedVariableName;
}
return false;
}
@override
bool get isDoNotStore => _isPackageMetaGetter(_doNotStoreVariableName);
@override
bool get isDoNotSubmit => _isPackageMetaGetter(_doNotSubmitVariableName);
@override
bool get isFactory => _isPackageMetaGetter(_factoryVariableName);
@override
bool get isImmutable => _isPackageMetaGetter(_immutableVariableName);
@override
bool get isInternal => _isPackageMetaGetter(_internalVariableName);
@override
bool get isIsTest => _isPackageMetaGetter(_isTestVariableName);
@override
bool get isIsTestGroup => _isPackageMetaGetter(_isTestGroupVariableName);
@override
bool get isJS =>
_isConstructor(libraryName: _jsLibName, className: _jsClassName);
@override
bool get isLiteral => _isPackageMetaGetter(_literalVariableName);
@override
bool get isMustBeConst => _isPackageMetaGetter(_mustBeConstVariableName);
@override
bool get isMustBeOverridden => _isPackageMetaGetter(_mustBeOverridden);
@override
bool get isMustCallSuper => _isPackageMetaGetter(_mustCallSuperVariableName);
@override
bool get isNonVirtual => _isPackageMetaGetter(_nonVirtualVariableName);
@override
bool get isOptionalTypeArgs =>
_isPackageMetaGetter(_optionalTypeArgsVariableName);
@override
bool get isOverride => _isDartCoreGetter(_overrideVariableName);
/// Return `true` if this is an annotation of the form
/// `@pragma("vm:entry-point")`.
bool get isPragmaVmEntryPoint {
if (_isConstructor(libraryName: 'dart.core', className: 'pragma')) {
var value = computeConstantValue();
var nameValue = value?.getField('name');
return nameValue?.toStringValue() == 'vm:entry-point';
}
return false;
}
@override
bool get isProtected => _isPackageMetaGetter(_protectedVariableName);
@override
bool get isProxy => false;
@override
bool get isRedeclare => _isPackageMetaGetter(_redeclareVariableName);
@override
bool get isReopen => _isPackageMetaGetter(_reopenVariableName);
@override
bool get isRequired =>
_isConstructor(
libraryName: _metaLibName,
className: _requiredClassName,
) ||
_isPackageMetaGetter(_requiredVariableName);
@override
bool get isSealed => _isPackageMetaGetter(_sealedVariableName);
@override
bool get isTarget => _isConstructor(
libraryName: _metaMetaLibName,
className: _targetClassName,
);
@override
bool get isUseResult =>
_isConstructor(
libraryName: _metaLibName,
className: _useResultClassName,
) ||
_isPackageMetaGetter(_useResultVariableName);
@override
bool get isVisibleForOverriding =>
_isPackageMetaGetter(_visibleForOverridingName);
@override
bool get isVisibleForTemplate => _isTopGetter(
libraryName: _angularMetaLibName,
name: _visibleForTemplateVariableName,
);
@override
bool get isVisibleForTesting =>
_isPackageMetaGetter(_visibleForTestingVariableName);
@override
bool get isVisibleOutsideTemplate => _isTopGetter(
libraryName: _angularMetaLibName,
name: _visibleOutsideTemplateVariableName,
);
@override
bool get isWidgetFactory => _isTopGetter(
libraryUri: _flutterWidgetInspectorLibraryUri,
name: _widgetFactoryName,
);
@override
LibraryElementImpl get library2 => compilationUnit.library;
@override
Source get librarySource => compilationUnit.librarySource;
@override
Source get source => compilationUnit.source;
@override
DartObject? computeConstantValue() {
if (evaluationResult == null) {
computeConstants(
declaredVariables: context.declaredVariables,
constants: [this],
featureSet: compilationUnit.library.featureSet,
configuration: ConstantEvaluationConfiguration(),
);
}
if (evaluationResult case DartObjectImpl result) {
return result;
}
return null;
}
@override
String toSource() => annotationAst.toSource();
@override
String toString() => '@$element2';
bool _isConstructor({
required String libraryName,
required String className,
}) {
var element2 = this.element2;
return element2 is ConstructorElement &&
element2.enclosingElement2.name3 == className &&
element2.library2.name3 == libraryName;
}
bool _isDartCoreGetter(String name) {
return _isTopGetter(libraryName: 'dart.core', name: name);
}
bool _isPackageMetaGetter(String name) {
return _isTopGetter(libraryName: _metaLibName, name: name);
}
bool _isTopGetter({
String? libraryName,
Uri? libraryUri,
required String name,
}) {
assert(
(libraryName != null) != (libraryUri != null),
'Exactly one of libraryName/libraryUri should be provided',
);
var element2 = this.element2;
return element2 is PropertyAccessorElement &&
element2.name3 == name &&
(libraryName == null || element2.library2.name3 == libraryName) &&
(libraryUri == null || element2.library2.uri == libraryUri);
}
}
abstract class ElementImpl implements ElementOrMember {
static const _metadataFlag_isReady = 1 << 0;
static const _metadataFlag_hasDeprecated = 1 << 1;
static const _metadataFlag_hasOverride = 1 << 2;
static int _NEXT_ID = 0;
@override
final int id = _NEXT_ID++;
/// The element that either physically or logically encloses this element.
///
/// For [LibraryElement] returns `null`, because libraries are the top-level
/// elements in the model.
///
/// For [CompilationUnitElement] returns the [CompilationUnitElement] that
/// uses `part` directive to include this element, or `null` if this element
/// is the defining unit of the library.
ElementImpl? enclosingElement3;
Reference? reference;
/// The name of this element.
String? _name;
/// The offset of the name of this element in the file that contains the
/// declaration of this element.
int _nameOffset = 0;
/// The modifiers associated with this element.
EnumSet<Modifier> _modifiers = EnumSet.empty();
/// A list containing all of the metadata associated with this element.
List<ElementAnnotationImpl> _metadata = const [];
/// Cached flags denoting presence of specific annotations in [_metadata].
int _metadataFlags = 0;
/// The documentation comment for this element.
String? _docComment;
/// The offset of the beginning of the element's code in the file that
/// contains the element, or `null` if the element is synthetic.
int? _codeOffset;
/// The length of the element's code, or `null` if the element is synthetic.
int? _codeLength;
/// Initialize a newly created element to have the given [name] at the given
/// [_nameOffset].
ElementImpl(this._name, this._nameOffset, {this.reference}) {
reference?.element = this;
}
/// The length of the element's code, or `null` if the element is synthetic.
int? get codeLength => _codeLength;
/// The offset of the beginning of the element's code in the file that
/// contains the element, or `null` if the element is synthetic.
int? get codeOffset => _codeOffset;
@override
AnalysisContext get context {
return library!.context;
}
@override
ElementImpl get declaration => this;
@override
String get displayName => _name ?? '';
@override
String? get documentationComment => _docComment;
/// The documentation comment source for this element.
set documentationComment(String? doc) {
_docComment = doc;
}
/// Return the enclosing unit element (which might be the same as `this`), or
/// `null` if this element is not contained in any compilation unit.
CompilationUnitElementImpl get enclosingUnit {
return enclosingElement3!.enclosingUnit;
}
/// Whether the element has an annotation of the form `@deprecated`
/// or `@Deprecated('..')`.
bool get hasDeprecated {
return (_getMetadataFlags() & _metadataFlag_hasDeprecated) != 0;
}
/// Return an identifier that uniquely identifies this element among the
/// children of this element's parent.
String get identifier {
var identifier = name!;
if (_includeNameOffsetInIdentifier) {
identifier += "@$nameOffset";
}
return considerCanonicalizeString(identifier);
}
bool get isNonFunctionTypeAliasesEnabled {
return library!.featureSet.isEnabled(Feature.nonfunction_type_aliases);
}
@override
bool get isPrivate {
var name = this.name;
if (name == null) {
return true;
}
return Identifier.isPrivateName(name);
}
@override
bool get isPublic => !isPrivate;
@override
bool get isSynthetic {
return hasModifier(Modifier.SYNTHETIC);
}
/// Set whether this element is synthetic.
set isSynthetic(bool isSynthetic) {
setModifier(Modifier.SYNTHETIC, isSynthetic);
}
LibraryElementImpl? get library;
@override
Source? get librarySource => library?.source;
@override
List<ElementAnnotationImpl> get metadata {
return _metadata;
}
set metadata(List<ElementAnnotationImpl> metadata) {
_metadata = metadata;
}
MetadataImpl get metadata2 => MetadataImpl(_getMetadataFlags(), metadata);
@override
String? get name => _name;
/// Changes the name of this element.
set name(String? name) {
_name = name;
}
@override
int get nameLength => displayName.length;
@override
int get nameOffset => _nameOffset;
/// Sets the offset of the name of this element in the file that contains the
/// declaration of this element.
set nameOffset(int offset) {
_nameOffset = offset;
}
/// The non-synthetic element that caused this element to be created.
///
/// If this element is not synthetic, then the element itself is returned.
///
/// If this element is synthetic, then the corresponding non-synthetic
/// element is returned. For example, for a synthetic getter of a
/// non-synthetic field the field is returned; for a synthetic constructor
/// the enclosing class is returned.
ElementImpl get nonSynthetic => this;
@override
AnalysisSession? get session {
return enclosingElement3?.session;
}
@override
Version? get sinceSdkVersion {
return asElement2.ifTypeOrNull<HasSinceSdkVersion>()?.sinceSdkVersion;
}
@override
Source? get source {
return enclosingElement3?.source;
}
/// Whether to include the [nameOffset] in [identifier] to disambiguate
/// elements that might otherwise have the same identifier.
bool get _includeNameOffsetInIdentifier {
return false;
}
@override
bool operator ==(Object other) {
return identical(this, other);
}
/// Append a textual representation of this element to the given [builder].
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeAbstractElement(this);
}
/// Set this element as the enclosing element for given [element].
void encloseElement(ElementImpl element) {
element.enclosingElement3 = this;
}
/// Set this element as the enclosing element for given [elements].
void encloseElements(List<ElementImpl> elements) {
for (var element in elements) {
element.enclosingElement3 = this;
}
}
@override
String getDisplayString({
@Deprecated('Only non-nullable by default mode is supported')
bool withNullability = true,
bool multiline = false,
bool preferTypeAlias = false,
}) {
var builder = ElementDisplayStringBuilder(
multiline: multiline,
preferTypeAlias: preferTypeAlias,
);
appendTo(builder);
return builder.toString();
}
/// Return `true` if this element has the given [modifier] associated with it.
bool hasModifier(Modifier modifier) => _modifiers[modifier];
void resetMetadataFlags() {
_metadataFlags = 0;
}
/// Set the code range for this element.
void setCodeRange(int offset, int length) {
_codeOffset = offset;
_codeLength = length;
}
/// Set whether the given [modifier] is associated with this element to
/// correspond to the given [value].
void setModifier(Modifier modifier, bool value) {
_modifiers = _modifiers.updated(modifier, value);
}
@override
String toString() {
return getDisplayString();
}
/// Return flags that denote presence of a few specific annotations.
int _getMetadataFlags() {
var result = _metadataFlags;
// Has at least `_metadataFlag_isReady`.
if (result != 0) {
return result;
}
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isDeprecated) {
result |= _metadataFlag_hasDeprecated;
} else if (annotation.isOverride) {
result |= _metadataFlag_hasOverride;
}
}
result |= _metadataFlag_isReady;
return _metadataFlags = result;
}
}
abstract class ElementImpl2 implements Element {
@override
final int id = ElementImpl._NEXT_ID++;
/// The modifiers associated with this element.
EnumSet<Modifier> _modifiers = EnumSet.empty();
@override
Element get baseElement => this;
@override
List<Element> get children2 => const [];
@override
String get displayName => name3 ?? '<unnamed>';
@override
// TODO(augmentations): implement enclosingElement2
Element? get enclosingElement2 => throw UnimplementedError();
@override
List<Fragment> get fragments {
return [
for (
Fragment? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
/// Return an identifier that uniquely identifies this element among the
/// children of this element's parent.
String get identifier {
var identifier = name3!;
// TODO(augmentations): Figure out how to get a unique identifier. In the
// old model we sometimes used the offset of the name to disambiguate
// between elements, but we can't do that anymore because the name can
// appear at multiple offsets.
return considerCanonicalizeString(identifier);
}
@override
bool get isPrivate {
var name3 = this.name3;
if (name3 == null) {
return true;
}
return Identifier.isPrivateName(name3);
}
@override
bool get isPublic => !isPrivate;
@override
String? get lookupName {
return name3;
}
@override
Element get nonSynthetic2 => this;
/// The reference of this element, used during reading summaries.
///
/// Can be `null` if this element cannot be referenced from outside,
/// for example a [LocalFunctionElement], a [TypeParameterElement],
/// a positional [FormalParameterElement], etc.
Reference? get reference => null;
@override
AnalysisSession? get session {
return enclosingElement2?.session;
}
@override
bool operator ==(Object other) {
return identical(this, other);
}
/// Append a textual representation of this element to the given [builder].
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeAbstractElement2(this);
}
@override
String displayString2({
bool multiline = false,
bool preferTypeAlias = false,
}) {
var builder = ElementDisplayStringBuilder(
multiline: multiline,
preferTypeAlias: preferTypeAlias,
);
appendTo(builder);
return builder.toString();
}
@override
String getExtendedDisplayName2({String? shortName}) {
shortName ??= displayName;
var source = firstFragment.libraryFragment?.source;
return "$shortName (${source?.fullName})";
}
/// Whether this element has the [modifier].
bool hasModifier(Modifier modifier) => _modifiers[modifier];
@override
bool isAccessibleIn2(LibraryElement library) {
var name3 = this.name3;
if (name3 == null || Identifier.isPrivateName(name3)) {
return library == library2;
}
return true;
}
/// Update [modifier] of this element to [value].
void setModifier(Modifier modifier, bool value) {
_modifiers = _modifiers.updated(modifier, value);
}
@override
Element? thisOrAncestorMatching2(bool Function(Element p1) predicate) {
Element? element = this;
while (element != null && !predicate(element)) {
element = element.enclosingElement2;
}
return element;
}
@override
E? thisOrAncestorOfType2<E extends Element>() {
Element element = this;
while (element is! E) {
var ancestor = element.enclosingElement2;
if (ancestor == null) return null;
element = ancestor;
}
return element;
}
@override
String toString() {
return displayString2();
}
/// Use the given [visitor] to visit all of the children of this element.
/// There is no guarantee of the order in which the children will be visited.
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
}
/// A shared internal interface of `Element` and [Member].
/// Used during migration to avoid referencing `Element`.
abstract class ElementOrMember {
/// The analysis context in which this element is defined.
AnalysisContext get context;
/// The declaration of this element.
///
/// If the element is a view on an element, e.g. a method from an interface
/// type, with substituted type parameters, return the corresponding element
/// from the class, without any substitutions. If this element is already a
/// declaration (or a synthetic element, e.g. a synthetic property accessor),
/// return itself.
ElementOrMember? get declaration;
/// The display name of this element, possibly the empty string if the
/// element does not have a name.
///
/// In most cases the name and the display name are the same. Differences
/// though are cases such as setters where the name of some setter `set f(x)`
/// is `f=`, instead of `f`.
String get displayName;
/// The content of the documentation comment (including delimiters) for this
/// element, or `null` if this element does not or cannot have documentation.
String? get documentationComment;
/// The unique integer identifier of this element.
int get id;
/// Whether the element is private.
///
/// Private elements are visible only within the library in which they are
/// declared.
bool get isPrivate;
/// Whether the element is public.
///
/// Public elements are visible within any library that imports the library
/// in which they are declared.
bool get isPublic;
/// Whether the element is synthetic.
///
/// A synthetic element is an element that is not represented in the source
/// code explicitly, but is implied by the source code, such as the default
/// constructor for a class that does not explicitly define any constructors.
bool get isSynthetic;
/// The kind of element that this is.
ElementKind get kind;
/// If this target is associated with a library, return the source of the
/// library's defining compilation unit; otherwise return `null`.
Source? get librarySource;
/// All of the metadata associated with this element.
///
/// The array will be empty if the element does not have any metadata or if
/// the library containing this element has not yet been resolved.
List<ElementAnnotation> get metadata;
/// The name of this element, or `null` if this element does not have a name.
String? get name;
/// The length of the name of this element in the file that contains the
/// declaration of this element, or `0` if this element does not have a name.
int get nameLength;
/// The offset of the name of this element in the file that contains the
/// declaration of this element, or `-1` if this element is synthetic, does
/// not have a name, or otherwise does not have an offset.
int get nameOffset;
/// The analysis session in which this element is defined.
AnalysisSession? get session;
/// The version where this SDK API was added.
///
/// A `@Since()` annotation can be applied to a library declaration,
/// any public declaration in a library, or in a class, or to an optional
/// parameter, etc.
///
/// The returned version is "effective", so that if a library is annotated
/// then all elements of the library inherit it; or if a class is annotated
/// then all members and constructors of the class inherit it.
///
/// If multiple `@Since()` annotations apply to the same element, the latest
/// version takes precedence.
///
/// Returns `null` if the element is not declared in SDK, or does not have
/// a `@Since()` annotation applicable to it.
Version? get sinceSdkVersion;
/// Return the source associated with this target, or `null` if this target is
/// not associated with a source.
Source? get source;
/// Returns the presentation of this element as it should appear when
/// presented to users.
///
/// If [withNullability] is `true`, then [NullabilitySuffix.question] and
/// [NullabilitySuffix.star] in types will be represented as `?` and `*`.
/// [NullabilitySuffix.none] does not have any explicit presentation.
///
/// If [withNullability] is `false`, nullability suffixes will not be
/// included into the presentation.
///
/// If [multiline] is `true`, the string may be wrapped over multiple lines
/// with newlines to improve formatting. For example function signatures may
/// be formatted as if they had trailing commas.
///
/// Clients should not depend on the content of the returned value as it will
/// be changed if doing so would improve the UX.
String getDisplayString({
@Deprecated('Only non-nullable by default mode is supported')
bool withNullability = true,
bool multiline = false,
});
}
/// An [InterfaceElementImpl] which is an enum.
class EnumElementImpl extends InterfaceElementImpl implements EnumFragment {
late EnumElementImpl2 augmentedInternal;
/// Initialize a newly created class element to have the given [name] at the
/// given [offset] in the file that contains the declaration of this element.
EnumElementImpl(super.name, super.offset);
List<FieldElementImpl> get constants {
return fields.where((field) => field.isEnumConstant).toList();
}
@override
List<FieldElement> get constants2 =>
constants.map((e) => e.asElement2).toList();
@override
EnumElementImpl2 get element {
linkedData?.read(this);
return augmentedInternal;
}
@override
ElementKind get kind => ElementKind.ENUM;
@override
EnumElementImpl? get nextFragment => super.nextFragment as EnumElementImpl?;
@override
EnumElementImpl? get previousFragment =>
super.previousFragment as EnumElementImpl?;
ConstFieldElementImpl? get valuesField {
for (var field in fields) {
if (field is ConstFieldElementImpl &&
field.name == 'values' &&
field.isSyntheticEnumField) {
return field;
}
}
return null;
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeEnumElement(this);
}
}
class EnumElementImpl2 extends InterfaceElementImpl2 implements EnumElement {
@override
final Reference reference;
@override
final EnumElementImpl firstFragment;
EnumElementImpl2(this.reference, this.firstFragment) {
reference.element2 = this;
firstFragment.augmentedInternal = this;
}
@override
List<FieldElementImpl2> get constants2 {
return fields2.where((field) => field.isEnumConstant).toList();
}
@override
List<EnumElementImpl> get fragments {
return [
for (
EnumElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitEnumElement(this);
}
}
/// Common base class for all analyzer-internal classes that implement
/// `ExecutableElement2`.
abstract class ExecutableElement2OrMember
implements ExecutableElement, AnnotatableElement {
@override
ExecutableElementImpl2 get baseElement;
@override
List<FormalParameterElementMixin> get formalParameters;
@override
TypeImpl get returnType;
@override
FunctionTypeImpl get type;
}
abstract class ExecutableElementImpl extends _ExistingElementImpl
with AugmentableFragment, TypeParameterizedElementMixin
implements ExecutableElementOrMember, ExecutableFragment {
/// A list containing all of the parameters defined by this executable
/// element.
List<ParameterElementImpl> _parameters = const [];
/// The inferred return type of this executable element.
TypeImpl? _returnType;
/// The type of function defined by this executable element.
FunctionTypeImpl? _type;
/// Whether the type of this fragment references a type parameter of the
/// enclosing element. This includes not only explicitly specified type
/// annotations, but also inferred types.
///
/// Top-level declarations don't have enclosing element type parameters,
/// so for them this flag is always `false`.
bool hasEnclosingTypeParameterReference = true;
@override
ElementLinkedData? linkedData;
/// Initialize a newly created executable element to have the given [name] and
/// [offset].
ExecutableElementImpl(String super.name, super.offset, {super.reference});
@override
List<Fragment> get children3 => [...typeParameters, ...parameters];
@override
ExecutableElementImpl get declaration => this;
@override
ExecutableElementImpl2 get element;
@override
ElementImpl get enclosingElement3 {
return super.enclosingElement3!;
}
@override
List<ParameterElementImpl> get formalParameters => parameters;
@override
bool get hasImplicitReturnType {
return hasModifier(Modifier.IMPLICIT_TYPE);
}
/// Set whether this executable element has an implicit return type.
set hasImplicitReturnType(bool hasImplicitReturnType) {
setModifier(Modifier.IMPLICIT_TYPE, hasImplicitReturnType);
}
bool get invokesSuperSelf {
return hasModifier(Modifier.INVOKES_SUPER_SELF);
}
set invokesSuperSelf(bool value) {
setModifier(Modifier.INVOKES_SUPER_SELF, value);
}
@override
bool get isAbstract {
return hasModifier(Modifier.ABSTRACT);
}
@override
bool get isAsynchronous {
return hasModifier(Modifier.ASYNCHRONOUS);
}
/// Set whether this executable element's body is asynchronous.
set isAsynchronous(bool isAsynchronous) {
setModifier(Modifier.ASYNCHRONOUS, isAsynchronous);
}
@override
bool get isExtensionTypeMember {
return hasModifier(Modifier.EXTENSION_TYPE_MEMBER);
}
set isExtensionTypeMember(bool value) {
setModifier(Modifier.EXTENSION_TYPE_MEMBER, value);
}
@override
bool get isExternal {
return hasModifier(Modifier.EXTERNAL);
}
/// Set whether this executable element is external.
set isExternal(bool isExternal) {
setModifier(Modifier.EXTERNAL, isExternal);
}
@override
bool get isGenerator {
return hasModifier(Modifier.GENERATOR);
}
/// Set whether this method's body is a generator.
set isGenerator(bool isGenerator) {
setModifier(Modifier.GENERATOR, isGenerator);
}
@override
bool get isOperator => false;
@override
bool get isStatic {
return hasModifier(Modifier.STATIC);
}
set isStatic(bool isStatic) {
setModifier(Modifier.STATIC, isStatic);
}
@override
bool get isSynchronous => !isAsynchronous;
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
@override
String get name {
return super.name!;
}
@override
int get offset => _nameOffset;
@override
List<ParameterElementImpl> get parameters {
linkedData?.read(this);
return _parameters;
}
/// Set the parameters defined by this executable element to the given
/// [parameters].
set parameters(List<ParameterElementImpl> parameters) {
for (var parameter in parameters) {
parameter.enclosingElement3 = this;
}
_parameters = parameters;
}
List<ParameterElementImpl> get parameters_unresolved {
return _parameters;
}
@override
TypeImpl get returnType {
linkedData?.read(this);
return _returnType!;
}
set returnType(DartType returnType) {
// TODO(paulberry): eliminate this cast by changing the setter parameter
// type to `TypeImpl`.
_returnType = returnType as TypeImpl;
// We do this because of return type inference. At the moment when we
// create a local function element we don't know yet its return type,
// because we have not done static type analysis yet.
// It somewhere it between we access the type of this element, so it gets
// cached in the element. When we are done static type analysis, we then
// should clear this cached type to make it right.
