| // Copyright (c) 2012, the Dart project authors.  Please see the AUTHORS file | 
 | // for details. All rights reserved. Use of this source code is governed by a | 
 | // BSD-style license that can be found in the LICENSE file. | 
 |  | 
 | #include "platform/utils.h" | 
 |  | 
 | #include "platform/allocation.h" | 
 | #include "platform/globals.h" | 
 |  | 
 | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
 |     defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
 | #include <dlfcn.h> | 
 | #endif | 
 |  | 
 | namespace dart { | 
 |  | 
 | uint64_t Utils::ReverseBits64(uint64_t x) { | 
 |   x = ((x >> 32) & 0x00000000ffffffff) | (x << 32); | 
 |   x = ((x >> 16) & 0x0000ffff0000ffff) | ((x & 0x0000ffff0000ffff) << 16); | 
 |   x = ((x >> 8) & 0x00ff00ff00ff00ff) | ((x & 0x00ff00ff00ff00ff) << 8); | 
 |   x = ((x >> 4) & 0x0f0f0f0f0f0f0f0f) | ((x & 0x0f0f0f0f0f0f0f0f) << 4); | 
 |   x = ((x >> 2) & 0x3333333333333333) | ((x & 0x3333333333333333) << 2); | 
 |   x = ((x >> 1) & 0x5555555555555555) | ((x & 0x5555555555555555) << 1); | 
 |   return x; | 
 | } | 
 |  | 
 | uint32_t Utils::ReverseBits32(uint32_t x) { | 
 |   x = ((x >> 16) & 0x0000ffff) | ((x & 0x0000ffff) << 16); | 
 |   x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8); | 
 |   x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4); | 
 |   x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2); | 
 |   x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1); | 
 |   return x; | 
 | } | 
 |  | 
 | // Implementation according to H.S.Warren's "Hacker's Delight" | 
 | // (Addison Wesley, 2002) Chapter 10 and T.Grablund, P.L.Montgomery's | 
 | // "Division by Invariant Integers Using Multiplication" (PLDI 1994). | 
 | void Utils::CalculateMagicAndShiftForDivRem(int64_t divisor, | 
 |                                             int64_t* magic, | 
 |                                             int64_t* shift) { | 
 |   ASSERT(divisor <= -2 || divisor >= 2); | 
 |   /* The magic number M and shift S can be calculated in the following way: | 
 |    * Let nc be the most positive value of numerator(n) such that nc = kd - 1, | 
 |    * where divisor(d) >= 2. | 
 |    * Let nc be the most negative value of numerator(n) such that nc = kd + 1, | 
 |    * where divisor(d) <= -2. | 
 |    * Thus nc can be calculated like: | 
 |    * nc =  exp + exp       % d - 1, where d >= 2 and exp = 2^63. | 
 |    * nc = -exp + (exp + 1) % d,     where d >= 2 and exp = 2^63. | 
 |    * | 
 |    * So the shift p is the smallest p satisfying | 
 |    * 2^p > nc * (d - 2^p % d), where d >= 2 | 
 |    * 2^p > nc * (d + 2^p % d), where d <= -2. | 
 |    * | 
 |    * The magic number M is calculated by | 
 |    * M = (2^p + d - 2^p % d) / d, where d >= 2 | 
 |    * M = (2^p - d - 2^p % d) / d, where d <= -2. | 
 |    */ | 
 |   int64_t p = 63; | 
 |   const uint64_t exp = 1LL << 63; | 
 |  | 
 |   // Initialize the computations. | 
 |   uint64_t abs_d = (divisor >= 0) ? divisor : -static_cast<uint64_t>(divisor); | 
 |   uint64_t sign_bit = static_cast<uint64_t>(divisor) >> 63; | 
 |   uint64_t tmp = exp + sign_bit; | 
 |   uint64_t abs_nc = tmp - 1 - (tmp % abs_d); | 
 |   uint64_t quotient1 = exp / abs_nc; | 
 |   uint64_t remainder1 = exp % abs_nc; | 
 |   uint64_t quotient2 = exp / abs_d; | 
 |   uint64_t remainder2 = exp % abs_d; | 
 |  | 
 |   // To avoid handling both positive and negative divisor, | 
 |   // "Hacker's Delight" introduces a method to handle these | 
 |   // two cases together to avoid duplication. | 
 |   uint64_t delta; | 
 |   do { | 
 |     p++; | 
 |     quotient1 = 2 * quotient1; | 