// TODO(scheglov): Remove when type analysis is done in the single pass.
_type = null;
}
@override
FunctionTypeImpl get type {
if (_type != null) return _type!;
return _type = FunctionTypeImpl(
typeFormals: typeParameters,
parameters: parameters,
returnType: returnType,
nullabilitySuffix: NullabilitySuffix.none,
);
}
set type(FunctionTypeImpl type) {
_type = type;
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeExecutableElement(this, displayName);
}
void setLinkedData(Reference reference, ElementLinkedData linkedData) {
this.reference = reference;
reference.element = this;
this.linkedData = linkedData;
}
}
abstract class ExecutableElementImpl2 extends FunctionTypedElementImpl2
implements ExecutableElement2OrMember, AnnotatableElementImpl {
@override
ExecutableElementImpl2 get baseElement => this;
@override
List<Element> get children2 => [
...super.children2,
...typeParameters2,
...formalParameters,
];
/// Whether the type of this element references a type parameter of the
/// enclosing element. This includes not only explicitly specified type
/// annotations, but also inferred types.
///
/// Top-level declarations don't have enclosing element type parameters,
/// so for them this flag is always `false`.
bool get hasEnclosingTypeParameterReference {
var firstFragment = this.firstFragment as ExecutableElementImpl;
return firstFragment.hasEnclosingTypeParameterReference;
}
bool get invokesSuperSelf {
var firstFragment = this.firstFragment as ExecutableElementImpl;
return firstFragment.hasModifier(Modifier.INVOKES_SUPER_SELF);
}
ExecutableElementImpl get lastFragment {
var result = firstFragment as ExecutableElementImpl;
while (true) {
if (result.nextFragment case ExecutableElementImpl nextFragment) {
result = nextFragment;
} else {
return result;
}
}
}
@override
LibraryElement get library2 {
var firstFragment = this.firstFragment as ExecutableElementImpl;
return firstFragment.library;
}
}
/// Common base class for all analyzer-internal classes that implement
/// `ExecutableElement`.
abstract class ExecutableElementOrMember implements ElementOrMember {
@override
ExecutableElementOrMember get declaration;
@override
String get displayName;
/// Whether the executable element did not have an explicit return type
/// specified for it in the original source.
bool get hasImplicitReturnType;
/// Whether the executable element is abstract.
///
/// Executable elements are abstract if they are not external, and have no
/// body.
bool get isAbstract;
/// Whether the executable element has body marked as being asynchronous.
bool get isAsynchronous;
/// Whether the element is an augmentation.
///
/// If `true`, declaration has the explicit `augment` modifier.
bool get isAugmentation;
/// Whether the executable element is an extension type member.
bool get isExtensionTypeMember;
/// Whether the executable element is external.
///
/// Executable elements are external if they are explicitly marked as such
/// using the 'external' keyword.
bool get isExternal;
/// Whether the executable element has a body marked as being a generator.
bool get isGenerator;
/// Whether the executable element is an operator.
///
/// The test may be based on the name of the executable element, in which
/// case the result will be correct when the name is legal.
bool get isOperator;
/// Whether the element is a static element.
///
/// A static element is an element that is not associated with a particular
/// instance, but rather with an entire library or class.
bool get isStatic;
/// Whether the executable element has a body marked as being synchronous.
bool get isSynchronous;
/// The name of this element, or `null` if this element does not have a name.
@override
String get name;
/// The parameters defined by this executable element.
List<ParameterElementMixin> get parameters;
/// The return type defined by this element.
TypeImpl get returnType;
@override
Source get source;
/// The type defined by this element.
FunctionTypeImpl get type;
/// The type parameters declared by this element directly.
///
/// This does not include type parameters that are declared by any enclosing
/// elements.
List<TypeParameterElementImpl> get typeParameters;
}
class ExtensionElementImpl extends InstanceElementImpl
implements ExtensionFragment {
late ExtensionElementImpl2 augmentedInternal;
/// Initialize a newly created extension element to have the given [name] at
/// the given [nameOffset] in the file that contains the declaration of this
/// element.
ExtensionElementImpl(super.name, super.nameOffset);
@override
List<Fragment> get children3 => [
...accessors,
...fields,
...methods,
...typeParameters,
];
@override
String get displayName => name ?? '';
@override
ExtensionElementImpl2 get element {
linkedData?.read(this);
return augmentedInternal;
}
TypeImpl get extendedType {
return element.extendedType;
}
@override
String get identifier {
if (reference != null) {
return reference!.name;
}
return super.identifier;
}
@override
bool get isSimplyBounded => true;
@override
ElementKind get kind => ElementKind.EXTENSION;
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
@override
ExtensionElementImpl? get nextFragment =>
super.nextFragment as ExtensionElementImpl?;
@override
int get offset => nameOffset2 ?? _codeOffset ?? 0;
@override
ExtensionElementImpl? get previousFragment =>
super.previousFragment as ExtensionElementImpl?;
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeExtensionElement(this);
}
}
class ExtensionElementImpl2 extends InstanceElementImpl2
with _HasSinceSdkVersionMixin
implements ExtensionElement {
@override
final Reference reference;
@override
final ExtensionElementImpl firstFragment;
@override
TypeImpl extendedType = InvalidTypeImpl.instance;
ExtensionElementImpl2(this.reference, this.firstFragment) {
reference.element2 = this;
firstFragment.augmentedInternal = this;
}
@override
List<ExtensionElementImpl> get fragments {
return [
for (
ExtensionElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
DartType get thisType => extendedType;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitExtensionElement(this);
}
}
class ExtensionTypeElementImpl extends InterfaceElementImpl
implements ExtensionTypeFragment {
late ExtensionTypeElementImpl2 augmentedInternal;
late DartType typeErasure;
/// Whether the element has direct or indirect reference to itself,
/// in representation.
bool hasRepresentationSelfReference = false;
/// Whether the element has direct or indirect reference to itself,
/// in implemented superinterfaces.
bool hasImplementsSelfReference = false;
ExtensionTypeElementImpl(super.name, super.nameOffset);
@override
ExtensionTypeElementImpl2 get element {
linkedData?.read(this);
return augmentedInternal;
}
@override
ElementKind get kind {
return ElementKind.EXTENSION_TYPE;
}
@override
ExtensionTypeElementImpl? get nextFragment =>
super.nextFragment as ExtensionTypeElementImpl?;
@override
ExtensionTypeElementImpl? get previousFragment =>
super.previousFragment as ExtensionTypeElementImpl?;
ConstructorElementImpl get primaryConstructor {
return constructors.first;
}
@override
ConstructorFragment get primaryConstructor2 =>
primaryConstructor as ConstructorFragment;
FieldElementImpl get representation {
return fields.first;
}
@override
FieldFragment get representation2 => representation as FieldFragment;
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeExtensionTypeElement(this);
}
}
class ExtensionTypeElementImpl2 extends InterfaceElementImpl2
implements ExtensionTypeElement {
@override
final Reference reference;
@override
final ExtensionTypeElementImpl firstFragment;
ExtensionTypeElementImpl2(this.reference, this.firstFragment) {
reference.element2 = this;
firstFragment.augmentedInternal = this;
}
@override
List<ExtensionTypeElementImpl> get fragments {
return [
for (
ExtensionTypeElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
/// Whether the element has direct or indirect reference to itself,
/// in implemented superinterfaces.
bool get hasImplementsSelfReference {
return firstFragment.hasImplementsSelfReference;
}
/// Whether the element has direct or indirect reference to itself,
/// in implemented superinterfaces.
set hasImplementsSelfReference(bool value) {
firstFragment.hasImplementsSelfReference = value;
}
/// Whether the element has direct or indirect reference to itself,
/// in representation.
bool get hasRepresentationSelfReference {
return firstFragment.hasRepresentationSelfReference;
}
/// Whether the element has direct or indirect reference to itself,
/// in representation.
set hasRepresentationSelfReference(bool value) {
firstFragment.hasRepresentationSelfReference = value;
}
@override
ConstructorElement get primaryConstructor2 {
return firstFragment.primaryConstructor.element;
}
@override
FieldElementImpl2 get representation2 {
return firstFragment.representation.element;
}
@override
DartType get typeErasure => firstFragment.typeErasure;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitExtensionTypeElement(this);
}
}
/// Common base class for all analyzer-internal classes that implement
/// `FieldElement2`.
abstract class FieldElement2OrMember
implements PropertyInducingElement2OrMember, FieldElement {}
class FieldElementImpl extends PropertyInducingElementImpl
implements FieldElementOrMember, FieldFragment {
/// True if this field inherits from a covariant parameter. This happens
/// when it overrides a field in a supertype that is covariant.
bool inheritsCovariant = false;
/// Whether the type of this fragment references a type parameter of the
/// enclosing element. This includes not only explicitly specified type
/// annotations, but also inferred types.
bool hasEnclosingTypeParameterReference = true;
/// The element corresponding to this fragment.
FieldElementImpl2? _element;
/// Initialize a newly created synthetic field element to have the given
/// [name] at the given [offset].
FieldElementImpl(super.name, super.offset);
@override
FieldElementImpl get declaration => this;
@override
FieldElementImpl2 get element {
if (_element != null) {
return _element!;
}
FieldFragment firstFragment = this;
var previousFragment = firstFragment.previousFragment;
while (previousFragment != null) {
firstFragment = previousFragment;
previousFragment = firstFragment.previousFragment;
}
// As a side-effect of creating the element, all of the fragments in the
// chain will have their `_element` set to the newly created element.
return FieldElementImpl2(firstFragment as FieldElementImpl);
}
set element(FieldElementImpl2 element) => _element = element;
/// Whether the field is abstract.
///
/// Executable fields are abstract if they are declared with the `abstract`
/// keyword.
bool get isAbstract {
return hasModifier(Modifier.ABSTRACT);
}
/// Whether the field was explicitly marked as being covariant.
bool get isCovariant {
return hasModifier(Modifier.COVARIANT);
}
/// Set whether this field is explicitly marked as being covariant.
set isCovariant(bool isCovariant) {
setModifier(Modifier.COVARIANT, isCovariant);
}
/// Whether the element is an enum constant.
bool get isEnumConstant {
return hasModifier(Modifier.ENUM_CONSTANT);
}
set isEnumConstant(bool isEnumConstant) {
setModifier(Modifier.ENUM_CONSTANT, isEnumConstant);
}
/// Whether the field was explicitly marked as being external.
bool get isExternal {
return hasModifier(Modifier.EXTERNAL);
}
/// Whether the field can be type promoted.
bool get isPromotable {
return hasModifier(Modifier.PROMOTABLE);
}
set isPromotable(bool value) {
setModifier(Modifier.PROMOTABLE, value);
}
/// Return `true` if this element is a synthetic enum field.
///
/// It is synthetic because it is not written explicitly in code, but it
/// is different from other synthetic fields, because its getter is also
/// synthetic.
///
/// Such fields are `index`, `_name`, and `values`.
bool get isSyntheticEnumField {
return enclosingElement3 is EnumElementImpl &&
isSynthetic &&
getter?.isSynthetic == true &&
setter == null;
}
@override
ElementKind get kind => ElementKind.FIELD;
@override
LibraryElementImpl get library2 => library;
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
@override
FieldElementImpl? get nextFragment => super.nextFragment as FieldElementImpl?;
@override
int get offset => isSynthetic ? enclosingFragment.offset : _nameOffset;
@override
FieldElementImpl? get previousFragment =>
super.previousFragment as FieldElementImpl?;
}
class FieldElementImpl2 extends PropertyInducingElementImpl2
with
FragmentedAnnotatableElementMixin<FieldElementImpl>,
FragmentedElementMixin<FieldElementImpl>,
_HasSinceSdkVersionMixin
implements FieldElement2OrMember {
@override
final FieldElementImpl firstFragment;
FieldElementImpl2(this.firstFragment) {
FieldElementImpl? fragment = firstFragment;
while (fragment != null) {
fragment.element = this;
fragment = fragment.nextFragment;
}
}
@override
FieldElement get baseElement => this;
@override
InstanceElement get enclosingElement2 =>
(firstFragment.enclosingElement3 as InstanceFragment).element;
@override
List<FieldElementImpl> get fragments {
return [
for (
FieldElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
GetterElementImpl? get getter2 => firstFragment.getter?.element;
/// Whether the type of this fragment references a type parameter of the
/// enclosing element. This includes not only explicitly specified type
/// annotations, but also inferred types.
bool get hasEnclosingTypeParameterReference {
return firstFragment.hasEnclosingTypeParameterReference;
}
@override
bool get hasImplicitType => firstFragment.hasImplicitType;
@override
bool get isAbstract => firstFragment.isAbstract;
@override
bool get isConst => firstFragment.isConst;
@override
bool get isCovariant => firstFragment.isCovariant;
@override
bool get isEnumConstant => firstFragment.isEnumConstant;
bool get isEnumValues {
return enclosingElement2 is EnumElementImpl2 && name3 == 'values';
}
@override
bool get isExternal => firstFragment.isExternal;
@override
bool get isFinal => firstFragment.isFinal;
@override
bool get isLate => firstFragment.isLate;
@override
bool get isPromotable => firstFragment.isPromotable;
@override
bool get isStatic => firstFragment.isStatic;
@override
ElementKind get kind => ElementKind.FIELD;
@override
LibraryElementImpl get library2 {
return firstFragment.library;
}
@override
String? get name3 => firstFragment.name2;
@override
SetterElementImpl? get setter2 => firstFragment.setter?.element;
@override
TypeImpl get type => firstFragment.type;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitFieldElement(this);
}
@override
DartObject? computeConstantValue() => firstFragment.computeConstantValue();
}
/// Common base class for all analyzer-internal classes that implement
/// `FieldElement`.
abstract class FieldElementOrMember implements PropertyInducingElementOrMember {
@override
FieldElementImpl get declaration;
@override
TypeImpl get type;
}
class FieldFormalParameterElementImpl extends ParameterElementImpl
implements
FieldFormalParameterElementOrMember,
FieldFormalParameterFragment {
@override
FieldElementImpl? field;
/// Initialize a newly created parameter element to have the given [name] and
/// [nameOffset].
FieldFormalParameterElementImpl({
required super.name,
required super.nameOffset,
required super.name2,
required super.nameOffset2,
required super.parameterKind,
});
@override
FieldFormalParameterElementImpl2 get element =>
super.element as FieldFormalParameterElementImpl2;
/// Initializing formals are visible only in the "formal parameter
/// initializer scope", which is the current scope of the initializer list
/// of the constructor, and which is enclosed in the scope where the
/// constructor is declared. And according to the specification, they
/// introduce final local variables, always, regardless whether the field
/// is final.
@override
bool get isFinal => true;
@override
bool get isInitializingFormal => true;
@override
FieldFormalParameterElementImpl? get nextFragment =>
super.nextFragment as FieldFormalParameterElementImpl?;
@override
FieldFormalParameterElementImpl? get previousFragment =>
super.previousFragment as FieldFormalParameterElementImpl?;
@override
FieldFormalParameterElementImpl2 _createElement(
FormalParameterFragment firstFragment,
) => FieldFormalParameterElementImpl2(firstFragment as ParameterElementImpl);
}
class FieldFormalParameterElementImpl2 extends FormalParameterElementImpl
implements FieldFormalParameterElement {
FieldFormalParameterElementImpl2(super.firstFragment);
@override
FieldElementImpl2? get field2 => switch (firstFragment) {
FieldFormalParameterElementImpl(:FieldElementImpl field) => field.element,
_ => null,
};
@override
FieldFormalParameterElementImpl get firstFragment =>
super.firstFragment as FieldFormalParameterElementImpl;
@override
List<FieldFormalParameterElementImpl> get fragments {
return [
for (
FieldFormalParameterElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
}
abstract class FieldFormalParameterElementOrMember
implements ParameterElementMixin {
/// The field element associated with this field formal parameter, or `null`
/// if the parameter references a field that doesn't exist.
FieldElementOrMember? get field;
}
class FormalParameterElementImpl extends PromotableElementImpl2
with
FragmentedAnnotatableElementMixin<FormalParameterFragment>,
FragmentedElementMixin<FormalParameterFragment>,
FormalParameterElementMixin,
_HasSinceSdkVersionMixin,
_NonTopLevelVariableOrParameter {
final ParameterElementImpl wrappedElement;
FormalParameterElementImpl(this.wrappedElement) {
ParameterElementImpl? fragment = wrappedElement;
while (fragment != null) {
fragment.element = this;
fragment = fragment.nextFragment;
}
}
/// Creates a synthetic parameter with [name], [type] and [parameterKind].
factory FormalParameterElementImpl.synthetic(
String? name,
TypeImpl type,
ParameterKind parameterKind,
) {
var fragment = ParameterElementImpl.synthetic(name, type, parameterKind);
return FormalParameterElementImpl(fragment);
}
@override
FormalParameterElement get baseElement => this;
@override
// TODO(augmentations): Implement the merge of formal parameters.
String? get defaultValueCode => wrappedElement.defaultValueCode;
@override
ParameterElementImpl get firstFragment => wrappedElement;
@override
// TODO(augmentations): Implement the merge of formal parameters.
List<FormalParameterElementImpl> get formalParameters =>
wrappedElement.parameters.map((fragment) => fragment.element).toList();
@override
List<ParameterElementImpl> get fragments {
return [
for (
ParameterElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
// TODO(augmentations): Implement the merge of formal parameters.
bool get hasDefaultValue => wrappedElement.hasDefaultValue;
@override
// TODO(augmentations): Implement the merge of formal parameters.
bool get hasImplicitType => wrappedElement.hasImplicitType;
@override
// TODO(augmentations): Implement the merge of formal parameters.
bool get isConst => wrappedElement.isConst;
@override
// TODO(augmentations): Implement the merge of formal parameters.
bool get isCovariant => wrappedElement.isCovariant;
@override
// TODO(augmentations): Implement the merge of formal parameters.
bool get isFinal => wrappedElement.isFinal;
@override
bool get isInitializingFormal => wrappedElement.isInitializingFormal;
@override
// TODO(augmentations): Implement the merge of formal parameters.
bool get isLate => wrappedElement.isLate;
@override
bool get isNamed => wrappedElement.isNamed;
@override
bool get isOptional => wrappedElement.isOptional;
@override
bool get isOptionalNamed => wrappedElement.isOptionalNamed;
@override
bool get isOptionalPositional => wrappedElement.isOptionalPositional;
@override
bool get isPositional => wrappedElement.isPositional;
@override
bool get isRequired => wrappedElement.isRequired;
@override
bool get isRequiredNamed => wrappedElement.isRequiredNamed;
@override
bool get isRequiredPositional => wrappedElement.isRequiredPositional;
@override
// TODO(augmentations): Implement the merge of formal parameters.
bool get isStatic => wrappedElement.isStatic;
@override
// TODO(augmentations): Implement the merge of formal parameters.
bool get isSuperFormal => wrappedElement.isSuperFormal;
@override
ElementKind get kind => ElementKind.PARAMETER;
@override
LibraryElementImpl? get library2 => wrappedElement.library;
@override
String? get name3 => wrappedElement.name;
@override
String get nameShared => wrappedElement.name;
@override
ParameterKind get parameterKind {
return firstFragment.parameterKind;
}
@override
// TODO(augmentations): Implement the merge of formal parameters.
TypeImpl get type => wrappedElement.type;
set type(TypeImpl value) {
wrappedElement.type = value;
}
@override
// TODO(augmentations): Implement the merge of formal parameters.
List<TypeParameterElement> get typeParameters2 => const [];
@override
TypeImpl get typeShared => type;
@override
ElementImpl? get _enclosingFunction => wrappedElement.enclosingElement3;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitFormalParameterElement(this);
}
@override
// TODO(augmentations): Implement the merge of formal parameters.
DartObject? computeConstantValue() => wrappedElement.computeConstantValue();
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
// firstFragment.typeParameters
// .map((fragment) => (fragment as TypeParameterElementImpl).element)
// .toList();
}
/// A mixin that provides a common implementation for methods defined in
/// [FormalParameterElement].
mixin FormalParameterElementMixin
implements
FormalParameterElement,
SharedNamedFunctionParameter,
VariableElement2OrMember {
ParameterKind get parameterKind;
@override
TypeImpl get type;
@override
void appendToWithoutDelimiters2(StringBuffer buffer) {
buffer.write(type.getDisplayString());
buffer.write(' ');
buffer.write(displayName);
if (defaultValueCode != null) {
buffer.write(' = ');
buffer.write(defaultValueCode);
}
}
}
mixin FragmentedAnnotatableElementMixin<E extends Fragment>
implements FragmentedElementMixin<E> {
String? get documentationComment {
var buffer = StringBuffer();
for (var fragment in _fragments) {
var comment = fragment.documentationCommentOrNull;
if (comment != null) {
if (buffer.isNotEmpty) {
buffer.writeln();
buffer.writeln();
}
buffer.write(comment);
}
}
if (buffer.isEmpty) {
return null;
}
return buffer.toString();
}
bool get hasAlwaysThrows {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isAlwaysThrows) {
return true;
}
}
return false;
}
bool get hasDeprecated {
// TODO(augmentations): Consider optimizing this similar to `ElementImpl`.
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isDeprecated) {
return true;
}
}
return false;
}
bool get hasDoNotStore {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isDoNotStore) {
return true;
}
}
return false;
}
bool get hasDoNotSubmit {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isDoNotSubmit) {
return true;
}
}
return false;
}
bool get hasFactory {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isFactory) {
return true;
}
}
return false;
}
bool get hasImmutable {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isImmutable) {
return true;
}
}
return false;
}
bool get hasInternal {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isInternal) {
return true;
}
}
return false;
}
bool get hasIsTest {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isIsTest) {
return true;
}
}
return false;
}
bool get hasIsTestGroup {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isIsTestGroup) {
return true;
}
}
return false;
}
bool get hasJS {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isJS) {
return true;
}
}
return false;
}
bool get hasLiteral {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isLiteral) {
return true;
}
}
return false;
}
bool get hasMustBeConst {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isMustBeConst) {
return true;
}
}
return false;
}
bool get hasMustBeOverridden {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isMustBeOverridden) {
return true;
}
}
return false;
}
bool get hasMustCallSuper {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isMustCallSuper) {
return true;
}
}
return false;
}
bool get hasNonVirtual {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isNonVirtual) {
return true;
}
}
return false;
}
bool get hasOptionalTypeArgs {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isOptionalTypeArgs) {
return true;
}
}
return false;
}
bool get hasOverride {
// TODO(augmentations): Consider optimizing this similar `ElementImpl`.
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isOverride) {
return true;
}
}
return false;
}
bool get hasProtected {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isProtected) {
return true;
}
}
return false;
}
bool get hasRedeclare {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isRedeclare) {
return true;
}
}
return false;
}
bool get hasReopen {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isReopen) {
return true;
}
}
return false;
}
bool get hasRequired {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isRequired) {
return true;
}
}
return false;
}
bool get hasSealed {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isSealed) {
return true;
}
}
return false;
}
bool get hasUseResult {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isUseResult) {
return true;
}
}
return false;
}
bool get hasVisibleForOverriding {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isVisibleForOverriding) {
return true;
}
}
return false;
}
bool get hasVisibleForTemplate {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isVisibleForTemplate) {
return true;
}
}
return false;
}
bool get hasVisibleForTesting {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isVisibleForTesting) {
return true;
}
}
return false;
}
bool get hasVisibleOutsideTemplate {
var metadata = this.metadata;
for (var i = 0; i < metadata.length; i++) {
var annotation = metadata[i];
if (annotation.isVisibleOutsideTemplate) {
return true;
}
}
return false;
}
List<ElementAnnotation> get metadata {
var result = <ElementAnnotation>[];
for (var fragment in _fragments) {
result.addAll(fragment.metadataOrEmpty.annotations);
}
return result;
}
MetadataImpl get metadata2 =>
MetadataImpl(-1, metadata.cast<ElementAnnotationImpl>());
Version? get sinceSdkVersion {
if (this is Element) {
return SinceSdkVersionComputer().compute(this as Element);
}
return null;
}
}
mixin FragmentedElementMixin<E extends Fragment> implements _Fragmented<E> {
bool get isSynthetic {
if (firstFragment is ElementImpl) {
return (firstFragment as ElementImpl).isSynthetic;
}
// We should never get to this point.
assert(false, 'Fragment does not implement ElementImpl');
return false;
}
/// A list of all of the fragments from which this element is composed.
List<E> get _fragments {
var result = <E>[];
E? current = firstFragment;
while (current != null) {
result.add(current);
current = current.nextFragment as E?;
}
return result;
}
String displayString2({
bool multiline = false,
bool preferTypeAlias = false,
}) {
var builder = ElementDisplayStringBuilder(
multiline: multiline,
preferTypeAlias: preferTypeAlias,
);
var fragment = firstFragment;
if (fragment is! ElementImpl) {
throw UnsupportedError('Fragment is not an ElementImpl');
}
(fragment as ElementImpl).appendTo(builder);
return builder.toString();
}
}
mixin FragmentedExecutableElementMixin<E extends ExecutableElementImpl>
implements FragmentedElementMixin<E> {
List<FormalParameterElementMixin> get formalParameters {
return firstFragment.formalParameters
.map((fragment) => fragment.asElement2)
.toList();
}
bool get hasImplicitReturnType {
for (var fragment in _fragments) {
if (!(fragment as ExecutableElementImpl).hasImplicitReturnType) {
return false;
}
}
return true;
}
bool get isAbstract {
for (var fragment in _fragments) {
if (!(fragment as ExecutableElementImpl).isAbstract) {
return false;
}
}
return true;
}
bool get isExtensionTypeMember =>
(firstFragment as ExecutableElementImpl).isExtensionTypeMember;
bool get isExternal {
for (var fragment in _fragments) {
if ((fragment as ExecutableElementImpl).isExternal) {
return true;
}
}
return false;
}
bool get isStatic => (firstFragment as ExecutableElementImpl).isStatic;
}
mixin FragmentedFunctionTypedElementMixin<E extends ExecutableFragment>
implements FragmentedElementMixin<E> {
// TODO(augmentations): This might be wrong. The parameters need to be a
// merge of the parameters of all of the fragments, but this probably doesn't
// account for missing data (such as the parameter types).
List<FormalParameterElementMixin> get formalParameters {
var fragment = firstFragment;
return switch (fragment) {
FunctionTypedElementImpl(:var parameters) =>
parameters.map((fragment) => fragment.asElement2).toList(),
ExecutableElementImpl(:var parameters) =>
parameters.map((fragment) => fragment.asElement2).toList(),
_ =>
throw UnsupportedError(
'Cannot get formal parameters for ${fragment.runtimeType}',
),
};
}
TypeImpl get returnType => type.returnType;
// TODO(augmentations): This is wrong. The function type needs to be a merge
// of the function types of all of the fragments, but I don't know how to
// perform that merge.
FunctionTypeImpl get type {
if (firstFragment is ExecutableElementImpl) {
return (firstFragment as ExecutableElementImpl).type;
} else if (firstFragment is FunctionTypedElementImpl) {
return (firstFragment as FunctionTypedElementImpl).type;
}
throw UnimplementedError();
}
}
mixin FragmentedTypeParameterizedElementMixin<
E extends TypeParameterizedFragment
>
implements FragmentedElementMixin<E> {
bool get isSimplyBounded {
var fragment = firstFragment;
if (fragment is TypeParameterizedElementMixin) {
return fragment.isSimplyBounded;
}
return true;
}
List<TypeParameterElement> get typeParameters2 {
var fragment = firstFragment;
if (fragment is TypeParameterizedElementMixin) {
return fragment.typeParameters
.map((fragment) => (fragment as TypeParameterFragment).element)
.toList();
}
return const [];
}
}
sealed class FunctionElementImpl extends ExecutableElementImpl
implements FunctionTypedElementImpl, ExecutableElementOrMember {
@override
String? name2;
@override
int? nameOffset2;
/// Initialize a newly created function element to have the given [name] and
/// [offset].
FunctionElementImpl(super.name, super.offset);
/// Initialize a newly created function element to have no name and the given
/// [nameOffset]. This is used for function expressions, that have no name.
FunctionElementImpl.forOffset(int nameOffset) : super("", nameOffset);
@override
ExecutableElementImpl get declaration => this;
@override
Fragment? get enclosingFragment {
switch (enclosingElement3) {
case LibraryFragment libraryFragment:
// TODO(augmentations): Support the fragment chain.
return libraryFragment;
case ExecutableFragment executableFragment:
return executableFragment;
case LocalVariableFragment variableFragment:
return variableFragment;
case ParameterElementImpl parameterFragment:
return parameterFragment;
case TopLevelVariableFragment variableFragment:
return variableFragment;
case FieldFragment fieldFragment:
return fieldFragment;
}
// Local functions cannot be augmented.
throw UnsupportedError('This is not a fragment');
}
@override
ElementKind get kind => ElementKind.FUNCTION;
}
/// Common internal interface shared by elements whose type is a function type.
///
/// Clients may not extend, implement or mix-in this class.
abstract class FunctionTypedElementImpl implements _ExistingElementImpl {
/// The parameters defined by this executable element.
List<ParameterElementImpl> get parameters;
set returnType(DartType returnType);
/// The type defined by this element.
FunctionTypeImpl get type;
/// The type parameters declared by this element directly.
///
/// This does not include type parameters that are declared by any enclosing
/// elements.
List<TypeParameterElementImpl> get typeParameters;
}
abstract class FunctionTypedElementImpl2 extends TypeParameterizedElementImpl2
implements FunctionTypedElement {
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
}
/// The element used for a generic function type.
///
/// Clients may not extend, implement or mix-in this class.
class GenericFunctionTypeElementImpl extends _ExistingElementImpl
with TypeParameterizedElementMixin
implements FunctionTypedElementImpl, GenericFunctionTypeFragment {
/// The declared return type of the function.
TypeImpl? _returnType;
/// The elements representing the parameters of the function.
List<ParameterElementImpl> _parameters = const [];
/// Is `true` if the type has the question mark, so is nullable.
bool isNullable = false;
/// The type defined by this element.
FunctionTypeImpl? _type;
late final GenericFunctionTypeElementImpl2 _element2 =
GenericFunctionTypeElementImpl2(this);
/// Initialize a newly created function element to have no name and the given
/// [nameOffset]. This is used for function expressions, that have no name.
GenericFunctionTypeElementImpl.forOffset(int nameOffset)
: super("", nameOffset);
@override
List<Fragment> get children3 => [...typeParameters, ...parameters];
@override
GenericFunctionTypeElementImpl2 get element => _element2;
@override
Fragment? get enclosingFragment => enclosingElement3 as Fragment;
@override
List<ParameterElementImpl> get formalParameters => parameters;
@override
String get identifier => '-';
@override
ElementKind get kind => ElementKind.GENERIC_FUNCTION_TYPE;
@override
ElementLinkedData<ElementImpl>? get linkedData => null;
@override
String? get name2 => null;
@override
int? get nameOffset2 => null;
@override
GenericFunctionTypeElementImpl? get nextFragment => null;
@override
int get offset => _nameOffset;
@override
List<ParameterElementImpl> get parameters {
return _parameters;
}
/// Set the parameters defined by this function type element to the given
/// [parameters].
set parameters(List<ParameterElementImpl> parameters) {
for (var parameter in parameters) {
parameter.enclosingElement3 = this;
}
_parameters = parameters;
}
@override
GenericFunctionTypeElementImpl? get previousFragment => null;
/// The return type defined by this element.
TypeImpl get returnType {
return _returnType!;
}
/// Set the return type defined by this function type element to the given
/// [returnType].
@override
set returnType(DartType returnType) {
// TODO(paulberry): eliminate this cast by changing the setter parameter
// type to `TypeImpl`.
_returnType = returnType as TypeImpl;
}
@override
FunctionTypeImpl get type {
if (_type != null) return _type!;
return _type = FunctionTypeImpl(
typeFormals: typeParameters,
parameters: parameters,
returnType: returnType,
nullabilitySuffix:
isNullable ? NullabilitySuffix.question : NullabilitySuffix.none,
);
}
/// Set the function type defined by this function type element to the given
/// [type].
set type(FunctionTypeImpl type) {
_type = type;
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeGenericFunctionTypeElement(this);
}
}
/// The element used for a generic function type.
///
/// Clients may not extend, implement or mix-in this class.
class GenericFunctionTypeElementImpl2 extends FunctionTypedElementImpl2
implements GenericFunctionTypeElement {
final GenericFunctionTypeElementImpl _wrappedElement;
GenericFunctionTypeElementImpl2(this._wrappedElement);
@override
String? get documentationComment => _wrappedElement.documentationComment;
@override
GenericFunctionTypeElementImpl get firstFragment => _wrappedElement;
@override
List<FormalParameterElement> get formalParameters =>
_wrappedElement.formalParameters
.map((fragment) => fragment.element)
.toList();
@override
List<GenericFunctionTypeElementImpl> get fragments {
return [
for (
GenericFunctionTypeElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
bool get isSimplyBounded => _wrappedElement.isSimplyBounded;
@override
bool get isSynthetic => _wrappedElement.isSynthetic;
@override
ElementKind get kind => _wrappedElement.kind;
@override
LibraryElementImpl get library2 => _wrappedElement.library;
@override
Metadata get metadata2 => _wrappedElement.metadata2;
@override
String? get name3 => _wrappedElement.name;
@override
DartType get returnType => _wrappedElement.returnType;
@override
FunctionType get type => _wrappedElement.type;
@override
List<TypeParameterElement> get typeParameters2 =>
_wrappedElement.typeParameters2
.map((fragment) => fragment.element)
.toList();
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitGenericFunctionTypeElement(this);
}
}
/// Common base class for all analyzer-internal classes that implement
/// [GetterElement].
abstract class GetterElement2OrMember
implements PropertyAccessorElement2OrMember, GetterElement {
@override
GetterElementImpl get baseElement;
}
class GetterElementImpl extends PropertyAccessorElementImpl2
with
FragmentedExecutableElementMixin<GetterFragmentImpl>,
FragmentedFunctionTypedElementMixin<GetterFragmentImpl>,
FragmentedTypeParameterizedElementMixin<GetterFragmentImpl>,
FragmentedAnnotatableElementMixin<GetterFragmentImpl>,
FragmentedElementMixin<GetterFragmentImpl>,
_HasSinceSdkVersionMixin
implements GetterElement2OrMember {
@override
final GetterFragmentImpl firstFragment;
GetterElementImpl(this.firstFragment) {
GetterFragmentImpl? fragment = firstFragment;
while (fragment != null) {
fragment.element = this;
fragment = fragment.nextFragment;
}
}
@override
GetterElementImpl get baseElement => this;
@override
SetterElement? get correspondingSetter2 =>
firstFragment.variable2?.setter?.element;
@override
List<GetterFragmentImpl> get fragments {
return [
for (
GetterFragmentImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
ElementKind get kind => ElementKind.GETTER;
@override
Element get nonSynthetic2 {
if (!isSynthetic) {
return this;
} else if (variable3 case var variable?) {
return variable.nonSynthetic2;
}
throw StateError('Synthetic getter has no variable');
}
@override
Version? get sinceSdkVersion {
if (isSynthetic) {
return variable3?.sinceSdkVersion;
}
return super.sinceSdkVersion;
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitGetterElement(this);
}
}
class GetterFragmentImpl extends PropertyAccessorElementImpl
implements GetterFragment {
@override
GetterFragmentImpl? previousFragment;
@override
GetterFragmentImpl? nextFragment;
/// The element corresponding to this fragment.
GetterElementImpl? _element;
GetterFragmentImpl(super.name, super.offset);
GetterFragmentImpl.forVariable(super.variable, {super.reference})
: super.forVariable();
@override
PropertyAccessorElementImpl? get correspondingGetter => null;
@override
PropertyAccessorElementImpl? get correspondingSetter => variable2?.setter;
@override
GetterElementImpl get element {
if (_element != null) {
return _element!;
}
GetterFragmentImpl firstFragment = this;
var previousFragment = firstFragment.previousFragment;
while (previousFragment != null) {
firstFragment = previousFragment;
previousFragment = firstFragment.previousFragment;
}
// As a side-effect of creating the element, all of the fragments in the
// chain will have their `_element` set to the newly created element.
return GetterElementImpl(firstFragment);
}
set element(GetterElementImpl element) => _element = element;
@override
bool get isGetter => true;
@override
bool get isSetter => false;
}
/// A concrete implementation of a [HideElementCombinator].
class HideElementCombinatorImpl implements HideElementCombinator {
@override
List<String> hiddenNames = const [];
@override
int offset = 0;
@override
int end = -1;
@override
String toString() {
StringBuffer buffer = StringBuffer();
buffer.write("hide ");
int count = hiddenNames.length;
for (int i = 0; i < count; i++) {
if (i > 0) {
buffer.write(", ");
}
buffer.write(hiddenNames[i]);
}
return buffer.toString();
}
}
abstract class InstanceElementImpl extends _ExistingElementImpl
with AugmentableFragment, TypeParameterizedElementMixin
implements InstanceFragment {
@override
ElementLinkedData? linkedData;
@override
String? name2;
@override
int? nameOffset2;
@override
InstanceElementImpl? previousFragment;
@override
InstanceElementImpl? nextFragment;
List<FieldElementImpl> _fields = _Sentinel.fieldElement;
List<PropertyAccessorElementImpl> _accessors =
_Sentinel.propertyAccessorElement;
List<MethodElementImpl> _methods = _Sentinel.methodElement;
InstanceElementImpl(super.name, super.nameOffset);
/// The declared accessors (getters and setters).
List<PropertyAccessorElementImpl> get accessors {
if (!identical(_accessors, _Sentinel.propertyAccessorElement)) {
return _accessors;
}
linkedData?.readMembers(this);
return _accessors;
}
set accessors(List<PropertyAccessorElementImpl> accessors) {
for (var accessor in accessors) {
accessor.enclosingElement3 = this;
}
_accessors = accessors;
}
@override
InstanceElementImpl2 get element;
@override
CompilationUnitElementImpl get enclosingElement3 {
return super.enclosingElement3 as CompilationUnitElementImpl;
}
@override
LibraryFragment? get enclosingFragment => enclosingElement3;
/// The declared fields.
List<FieldElementImpl> get fields {
if (!identical(_fields, _Sentinel.fieldElement)) {
return _fields;
}
linkedData?.readMembers(this);
return _fields;
}
set fields(List<FieldElementImpl> fields) {
for (var field in fields) {
field.enclosingElement3 = this;
}
_fields = fields;
}
@override
List<FieldFragment> get fields2 => fields.cast<FieldFragment>();
@override
List<GetterFragment> get getters =>
accessors.where((e) => e.isGetter).cast<GetterFragment>().toList();
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
/// The declared methods.
List<MethodElementImpl> get methods {
if (!identical(_methods, _Sentinel.methodElement)) {
return _methods;
}
linkedData?.readMembers(this);
return _methods;
}
set methods(List<MethodElementImpl> methods) {
for (var method in methods) {
method.enclosingElement3 = this;
}
_methods = methods;
}
@override
List<MethodFragment> get methods2 => methods.cast<MethodFragment>();
@override
int get offset => _nameOffset;
@override
List<SetterFragment> get setters =>
accessors.where((e) => e.isSetter).cast<SetterFragment>().toList();
void setLinkedData(Reference reference, ElementLinkedData linkedData) {
this.reference = reference;
reference.element = this;
this.linkedData = linkedData;
}
}
abstract class InstanceElementImpl2 extends ElementImpl2
implements
InstanceElement,
TypeParameterizedElement,
AnnotatableElementImpl {
@override
InstanceElement get baseElement => this;
@override
List<Element> get children2 {
return [...fields2, ...getters2, ...setters2, ...methods2];
}
@override
String get displayName => firstFragment.displayName;
@override
String? get documentationComment => firstFragment.documentationComment;
@override
LibraryElement get enclosingElement2 => firstFragment.library;
@override
List<FieldElementImpl2> get fields2 {
_readMembers();
return firstFragment.fields.map((e) => e.asElement2).toList();
}
@override
InstanceElementImpl get firstFragment;
@override
List<GetterElementImpl> get getters2 {
_readMembers();
return firstFragment.accessors
.where((e) => e.isGetter)
.map((e) => e.asElement2 as GetterElementImpl)
.nonNulls
.toList();
}
@override
String get identifier => name3 ?? firstFragment.identifier;
@override
bool get isPrivate => firstFragment.isPrivate;
@override
bool get isPublic => firstFragment.isPublic;
@override
bool get isSimplyBounded => firstFragment.isSimplyBounded;
@override
bool get isSynthetic => firstFragment.isSynthetic;
@override
ElementKind get kind => firstFragment.kind;
@override
LibraryElementImpl get library2 => firstFragment.library;
@override
MetadataImpl get metadata2 => firstFragment.metadata2;
@override
List<MethodElementImpl2> get methods2 {
return firstFragment.methods.map((e) => e.asElement2).toList();
}
@override
String? get name3 => firstFragment.name;
@override
Element get nonSynthetic2 =>
isSynthetic ? enclosingElement2 : this as Element;
@override
AnalysisSession? get session => firstFragment.session;
@override
List<SetterElementImpl> get setters2 {
_readMembers();
return firstFragment.accessors
.where((e) => e.isSetter)
.map((e) => e.asElement2 as SetterElementImpl?)
.nonNulls
.toList();
}
@override
List<TypeParameterElementImpl2> get typeParameters2 =>
firstFragment.typeParameters.map((fragment) => fragment.element).toList();
@override
String displayString2({
bool multiline = false,
bool preferTypeAlias = false,
}) => firstFragment.getDisplayString(
multiline: multiline,
preferTypeAlias: preferTypeAlias,
);
@override
FieldElementImpl2? getField2(String name) {
return fields2.firstWhereOrNull((e) => e.name3 == name);
}
@override
GetterElementImpl? getGetter2(String name) {
return getters2.firstWhereOrNull((e) => e.name3 == name);
}
@override
MethodElementImpl2? getMethod2(String name) {
return methods2.firstWhereOrNull((e) => e.lookupName == name);
}
@override
SetterElementImpl? getSetter2(String name) {
return setters2.firstWhereOrNull((e) => e.name3 == name);
}
@override
bool isAccessibleIn2(LibraryElement library) {
var name = name3;
if (name != null && Identifier.isPrivateName(name)) {
return library == library2;
}
return true;
}
@override
GetterElement? lookUpGetter2({
required String name,
required LibraryElement library,
}) {
return _implementationsOfGetter2(
name,
).firstWhereOrNull((getter) => getter.isAccessibleIn2(library))
as GetterElement?;
}
@override
MethodElement? lookUpMethod2({
required String name,
required LibraryElement library,
}) {
return _implementationsOfMethod2(
name,
).firstWhereOrNull((method) => method.isAccessibleIn2(library));
}
@override
SetterElement? lookUpSetter2({
required String name,
required LibraryElement library,
}) {
return _implementationsOfSetter2(
name,
).firstWhereOrNull((setter) => setter.isAccessibleIn2(library))
as SetterElement?;
}
@override
Element? thisOrAncestorMatching2(bool Function(Element) predicate) {
if (predicate(this)) {
return this;
}
return library2.thisOrAncestorMatching2(predicate);
}
@override
E? thisOrAncestorOfType2<E extends Element>() {
if (this case E result) {
return result;
}
return library2.thisOrAncestorOfType2<E>();
}
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
Iterable<PropertyAccessorElement2OrMember> _implementationsOfGetter2(
String name,
) sync* {
var visitedElements = <InstanceElement>{};
InstanceElement? element = this;
while (element != null && visitedElements.add(element)) {
var getter = element.getGetter2(name);
if (getter != null) {
yield getter as PropertyAccessorElement2OrMember;
}
if (element is! InterfaceElement) {
return;
}
for (var mixin in element.mixins.reversed) {
mixin as InterfaceTypeImpl;
getter = mixin.element3.getGetter2(name);
if (getter != null) {
yield getter as PropertyAccessorElement2OrMember;
}
}
var supertype = element.firstFragment.supertype;
supertype as InterfaceTypeImpl?;
element = supertype?.element3;
}
}
Iterable<MethodElement2OrMember> _implementationsOfMethod2(
String name,
) sync* {
var visitedElements = <InstanceElement>{};
InstanceElement? element = this;
while (element != null && visitedElements.add(element)) {
var method = element.getMethod2(name);
if (method != null) {
yield method as MethodElement2OrMember;
}
if (element is! InterfaceElement) {
return;
}
for (var mixin in element.mixins.reversed) {
mixin as InterfaceTypeImpl;
method = mixin.element3.getMethod2(name);
if (method != null) {
yield method as MethodElement2OrMember;
}
}
var supertype = element.firstFragment.supertype;
supertype as InterfaceTypeImpl?;
element = supertype?.element3;
}
}
Iterable<PropertyAccessorElement2OrMember> _implementationsOfSetter2(
String name,
) sync* {
var visitedElements = <InstanceElement>{};
InstanceElement? element = this;
while (element != null && visitedElements.add(element)) {
var setter = element.getSetter2(name);
if (setter != null) {
yield setter as PropertyAccessorElement2OrMember;
}
if (element is! InterfaceElement) {
return;
}
for (var mixin in element.mixins.reversed) {
mixin as InterfaceTypeImpl;
setter = mixin.element3.getSetter2(name);
if (setter != null) {
yield setter as PropertyAccessorElement2OrMember;
}
}
var supertype = element.firstFragment.supertype;
supertype as InterfaceTypeImpl?;
element = supertype?.element3;
}
}
void _readMembers() {
// TODO(scheglov): use better implementation
firstFragment.element;
}
}
abstract class InterfaceElementImpl extends InstanceElementImpl
implements InterfaceFragment {
/// A list containing all of the mixins that are applied to the class being
/// extended in order to derive the superclass of this class.
List<InterfaceTypeImpl> _mixins = const [];
/// A list containing all of the interfaces that are implemented by this
/// class.
List<InterfaceTypeImpl> _interfaces = const [];
/// This callback is set during mixins inference to handle reentrant calls.
List<InterfaceType>? Function(InterfaceElementImpl)? mixinInferenceCallback;
InterfaceTypeImpl? _supertype;
/// A flag indicating whether the types associated with the instance members
/// of this class have been inferred.
bool hasBeenInferred = false;
List<ConstructorElementImpl> _constructors = _Sentinel.constructorElement;
/// Initialize a newly created class element to have the given [name] at the
/// given [offset] in the file that contains the declaration of this element.
InterfaceElementImpl(super.name, super.offset);
@override
List<Fragment> get children3 => [
...accessors,
...fields,
...constructors,
...methods,
...typeParameters,
];
List<ConstructorElementImpl> get constructors {
if (!identical(_constructors, _Sentinel.constructorElement)) {
return _constructors;
}
_buildMixinAppConstructors();
linkedData?.readMembers(this);
return _constructors;
}
set constructors(List<ConstructorElementImpl> constructors) {
for (var constructor in constructors) {
constructor.enclosingElement3 = this;
}
_constructors = constructors;
}
@override
List<ConstructorFragment> get constructors2 =>
constructors.cast<ConstructorFragment>();
@override
String get displayName => name;
@override
InterfaceElementImpl2 get element;
@override
List<InterfaceTypeImpl> get interfaces {
linkedData?.read(this);
return _interfaces;
}
set interfaces(List<InterfaceType> interfaces) {
// TODO(paulberry): eliminate this cast by changing the type of the
// `interfaces` parameter.
_interfaces = interfaces.cast();
}
/// Return `true` if this class represents the class '_Enum' defined in the
/// dart:core library.
bool get isDartCoreEnumImpl {
return name == '_Enum' && library.isDartCore;
}
/// Return `true` if this class represents the class 'Function' defined in the
/// dart:core library.
bool get isDartCoreFunctionImpl {
return name == 'Function' && library.isDartCore;
}
@override
bool get isSimplyBounded {
return hasModifier(Modifier.SIMPLY_BOUNDED);
}
set isSimplyBounded(bool isSimplyBounded) {
setModifier(Modifier.SIMPLY_BOUNDED, isSimplyBounded);
}
@override
List<InterfaceTypeImpl> get mixins {
if (mixinInferenceCallback != null) {
var mixins = mixinInferenceCallback!(this);
if (mixins != null) {
// TODO(paulberry): eliminate this cast by changing the type of
// `InterfaceElementImpl.mixinInferenceCallback`.
return _mixins = mixins.cast();
}
}
linkedData?.read(this);
return _mixins;
}
set mixins(List<InterfaceType> mixins) {
// TODO(paulberry): eliminate this cast by changing the type of the `mixins`
// parameter.