 |     remainder1 = 2 * remainder1; | 
 |     if (remainder1 >= abs_nc) { | 
 |       quotient1++; | 
 |       remainder1 = remainder1 - abs_nc; | 
 |     } | 
 |     quotient2 = 2 * quotient2; | 
 |     remainder2 = 2 * remainder2; | 
 |     if (remainder2 >= abs_d) { | 
 |       quotient2++; | 
 |       remainder2 = remainder2 - abs_d; | 
 |     } | 
 |     delta = abs_d - remainder2; | 
 |   } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); | 
 |  | 
 |   *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); | 
 |   *shift = p - 64; | 
 | } | 
 |  | 
 | // This implementation is based on the public domain MurmurHash | 
 | // version 2.0. The constants M and R have been determined | 
 | // to work well experimentally. | 
 | static constexpr uint32_t kStringHashM = 0x5bd1e995; | 
 | static constexpr int kStringHashR = 24; | 
 |  | 
 | // hash and part must be lvalues. | 
 | #define MIX(hash, part)                                                        \ | 
 |   {                                                                            \ | 
 |     (part) *= kStringHashM;                                                    \ | 
 |     (part) ^= (part) >> kStringHashR;                                          \ | 
 |     (part) *= kStringHashM;                                                    \ | 
 |     (hash) *= kStringHashM;                                                    \ | 
 |     (hash) ^= (part);                                                          \ | 
 |   } | 
 |  | 
 | uint32_t Utils::StringHash(const void* data, int length) { | 
 |   int size = length; | 
 |   uint32_t hash = size; | 
 |  | 
 |   auto cursor = reinterpret_cast<const uint8_t*>(data); | 
 |  | 
 |   if (size >= kInt32Size) { | 
 |     const intptr_t misalignment = | 
 |         reinterpret_cast<intptr_t>(cursor) % kInt32Size; | 
 |     if (misalignment > 0) { | 
 |       // Stores 4-byte values starting from the start of the string to mimic | 
 |       // the algorithm on aligned data. | 
 |       uint32_t data_window = 0; | 
 |  | 
 |       // Shift sizes for adjusting the data window when adding the next aligned | 
 |       // piece of data. | 
 |       const uint32_t sr = misalignment * kBitsPerByte; | 
 |       const uint32_t sl = kBitsPerInt32 - sr; | 
 |  | 
 |       const intptr_t pre_alignment_length = kInt32Size - misalignment; | 
 |       switch (pre_alignment_length) { | 
 |         case 3: | 
 |           data_window |= cursor[2] << 16; | 
 |           FALL_THROUGH; | 
 |         case 2: | 
 |           data_window |= cursor[1] << 8; | 
 |           FALL_THROUGH; | 
 |         case 1: | 
 |           data_window |= cursor[0]; | 
 |       } | 
 |       cursor += pre_alignment_length; | 
 |       size -= pre_alignment_length; | 
 |  | 
 |       // Mix four bytes at a time now that we're at an aligned spot. | 
 |       for (; size >= kInt32Size; cursor += kInt32Size, size -= kInt32Size) { | 
 |         uint32_t aligned_part = *reinterpret_cast<const uint32_t*>(cursor); | 
 |         data_window |= (aligned_part << sl); | 
 |         MIX(hash, data_window); | 
 |         data_window = aligned_part >> sr; | 
 |       } | 
 |  | 
 |       if (size >= misalignment) { | 
 |         // There's one more full window in the data. We'll let the normal tail | 
 |         // code handle any partial window. | 
 |         switch (misalignment) { | 
 |           case 3: | 
 |             data_window |= cursor[2] << (16 + sl); | 
 |             FALL_THROUGH; | 
 |           case 2: | 
 |             data_window |= cursor[1] << (8 + sl); | 
 |             FALL_THROUGH; | 
 |           case 1: | 