_mixins = mixins.cast();
}
@override
String get name {
return super.name!;
}
@override
InterfaceElementImpl? get nextFragment {
return super.nextFragment as InterfaceElementImpl?;
}
@override
InterfaceElementImpl? get previousFragment {
return super.previousFragment as InterfaceElementImpl?;
}
@override
InterfaceTypeImpl? get supertype {
linkedData?.read(this);
return _supertype;
}
set supertype(InterfaceType? value) {
// TODO(paulberry): eliminate this cast by changing the type of the `value`
// parameter.
_supertype = value as InterfaceTypeImpl?;
}
InterfaceTypeImpl instantiateImpl({
required List<TypeImpl> typeArguments,
required NullabilitySuffix nullabilitySuffix,
}) {
return element.instantiateImpl(
typeArguments: typeArguments,
nullabilitySuffix: nullabilitySuffix,
);
}
/// Builds constructors for this mixin application.
void _buildMixinAppConstructors() {}
static PropertyAccessorElementOrMember? getSetterFromAccessors(
String setterName,
List<PropertyAccessorElementOrMember> accessors,
) {
// Do we need the check for isSetter below?
if (!setterName.endsWith('=')) {
setterName += '=';
}
return accessors.firstWhereOrNull(
(accessor) => accessor.isSetter && accessor.name == setterName,
);
}
}
abstract class InterfaceElementImpl2 extends InstanceElementImpl2
with _HasSinceSdkVersionMixin
implements InterfaceElement {
/// The non-nullable instance of this element, without alias.
/// Should be used only when the element has no type parameters.
InterfaceTypeImpl? _nonNullableInstance;
/// The nullable instance of this element, without alias.
/// Should be used only when the element has no type parameters.
InterfaceTypeImpl? _nullableInstance;
InterfaceTypeImpl? _thisType;
/// The cached result of [allSupertypes].
List<InterfaceType>? _allSupertypes;
@override
List<InterfaceType> get allSupertypes {
return _allSupertypes ??= library2.session.classHierarchy
.implementedInterfaces(this);
}
@override
List<Element> get children2 {
return [...super.children2, ...constructors2];
}
@override
List<ConstructorElementImpl2> get constructors2 {
_readMembers();
return firstFragment.constructors
.map((constructor) => constructor.element)
.toList();
}
@override
InterfaceElementImpl get firstFragment;
@override
List<InterfaceElementImpl> get fragments {
return [
for (
InterfaceElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
InheritanceManager3 get inheritanceManager {
return library2.session.inheritanceManager;
}
@override
Map<Name, ExecutableElement> get inheritedConcreteMembers =>
(session as AnalysisSessionImpl).inheritanceManager
.getInheritedConcreteMap(this);
@override
Map<Name, ExecutableElement> get inheritedMembers =>
(session as AnalysisSessionImpl).inheritanceManager.getInheritedMap(this);
@override
Map<Name, ExecutableElement> get interfaceMembers =>
(session as AnalysisSessionImpl).inheritanceManager
.getInterface2(this)
.map2;
@override
List<InterfaceTypeImpl> get interfaces {
return firstFragment.interfaces;
}
set isSimplyBounded(bool value) {
for (var fragment in fragments) {
fragment.isSimplyBounded = value;
}
}
@override
List<InterfaceTypeImpl> get mixins {
return firstFragment.mixins;
}
@override
InterfaceTypeImpl? get supertype => firstFragment.supertype;
@override
InterfaceTypeImpl get thisType {
if (_thisType == null) {
List<TypeImpl> typeArguments;
var typeParameters = firstFragment.typeParameters;
if (typeParameters.isNotEmpty) {
typeArguments =
typeParameters.map<TypeImpl>((t) {
return t.instantiate(nullabilitySuffix: NullabilitySuffix.none);
}).toFixedList();
} else {
typeArguments = const [];
}
return _thisType = firstFragment.instantiateImpl(
typeArguments: typeArguments,
nullabilitySuffix: NullabilitySuffix.none,
);
}
return _thisType!;
}
@override
ConstructorElementImpl2? get unnamedConstructor2 {
return getNamedConstructor2('new');
}
@override
ExecutableElement? getInheritedConcreteMember(Name name) =>
inheritedConcreteMembers[name];
@override
ExecutableElement? getInheritedMember(Name name) =>
(session as AnalysisSessionImpl).inheritanceManager.getInherited4(
this,
name,
);
@override
ExecutableElement? getInterfaceMember(Name name) =>
(session as AnalysisSessionImpl).inheritanceManager.getMember4(
this,
name,
);
@override
ConstructorElementImpl2? getNamedConstructor2(String name) {
globalResultRequirements?.notify_interfaceElement_getNamedConstructor(
element: this,
name: name,
);
return constructors2.firstWhereOrNull((e) => e.name3 == name);
}
@override
List<ExecutableElement>? getOverridden(Name name) =>
(session as AnalysisSessionImpl).inheritanceManager.getOverridden4(
this,
name,
);
@override
InterfaceTypeImpl instantiate({
required List<DartType> typeArguments,
required NullabilitySuffix nullabilitySuffix,
}) {
return instantiateImpl(
typeArguments: typeArguments.cast<TypeImpl>(),
nullabilitySuffix: nullabilitySuffix,
);
}
InterfaceTypeImpl instantiateImpl({
required List<TypeImpl> typeArguments,
required NullabilitySuffix nullabilitySuffix,
}) {
assert(typeArguments.length == typeParameters2.length);
if (typeArguments.isEmpty) {
switch (nullabilitySuffix) {
case NullabilitySuffix.none:
if (_nonNullableInstance case var instance?) {
return instance;
}
case NullabilitySuffix.question:
if (_nullableInstance case var instance?) {
return instance;
}
case NullabilitySuffix.star:
// TODO(scheglov): remove together with `star`
break;
}
}
var result = InterfaceTypeImpl(
element: this,
typeArguments: typeArguments,
nullabilitySuffix: nullabilitySuffix,
);
if (typeArguments.isEmpty) {
switch (nullabilitySuffix) {
case NullabilitySuffix.none:
_nonNullableInstance = result;
case NullabilitySuffix.question:
_nullableInstance = result;
case NullabilitySuffix.star:
// TODO(scheglov): remove together with `star`
break;
}
}
return result;
}
@override
MethodElement? lookUpConcreteMethod(
String methodName,
LibraryElement library,
) {
return _implementationsOfMethod2(methodName).firstWhereOrNull(
(method) => !method.isAbstract && method.isAccessibleIn2(library),
);
}
PropertyAccessorElement? lookUpInheritedConcreteGetter(
String getterName,
LibraryElement library,
) {
return _implementationsOfGetter2(getterName).firstWhereOrNull(
(getter) =>
!getter.isAbstract &&
!getter.isStatic &&
getter.isAccessibleIn2(library) &&
getter.enclosingElement2 != this,
);
}
MethodElement? lookUpInheritedConcreteMethod(
String methodName,
LibraryElement library,
) {
return _implementationsOfMethod2(methodName).firstWhereOrNull(
(method) =>
!method.isAbstract &&
!method.isStatic &&
method.isAccessibleIn2(library) &&
method.enclosingElement2 != this,
);
}
PropertyAccessorElement? lookUpInheritedConcreteSetter(
String setterName,
LibraryElement library,
) {
return _implementationsOfSetter2(setterName).firstWhereOrNull(
(setter) =>
!setter.isAbstract &&
!setter.isStatic &&
setter.isAccessibleIn2(library) &&
setter.enclosingElement2 != this,
);
}
MethodElement? lookUpInheritedMethod(
String methodName,
LibraryElement library,
) {
return _implementationsOfMethod2(methodName).firstWhereOrNull(
(method) =>
!method.isStatic &&
method.isAccessibleIn2(library) &&
method.enclosingElement2 != this,
);
}
@override
MethodElement? lookUpInheritedMethod2({
required String methodName,
required LibraryElement library,
}) {
return inheritanceManager
.getInherited4(this, Name.forLibrary(library, methodName))
.ifTypeOrNull();
}
/// Return the static getter with the [name], accessible to the [library].
///
/// This method should be used only for error recovery during analysis,
/// when instance access to a static class member, defined in this class,
/// or a superclass.
GetterElement2OrMember? lookupStaticGetter(
String name,
LibraryElement library,
) {
return _implementationsOfGetter2(name)
.firstWhereOrNull(
(element) => element.isStatic && element.isAccessibleIn2(library),
)
.ifTypeOrNull();
}
/// Return the static method with the [name], accessible to the [library].
///
/// This method should be used only for error recovery during analysis,
/// when instance access to a static class member, defined in this class,
/// or a superclass.
MethodElement2OrMember? lookupStaticMethod(
String name,
LibraryElement library,
) {
return _implementationsOfMethod2(name).firstWhereOrNull(
(element) => element.isStatic && element.isAccessibleIn2(library),
);
}
/// Return the static setter with the [name], accessible to the [library].
///
/// This method should be used only for error recovery during analysis,
/// when instance access to a static class member, defined in this class,
/// or a superclass.
SetterElement2OrMember? lookupStaticSetter(
String name,
LibraryElement library,
) {
return _implementationsOfSetter2(name)
.firstWhereOrNull(
(element) => element.isStatic && element.isAccessibleIn2(library),
)
.ifTypeOrNull();
}
void resetCachedAllSupertypes() {
_allSupertypes = null;
}
}
class JoinPatternVariableElementImpl extends PatternVariableElementImpl
implements JoinPatternVariableFragment {
/// The variables that join into this variable.
final List<PatternVariableElementImpl> variables;
shared.JoinedPatternVariableInconsistency inconsistency;
/// The identifiers that reference this element.
final List<SimpleIdentifier> references = [];
JoinPatternVariableElementImpl(
super.name,
super.offset,
this.variables,
this.inconsistency,
) {
for (var component in variables) {
component.join = this;
}
}
@override
JoinPatternVariableElementImpl2 get element =>
super.element as JoinPatternVariableElementImpl2;
@override
bool get isConsistent {
return inconsistency == shared.JoinedPatternVariableInconsistency.none;
}
@override
JoinPatternVariableElementImpl? get nextFragment =>
super.nextFragment as JoinPatternVariableElementImpl?;
@override
int get offset => variables[0].offset;
@override
JoinPatternVariableElementImpl? get previousFragment =>
super.previousFragment as JoinPatternVariableElementImpl?;
/// Returns this variable, and variables that join into it.
List<PatternVariableElementImpl> get transitiveVariables {
var result = <PatternVariableElementImpl>[];
void append(PatternVariableElementImpl variable) {
result.add(variable);
if (variable is JoinPatternVariableElementImpl) {
for (var variable in variable.variables) {
append(variable);
}
}
}
append(this);
return result;
}
@override
List<PatternVariableFragment> get variables2 =>
variables.cast<PatternVariableFragment>();
}
class JoinPatternVariableElementImpl2 extends PatternVariableElementImpl2
implements JoinPatternVariableElement {
JoinPatternVariableElementImpl2(super._wrappedElement);
@override
JoinPatternVariableElementImpl get firstFragment =>
super.firstFragment as JoinPatternVariableElementImpl;
@override
List<JoinPatternVariableElementImpl> get fragments {
return [
for (
JoinPatternVariableElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
shared.JoinedPatternVariableInconsistency get inconsistency =>
_wrappedElement.inconsistency;
set inconsistency(shared.JoinedPatternVariableInconsistency value) =>
_wrappedElement.inconsistency = value;
@override
bool get isConsistent => _wrappedElement.isConsistent;
set isFinal(bool value) => _wrappedElement.isFinal = value;
/// The identifiers that reference this element.
List<SimpleIdentifier> get references => _wrappedElement.references;
/// Returns this variable, and variables that join into it.
List<PatternVariableElementImpl2> get transitiveVariables {
var result = <PatternVariableElementImpl2>[];
void append(PatternVariableElementImpl2 variable) {
result.add(variable);
if (variable is JoinPatternVariableElementImpl2) {
for (var variable in variable.variables2) {
append(variable);
}
}
}
append(this);
return result;
}
/// The variables that join into this variable.
List<PatternVariableElementImpl> get variables => _wrappedElement.variables;
@override
List<PatternVariableElementImpl2> get variables2 =>
_wrappedElement.variables.map((fragment) => fragment.element).toList();
@override
JoinPatternVariableElementImpl get _wrappedElement =>
super._wrappedElement as JoinPatternVariableElementImpl;
}
class LabelElementImpl extends ElementImpl implements LabelFragment {
late final LabelElementImpl2 element2 = LabelElementImpl2(this);
/// A flag indicating whether this label is associated with a `switch` member
/// (`case` or `default`).
// TODO(brianwilkerson): Make this a modifier.
final bool _onSwitchMember;
/// Initialize a newly created label element to have the given [name].
/// [_onSwitchMember] should be `true` if this label is associated with a
/// `switch` member.
LabelElementImpl(String super.name, super.nameOffset, this._onSwitchMember);
@override
List<Fragment> get children3 => const [];
@override
String get displayName => name;
@override
LabelElement get element => element2;
@override
ExecutableElementImpl get enclosingElement3 =>
super.enclosingElement3 as ExecutableElementImpl;
@override
ExecutableFragment get enclosingFragment =>
enclosingElement3 as ExecutableFragment;
/// Return `true` if this label is associated with a `switch` member (`case
/// ` or`default`).
bool get isOnSwitchMember => _onSwitchMember;
@override
ElementKind get kind => ElementKind.LABEL;
@override
LibraryElementImpl get library {
return libraryFragment.element;
}
@override
CompilationUnitElementImpl get libraryFragment => enclosingUnit;
@override
String get name => super.name!;
@override
// TODO(scheglov): make it a nullable field
String? get name2 => name;
@override
// TODO(scheglov): make it a nullable field
int? get nameOffset2 => nameOffset;
@override
LabelElementImpl? get nextFragment => null;
@override
int get offset => _nameOffset;
@override
LabelElementImpl? get previousFragment => null;
}
class LabelElementImpl2 extends ElementImpl2
with WrappedElementMixin
implements LabelElement {
@override
final LabelElementImpl _wrappedElement;
LabelElementImpl2(this._wrappedElement);
@override
LabelElement get baseElement => this;
@override
ExecutableElement? get enclosingElement2 => null;
@override
LabelElementImpl get firstFragment => _wrappedElement;
@override
List<LabelElementImpl> get fragments {
return [firstFragment];
}
/// Return `true` if this label is associated with a `switch` member (`case
/// ` or`default`).
bool get isOnSwitchMember => _wrappedElement.isOnSwitchMember;
@override
LibraryElement get library2 {
return _wrappedElement.library;
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitLabelElement(this);
}
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {}
}
/// A concrete implementation of [LibraryElement].
class LibraryElementImpl extends ElementImpl
with _HasLibraryMixin
implements LibraryElement {
/// The analysis context in which this library is defined.
@override
final AnalysisContext context;
@override
AnalysisSessionImpl session;
/// The compilation unit that defines this library.
late CompilationUnitElementImpl definingCompilationUnit;
/// The language version for the library.
LibraryLanguageVersion? _languageVersion;
bool hasTypeProviderSystemSet = false;
@override
late TypeProviderImpl typeProvider;
@override
late TypeSystemImpl typeSystem;
late List<ExportedReference> exportedReferences;
LibraryElementLinkedData? linkedData;
/// The union of names for all searchable elements in this library.
ElementNameUnion nameUnion = ElementNameUnion.empty();
@override
final FeatureSet featureSet;
/// The entry point for this library, or `null` if this library does not have
/// an entry point.
TopLevelFunctionElementImpl? _entryPoint;
/// The provider for the synthetic function `loadLibrary` that is defined
/// for this library.
late final LoadLibraryFunctionProvider loadLibraryProvider;
@override
int nameLength;
@override
List<ClassElementImpl2> classes = [];
@override
List<EnumElementImpl2> enums = [];
@override
List<ExtensionElementImpl2> extensions = [];
@override
List<ExtensionTypeElementImpl2> extensionTypes = [];
@override
List<MixinElementImpl2> mixins = [];
@override
List<TopLevelFunctionElementImpl> topLevelFunctions = [];
@override
List<TopLevelVariableElementImpl2> topLevelVariables = [];
@override
List<TypeAliasElementImpl2> typeAliases = [];
/// The export [Namespace] of this library, `null` if it has not been
/// computed yet.
Namespace? _exportNamespace;
/// The public [Namespace] of this library, `null` if it has not been
/// computed yet.
Namespace? _publicNamespace;
/// Information about why non-promotable private fields in the library are not
/// promotable.
///
/// See [fieldNameNonPromotabilityInfo].
Map<String, FieldNameNonPromotabilityInfo>? _fieldNameNonPromotabilityInfo;
/// The map of top-level declarations, from all units.
LibraryDeclarations? _libraryDeclarations;
/// If [withFineDependencies] is `true`, the manifest of the library.
LibraryManifest? manifest;
/// Initialize a newly created library element in the given [context] to have
/// the given [name] and [offset].
LibraryElementImpl(
this.context,
this.session,
String name,
int offset,
this.nameLength,
this.featureSet,
) : linkedData = null,
super(name, offset);
@override
LibraryElementImpl get baseElement => this;
@override
List<Element> get children2 {
return [
...classes,
...enums,
...extensions,
...extensionTypes,
...getters,
...mixins,
...setters,
...topLevelFunctions,
...topLevelVariables,
...typeAliases,
];
}
@override
Null get enclosingElement2 => null;
@override
Null get enclosingElement3 => null;
@override
CompilationUnitElementImpl get enclosingUnit {
return definingCompilationUnit;
}
@override
TopLevelFunctionElementImpl? get entryPoint2 {
linkedData?.read(this);
return _entryPoint;
}
set entryPoint2(TopLevelFunctionElementImpl? value) {
_entryPoint = value;
}
@override
List<LibraryElementImpl> get exportedLibraries2 {
return fragments
.expand((fragment) => fragment.libraryExports)
.map((export) => export.exportedLibrary2)
.nonNulls
.toSet()
.toList();
}
@override
Namespace get exportNamespace {
linkedData?.read(this);
return _exportNamespace ??= Namespace({});
}
set exportNamespace(Namespace exportNamespace) {
_exportNamespace = exportNamespace;
}
/// Information about why non-promotable private fields in the library are not
/// promotable.
///
/// If field promotion is not enabled in this library, this field is still
/// populated, so that the analyzer can figure out whether enabling field
/// promotion would cause a field to be promotable.
///
/// There are two ways an access to a private property name might not be
/// promotable: the property might be non-promotable for a reason inherent to
/// itself (e.g. it's declared as a concrete getter rather than a field, or
/// it's a non-final field), or the property might have the same name as an
/// inherently non-promotable property elsewhere in the same library (in which
/// case the inherently non-promotable property is said to be "conflicting").
///
/// When a compile-time error occurs because a property is non-promotable due
/// conflicting properties elsewhere in the library, the analyzer needs to be
/// able to find the conflicting properties in order to generate context
/// messages. This data structure allows that, by mapping each non-promotable
/// private name to the set of conflicting declarations.
///
/// If a field in the library has a private name and that name does not appear
/// as a key in this map, the field is promotable.
Map<String, FieldNameNonPromotabilityInfo> get fieldNameNonPromotabilityInfo {
linkedData?.read(this);
return _fieldNameNonPromotabilityInfo!;
}
set fieldNameNonPromotabilityInfo(
Map<String, FieldNameNonPromotabilityInfo>? value,
) {
_fieldNameNonPromotabilityInfo = value;
}
@override
CompilationUnitElementImpl get firstFragment => definingCompilationUnit;
@override
List<CompilationUnitElementImpl> get fragments {
return [definingCompilationUnit, ..._partUnits];
}
@override
List<GetterElementImpl> get getters {
var declarations = <GetterElementImpl>{};
for (var unit in units) {
declarations.addAll(
unit._accessors
.where((accessor) => accessor.isGetter)
.map((accessor) => accessor.element as GetterElementImpl),
);
}
return declarations.toList();
}
bool get hasPartOfDirective {
return hasModifier(Modifier.HAS_PART_OF_DIRECTIVE);
}
set hasPartOfDirective(bool hasPartOfDirective) {
setModifier(Modifier.HAS_PART_OF_DIRECTIVE, hasPartOfDirective);
}
@override
String get identifier => '${definingCompilationUnit.source.uri}';
@override
bool get isDartAsync => name == "dart.async";
@override
bool get isDartCore => name == "dart.core";
@override
bool get isInSdk {
var uri = definingCompilationUnit.source.uri;
return DartUriResolver.isDartUri(uri);
}
@override
ElementKind get kind => ElementKind.LIBRARY;
@override
LibraryLanguageVersion get languageVersion {
return _languageVersion ??= LibraryLanguageVersion(
package: ExperimentStatus.currentVersion,
override: null,
);
}
set languageVersion(LibraryLanguageVersion languageVersion) {
_languageVersion = languageVersion;
}
@override
LibraryElementImpl get library => this;
@override
LibraryElementImpl get library2 => this;
LibraryDeclarations get libraryDeclarations {
return _libraryDeclarations ??= LibraryDeclarations(this);
}
@override
TopLevelFunctionElementImpl get loadLibraryFunction2 {
return loadLibraryProvider.getElement(this);
}
@override
String? get lookupName => null;
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
@override
String get name => super.name!;
@override
String? get name3 => name;
@override
LibraryElementImpl get nonSynthetic2 => this;
@override
Namespace get publicNamespace {
return _publicNamespace ??= NamespaceBuilder()
.createPublicNamespaceForLibrary(this);
}
set publicNamespace(Namespace publicNamespace) {
_publicNamespace = publicNamespace;
}
@override
List<SetterElementImpl> get setters {
var declarations = <SetterElementImpl>{};
for (var unit in units) {
declarations.addAll(
unit._accessors
.where((accessor) => accessor.isSetter)
.map((accessor) => accessor.element as SetterElementImpl),
);
}
return declarations.toList();
}
@override
Version? get sinceSdkVersion {
return SinceSdkVersionComputer().compute(this);
}
@override
Source get source {
return definingCompilationUnit.source;
}
Iterable<ElementImpl> get topLevelElements sync* {
for (var unit in units) {
yield* unit.accessors;
yield* unit.classes;
yield* unit.enums;
yield* unit.extensions;
yield* unit.extensionTypes;
yield* unit.functions;
yield* unit.mixins;
yield* unit.topLevelVariables;
yield* unit.typeAliases;
}
}
/// The compilation units this library consists of.
///
/// This includes the defining compilation unit and units included using the
/// `part` directive.
List<CompilationUnitElementImpl> get units {
return [definingCompilationUnit, ..._partUnits];
}
@override
Uri get uri => firstFragment.source.uri;
List<CompilationUnitElementImpl> get _partUnits {
var result = <CompilationUnitElementImpl>[];
void visitParts(CompilationUnitElementImpl unit) {
for (var part in unit.parts) {
if (part.uri case DirectiveUriWithUnitImpl uri) {
var unit = uri.libraryFragment;
result.add(unit);
visitParts(unit);
}
}
}
visitParts(definingCompilationUnit);
return result;
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitLibraryElement(this);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeLibraryElement(this);
}
@override
String displayString2({
bool multiline = false,
bool preferTypeAlias = false,
}) {
var builder = ElementDisplayStringBuilder(
multiline: multiline,
preferTypeAlias: preferTypeAlias,
);
appendTo(builder);
return builder.toString();
}
@override
ClassElementImpl2? getClass2(String name) {
return _getElementByName(classes, name);
}
@override
EnumElement? getEnum2(String name) {
return _getElementByName(enums, name);
}
@override
String getExtendedDisplayName2({String? shortName}) {
shortName ??= displayName;
var source = this.source;
return "$shortName (${source.fullName})";
}
@override
ExtensionElement? getExtension(String name) {
return _getElementByName(extensions, name);
}
@override
ExtensionTypeElement? getExtensionType(String name) {
return _getElementByName(extensionTypes, name);
}
@override
GetterElement? getGetter(String name) {
return _getElementByName(getters, name);
}
@override
MixinElement? getMixin2(String name) {
return _getElementByName(mixins, name);
}
@override
SetterElement? getSetter(String name) {
return _getElementByName(setters, name);
}
@override
TopLevelFunctionElement? getTopLevelFunction(String name) {
return _getElementByName(topLevelFunctions, name);
}
@override
TopLevelVariableElement? getTopLevelVariable(String name) {
return _getElementByName(topLevelVariables, name);
}
@override
TypeAliasElement? getTypeAlias(String name) {
return _getElementByName(typeAliases, name);
}
@override
bool isAccessibleIn2(LibraryElement library) {
return true;
}
/// Return `true` if [reference] comes only from deprecated exports.
bool isFromDeprecatedExport(ExportedReference reference) {
if (reference is ExportedReferenceExported) {
for (var location in reference.locations) {
var export = location.exportOf(this);
if (!export.hasDeprecated) {
return false;
}
}
return true;
}
return false;
}
void resetScope() {
_libraryDeclarations = null;
for (var fragment in units) {
fragment._scope = null;
}
}
@override
LibraryElementImpl? thisOrAncestorMatching2(
bool Function(Element) predicate,
) {
return predicate(this) ? this : null;
}
@override
E? thisOrAncestorOfType2<E extends Element>() {
return E is LibraryElement ? this as E : null;
}
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
static T? _getElementByName<T extends Element>(
List<T> elements,
String name,
) {
return elements.firstWhereOrNull((e) => e.name3 == name);
}
}
class LibraryExportElementImpl extends _ExistingElementImpl
implements LibraryExport {
@override
final List<NamespaceCombinator> combinators;
@override
final int exportKeywordOffset;
@override
final DirectiveUri uri;
LibraryExportElementImpl({
required this.combinators,
required this.exportKeywordOffset,
required this.uri,
}) : super(null, exportKeywordOffset);
@override
CompilationUnitElementImpl get enclosingElement3 {
return super.enclosingElement3 as CompilationUnitElementImpl;
}
@override
LibraryElementImpl? get exportedLibrary2 {
var uri = this.uri;
if (uri is DirectiveUriWithLibraryImpl) {
return uri.library2;
}
return null;
}
@override
String get identifier => 'export@$nameOffset';
@override
ElementKind get kind => ElementKind.EXPORT;
@override
LibraryElementImpl get library {
return libraryFragment.library;
}
@override
CompilationUnitElementImpl get libraryFragment => enclosingElement3;
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeExportElement(this);
}
}
class LibraryImportElementImpl extends _ExistingElementImpl
implements LibraryImport {
@override
final List<NamespaceCombinator> combinators;
@override
final int importKeywordOffset;
@override
final PrefixFragmentImpl? prefix2;
@override
final DirectiveUri uri;
Namespace? _namespace;
LibraryImportElementImpl({
required this.combinators,
required this.importKeywordOffset,
required this.prefix2,
required this.uri,
}) : super(null, importKeywordOffset);
@override
CompilationUnitElementImpl get enclosingElement3 {
return super.enclosingElement3 as CompilationUnitElementImpl;
}
@override
String get identifier => 'import@$nameOffset';
@override
LibraryElementImpl? get importedLibrary2 {
var uri = this.uri;
if (uri is DirectiveUriWithLibraryImpl) {
return uri.library2;
}
return null;
}
@override
ElementKind get kind => ElementKind.IMPORT;
@override
LibraryElementImpl get library {
return libraryFragment.library;
}
@override
CompilationUnitElementImpl get libraryFragment => enclosingElement3;
@override
Namespace get namespace {
var uri = this.uri;
if (uri is DirectiveUriWithLibraryImpl) {
return _namespace ??= NamespaceBuilder()
.createImportNamespaceForDirective(
importedLibrary: uri.library2,
combinators: combinators,
prefix: prefix2,
);
}
return Namespace.EMPTY;
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeImportElement(this);
}
}
/// The provider for the lazily created `loadLibrary` function.
final class LoadLibraryFunctionProvider {
final Reference fragmentReference;
final Reference elementReference;
TopLevelFunctionElementImpl? _element;
LoadLibraryFunctionProvider({
required this.fragmentReference,
required this.elementReference,
});
TopLevelFunctionElementImpl getElement(LibraryElementImpl library) {
return _element ??= _create(library);
}
TopLevelFunctionElementImpl _create(LibraryElementImpl library) {
var name = TopLevelFunctionElement.LOAD_LIBRARY_NAME;
var fragment = TopLevelFunctionFragmentImpl(name, -1);
fragment.name2 = name;
fragment.isSynthetic = true;
fragment.isStatic = true;
fragment.returnType = library.typeProvider.futureDynamicType;
fragment.enclosingElement3 = library.definingCompilationUnit;
fragment.reference = fragmentReference;
fragmentReference.element = fragment;
return TopLevelFunctionElementImpl(elementReference, fragment);
}
}
class LocalFunctionElementImpl extends ExecutableElementImpl2
with WrappedElementMixin
implements LocalFunctionElement {
@override
final LocalFunctionFragmentImpl _wrappedElement;
LocalFunctionElementImpl(this._wrappedElement);
@override
String? get documentationComment => _wrappedElement.documentationComment;
@override
// Local functions belong to Fragments, not Elements.
Element? get enclosingElement2 => null;
@override
LocalFunctionFragmentImpl get firstFragment => _wrappedElement;
@override
List<FormalParameterElementMixin> get formalParameters =>
_wrappedElement.formalParameters
.map((fragment) => fragment.element)
.toList();
@override
List<LocalFunctionFragmentImpl> get fragments {
return [
for (
LocalFunctionFragmentImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
bool get hasImplicitReturnType => _wrappedElement.hasImplicitReturnType;
@override
bool get isAbstract => _wrappedElement.isAbstract;
@override
bool get isExtensionTypeMember => _wrappedElement.isExtensionTypeMember;
@override
bool get isExternal => false;
@override
bool get isSimplyBounded => _wrappedElement.isSimplyBounded;
@override
bool get isStatic => _wrappedElement.isStatic;
@override
MetadataImpl get metadata2 => _wrappedElement.metadata2;
@override
TypeImpl get returnType => _wrappedElement.returnType;
@override
FunctionTypeImpl get type => _wrappedElement.type;
@override
List<TypeParameterElement> get typeParameters2 =>
_wrappedElement.typeParameters
.map((fragment) => (fragment as TypeParameterFragment).element)
.toList();
FunctionElementImpl get wrappedElement {
return _wrappedElement;
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitLocalFunctionElement(this);
}
}
/// A concrete implementation of a [LocalFunctionFragment].
class LocalFunctionFragmentImpl extends FunctionElementImpl
implements LocalFunctionFragment {
/// The element corresponding to this fragment.
@override
late final LocalFunctionElementImpl element = LocalFunctionElementImpl(this);
@override
LocalFunctionFragmentImpl? previousFragment;
@override
LocalFunctionFragmentImpl? nextFragment;
LocalFunctionFragmentImpl(super.name, super.offset);
LocalFunctionFragmentImpl.forOffset(super.nameOffset) : super.forOffset();
@override
bool get _includeNameOffsetInIdentifier {
return super._includeNameOffsetInIdentifier ||
enclosingElement3 is ExecutableFragment ||
enclosingElement3 is VariableFragment;
}
}
class LocalVariableElementImpl extends NonParameterVariableElementImpl
implements LocalVariableFragment, VariableElementOrMember {
late LocalVariableElementImpl2 _element2 = switch (this) {
BindPatternVariableElementImpl() => BindPatternVariableElementImpl2(this),
JoinPatternVariableElementImpl() => JoinPatternVariableElementImpl2(this),
PatternVariableElementImpl() => PatternVariableElementImpl2(this),
_ => LocalVariableElementImpl2(this),
};
@override
late bool hasInitializer;
/// Initialize a newly created method element to have the given [name] and
/// [offset].
LocalVariableElementImpl(super.name, super.offset);
@override
List<Fragment> get children3 => const [];
@override
LocalVariableElementImpl2 get element => _element2;
@override
Fragment get enclosingFragment => enclosingElement3 as Fragment;
set enclosingFragment(Fragment value) {
enclosingElement3 = value as ElementImpl;
}
@override
String get identifier {
return '$name$nameOffset';
}
@override
bool get isLate {
return hasModifier(Modifier.LATE);
}
@override
ElementKind get kind => ElementKind.LOCAL_VARIABLE;
@override
LibraryElementImpl get library2 => library;
@override
CompilationUnitElementImpl get libraryFragment => enclosingUnit;
@override
// TODO(scheglov): make it a nullable field
String? get name2 => name;
@override
// TODO(scheglov): make it a nullable field
int? get nameOffset2 => nameOffset;
@override
LocalVariableElementImpl? get nextFragment => null;
@override
LocalVariableElementImpl? get previousFragment => null;
}
class LocalVariableElementImpl2 extends PromotableElementImpl2
with WrappedElementMixin, _NonTopLevelVariableOrParameter
implements LocalVariableElement {
@override
final LocalVariableElementImpl _wrappedElement;
LocalVariableElementImpl2(this._wrappedElement);
@override
LocalVariableElement get baseElement => this;
@override
String? get documentationComment => null;
@override
LocalVariableElementImpl get firstFragment => _wrappedElement;
@override
List<LocalVariableElementImpl> get fragments {
return [firstFragment];
}
@override
bool get hasImplicitType => _wrappedElement.hasImplicitType;
@override
bool get hasInitializer => _wrappedElement.hasInitializer;
@override
bool get isConst => _wrappedElement.isConst;
@override
bool get isFinal => _wrappedElement.isFinal;
@override
bool get isLate => _wrappedElement.isLate;
@override
bool get isStatic => _wrappedElement.isStatic;
@override
LibraryElementImpl get library2 {
return _wrappedElement.library;
}
@override
Metadata get metadata2 => wrappedElement.metadata2;
@override
TypeImpl get type => _wrappedElement.type;
set type(TypeImpl type) => _wrappedElement.type = type;
LocalVariableElementImpl get wrappedElement {
return _wrappedElement;
}
@override
ElementImpl? get _enclosingFunction => _wrappedElement.enclosingElement3;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitLocalVariableElement(this);
}
@override
DartObject? computeConstantValue() => _wrappedElement.computeConstantValue();
}
final class MetadataImpl implements Metadata {
final int _metadataFlags;
@override
final List<ElementAnnotationImpl> annotations;
MetadataImpl(this._metadataFlags, this.annotations);
@override
bool get hasAlwaysThrows {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isAlwaysThrows) {
return true;
}
}
return false;
}
@override
bool get hasAwaitNotRequired {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isAwaitNotRequired) {
return true;
}
}
return false;
}
@override
bool get hasDeprecated {
if (_metadataFlags < 0) {
// TODO(augmentations): Consider optimizing this similar to `ElementImpl`.
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isDeprecated) {
return true;
}
}
return false;
}
return (_metadataFlags & ElementImpl._metadataFlag_hasDeprecated) != 0;
}
@override
bool get hasDoNotStore {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isDoNotStore) {
return true;
}
}
return false;
}
@override
bool get hasDoNotSubmit {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isDoNotSubmit) {
return true;
}
}
return false;
}
@override
bool get hasFactory {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isFactory) {
return true;
}
}
return false;
}
@override
bool get hasImmutable {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isImmutable) {
return true;
}
}
return false;
}
@override
bool get hasInternal {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isInternal) {
return true;
}
}
return false;
}
@override
bool get hasIsTest {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isIsTest) {
return true;
}
}
return false;
}
@override
bool get hasIsTestGroup {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isIsTestGroup) {
return true;
}
}
return false;
}
@override
bool get hasJS {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isJS) {
return true;
}
}
return false;
}
@override
bool get hasLiteral {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isLiteral) {
return true;
}
}
return false;
}
@override
bool get hasMustBeConst {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isMustBeConst) {
return true;
}
}
return false;
}
@override
bool get hasMustBeOverridden {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isMustBeOverridden) {
return true;
}
}
return false;
}
@override
bool get hasMustCallSuper {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isMustCallSuper) {
return true;
}
}
return false;
}
@override
bool get hasNonVirtual {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isNonVirtual) {
return true;
}
}
return false;
}
@override
bool get hasOptionalTypeArgs {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isOptionalTypeArgs) {
return true;
}
}
return false;
}
@override
bool get hasOverride {
if (_metadataFlags < 0) {
// TODO(augmentations): Consider optimizing this similar to `ElementImpl`.
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isOverride) {
return true;
}
}
return false;
}
return (_metadataFlags & ElementImpl._metadataFlag_hasOverride) != 0;
}
/// Return `true` if this element has an annotation of the form
/// `@pragma("vm:entry-point")`.
bool get hasPragmaVmEntryPoint {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isPragmaVmEntryPoint) {
return true;
}
}
return false;
}
@override
bool get hasProtected {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isProtected) {
return true;
}
}
return false;
}
@override
bool get hasRedeclare {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isRedeclare) {
return true;
}
}
return false;
}
@override
bool get hasReopen {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isReopen) {
return true;
}
}
return false;
}
@override
bool get hasRequired {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isRequired) {
return true;
}
}
return false;
}
@override
bool get hasSealed {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isSealed) {
return true;
}
}
return false;
}
@override
bool get hasUseResult {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isUseResult) {
return true;
}
}
return false;
}
@override
bool get hasVisibleForOverriding {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isVisibleForOverriding) {
return true;
}
}
return false;
}
@override
bool get hasVisibleForTemplate {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isVisibleForTemplate) {
return true;
}
}
return false;
}
@override
bool get hasVisibleForTesting {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isVisibleForTesting) {
return true;
}
}
return false;
}
@override
bool get hasVisibleOutsideTemplate {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isVisibleOutsideTemplate) {
return true;
}
}
return false;
}
@override
bool get hasWidgetFactory {
var annotations = this.annotations;
for (var i = 0; i < annotations.length; i++) {
var annotation = annotations[i];
if (annotation.isWidgetFactory) {
return true;
}
}
return false;
}
}
/// Common base class for all analyzer-internal classes that implement
/// `MethodElement2`.
abstract class MethodElement2OrMember
implements MethodElement, ExecutableElement2OrMember {
@override
MethodElementImpl2 get baseElement;
}
class MethodElementImpl extends ExecutableElementImpl
implements MethodElementOrMember, MethodFragment {
@override
late final MethodElementImpl2 element = MethodElementImpl2(name, this);
@override
String? name2;
@override
int? nameOffset2;
@override
MethodElementImpl? previousFragment;
@override
MethodElementImpl? nextFragment;
/// Is `true` if this method is `operator==`, and there is no explicit
/// type specified for its formal parameter, in this method or in any
/// overridden methods other than the one declared in `Object`.
bool isOperatorEqualWithParameterTypeFromObject = false;
/// The error reported during type inference for this variable, or `null` if
/// this variable is not a subject of type inference, or there was no error.
TopLevelInferenceError? typeInferenceError;
/// Initialize a newly created method element to have the given [name] at the
/// given [offset].
MethodElementImpl(super.name, super.offset);
@override
MethodElementImpl get declaration => this;
@override
String get displayName {
String displayName = super.displayName;
if ("unary-" == displayName) {
return "-";
}
return displayName;
}
@override
InstanceElementImpl get enclosingElement3 {
return super.enclosingElement3 as InstanceElementImpl;
}
@override
InstanceFragment? get enclosingFragment =>
enclosingElement3 as InstanceFragment;
/// Set whether this class is abstract.
set isAbstract(bool isAbstract) {
setModifier(Modifier.ABSTRACT, isAbstract);
}
@override
bool get isOperator {
String name = displayName;
if (name.isEmpty) {
return false;
}
int first = name.codeUnitAt(0);
return !((0x61 <= first && first <= 0x7A) ||
(0x41 <= first && first <= 0x5A) ||
first == 0x5F ||
first == 0x24);
}
@override
ElementKind get kind => ElementKind.METHOD;
@override
String get name {
String name = super.name;
if (name == '-' && parameters.isEmpty) {
return 'unary-';
}
return name;
}
@override
ElementImpl get nonSynthetic {
if (isSynthetic && enclosingElement3 is EnumElementImpl) {
return enclosingElement3;
}
return this;
}
}
class MethodElementImpl2 extends ExecutableElementImpl2
with
FragmentedExecutableElementMixin<MethodElementImpl>,
FragmentedFunctionTypedElementMixin<MethodElementImpl>,
FragmentedTypeParameterizedElementMixin<MethodElementImpl>,
FragmentedAnnotatableElementMixin<MethodElementImpl>,
FragmentedElementMixin<MethodElementImpl>,
_HasSinceSdkVersionMixin
implements MethodElement2OrMember {
@override
final String? name3;
@override
final MethodElementImpl firstFragment;
MethodElementImpl2(this.name3, this.firstFragment);
@override
MethodElementImpl2 get baseElement => this;
@override
Element? get enclosingElement2 =>
(firstFragment.enclosingElement3 as InstanceFragment).element;
@override
List<MethodElementImpl> get fragments {
return [
for (
MethodElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
bool get isOperator => firstFragment.isOperator;
@override
ElementKind get kind => ElementKind.METHOD;
@override
MethodElementImpl get lastFragment {
return super.lastFragment as MethodElementImpl;
}
@override
String? get lookupName {
if (name3 == '-' && formalParameters.isEmpty) {
return 'unary-';
}
return name3;
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitMethodElement(this);
}
}
/// Common base class for all analyzer-internal classes that implement
/// `MethodElement`.
abstract class MethodElementOrMember implements ExecutableElementOrMember {
@override
TypeImpl get returnType;
@override
FunctionTypeImpl get type;
@override
List<TypeParameterElementImpl> get typeParameters;
}
/// A [ClassElementImpl] representing a mixin declaration.
class MixinElementImpl extends ClassOrMixinElementImpl
implements MixinFragment {
List<InterfaceTypeImpl> _superclassConstraints = const [];
/// Names of methods, getters, setters, and operators that this mixin
/// declaration super-invokes. For setters this includes the trailing "=".
/// The list will be empty if this class is not a mixin declaration.
late List<String> superInvokedNames;
late MixinElementImpl2 augmentedInternal;
/// Initialize a newly created class element to have the given [name] at the
/// given [offset] in the file that contains the declaration of this element.
MixinElementImpl(super.name, super.offset);
@override
MixinElementImpl2 get element {
linkedData?.read(this);
return augmentedInternal;
}
@override
bool get isBase {
return hasModifier(Modifier.BASE);
}
@override
ElementKind get kind => ElementKind.MIXIN;
@override
List<InterfaceTypeImpl> get mixins => const [];
@override
set mixins(List<InterfaceType> mixins) {
throw StateError('Attempt to set mixins for a mixin declaration.');
}
@override
MixinElementImpl? get nextFragment => super.nextFragment as MixinElementImpl?;
@override
MixinElementImpl? get previousFragment =>
super.previousFragment as MixinElementImpl?;
@override
List<InterfaceTypeImpl> get superclassConstraints {
linkedData?.read(this);
return _superclassConstraints;
}
set superclassConstraints(List<InterfaceType> superclassConstraints) {
// TODO(paulberry): eliminate this cast by changing the type of the
// `superclassConstraints` parameter.
_superclassConstraints = superclassConstraints.cast();
}
@override
InterfaceTypeImpl? get supertype => null;
@override
set supertype(InterfaceType? supertype) {
throw StateError('Attempt to set a supertype for a mixin declaration.');
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeMixinElement(this);
}
}
class MixinElementImpl2 extends InterfaceElementImpl2 implements MixinElement {
@override
final Reference reference;
@override
final MixinElementImpl firstFragment;
@override
List<InterfaceTypeImpl> superclassConstraints = [];
MixinElementImpl2(this.reference, this.firstFragment) {
reference.element2 = this;
firstFragment.augmentedInternal = this;
}
@override
List<MixinElementImpl> get fragments {
return [
for (
MixinElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
bool get isBase => firstFragment.isBase;
/// Names of methods, getters, setters, and operators that this mixin
/// declaration super-invokes. For setters this includes the trailing "=".
/// The list will be empty if this class is not a mixin declaration.
List<String> get superInvokedNames => firstFragment.superInvokedNames;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitMixinElement(this);
}
@override
bool isImplementableIn2(LibraryElement library) {
if (library == library2) {
return true;
}
return !isBase;
}
}
/// The constants for all of the modifiers defined by the Dart language and for
/// a few additional flags that are useful.
///
/// Clients may not extend, implement or mix-in this class.
enum Modifier {
/// Indicates that the modifier 'abstract' was applied to the element.
ABSTRACT,
/// Indicates that an executable element has a body marked as being
/// asynchronous.
ASYNCHRONOUS,
/// Indicates that the modifier 'augment' was applied to the element.
AUGMENTATION,
/// Indicates that the element is the start of the augmentation chain,
/// in the simplest case - the declaration. But could be an augmentation
/// that has no augmented declaration (which is a compile-time error).
AUGMENTATION_CHAIN_START,
/// Indicates that the modifier 'base' was applied to the element.
BASE,
/// Indicates that the modifier 'const' was applied to the element.
CONST,
/// Indicates that the modifier 'covariant' was applied to the element.
COVARIANT,
/// Indicates that the class is `Object` from `dart:core`.
DART_CORE_OBJECT,
/// Indicates that the import element represents a deferred library.
DEFERRED,
/// Indicates that a class element was defined by an enum declaration.
ENUM,
/// Indicates that the element is an enum constant field.
ENUM_CONSTANT,
/// Indicates that the element is an extension type member.
EXTENSION_TYPE_MEMBER,
/// Indicates that a class element was defined by an enum declaration.
EXTERNAL,
/// Indicates that the modifier 'factory' was applied to the element.
FACTORY,
/// Indicates that the modifier 'final' was applied to the element.
FINAL,
/// Indicates that an executable element has a body marked as being a
/// generator.
GENERATOR,
/// Indicates that the pseudo-modifier 'get' was applied to the element.
GETTER,
/// Indicates that this class has an explicit `extends` clause.
HAS_EXTENDS_CLAUSE,
/// A flag used for libraries indicating that the variable has an explicit
/// initializer.
HAS_INITIALIZER,
/// A flag used for libraries indicating that the defining compilation unit
/// has a `part of` directive, meaning that this unit should be a part,
/// but is used as a library.
HAS_PART_OF_DIRECTIVE,
/// Indicates that the value of [ElementImpl.sinceSdkVersion] was computed.
HAS_SINCE_SDK_VERSION_COMPUTED,
/// [HAS_SINCE_SDK_VERSION_COMPUTED] and the value was not `null`.
HAS_SINCE_SDK_VERSION_VALUE,
/// Indicates that the associated element did not have an explicit type
/// associated with it. If the element is an [ExecutableElement], then the
/// type being referred to is the return type.
IMPLICIT_TYPE,
/// Indicates that the modifier 'interface' was applied to the element.
INTERFACE,
/// Indicates that the method invokes the super method with the same name.
INVOKES_SUPER_SELF,
/// Indicates that modifier 'lazy' was applied to the element.
LATE,
/// Indicates that a class is a mixin application.
MIXIN_APPLICATION,
/// Indicates that a class is a mixin class.
MIXIN_CLASS,
PROMOTABLE,
/// Indicates whether the type of a [PropertyInducingElementImpl] should be
/// used to infer the initializer. We set it to `false` if the type was
/// inferred from the initializer itself.
SHOULD_USE_TYPE_FOR_INITIALIZER_INFERENCE,
/// Indicates that the modifier 'sealed' was applied to the element.
SEALED,
/// Indicates that the pseudo-modifier 'set' was applied to the element.
SETTER,
/// See [TypeParameterizedElement.isSimplyBounded].
SIMPLY_BOUNDED,
/// Indicates that the modifier 'static' was applied to the element.