 |             data_window |= cursor[0] << sl; | 
 |         } | 
 |         MIX(hash, data_window); | 
 |         cursor += misalignment; | 
 |         size -= misalignment; | 
 |       } else { | 
 |         // This is a partial window, so just xor and multiply by M. | 
 |         switch (size) { | 
 |           case 2: | 
 |             data_window |= cursor[1] << (8 + sl); | 
 |             FALL_THROUGH; | 
 |           case 1: | 
 |             data_window |= cursor[0] << sl; | 
 |         } | 
 |         hash ^= data_window; | 
 |         hash *= kStringHashM; | 
 |         cursor += size; | 
 |         size = 0; | 
 |       } | 
 |     } else { | 
 |       // Mix four bytes at a time into the hash. | 
 |       for (; size >= kInt32Size; size -= kInt32Size, cursor += kInt32Size) { | 
 |         uint32_t part = *reinterpret_cast<const uint32_t*>(cursor); | 
 |         MIX(hash, part); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Handle the last few bytes of the string if any. | 
 |   switch (size) { | 
 |     case 3: | 
 |       hash ^= cursor[2] << 16; | 
 |       FALL_THROUGH; | 
 |     case 2: | 
 |       hash ^= cursor[1] << 8; | 
 |       FALL_THROUGH; | 
 |     case 1: | 
 |       hash ^= cursor[0]; | 
 |       hash *= kStringHashM; | 
 |   } | 
 |  | 
 |   // Do a few final mixes of the hash to ensure the last few bytes are | 
 |   // well-incorporated. | 
 |   hash ^= hash >> 13; | 
 |   hash *= kStringHashM; | 
 |   hash ^= hash >> 15; | 
 |   return hash; | 
 | } | 
 |  | 
 | #undef MIX | 
 |  | 
 | uint32_t Utils::WordHash(intptr_t key) { | 
 |   // TODO(iposva): Need to check hash spreading. | 
 |   // This example is from http://www.concentric.net/~Ttwang/tech/inthash.htm | 
 |   // via. http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm | 
 |   uword a = static_cast<uword>(key); | 
 |   a = (a + 0x7ed55d16) + (a << 12); | 
 |   a = (a ^ 0xc761c23c) ^ (a >> 19); | 
 |   a = (a + 0x165667b1) + (a << 5); | 
 |   a = (a + 0xd3a2646c) ^ (a << 9); | 
 |   a = (a + 0xfd7046c5) + (a << 3); | 
 |   a = (a ^ 0xb55a4f09) ^ (a >> 16); | 
 |   return static_cast<uint32_t>(a); | 
 | } | 
 |  | 
 | char* Utils::SCreate(const char* format, ...) { | 
 |   va_list args; | 
 |   va_start(args, format); | 
 |   char* buffer = VSCreate(format, args); | 
 |   va_end(args); | 
 |   return buffer; | 
 | } | 
 |  | 
 | char* Utils::VSCreate(const char* format, va_list args) { | 
 |   // Measure. | 
 |   va_list measure_args; | 
 |   va_copy(measure_args, args); | 
 |   intptr_t len = VSNPrint(nullptr, 0, format, measure_args); | 
 |   va_end(measure_args); | 
 |  | 
 |   char* buffer = reinterpret_cast<char*>(malloc(len + 1)); | 
 |   ASSERT(buffer != nullptr); | 
 |  | 
 |   // Print. | 
 |   va_list print_args; | 
 |   va_copy(print_args, args); | 
 |   VSNPrint(buffer, len + 1, format, print_args); | 
 |   va_end(print_args); | 
 |   return buffer; | 
 | } | 
 |  | 
 | static void GetLastErrorAsString(char** error) { | 
 |   if (error == nullptr) return;  // Nothing to do. | 
 |  | 
 | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
 |     defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
 |   const char* status = dlerror(); | 
 |   *error = status != nullptr ? strdup(status) : nullptr; | 
 | #elif defined(DART_HOST_OS_WINDOWS) | 
 |   const int status = GetLastError(); | 
 |   if (status != 0) { | 
 |     char* description = nullptr; | 
 |     int length = FormatMessageA( | 
 |         FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | | 
 |             FORMAT_MESSAGE_IGNORE_INSERTS, | 
 |         nullptr, status, MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), | 