STATIC,
/// Indicates that the element does not appear in the source code but was
/// implicitly created. For example, if a class does not define any
/// constructors, an implicit zero-argument constructor will be created and it
/// will be marked as being synthetic.
SYNTHETIC,
}
class MultiplyDefinedElementImpl2 extends ElementImpl2
implements MultiplyDefinedElement {
final CompilationUnitElementImpl libraryFragment;
@override
final String name3;
@override
final List<Element> conflictingElements2;
@override
late final MultiplyDefinedFragmentImpl firstFragment =
MultiplyDefinedFragmentImpl(this);
MultiplyDefinedElementImpl2(
this.libraryFragment,
this.name3,
this.conflictingElements2,
);
@override
MultiplyDefinedElementImpl2 get baseElement => this;
@override
List<Element> get children2 => const [];
@override
String get displayName => name3;
@override
Null get enclosingElement2 => null;
@override
List<MultiplyDefinedFragmentImpl> get fragments {
return [firstFragment];
}
@override
bool get isPrivate => false;
@override
bool get isPublic => true;
@override
bool get isSynthetic => true;
bool get isVisibleForTemplate => false;
bool get isVisibleOutsideTemplate => false;
@override
ElementKind get kind => ElementKind.ERROR;
@override
LibraryElement get library2 => libraryFragment.element;
@override
Element get nonSynthetic2 => this;
@override
AnalysisSession get session => libraryFragment.session;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitMultiplyDefinedElement(this);
}
@override
String displayString2({
bool multiline = false,
bool preferTypeAlias = false,
}) {
var elementsStr = conflictingElements2
.map((e) {
return e.displayString2();
})
.join(', ');
return '[$elementsStr]';
}
@override
bool isAccessibleIn2(LibraryElement library) {
for (var element in conflictingElements2) {
if (element.isAccessibleIn2(library)) {
return true;
}
}
return false;
}
@override
Element? thisOrAncestorMatching2(bool Function(Element p1) predicate) {
return null;
}
@override
E? thisOrAncestorOfType2<E extends Element>() {
return null;
}
@override
String toString() {
StringBuffer buffer = StringBuffer();
bool needsSeparator = false;
void writeList(List<Element> elements) {
for (var element in elements) {
if (needsSeparator) {
buffer.write(", ");
} else {
needsSeparator = true;
}
buffer.write(element.displayString2());
}
}
buffer.write("[");
writeList(conflictingElements2);
buffer.write("]");
return buffer.toString();
}
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
}
class MultiplyDefinedFragmentImpl implements MultiplyDefinedFragment {
@override
final MultiplyDefinedElementImpl2 element;
MultiplyDefinedFragmentImpl(this.element);
@override
List<Fragment> get children3 => [];
@override
LibraryFragment get enclosingFragment => element.libraryFragment;
@override
LibraryFragment get libraryFragment => enclosingFragment;
@override
String? get name2 => element.name3;
@override
Null get nameOffset2 => null;
@override
Null get nextFragment => null;
@override
int get offset => 0;
@override
Null get previousFragment => null;
}
/// The synthetic element representing the declaration of the type `Never`.
class NeverElementImpl extends ElementImpl implements TypeDefiningFragment {
/// The unique instance of this class.
static final instance = NeverElementImpl._();
/// Initialize a newly created instance of this class. Instances of this class
/// should <b>not</b> be created except as part of creating the type
/// associated with this element. The single instance of this class should be
/// accessed through the method [instance].
NeverElementImpl._() : super('Never', -1) {
setModifier(Modifier.SYNTHETIC, true);
}
@override
List<Fragment> get children3 => const [];
@override
NeverElementImpl2 get element => NeverElementImpl2.instance;
@override
Null get enclosingFragment => null;
@override
ElementKind get kind => ElementKind.NEVER;
@override
Null get library => null;
@override
Null get libraryFragment => null;
@override
String get name2 => 'Never';
@override
Null get nameOffset2 => null;
@override
Null get nextFragment => null;
@override
int get offset => 0;
@override
Null get previousFragment => null;
DartType instantiate({required NullabilitySuffix nullabilitySuffix}) {
switch (nullabilitySuffix) {
case NullabilitySuffix.question:
return NeverTypeImpl.instanceNullable;
case NullabilitySuffix.star:
// TODO(scheglov): remove together with `star`
return NeverTypeImpl.instanceNullable;
case NullabilitySuffix.none:
return NeverTypeImpl.instance;
}
}
}
/// The synthetic element representing the declaration of the type `Never`.
class NeverElementImpl2 extends TypeDefiningElementImpl2 {
/// The unique instance of this class.
static final instance = NeverElementImpl2._();
NeverElementImpl2._();
@override
Null get documentationComment => null;
@override
Element? get enclosingElement2 => null;
@override
NeverElementImpl get firstFragment => NeverElementImpl.instance;
@override
List<NeverElementImpl> get fragments {
return [firstFragment];
}
@override
bool get isSynthetic => true;
@override
ElementKind get kind => ElementKind.NEVER;
@override
Null get library2 => null;
@override
Metadata get metadata2 {
return MetadataImpl(0, const []);
}
@override
String get name3 => 'Never';
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return null;
}
DartType instantiate({required NullabilitySuffix nullabilitySuffix}) {
switch (nullabilitySuffix) {
case NullabilitySuffix.question:
return NeverTypeImpl.instanceNullable;
case NullabilitySuffix.star:
// TODO(scheglov): remove together with `star`
return NeverTypeImpl.instanceNullable;
case NullabilitySuffix.none:
return NeverTypeImpl.instance;
}
}
}
/// A [VariableElementImpl], which is not a parameter.
abstract class NonParameterVariableElementImpl extends VariableElementImpl
with _HasLibraryMixin {
/// Initialize a newly created variable element to have the given [name] and
/// [offset].
NonParameterVariableElementImpl(super.name, super.offset);
@override
ElementImpl get enclosingElement3 {
// TODO(paulberry): `!` is not appropriate here because variable elements
// aren't guaranteed to have enclosing elements. See
// https://github.com/dart-lang/sdk/issues/59750.
return super.enclosingElement3 as ElementImpl;
}
bool get hasInitializer {
return hasModifier(Modifier.HAS_INITIALIZER);
}
/// Set whether this variable has an initializer.
set hasInitializer(bool hasInitializer) {
setModifier(Modifier.HAS_INITIALIZER, hasInitializer);
}
}
class ParameterElementImpl extends VariableElementImpl
with ParameterElementMixin
implements FormalParameterFragment {
@override
String? name2;
@override
int? nameOffset2;
/// A list containing all of the parameters defined by this parameter element.
/// There will only be parameters if this parameter is a function typed
/// parameter.
List<ParameterElementImpl> _parameters = const [];
/// A list containing all of the type parameters defined for this parameter
/// element. There will only be parameters if this parameter is a function
/// typed parameter.
List<TypeParameterElementImpl> _typeParameters = const [];
@override
final ParameterKind parameterKind;
@override
String? defaultValueCode;
/// True if this parameter inherits from a covariant parameter. This happens
/// when it overrides a method in a supertype that has a corresponding
/// covariant parameter.
bool inheritsCovariant = false;
/// The element corresponding to this fragment.
FormalParameterElementImpl? _element;
/// Initialize a newly created parameter element to have the given [name] and
/// [nameOffset].
ParameterElementImpl({
required String name,
required int nameOffset,
required this.name2,
required this.nameOffset2,
required this.parameterKind,
}) : assert(nameOffset2 == null || nameOffset2 >= 0),
assert(name2 == null || name2.isNotEmpty),
super(name, nameOffset);
/// Creates a synthetic parameter with [name2], [type] and [parameterKind].
factory ParameterElementImpl.synthetic(
String? name2,
TypeImpl type,
ParameterKind parameterKind,
) {
var element = ParameterElementImpl(
name: name2 ?? '',
nameOffset: -1,
name2: name2,
nameOffset2: null,
parameterKind: parameterKind,
);
element.type = type;
element.isSynthetic = true;
return element;
}
@override
List<Fragment> get children3 => const [];
@override
ParameterElementImpl get declaration => this;
@override
FormalParameterElementImpl get element {
if (_element != null) {
return _element!;
}
FormalParameterFragment firstFragment = this;
var previousFragment = firstFragment.previousFragment;
while (previousFragment != null) {
firstFragment = previousFragment;
previousFragment = firstFragment.previousFragment;
}
// As a side-effect of creating the element, all of the fragments in the
// chain will have their `_element` set to the newly created element.
return _createElement(firstFragment);
}
set element(FormalParameterElementImpl element) => _element = element;
@override
Fragment? get enclosingFragment => enclosingElement3 as Fragment?;
/// Whether the parameter has a default value.
bool get hasDefaultValue {
return defaultValueCode != null;
}
@override
bool get isCovariant {
if (isExplicitlyCovariant || inheritsCovariant) {
return true;
}
return false;
}
/// Return true if this parameter is explicitly marked as being covariant.
bool get isExplicitlyCovariant {
return hasModifier(Modifier.COVARIANT);
}
/// Set whether this variable parameter is explicitly marked as being
/// covariant.
set isExplicitlyCovariant(bool isCovariant) {
setModifier(Modifier.COVARIANT, isCovariant);
}
@override
bool get isInitializingFormal => false;
@override
bool get isLate => false;
/// Whether the parameter is a super formal parameter.
bool get isSuperFormal => false;
@override
ElementKind get kind => ElementKind.PARAMETER;
@override
LibraryElementImpl? get library {
var library = libraryFragment?.element;
return library as LibraryElementImpl?;
}
@override
LibraryElementImpl? get library2 => library;
@override
LibraryFragment? get libraryFragment {
return enclosingFragment?.libraryFragment;
}
@override
// TODO(augmentations): Support chaining between the fragments.
ParameterElementImpl? get nextFragment => null;
@override
List<ParameterElementImpl> get parameters {
return _parameters;
}
/// Set the parameters defined by this executable element to the given
/// [parameters].
set parameters(List<ParameterElementImpl> parameters) {
for (var parameter in parameters) {
parameter.enclosingElement3 = this;
}
_parameters = parameters;
}
@override
// TODO(augmentations): Support chaining between the fragments.
ParameterElementImpl? get previousFragment => null;
@override
List<TypeParameterElementImpl> get typeParameters {
return _typeParameters;
}
/// Set the type parameters defined by this parameter element to the given
/// [typeParameters].
set typeParameters(List<TypeParameterElementImpl> typeParameters) {
for (var parameter in typeParameters) {
parameter.enclosingElement3 = this;
}
_typeParameters = typeParameters;
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeFormalParameter(this);
}
FormalParameterElementImpl _createElement(
FormalParameterFragment firstFragment,
) => FormalParameterElementImpl(firstFragment as ParameterElementImpl);
}
/// The parameter of an implicit setter.
// Pre-existing name.
// ignore: camel_case_types
class ParameterElementImpl_ofImplicitSetter extends ParameterElementImpl {
final PropertyAccessorElementImpl_ImplicitSetter setter;
ParameterElementImpl_ofImplicitSetter(this.setter)
: super(
name: considerCanonicalizeString('_${setter.variable2.name}'),
nameOffset: -1,
name2:
setter.variable2.name == ''
? null
: considerCanonicalizeString('_${setter.variable2.name}'),
nameOffset2: null,
parameterKind: ParameterKind.REQUIRED,
) {
enclosingElement3 = setter;
isSynthetic = true;
}
@override
bool get inheritsCovariant {
var variable = setter.variable2;
if (variable is FieldElementImpl) {
return variable.inheritsCovariant;
}
return false;
}
@override
set inheritsCovariant(bool value) {
var variable = setter.variable2;
if (variable is FieldElementImpl) {
variable.inheritsCovariant = value;
}
}
@override
bool get isCovariant {
if (isExplicitlyCovariant || inheritsCovariant) {
return true;
}
return false;
}
@override
bool get isExplicitlyCovariant {
var variable = setter.variable2;
if (variable is FieldElementImpl) {
return variable.isCovariant;
}
return false;
}
@override
ElementImpl get nonSynthetic {
return setter.variable2;
}
@override
int get offset => setter.offset;
@override
TypeImpl get type => setter.variable2.type;
@override
set type(DartType type) {
assert(false); // Should never be called.
}
}
/// A mixin that provides a common implementation for methods defined in
/// `ParameterElement`.
mixin ParameterElementMixin implements VariableElementOrMember {
@override
ParameterElementImpl get declaration;
/// The code of the default value, or `null` if no default value.
String? get defaultValueCode;
FormalParameterElementImpl get element;
/// Whether the parameter is covariant, meaning it is allowed to have a
/// narrower type in an override.
bool get isCovariant;
/// Whether the parameter is an initializing formal parameter.
bool get isInitializingFormal;
/// Whether the parameter is a named parameter.
///
/// Named parameters that are annotated with the `@required` annotation are
/// considered optional. Named parameters that are annotated with the
/// `required` syntax are considered required.
bool get isNamed => parameterKind.isNamed;
/// Whether the parameter is an optional parameter.
///
/// Optional parameters can either be positional or named. Named parameters
/// that are annotated with the `@required` annotation are considered
/// optional. Named parameters that are annotated with the `required` syntax
/// are considered required.
bool get isOptional => parameterKind.isOptional;
/// Whether the parameter is both an optional and named parameter.
///
/// Named parameters that are annotated with the `@required` annotation are
/// considered optional. Named parameters that are annotated with the
/// `required` syntax are considered required.
bool get isOptionalNamed => parameterKind.isOptionalNamed;
/// Whether the parameter is both an optional and positional parameter.
bool get isOptionalPositional => parameterKind.isOptionalPositional;
/// Whether the parameter is a positional parameter.
///
/// Positional parameters can either be required or optional.
bool get isPositional => parameterKind.isPositional;
/// Whether the parameter is either a required positional parameter, or a
/// named parameter with the `required` keyword.
///
/// Note: the presence or absence of the `@required` annotation does not
/// change the meaning of this getter. The parameter `{@required int x}`
/// will return `false` and the parameter `{@required required int x}`
/// will return `true`.
bool get isRequired => parameterKind.isRequired;
/// Whether the parameter is both a required and named parameter.
///
/// Named parameters that are annotated with the `@required` annotation are
/// considered optional. Named parameters that are annotated with the
/// `required` syntax are considered required.
bool get isRequiredNamed => parameterKind.isRequiredNamed;
/// Whether the parameter is both a required and positional parameter.
bool get isRequiredPositional => parameterKind.isRequiredPositional;
ParameterKind get parameterKind;
/// The parameters defined by this parameter.
///
/// A parameter will only define other parameters if it is a function typed
/// parameter.
List<ParameterElementMixin> get parameters;
@override
TypeImpl get type;
/// The type parameters defined by this parameter.
///
/// A parameter will only define type parameters if it is a function typed
/// parameter.
List<TypeParameterElementImpl> get typeParameters;
/// Appends the type, name and possibly the default value of this parameter
/// to the given [buffer].
void appendToWithoutDelimiters(
StringBuffer buffer, {
@Deprecated('Only non-nullable by default mode is supported')
bool withNullability = true,
}) {
buffer.write(
type.getDisplayString(
// ignore:deprecated_member_use_from_same_package
withNullability: withNullability,
),
);
buffer.write(' ');
buffer.write(displayName);
if (defaultValueCode != null) {
buffer.write(' = ');
buffer.write(defaultValueCode);
}
}
}
class PartElementImpl extends _ExistingElementImpl implements PartInclude {
@override
final DirectiveUriImpl uri;
PartElementImpl({required this.uri}) : super(null, -1);
@override
CompilationUnitElementImpl get enclosingUnit =>
enclosingElement3 as CompilationUnitElementImpl;
@override
String get identifier => 'part';
@override
CompilationUnitElementImpl? get includedFragment {
if (uri case DirectiveUriWithUnitImpl uri) {
return uri.libraryFragment;
}
return null;
}
@override
ElementKind get kind => ElementKind.PART;
@override
CompilationUnitElementImpl get libraryFragment => enclosingUnit;
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writePartElement(this);
}
}
class PatternVariableElementImpl extends LocalVariableElementImpl
implements PatternVariableFragment {
/// The variable in which this variable joins with other pattern variables
/// with the same name, in a logical-or pattern, or shared case scope.
JoinPatternVariableElementImpl? join;
/// This flag is set to `true` while we are visiting the [WhenClause] of
/// the [GuardedPattern] that declares this variable.
bool isVisitingWhenClause = false;
PatternVariableElementImpl(super.name, super.offset);
@override
PatternVariableElementImpl2 get element =>
super.element as PatternVariableElementImpl2;
@override
JoinPatternVariableFragment? get join2 => join;
@override
PatternVariableElementImpl? get nextFragment =>
super.nextFragment as PatternVariableElementImpl?;
@override
PatternVariableElementImpl? get previousFragment =>
super.previousFragment as PatternVariableElementImpl?;
/// Return the root [join], or self.
PatternVariableElementImpl get rootVariable {
return join?.rootVariable ?? this;
}
}
class PatternVariableElementImpl2 extends LocalVariableElementImpl2
implements PatternVariableElement {
PatternVariableElementImpl2(super._wrappedElement);
@override
PatternVariableElementImpl get firstFragment =>
super.firstFragment as PatternVariableElementImpl;
@override
List<PatternVariableElementImpl> get fragments {
return [
for (
PatternVariableElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
/// This flag is set to `true` while we are visiting the [WhenClause] of
/// the [GuardedPattern] that declares this variable.
bool get isVisitingWhenClause => _wrappedElement.isVisitingWhenClause;
/// This flag is set to `true` while we are visiting the [WhenClause] of
/// the [GuardedPattern] that declares this variable.
set isVisitingWhenClause(bool value) =>
_wrappedElement.isVisitingWhenClause = value;
@override
JoinPatternVariableElementImpl2? get join2 {
return _wrappedElement.join?.asElement2;
}
/// Return the root [join2], or self.
PatternVariableElementImpl2 get rootVariable {
return join2?.rootVariable ?? this;
}
@override
PatternVariableElementImpl get _wrappedElement =>
super._wrappedElement as PatternVariableElementImpl;
static PatternVariableElement fromElement(
PatternVariableElementImpl element,
) {
if (element is JoinPatternVariableElementImpl) {
return JoinPatternVariableElementImpl2(element);
} else if (element is BindPatternVariableElementImpl) {
return BindPatternVariableElementImpl2(element);
}
return PatternVariableElementImpl2(element);
}
}
/// Currently we write [Element] using the first fragment.
/// Usually this works (as good as a hack can), but [PrefixElementImpl2]
/// does not have [ElementImpl] fragments. So, we use this fake element.
// TODO(scheglov): resonsider how we write Element2.
class PrefixElementImpl extends ElementImpl {
final PrefixElementImpl2 element2;
PrefixElementImpl(this.element2)
: super(element2.name3 ?? '', -1, reference: element2.reference);
@override
ElementKind get kind => ElementKind.PREFIX;
@override
Null get library => null;
}
class PrefixElementImpl2 extends ElementImpl2 implements PrefixElement {
@override
final Reference reference;
@override
final PrefixFragmentImpl firstFragment;
PrefixFragmentImpl lastFragment;
/// The scope of this prefix, `null` if not set yet.
PrefixScope? _scope;
PrefixElementImpl2({required this.reference, required this.firstFragment})
: lastFragment = firstFragment {
reference.element2 = this;
asElement;
}
PrefixElementImpl get asElement {
return PrefixElementImpl(this);
// return imports.first.prefix!.element;
}
@override
Null get enclosingElement2 => null;
@override
List<PrefixFragmentImpl> get fragments {
return [
for (
PrefixFragmentImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
List<LibraryImportElementImpl> get imports {
return firstFragment.enclosingFragment.libraryImports
.where((import) => import.prefix2?.element == this)
.toList();
}
@override
bool get isSynthetic => false;
@override
ElementKind get kind => ElementKind.PREFIX;
@override
LibraryElementImpl get library2 {
return firstFragment.libraryFragment.element;
}
@override
String? get name3 => firstFragment.name2;
@override
PrefixScope get scope {
firstFragment.enclosingFragment.scope;
// SAFETY: The previous statement initializes this field.
return _scope!;
}
set scope(PrefixScope value) {
_scope = value;
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitPrefixElement(this);
}
void addFragment(PrefixFragmentImpl fragment) {
lastFragment.nextFragment = fragment;
fragment.previousFragment = lastFragment;
lastFragment = fragment;
}
@override
String displayString2({
bool multiline = false,
bool preferTypeAlias = false,
}) {
var builder = ElementDisplayStringBuilder(
multiline: multiline,
preferTypeAlias: preferTypeAlias,
);
builder.writePrefixElement2(this);
return builder.toString();
}
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {}
}
class PrefixFragmentImpl implements PrefixFragment {
@override
final CompilationUnitElementImpl enclosingFragment;
@override
String? name2;
@override
int? nameOffset2;
@override
int offset = 0;
@override
final bool isDeferred;
@override
late final PrefixElementImpl2 element;
@override
PrefixFragmentImpl? previousFragment;
@override
PrefixFragmentImpl? nextFragment;
PrefixFragmentImpl({
required this.enclosingFragment,
required this.name2,
required this.nameOffset2,
required this.isDeferred,
});
@override
List<Fragment> get children3 => const [];
@override
CompilationUnitElementImpl get libraryFragment => enclosingFragment;
}
abstract class PromotableElementImpl2 extends VariableElementImpl2
implements PromotableElement {}
/// Common base class for all analyzer-internal classes that implement
/// `PropertyAccessorElement2`.
abstract class PropertyAccessorElement2OrMember
implements PropertyAccessorElement, ExecutableElement2OrMember {
@override
PropertyAccessorElementImpl2 get baseElement;
@override
PropertyInducingElement2OrMember? get variable3;
}
sealed class PropertyAccessorElementImpl extends ExecutableElementImpl
implements PropertyAccessorElementOrMember, PropertyAccessorFragment {
@override
String? name2;
@override
int? nameOffset2;
PropertyInducingElementImpl? _variable;
/// Initialize a newly created property accessor element to have the given
/// [name] and [offset].
PropertyAccessorElementImpl(super.name, super.offset);
/// Initialize a newly created synthetic property accessor element to be
/// associated with the given [variable].
PropertyAccessorElementImpl.forVariable(
PropertyInducingElementImpl variable, {
Reference? reference,
}) : _variable = variable,
super(variable.name, -1, reference: reference) {
isAbstract = variable is FieldElementImpl && variable.isAbstract;
isStatic = variable.isStatic;
isSynthetic = true;
}
@override
PropertyAccessorElementImpl? get correspondingGetter;
@override
PropertyAccessorElementImpl? get correspondingSetter;
@override
PropertyAccessorElementImpl get declaration => this;
@override
PropertyAccessorElementImpl2 get element;
@override
Fragment get enclosingFragment {
var enclosing = enclosingElement3;
if (enclosing is InstanceFragment) {
return enclosing as InstanceFragment;
} else if (enclosing is CompilationUnitElementImpl) {
return enclosing as LibraryFragment;
}
throw UnsupportedError('Not a fragment: ${enclosing.runtimeType}');
}
@override
String get identifier {
String name = displayName;
String suffix = isGetter ? "?" : "=";
return considerCanonicalizeString("$name$suffix");
}
/// Set whether this class is abstract.
set isAbstract(bool isAbstract) {
setModifier(Modifier.ABSTRACT, isAbstract);
}
@override
ElementKind get kind {
if (isGetter) {
return ElementKind.GETTER;
}
return ElementKind.SETTER;
}
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
@override
String get name {
if (isSetter) {
return "${super.name}=";
}
return super.name;
}
@override
PropertyInducingElementImpl? get variable2 {
linkedData?.read(this);
return _variable;
}
set variable2(PropertyInducingElementImpl? value) {
_variable = value;
}
@override
PropertyInducingFragment? get variable3 => variable2;
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeExecutableElement(
this,
(isGetter ? 'get ' : 'set ') + displayName,
);
}
}
abstract class PropertyAccessorElementImpl2 extends ExecutableElementImpl2
implements PropertyAccessorElement2OrMember {
@override
PropertyAccessorElementImpl2 get baseElement => this;
@override
Element get enclosingElement2 => firstFragment.enclosingFragment.element;
@override
PropertyAccessorElementImpl get firstFragment;
@override
bool get isExternal => firstFragment.isExternal;
@override
PropertyAccessorElementImpl get lastFragment {
return super.lastFragment as PropertyAccessorElementImpl;
}
@override
String? get name3 => firstFragment.name2;
@override
PropertyInducingElementImpl2? get variable3 {
return firstFragment.variable2?.element;
}
}
/// Implicit getter for a [PropertyInducingElementImpl].
// Pre-existing name.
// ignore: camel_case_types
class PropertyAccessorElementImpl_ImplicitGetter extends GetterFragmentImpl {
/// Create the implicit getter and bind it to the [property].
PropertyAccessorElementImpl_ImplicitGetter(
PropertyInducingElementImpl property, {
Reference? reference,
}) : super.forVariable(property, reference: reference) {
property.getter = this;
reference?.element = this;
}
@override
ElementImpl get enclosingElement3 {
return variable2.enclosingElement3;
}
@override
bool get hasImplicitReturnType => variable2.hasImplicitType;
@override
bool get isGetter => true;
@override
String? get name2 => variable2.name2;
@override
ElementImpl get nonSynthetic {
if (!variable2.isSynthetic) {
return variable2;
}
assert(enclosingElement3 is EnumElementImpl);
return enclosingElement3;
}
@override
int get offset => variable2.offset;
@override
TypeImpl get returnType => variable2.type;
@override
set returnType(DartType returnType) {
assert(false); // Should never be called.
}
@override
Version? get sinceSdkVersion => variable2.sinceSdkVersion;
@override
FunctionTypeImpl get type {
return _type ??= FunctionTypeImpl(
typeFormals: const <TypeParameterElementImpl>[],
parameters: const <ParameterElementImpl>[],
returnType: returnType,
nullabilitySuffix: NullabilitySuffix.none,
);
}
@override
set type(FunctionType type) {
assert(false); // Should never be called.
}
@override
PropertyInducingElementImpl get variable2 => super.variable2!;
}
/// Implicit setter for a [PropertyInducingElementImpl].
// Pre-existing name.
// ignore: camel_case_types
class PropertyAccessorElementImpl_ImplicitSetter extends SetterFragmentImpl {
/// Create the implicit setter and bind it to the [property].
PropertyAccessorElementImpl_ImplicitSetter(
PropertyInducingElementImpl property, {
Reference? reference,
}) : super.forVariable(property, reference: reference) {
property.setter = this;
}
@override
ElementImpl get enclosingElement3 {
return variable2.enclosingElement3;
}
@override
bool get isSetter => true;
@override
String? get name2 => variable2.name2;
@override
ElementImpl get nonSynthetic => variable2;
@override
int get offset => variable2.offset;
@override
List<ParameterElementImpl> get parameters {
if (_parameters.isNotEmpty) {
return _parameters;
}
return _parameters = List.generate(
1,
(_) => ParameterElementImpl_ofImplicitSetter(this),
growable: false,
);
}
@override
TypeImpl get returnType => VoidTypeImpl.instance;
@override
set returnType(DartType returnType) {
assert(false); // Should never be called.
}
@override
Version? get sinceSdkVersion => variable2.sinceSdkVersion;
@override
FunctionTypeImpl get type {
return _type ??= FunctionTypeImpl(
typeFormals: const <TypeParameterElementImpl>[],
parameters: parameters,
returnType: returnType,
nullabilitySuffix: NullabilitySuffix.none,
);
}
@override
set type(FunctionType type) {
assert(false); // Should never be called.
}
@override
PropertyInducingElementImpl get variable2 => super.variable2!;
}
/// Common base class for all analyzer-internal classes that implement
/// `PropertyAccessorElement`.
abstract class PropertyAccessorElementOrMember
implements ExecutableElementOrMember {
/// The accessor representing the getter that corresponds to (has the same
/// name as) this setter, or `null` if this accessor is not a setter or
/// if there is no corresponding getter.
PropertyAccessorElementOrMember? get correspondingGetter;
/// The accessor representing the setter that corresponds to (has the same
/// name as) this getter, or `null` if this accessor is not a getter or
/// if there is no corresponding setter.
PropertyAccessorElementOrMember? get correspondingSetter;
/// Whether the accessor represents a getter.
bool get isGetter;
/// Whether the accessor represents a setter.
bool get isSetter;
@override
TypeImpl get returnType;
/// The field or top-level variable associated with this accessor.
///
/// If this accessor was explicitly defined (is not synthetic) then the
/// variable associated with it will be synthetic.
///
/// If this accessor is an augmentation, and [augmentationTarget] is `null`,
/// the variable is `null`.
PropertyInducingElementOrMember? get variable2;
}
/// Common base class for all analyzer-internal classes that implement
/// [PropertyInducingElement].
abstract class PropertyInducingElement2OrMember
implements VariableElement2OrMember, PropertyInducingElement {
@override
GetterElement2OrMember? get getter2;
@override
MetadataImpl get metadata2;
@override
SetterElement2OrMember? get setter2;
}
abstract class PropertyInducingElementImpl
extends NonParameterVariableElementImpl
with AugmentableFragment
implements PropertyInducingElementOrMember, PropertyInducingFragment {
@override
String? name2;
@override
int? nameOffset2;
@override
PropertyInducingElementImpl? previousFragment;
@override
PropertyInducingElementImpl? nextFragment;
/// The getter associated with this variable.
///
/// If this variable was explicitly defined (is not synthetic) then the
/// getter associated with it will be synthetic.
GetterFragmentImpl? getter;
/// The setter associated with this variable, or `null` if the variable
/// is effectively `final` and therefore does not have a setter associated
/// with it.
///
/// This can happen either because the variable is explicitly defined as
/// being `final` or because the variable is induced by an explicit getter
/// that does not have a corresponding setter. If this variable was
/// explicitly defined (is not synthetic) then the setter associated with
/// it will be synthetic.
SetterFragmentImpl? setter;
/// This field is set during linking, and performs type inference for
/// this property. After linking this field is always `null`.
PropertyInducingElementTypeInference? typeInference;
/// The error reported during type inference for this variable, or `null` if
/// this variable is not a subject of type inference, or there was no error.
TopLevelInferenceError? typeInferenceError;
ElementLinkedData? linkedData;
/// Initialize a newly created synthetic element to have the given [name] and
/// [offset].
PropertyInducingElementImpl(super.name, super.offset) {
setModifier(Modifier.SHOULD_USE_TYPE_FOR_INITIALIZER_INFERENCE, true);
}
@override
List<Fragment> get children3 => const [];
@override
PropertyInducingElementImpl2 get element;
@override
Fragment get enclosingFragment => enclosingElement3 as Fragment;
@override
GetterFragment? get getter2 => getter as GetterFragment?;
/// Return `true` if this variable needs the setter.
bool get hasSetter {
if (isConst) {
return false;
}
if (isLate) {
return !isFinal || !hasInitializer;
}
return !isFinal;
}
@override
bool get isConstantEvaluated => true;
@override
bool get isLate {
return hasModifier(Modifier.LATE);
}
@override
LibraryFragment get libraryFragment {
return enclosingFragment.libraryFragment!;
}
@override
ElementImpl get nonSynthetic {
if (isSynthetic) {
if (enclosingElement3 is EnumElementImpl) {
// TODO(scheglov): remove 'index'?
if (name == 'index' || name == 'values') {
return enclosingElement3;
}
}
return (getter ?? setter)!;
} else {
return this;
}
}
@override
SetterFragment? get setter2 => setter as SetterFragment?;
bool get shouldUseTypeForInitializerInference {
return hasModifier(Modifier.SHOULD_USE_TYPE_FOR_INITIALIZER_INFERENCE);
}
set shouldUseTypeForInitializerInference(bool value) {
setModifier(Modifier.SHOULD_USE_TYPE_FOR_INITIALIZER_INFERENCE, value);
}
@override
TypeImpl get type {
linkedData?.read(this);
if (_type != null) return _type!;
if (isSynthetic) {
if (getter != null) {
return _type = getter!.returnType;
} else if (setter != null) {
var parameters = setter!.parameters;
return _type =
parameters.isNotEmpty
? parameters[0].type
: DynamicTypeImpl.instance;
} else {
return _type = DynamicTypeImpl.instance;
}
}
// We must be linking, and the type has not been set yet.
_type = typeInference!.perform();
shouldUseTypeForInitializerInference = false;
return _type!;
}
@override
set type(TypeImpl type) {
super.type = type;
// Reset cached types of synthetic getters and setters.
// TODO(scheglov): Consider not caching these types.
if (!isSynthetic) {
var getter = this.getter;
if (getter is PropertyAccessorElementImpl_ImplicitGetter) {
getter._type = null;
}
var setter = this.setter;
if (setter is PropertyAccessorElementImpl_ImplicitSetter) {
setter._type = null;
}
}
}
void bindReference(Reference reference) {
this.reference = reference;
reference.element = this;
}
GetterFragmentImpl createImplicitGetter(Reference reference) {
assert(getter == null);
return getter = PropertyAccessorElementImpl_ImplicitGetter(
this,
reference: reference,
);
}
SetterFragmentImpl createImplicitSetter(Reference reference) {
assert(hasSetter);
assert(setter == null);
return setter = PropertyAccessorElementImpl_ImplicitSetter(
this,
reference: reference,
);
}
void setLinkedData(Reference reference, ElementLinkedData linkedData) {
this.reference = reference;
reference.element = this;
this.linkedData = linkedData;
}
}
abstract class PropertyInducingElementImpl2 extends VariableElementImpl2
implements PropertyInducingElement2OrMember {
@override
PropertyInducingElementImpl get firstFragment;
@override
List<PropertyInducingElementImpl> get fragments {
return [
for (
PropertyInducingElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
bool get hasInitializer {
return _fragments.any((f) => f.hasInitializer);
}
@override
Element get nonSynthetic2 {
if (isSynthetic) {
if (enclosingElement2 case EnumElementImpl2 enclosingElement2) {
// TODO(scheglov): remove 'index'?
if (name3 == 'index' || name3 == 'values') {
return enclosingElement2;
}
}
return (getter2 ?? setter2)!;
} else {
return this;
}
}
bool get shouldUseTypeForInitializerInference {
return firstFragment.shouldUseTypeForInitializerInference;
}
List<PropertyInducingElementImpl> get _fragments;
}
/// Common base class for all analyzer-internal classes that implement
/// `PropertyInducingElement`.
abstract class PropertyInducingElementOrMember
implements VariableElementOrMember {
@override
TypeImpl get type;
}
/// Instances of this class are set for fields and top-level variables
/// to perform top-level type inference during linking.
abstract class PropertyInducingElementTypeInference {
TypeImpl perform();
}
/// Common base class for all analyzer-internal classes that implement
/// [SetterElement].
abstract class SetterElement2OrMember
implements PropertyAccessorElement2OrMember, SetterElement {
@override
SetterElementImpl get baseElement;
}
class SetterElementImpl extends PropertyAccessorElementImpl2
with
FragmentedExecutableElementMixin<SetterFragmentImpl>,
FragmentedFunctionTypedElementMixin<SetterFragmentImpl>,
FragmentedTypeParameterizedElementMixin<SetterFragmentImpl>,
FragmentedAnnotatableElementMixin<SetterFragmentImpl>,
FragmentedElementMixin<SetterFragmentImpl>,
_HasSinceSdkVersionMixin
implements SetterElement2OrMember {
@override
final SetterFragmentImpl firstFragment;
SetterElementImpl(this.firstFragment) {
SetterFragmentImpl? fragment = firstFragment;
while (fragment != null) {
fragment.element = this;
fragment = fragment.nextFragment;
}
}
@override
SetterElementImpl get baseElement => this;
@override
GetterElement? get correspondingGetter2 =>
firstFragment.variable2?.getter?.element;
@override
Element get enclosingElement2 => firstFragment.enclosingFragment.element;
@override
List<SetterFragmentImpl> get fragments {
return [
for (
SetterFragmentImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
ElementKind get kind => ElementKind.SETTER;
@override
String? get lookupName {
if (name3 case var name?) {
return '$name=';
}
return null;
}
@override
Element get nonSynthetic2 {
if (!isSynthetic) {
return this;
} else if (variable3 case var variable?) {
return variable.nonSynthetic2;
}
throw StateError('Synthetic setter has no variable');
}
@override
Version? get sinceSdkVersion {
if (isSynthetic) {
return variable3?.sinceSdkVersion;
}
return super.sinceSdkVersion;
}
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitSetterElement(this);
}
}
class SetterFragmentImpl extends PropertyAccessorElementImpl
implements SetterFragment {
/// The element corresponding to this fragment.
SetterElementImpl? _element;
@override
SetterFragmentImpl? previousFragment;
@override
SetterFragmentImpl? nextFragment;
SetterFragmentImpl(super.name, super.offset);
SetterFragmentImpl.forVariable(super.variable, {super.reference})
: super.forVariable();
@override
PropertyAccessorElementImpl? get correspondingGetter => variable2?.getter;
@override
PropertyAccessorElementImpl? get correspondingSetter => null;
@override
SetterElementImpl get element {
if (_element != null) {
return _element!;
}
SetterFragmentImpl firstFragment = this;
var previousFragment = firstFragment.previousFragment;
while (previousFragment != null) {
firstFragment = previousFragment;
previousFragment = firstFragment.previousFragment;
}
// As a side-effect of creating the element, all of the fragments in the
// chain will have their `_element` set to the newly created element.
return SetterElementImpl(firstFragment);
}
set element(SetterElementImpl element) => _element = element;
@override
bool get isGetter => false;
@override
bool get isSetter => true;
}
/// A concrete implementation of a [ShowElementCombinator].
class ShowElementCombinatorImpl implements ShowElementCombinator {
@override
List<String> shownNames = const [];
@override
int offset = 0;
@override
int end = -1;
@override
String toString() {
StringBuffer buffer = StringBuffer();
buffer.write("show ");
int count = shownNames.length;
for (int i = 0; i < count; i++) {
if (i > 0) {
buffer.write(", ");
}
buffer.write(shownNames[i]);
}
return buffer.toString();
}
}
class SuperFormalParameterElementImpl extends ParameterElementImpl
implements
SuperFormalParameterElementOrMember,
SuperFormalParameterFragment {
/// Initialize a newly created parameter element to have the given [name] and
/// [nameOffset].
SuperFormalParameterElementImpl({
required super.name,
required super.nameOffset,
required super.name2,
required super.nameOffset2,
required super.parameterKind,
});
@override
SuperFormalParameterElementImpl2 get element =>
super.element as SuperFormalParameterElementImpl2;
/// Super parameters are visible only in the initializer list scope,
/// and introduce final variables.
@override
bool get isFinal => true;
@override
bool get isSuperFormal => true;
@override
SuperFormalParameterElementImpl? get nextFragment =>
super.nextFragment as SuperFormalParameterElementImpl?;
@override
SuperFormalParameterElementImpl? get previousFragment =>
super.previousFragment as SuperFormalParameterElementImpl?;
@override
ParameterElementMixin? get superConstructorParameter {
var enclosingElement = enclosingElement3;
if (enclosingElement is ConstructorElementImpl) {
var superConstructor = enclosingElement.superConstructor;
if (superConstructor != null) {
var superParameters = superConstructor.parameters;
if (isNamed) {
return superParameters.firstWhereOrNull(
(e) => e.isNamed && e.name == name,
);
} else {
var index = indexIn(enclosingElement);
var positionalSuperParameters =
superParameters.where((e) => e.isPositional).toList();
if (index >= 0 && index < positionalSuperParameters.length) {
return positionalSuperParameters[index];
}
}
}
}
return null;
}
/// Return the index of this super-formal parameter among other super-formals.
int indexIn(ConstructorElementImpl enclosingElement) {
return enclosingElement.parameters
.whereType<SuperFormalParameterElementImpl>()
.toList()
.indexOf(this);
}
@override
FormalParameterElementImpl _createElement(
FormalParameterFragment firstFragment,
) => SuperFormalParameterElementImpl2(firstFragment as ParameterElementImpl);
}
class SuperFormalParameterElementImpl2 extends FormalParameterElementImpl
implements SuperFormalParameterElement {
SuperFormalParameterElementImpl2(super.firstFragment);
@override
SuperFormalParameterElementImpl get firstFragment =>
super.firstFragment as SuperFormalParameterElementImpl;
@override
List<SuperFormalParameterElementImpl> get fragments {
return [
for (
SuperFormalParameterElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
FormalParameterElementMixin? get superConstructorParameter2 {
return firstFragment.superConstructorParameter?.asElement2;
}
/// Return the index of this super-formal parameter among other super-formals.
int indexIn(ConstructorElementImpl2 enclosingElement) {
return enclosingElement.formalParameters
.whereType<SuperFormalParameterElementImpl2>()
.toList()
.indexOf(this);
}
}
abstract class SuperFormalParameterElementOrMember
implements ParameterElementMixin {
/// The associated super-constructor parameter, from the super-constructor
/// that is referenced by the implicit or explicit super-constructor
/// invocation.
///
/// Can be `null` for erroneous code - not existing super-constructor,
/// no corresponding parameter in the super-constructor.
ParameterElementMixin? get superConstructorParameter;
}
class TopLevelFunctionElementImpl extends ExecutableElementImpl2
with
FragmentedExecutableElementMixin<FunctionElementImpl>,
FragmentedFunctionTypedElementMixin<FunctionElementImpl>,
FragmentedTypeParameterizedElementMixin<FunctionElementImpl>,
FragmentedAnnotatableElementMixin<FunctionElementImpl>,
FragmentedElementMixin<FunctionElementImpl>,
_HasSinceSdkVersionMixin
implements TopLevelFunctionElement {
@override
final Reference reference;
@override
final TopLevelFunctionFragmentImpl firstFragment;
TopLevelFunctionElementImpl(this.reference, this.firstFragment) {
reference.element2 = this;
firstFragment.element = this;
}
@override
TopLevelFunctionElementImpl get baseElement => this;
@override
LibraryElementImpl get enclosingElement2 {
return firstFragment.library;
}
@override
List<TopLevelFunctionFragmentImpl> get fragments {
return [
for (
TopLevelFunctionFragmentImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
bool get isDartCoreIdentical {
return name3 == 'identical' && library2.isDartCore;
}
@override
bool get isEntryPoint {
return displayName == TopLevelFunctionElement.MAIN_FUNCTION_NAME;
}
@override
ElementKind get kind => ElementKind.FUNCTION;
@override
TopLevelFunctionFragmentImpl get lastFragment {
return super.lastFragment as TopLevelFunctionFragmentImpl;
}
@override
LibraryElementImpl get library2 {
return firstFragment.library;
}
@override
String? get name3 => firstFragment.name;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitTopLevelFunctionElement(this);
}
}
/// A concrete implementation of a [TopLevelFunctionFragment].
class TopLevelFunctionFragmentImpl extends FunctionElementImpl
implements TopLevelFunctionFragment {
/// The element corresponding to this fragment.
@override
late TopLevelFunctionElementImpl element;
@override
TopLevelFunctionFragmentImpl? previousFragment;
@override
TopLevelFunctionFragmentImpl? nextFragment;
TopLevelFunctionFragmentImpl(super.name, super.offset);
@override
CompilationUnitElementImpl get enclosingElement3 =>
super.enclosingElement3 as CompilationUnitElementImpl;
@override
set enclosingElement3(covariant CompilationUnitElementImpl element);
}
class TopLevelVariableElementImpl extends PropertyInducingElementImpl
implements TopLevelVariableFragment {
@override
late TopLevelVariableElementImpl2 element;
/// Initialize a newly created synthetic top-level variable element to have
/// the given [name] and [offset].
TopLevelVariableElementImpl(super.name, super.offset);
@override
TopLevelVariableElementImpl get declaration => this;
bool get isExternal {
return hasModifier(Modifier.EXTERNAL);
}
@override
bool get isStatic => true;
@override
ElementKind get kind => ElementKind.TOP_LEVEL_VARIABLE;
@override
LibraryElementImpl get library2 => library;
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
@override
TopLevelVariableElementImpl? get nextFragment =>
super.nextFragment as TopLevelVariableElementImpl?;
@override
TopLevelVariableElementImpl? get previousFragment =>
super.previousFragment as TopLevelVariableElementImpl?;
}
class TopLevelVariableElementImpl2 extends PropertyInducingElementImpl2
with
FragmentedAnnotatableElementMixin<TopLevelVariableElementImpl>,
FragmentedElementMixin<TopLevelVariableElementImpl>,
_HasSinceSdkVersionMixin
implements TopLevelVariableElement {
@override
final Reference reference;
@override
final TopLevelVariableElementImpl firstFragment;
TopLevelVariableElementImpl2(this.reference, this.firstFragment) {
reference.element2 = this;
firstFragment.element = this;
}
@override
TopLevelVariableElement get baseElement => this;
@override
LibraryElement get enclosingElement2 =>
firstFragment.library as LibraryElement;
@override
List<TopLevelVariableElementImpl> get fragments {
return [
for (
TopLevelVariableElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
@override
GetterElementImpl? get getter2 =>
firstFragment.getter2?.element as GetterElementImpl?;
@override
bool get hasImplicitType => firstFragment.hasImplicitType;
@override
bool get isConst => firstFragment.isConst;
@override
bool get isExternal => firstFragment.isExternal;
@override
bool get isFinal => firstFragment.isFinal;
@override
bool get isLate => firstFragment.isLate;
@override
bool get isStatic => firstFragment.isStatic;
@override
ElementKind get kind => ElementKind.TOP_LEVEL_VARIABLE;
@override
LibraryElement get library2 {
return firstFragment.libraryFragment.element;
}
@override
String? get name3 => firstFragment.name2;
@override
SetterElementImpl? get setter2 =>
firstFragment.setter2?.element as SetterElementImpl?;
@override
TypeImpl get type => firstFragment.type;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitTopLevelVariableElement(this);
}
@override
DartObject? computeConstantValue() => firstFragment.computeConstantValue();
}
/// An element that represents [GenericTypeAlias].
///
/// Clients may not extend, implement or mix-in this class.
class TypeAliasElementImpl extends _ExistingElementImpl
with AugmentableFragment, TypeParameterizedElementMixin
implements TypeAliasFragment {
@override
String? name2;
@override
int? nameOffset2;
@override
TypeAliasElementImpl? previousFragment;
@override
TypeAliasElementImpl? nextFragment;
/// Is `true` if the element has direct or indirect reference to itself
/// from anywhere except a class element or type parameter bounds.
bool hasSelfReference = false;
bool isFunctionTypeAliasBased = false;
@override
ElementLinkedData? linkedData;
ElementImpl? _aliasedElement;
TypeImpl? _aliasedType;
@override
late TypeAliasElementImpl2 element;
TypeAliasElementImpl(String super.name, super.nameOffset);
/// If the aliased type has structure, return the corresponding element.
/// For example it could be [GenericFunctionTypeElement].
///
/// If there is no structure, return `null`.
ElementImpl? get aliasedElement {
linkedData?.read(this);
return _aliasedElement;
}
set aliasedElement(ElementImpl? aliasedElement) {
_aliasedElement = aliasedElement;
aliasedElement?.enclosingElement3 = this;
}
/// The aliased type.
///
/// If non-function type aliases feature is enabled for the enclosing library,
/// this type might be just anything. If the feature is disabled, return
/// a [FunctionType].
TypeImpl get aliasedType {
linkedData?.read(this);
return _aliasedType!;
}
set aliasedType(DartType rawType) {
// TODO(paulberry): eliminate this cast by changing the type of the
// `rawType` parameter.
_aliasedType = rawType as TypeImpl;
}
/// The aliased type, might be `null` if not yet linked.