 |         reinterpret_cast<char*>(&description), 0, nullptr); | 
 |     if (length == 0) { | 
 |       // Seems like there is no message for this error code. | 
 |       *error = Utils::SCreate("error code %i", status); | 
 |     } else { | 
 |       *error = Utils::SCreate("%s (error code: %i)", description, status); | 
 |     } | 
 |  | 
 |     LocalFree(description); | 
 |   } else { | 
 |     *error = nullptr; | 
 |   } | 
 | #else | 
 |   *error = Utils::StrDup("loading dynamic libraries is not supported"); | 
 | #endif | 
 | } | 
 |  | 
 | void* Utils::LoadDynamicLibrary(const char* library_path, | 
 |                                 bool search_dll_load_dir, | 
 |                                 char** error) { | 
 |   void* handle = nullptr; | 
 |  | 
 | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
 |     defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
 |   handle = dlopen(library_path, RTLD_LAZY); | 
 | #elif defined(DART_HOST_OS_WINDOWS) | 
 |   SetLastError(0);  // Clear any errors. | 
 |  | 
 |   if (library_path == nullptr) { | 
 |     handle = GetModuleHandle(nullptr); | 
 |   } else { | 
 |     // Convert to wchar_t string. | 
 |     const int name_len = MultiByteToWideChar( | 
 |         CP_UTF8, /*dwFlags=*/0, library_path, /*cbMultiByte=*/-1, nullptr, 0); | 
 |     if (name_len != 0) { | 
 |       std::unique_ptr<wchar_t[]> name(new wchar_t[name_len]); | 
 |       const int written_len = | 
 |           MultiByteToWideChar(CP_UTF8, /*dwFlags=*/0, library_path, | 
 |                               /*cbMultiByte=*/-1, name.get(), name_len); | 
 |       RELEASE_ASSERT(written_len == name_len); | 
 |       if (search_dll_load_dir) { | 
 |         handle = | 
 |             LoadLibraryExW(name.get(), NULL, LOAD_WITH_ALTERED_SEARCH_PATH); | 
 |       } else { | 
 |         handle = LoadLibraryW(name.get()); | 
 |       } | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   if (handle == nullptr) { | 
 |     GetLastErrorAsString(error); | 
 |   } | 
 |  | 
 |   return handle; | 
 | } | 
 |  | 
 | void* Utils::ResolveSymbolInDynamicLibrary(void* library_handle, | 
 |                                            const char* symbol, | 
 |                                            char** error) { | 
 |   void* result = nullptr; | 
 |  | 
 | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
 |     defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
 |   dlerror();  // Clear any errors. | 
 |   result = dlsym(library_handle, symbol); | 
 |   // Note: nullptr might be a valid return from dlsym. Must call dlerror | 
 |   // to differentiate. | 
 |   GetLastErrorAsString(error); | 
 |   return result; | 
 | #elif defined(DART_HOST_OS_WINDOWS) | 
 |   SetLastError(0); | 
 |   result = reinterpret_cast<void*>( | 
 |       GetProcAddress(reinterpret_cast<HMODULE>(library_handle), symbol)); | 
 | #endif | 
 |  | 
 |   if (result == nullptr) { | 
 |     GetLastErrorAsString(error); | 
 |   } | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | void Utils::UnloadDynamicLibrary(void* library_handle, char** error) { | 
 |   bool ok = false; | 
 |  | 
 | #if defined(DART_HOST_OS_LINUX) || defined(DART_HOST_OS_MACOS) ||              \ | 
 |     defined(DART_HOST_OS_ANDROID) || defined(DART_HOST_OS_FUCHSIA) | 
 |   ok = dlclose(library_handle) == 0; | 
 | #elif defined(DART_HOST_OS_WINDOWS) | 
 |   SetLastError(0);  // Clear any errors. | 
 |  | 
 |   ok = FreeLibrary(reinterpret_cast<HMODULE>(library_handle)); | 
 | #endif | 
 |  | 
 |   if (!ok) { | 
 |     GetLastErrorAsString(error); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace dart |