TypeImpl? get aliasedTypeRaw => _aliasedType;
@override
List<Fragment> get children3 => const [];
@override
String get displayName => name;
@override
CompilationUnitElementImpl get enclosingElement3 =>
super.enclosingElement3 as CompilationUnitElementImpl;
@override
LibraryFragment? get enclosingFragment =>
enclosingElement3 as LibraryFragment;
@override
bool get isSimplyBounded {
return hasModifier(Modifier.SIMPLY_BOUNDED);
}
set isSimplyBounded(bool isSimplyBounded) {
setModifier(Modifier.SIMPLY_BOUNDED, isSimplyBounded);
}
@override
ElementKind get kind {
if (isNonFunctionTypeAliasesEnabled) {
return ElementKind.TYPE_ALIAS;
} else {
return ElementKind.FUNCTION_TYPE_ALIAS;
}
}
@override
List<ElementAnnotationImpl> get metadata {
linkedData?.read(this);
return super.metadata;
}
@override
String get name {
return super.name!;
}
@override
int get offset => nameOffset;
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeTypeAliasElement(this);
}
void setLinkedData(Reference reference, ElementLinkedData linkedData) {
this.reference = reference;
reference.element = this;
this.linkedData = linkedData;
}
}
class TypeAliasElementImpl2 extends TypeDefiningElementImpl2
with
FragmentedAnnotatableElementMixin<TypeAliasFragment>,
FragmentedElementMixin<TypeAliasFragment>,
_HasSinceSdkVersionMixin
implements TypeAliasElement {
@override
final Reference reference;
@override
final TypeAliasElementImpl firstFragment;
TypeAliasElementImpl2(this.reference, this.firstFragment) {
reference.element2 = this;
firstFragment.element = this;
}
@override
Element? get aliasedElement2 {
switch (firstFragment.aliasedElement) {
case InstanceFragment instance:
return instance.element;
case GenericFunctionTypeFragment instance:
return instance.element;
}
return null;
}
@override
TypeImpl get aliasedType => firstFragment.aliasedType;
set aliasedType(TypeImpl value) {
firstFragment.aliasedType = value;
}
/// The aliased type, might be `null` if not yet linked.
TypeImpl? get aliasedTypeRaw => firstFragment.aliasedTypeRaw;
@override
TypeAliasElementImpl2 get baseElement => this;
@override
LibraryElement get enclosingElement2 =>
firstFragment.library as LibraryElement;
@override
List<TypeAliasElementImpl> get fragments {
return [
for (
TypeAliasElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
/// Whether this alias is a "proper rename" of [aliasedType], as defined in
/// the constructor-tearoffs specification.
bool get isProperRename {
var aliasedType_ = aliasedType;
if (aliasedType_ is! InterfaceTypeImpl) {
return false;
}
var typeParameters = typeParameters2;
var aliasedClass = aliasedType_.element3;
var typeArguments = aliasedType_.typeArguments;
var typeParameterCount = typeParameters.length;
if (typeParameterCount != aliasedClass.typeParameters2.length) {
return false;
}
for (var i = 0; i < typeParameterCount; i++) {
var bound = typeParameters[i].bound ?? DynamicTypeImpl.instance;
var aliasedBound =
aliasedClass.typeParameters2[i].bound ??
library2.typeProvider.dynamicType;
if (!library2.typeSystem.isSubtypeOf(bound, aliasedBound) ||
!library2.typeSystem.isSubtypeOf(aliasedBound, bound)) {
return false;
}
var typeArgument = typeArguments[i];
if (typeArgument is TypeParameterType &&
typeParameters[i] != typeArgument.element3) {
return false;
}
}
return true;
}
@override
bool get isSimplyBounded => firstFragment.isSimplyBounded;
set isSimplyBounded(bool value) {
for (var fragment in fragments) {
fragment.isSimplyBounded = value;
}
}
@override
ElementKind get kind => ElementKind.TYPE_ALIAS;
@override
LibraryElementImpl get library2 {
return firstFragment.library;
}
@override
String? get name3 => firstFragment.name2;
@override
List<TypeParameterElementImpl2> get typeParameters2 =>
firstFragment.typeParameters2
.map((fragment) => fragment.element)
.toList();
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitTypeAliasElement(this);
}
@override
TypeImpl instantiate({
required List<DartType> typeArguments,
required NullabilitySuffix nullabilitySuffix,
}) {
return instantiateImpl(
typeArguments: typeArguments.cast<TypeImpl>(),
nullabilitySuffix: nullabilitySuffix,
);
}
TypeImpl instantiateImpl({
required List<TypeImpl> typeArguments,
required NullabilitySuffix nullabilitySuffix,
}) {
if (firstFragment.hasSelfReference) {
if (firstFragment.isNonFunctionTypeAliasesEnabled) {
return DynamicTypeImpl.instance;
} else {
return _errorFunctionType(nullabilitySuffix);
}
}
var substitution = Substitution.fromPairs2(typeParameters2, typeArguments);
var type = substitution.substituteType(aliasedType);
var resultNullability =
type.nullabilitySuffix == NullabilitySuffix.question
? NullabilitySuffix.question
: nullabilitySuffix;
if (type is FunctionTypeImpl) {
return FunctionTypeImpl(
typeFormals: type.typeFormals,
parameters: type.parameters,
returnType: type.returnType,
nullabilitySuffix: resultNullability,
alias: InstantiatedTypeAliasElementImpl(
element2: this,
typeArguments: typeArguments,
),
);
} else if (type is InterfaceTypeImpl) {
return InterfaceTypeImpl(
element: type.element3,
typeArguments: type.typeArguments,
nullabilitySuffix: resultNullability,
alias: InstantiatedTypeAliasElementImpl(
element2: this,
typeArguments: typeArguments,
),
);
} else if (type is RecordTypeImpl) {
return RecordTypeImpl(
positionalFields: type.positionalFields,
namedFields: type.namedFields,
nullabilitySuffix: resultNullability,
alias: InstantiatedTypeAliasElementImpl(
element2: this,
typeArguments: typeArguments,
),
);
} else if (type is TypeParameterTypeImpl) {
return TypeParameterTypeImpl(
element3: type.element3,
nullabilitySuffix: resultNullability,
alias: InstantiatedTypeAliasElementImpl(
element2: this,
typeArguments: typeArguments,
),
);
} else {
return type.withNullability(resultNullability);
}
}
FunctionTypeImpl _errorFunctionType(NullabilitySuffix nullabilitySuffix) {
return FunctionTypeImpl(
typeFormals: const [],
parameters: const [],
returnType: DynamicTypeImpl.instance,
nullabilitySuffix: nullabilitySuffix,
);
}
}
abstract class TypeDefiningElementImpl2 extends ElementImpl2
implements TypeDefiningElement {}
class TypeParameterElementImpl extends ElementImpl
implements TypeParameterFragment {
@override
String? name2;
@override
int? nameOffset2;
/// The default value of the type parameter. It is used to provide the
/// corresponding missing type argument in type annotations and as the
/// fall-back type value in type inference.
TypeImpl? defaultType;
/// The type representing the bound associated with this parameter, or `null`
/// if this parameter does not have an explicit bound.
TypeImpl? _bound;
/// The value representing the variance modifier keyword, or `null` if
/// there is no explicit variance modifier, meaning legacy covariance.
shared.Variance? _variance;
/// The element corresponding to this fragment.
TypeParameterElementImpl2? _element;
/// Initialize a newly created method element to have the given [name] and
/// [offset].
TypeParameterElementImpl(String super.name, super.offset);
/// Initialize a newly created synthetic type parameter element to have the
/// given [name], and with [isSynthetic] set to `true`.
TypeParameterElementImpl.synthetic(String name) : super(name, -1) {
isSynthetic = true;
}
/// The type representing the bound associated with this parameter, or `null`
/// if this parameter does not have an explicit bound. Being able to
/// distinguish between an implicit and explicit bound is needed by the
/// instantiate to bounds algorithm.
TypeImpl? get bound {
return _bound;
}
set bound(DartType? bound) {
// TODO(paulberry): Change the type of the parameter `bound` so that this
// cast isn't needed.
_bound = bound as TypeImpl?;
if (_element case var element?) {
if (!identical(element.bound, bound)) {
element.bound = bound;
}
}
}
@override
List<Fragment> get children3 => const [];
@override
TypeParameterElementImpl get declaration => this;
@override
String get displayName => name;
@override
TypeParameterElementImpl2 get element {
if (_element != null) {
return _element!;
}
var firstFragment = this;
var previousFragment = firstFragment.previousFragment;
while (previousFragment != null) {
firstFragment = previousFragment;
previousFragment = firstFragment.previousFragment;
}
// As a side-effect of creating the element, all of the fragments in the
// chain will have their `_element` set to the newly created element.
return TypeParameterElementImpl2(
firstFragment: firstFragment,
name3: firstFragment.name.nullIfEmpty,
);
}
set element(TypeParameterElementImpl2 element) {
_element = element;
}
@override
Fragment? get enclosingFragment => enclosingElement3 as Fragment?;
bool get isLegacyCovariant {
return _variance == null;
}
@override
ElementKind get kind => ElementKind.TYPE_PARAMETER;
@override
LibraryElementImpl? get library {
var library = libraryFragment?.element;
return library as LibraryElementImpl?;
}
@override
LibraryFragment? get libraryFragment {
return enclosingFragment?.libraryFragment;
}
@override
String get name {
return super.name!;
}
@override
// TODO(augmentations): Support chaining between the fragments.
TypeParameterElementImpl? get nextFragment => null;
@override
int get offset => nameOffset;
@override
// TODO(augmentations): Support chaining between the fragments.
TypeParameterElementImpl? get previousFragment => null;
shared.Variance get variance {
return _variance ?? shared.Variance.covariant;
}
set variance(shared.Variance? newVariance) => _variance = newVariance;
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeTypeParameter(this);
}
/// Computes the variance of the type parameters in the [type].
shared.Variance computeVarianceInType(DartType type) {
if (type is TypeParameterTypeImpl) {
if (type.element3 == element) {
return shared.Variance.covariant;
} else {
return shared.Variance.unrelated;
}
} else if (type is InterfaceTypeImpl) {
var result = shared.Variance.unrelated;
for (int i = 0; i < type.typeArguments.length; ++i) {
var argument = type.typeArguments[i];
var parameter = type.element3.typeParameters2[i];
var parameterVariance = parameter.variance;
result = result.meet(
parameterVariance.combine(computeVarianceInType(argument)),
);
}
return result;
} else if (type is FunctionType) {
var result = computeVarianceInType(type.returnType);
for (var parameter in type.typeParameters) {
// If [parameter] is referenced in the bound at all, it makes the
// variance of [parameter] in the entire type invariant. The invocation
// of [computeVariance] below is made to simply figure out if [variable]
// occurs in the bound.
var bound = parameter.bound;
if (bound != null && !computeVarianceInType(bound).isUnrelated) {
result = shared.Variance.invariant;
}
}
for (var parameter in type.formalParameters) {
result = result.meet(
shared.Variance.contravariant.combine(
computeVarianceInType(parameter.type),
),
);
}
return result;
}
return shared.Variance.unrelated;
}
/// Creates the [TypeParameterType] with the given [nullabilitySuffix] for
/// this type parameter.
TypeParameterTypeImpl instantiate({
required NullabilitySuffix nullabilitySuffix,
}) {
return element.instantiate(nullabilitySuffix: nullabilitySuffix);
}
}
class TypeParameterElementImpl2 extends TypeDefiningElementImpl2
with
FragmentedAnnotatableElementMixin<TypeParameterFragment>,
FragmentedElementMixin<TypeParameterFragment>,
_NonTopLevelVariableOrParameter
implements TypeParameterElement, SharedTypeParameter {
@override
final TypeParameterElementImpl firstFragment;
@override
final String? name3;
TypeParameterElementImpl2({
required this.firstFragment,
required this.name3,
}) {
TypeParameterElementImpl? fragment = firstFragment;
while (fragment != null) {
fragment.element = this;
fragment = fragment.nextFragment;
}
}
@override
TypeParameterElement get baseElement => this;
@override
TypeImpl? get bound => firstFragment.bound;
set bound(TypeImpl? value) {
firstFragment.bound = value;
}
@override
TypeImpl? get boundShared => bound;
/// The default value of the type parameter. It is used to provide the
/// corresponding missing type argument in type annotations and as the
/// fall-back type value in type inference.
TypeImpl? get defaultType => firstFragment.defaultType;
@override
List<TypeParameterElementImpl> get fragments {
return [
for (
TypeParameterElementImpl? fragment = firstFragment;
fragment != null;
fragment = fragment.nextFragment
)
fragment,
];
}
bool get isLegacyCovariant => firstFragment.isLegacyCovariant;
@override
ElementKind get kind => ElementKind.TYPE_PARAMETER;
@override
LibraryElementImpl? get library2 => firstFragment.library;
shared.Variance get variance => firstFragment.variance;
set variance(shared.Variance? value) {
firstFragment.variance = value;
}
@override
ElementImpl? get _enclosingFunction => firstFragment.enclosingElement3;
@override
T? accept2<T>(ElementVisitor2<T> visitor) {
return visitor.visitTypeParameterElement(this);
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeTypeParameter2(this);
}
@override
TypeParameterTypeImpl instantiate({
required NullabilitySuffix nullabilitySuffix,
}) {
return TypeParameterTypeImpl(
element3: this,
nullabilitySuffix: nullabilitySuffix,
);
}
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
}
abstract class TypeParameterizedElementImpl2 extends ElementImpl2
implements TypeParameterizedElement {}
/// Mixin representing an element which can have type parameters.
mixin TypeParameterizedElementMixin on ElementImpl
implements _ExistingElementImpl, TypeParameterizedFragment {
List<TypeParameterElementImpl> _typeParameters = const [];
/// If the element defines a type, indicates whether the type may safely
/// appear without explicit type parameters as the bounds of a type parameter
/// declaration.
///
/// If the element does not define a type, returns `true`.
bool get isSimplyBounded => true;
@override
CompilationUnitElementImpl get libraryFragment => enclosingUnit;
ElementLinkedData? get linkedData;
/// The type parameters declared by this element directly.
///
/// This does not include type parameters that are declared by any enclosing
/// elements.
List<TypeParameterElementImpl> get typeParameters {
linkedData?.read(this);
return _typeParameters;
}
set typeParameters(List<TypeParameterElementImpl> typeParameters) {
for (var typeParameter in typeParameters) {
typeParameter.enclosingElement3 = this;
}
_typeParameters = typeParameters;
}
@override
List<TypeParameterElementImpl> get typeParameters2 =>
typeParameters.cast<TypeParameterElementImpl>();
List<TypeParameterElementImpl> get typeParameters_unresolved {
return _typeParameters;
}
}
/// Common base class for all analyzer-internal classes that implement
/// `VariableElement2`.
abstract class VariableElement2OrMember implements VariableElement {
@override
TypeImpl get type;
}
abstract class VariableElementImpl extends ElementImpl
implements VariableElementOrMember, VariableFragment {
/// The type of this variable.
TypeImpl? _type;
/// Initialize a newly created variable element to have the given [name] and
/// [offset].
VariableElementImpl(String super.name, super.offset);
/// If this element represents a constant variable, and it has an initializer,
/// a copy of the initializer for the constant. Otherwise `null`.
///
/// Note that in correct Dart code, all constant variables must have
/// initializers. However, analyzer also needs to handle incorrect Dart code,
/// in which case there might be some constant variables that lack
/// initializers.
ExpressionImpl? get constantInitializer => null;
@override
VariableElementImpl get declaration => this;
@override
String get displayName => name;
@override
VariableElementImpl2 get element;
/// Return the result of evaluating this variable's initializer as a
/// compile-time constant expression, or `null` if this variable is not a
/// 'const' variable, if it does not have an initializer, or if the
/// compilation unit containing the variable has not been resolved.
Constant? get evaluationResult => null;
/// Set the result of evaluating this variable's initializer as a compile-time
/// constant expression to the given [result].
set evaluationResult(Constant? result) {
throw StateError("Invalid attempt to set a compile-time constant result");
}
@override
bool get hasImplicitType {
return hasModifier(Modifier.IMPLICIT_TYPE);
}
/// Set whether this variable element has an implicit type.
set hasImplicitType(bool hasImplicitType) {
setModifier(Modifier.IMPLICIT_TYPE, hasImplicitType);
}
@override
ExpressionImpl? get initializer {
return constantInitializer;
}
/// Set whether this variable is abstract.
set isAbstract(bool isAbstract) {
setModifier(Modifier.ABSTRACT, isAbstract);
}
@override
bool get isConst {
return hasModifier(Modifier.CONST);
}
/// Set whether this variable is const.
set isConst(bool isConst) {
setModifier(Modifier.CONST, isConst);
}
@override
bool get isConstantEvaluated => true;
/// Set whether this variable is external.
set isExternal(bool isExternal) {
setModifier(Modifier.EXTERNAL, isExternal);
}
@override
bool get isFinal {
return hasModifier(Modifier.FINAL);
}
/// Set whether this variable is final.
set isFinal(bool isFinal) {
setModifier(Modifier.FINAL, isFinal);
}
/// Set whether this variable is late.
set isLate(bool isLate) {
setModifier(Modifier.LATE, isLate);
}
@override
bool get isStatic => hasModifier(Modifier.STATIC);
set isStatic(bool isStatic) {
setModifier(Modifier.STATIC, isStatic);
}
@override
String get name => super.name!;
@override
int get offset => nameOffset;
@override
TypeImpl get type => _type!;
set type(TypeImpl type) {
_type = type;
}
@override
void appendTo(ElementDisplayStringBuilder builder) {
builder.writeVariableElement(this);
}
@override
DartObject? computeConstantValue() => null;
}
abstract class VariableElementImpl2 extends ElementImpl2
implements VariableElement2OrMember {
ConstantInitializerImpl? _constantInitializer;
@override
ConstantInitializer? get constantInitializer2 {
if (_constantInitializer case var result?) {
return result;
}
for (var fragment in fragments.reversed) {
if (fragment.initializer case ExpressionImpl expression) {
return _constantInitializer = ConstantInitializerImpl(
fragment: fragment as VariableElementImpl,
expression: expression,
);
}
}
return null;
}
void resetConstantInitializer() {
_constantInitializer = null;
}
@override
void visitChildren2<T>(ElementVisitor2<T> visitor) {
for (var child in children2) {
child.accept2(visitor);
}
}
}
/// Common base class for all analyzer-internal classes that implement
/// `VariableElement`.
abstract class VariableElementOrMember
implements ElementOrMember, ConstantEvaluationTarget {
@override
VariableElementImpl get declaration;
/// Whether the variable element did not have an explicit type specified
/// for it.
bool get hasImplicitType;
/// Whether the variable was declared with the 'const' modifier.
bool get isConst;
/// Whether the variable was declared with the 'final' modifier.
///
/// Variables that are declared with the 'const' modifier will return `false`
/// even though they are implicitly final.
bool get isFinal;
/// Whether the variable uses late evaluation semantics.
///
/// This will always return `false` unless the experiment 'non-nullable' is
/// enabled.
bool get isLate;
/// Whether the element is a static variable, as per section 8 of the Dart
/// Language Specification:
///
/// > A static variable is a variable that is not associated with a particular
/// > instance, but rather with an entire library or class. Static variables
/// > include library variables and class variables. Class variables are
/// > variables whose declaration is immediately nested inside a class
/// > declaration and includes the modifier static. A library variable is
/// > implicitly static.
bool get isStatic;
@override
String get name;
/// The declared type of this variable.
TypeImpl get type;
/// Returns a representation of the value of this variable, forcing the value
/// to be computed if it had not previously been computed, or `null` if either
/// this variable was not declared with the 'const' modifier or if the value
/// of this variable could not be computed because of errors.
DartObject? computeConstantValue();
}
mixin WrappedElementMixin implements ElementImpl2 {
@override
bool get isSynthetic => _wrappedElement.isSynthetic;
@override
ElementKind get kind => _wrappedElement.kind;
@override
String? get name3 => _wrappedElement.name;
ElementImpl get _wrappedElement;
@override
String displayString2({
bool multiline = false,
bool preferTypeAlias = false,
}) => _wrappedElement.getDisplayString(
multiline: multiline,
preferTypeAlias: preferTypeAlias,
);
}
abstract class _ExistingElementImpl extends ElementImpl with _HasLibraryMixin {
_ExistingElementImpl(super.name, super.offset, {super.reference});
}
/// An element that can be declared in multiple fragments.
abstract class _Fragmented<E extends Fragment> {
E get firstFragment;
}
mixin _HasLibraryMixin on ElementImpl {
@override
LibraryElementImpl get library {
var thisFragment = this as Fragment;
var enclosingFragment = thisFragment.enclosingFragment!;
var libraryFragment = enclosingFragment.libraryFragment;
libraryFragment as CompilationUnitElementImpl;
return libraryFragment.element;
}
@override
Source get librarySource => library.source;
@override
Source get source => enclosingElement3!.source!;
}
mixin _HasSinceSdkVersionMixin on ElementImpl2, Annotatable
implements HasSinceSdkVersion {
/// Cached values for [sinceSdkVersion].
///
/// Only very few elements have `@Since()` annotations, so instead of adding
/// an instance field to [ElementImpl2], we attach this information this way.
/// We ask it only when [Modifier.HAS_SINCE_SDK_VERSION_VALUE] is `true`, so
/// don't pay for a hash lookup when we know that the result is `null`.
static final Expando<Version> _sinceSdkVersion = Expando<Version>();
@override
Version? get sinceSdkVersion {
if (!hasModifier(Modifier.HAS_SINCE_SDK_VERSION_COMPUTED)) {
setModifier(Modifier.HAS_SINCE_SDK_VERSION_COMPUTED, true);
var result = SinceSdkVersionComputer().compute(this);
if (result != null) {
_sinceSdkVersion[this] = result;
setModifier(Modifier.HAS_SINCE_SDK_VERSION_VALUE, true);
}
}
if (hasModifier(Modifier.HAS_SINCE_SDK_VERSION_VALUE)) {
return _sinceSdkVersion[this];
}
return null;
}
}
mixin _NonTopLevelVariableOrParameter on Element {
@override
Element? get enclosingElement2 {
// TODO(dantup): Can we simplify this code and inline it into each class?
var enclosingFunction = _enclosingFunction;
return switch (enclosingFunction) {
// There is no enclosingElement for a local function so we need to
// determine whether our enclosing FunctionElementImpl is a local function
// or not.
// TODO(dantup): Is the real issue here that we're getting
// FunctionElementImpl here that should be LocalFunctionElementImpl?
FunctionElementImpl()
when enclosingFunction.enclosingElement3 is ExecutableElementImpl ||
enclosingFunction.enclosingElement3 is VariableElementImpl =>
null,
// GenericFunctionTypeElementImpl currently implements Fragment but throws
// if we try to access `element`.
GenericFunctionTypeElementImpl() => null,
// Otherwise, we have a valid enclosing element.
Fragment(:var element) => element,
_ => null,
};
}
ElementImpl? get _enclosingFunction;
}
/// Instances of [List]s that are used as "not yet computed" values, they
/// must be not `null`, and not identical to `const <T>[]`.
class _Sentinel {
static final List<ConstructorElementImpl> constructorElement =
List.unmodifiable([]);
static final List<FieldElementImpl> fieldElement = List.unmodifiable([]);
static final List<LibraryExportElementImpl> libraryExportElement =
List.unmodifiable([]);
static final List<LibraryImportElementImpl> libraryImportElement =
List.unmodifiable([]);
static final List<MethodElementImpl> methodElement = List.unmodifiable([]);
static final List<PropertyAccessorElementImpl> propertyAccessorElement =
List.unmodifiable([]);
}
extension on Fragment {
/// The content of the documentation comment (including delimiters) for this
/// fragment.
///
/// Returns `null` if the receiver does not have or does not support
/// documentation.
String? get documentationCommentOrNull {
return switch (this) {
Annotatable(:var documentationComment) => documentationComment,
_ => null,
};
}
/// The metadata associated with the element or fragment.
///
/// If the receiver is an element that has fragments, the list will include
/// all of the metadata from all of the fragments.
///
/// The list will be empty if the receiver does not have any metadata, does
/// not support metadata, or if the library containing this element has not
/// yet been fully resolved.
Metadata get metadataOrEmpty {
return switch (this) {
Annotatable(:var metadata2) => metadata2,
_ => MetadataImpl(-1, const []),
};
}
}