blob: f0cfb7b04ae9f06bfae649c63ef55fabdb43d834 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_X64.
#if defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME)
#include "vm/compiler/backend/il.h"
#include "vm/compiler/backend/flow_graph.h"
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/compiler/backend/locations.h"
#include "vm/compiler/backend/locations_helpers.h"
#include "vm/compiler/backend/range_analysis.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_entry.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#include "vm/type_testing_stubs.h"
#define __ compiler->assembler()->
#define Z (compiler->zone())
namespace dart {
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register RAX.
LocationSummary* Instruction::MakeCallSummary(Zone* zone) {
LocationSummary* result =
new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall);
result->set_out(0, Location::RegisterLocation(RAX));
return result;
}
DEFINE_BACKEND(LoadIndexedUnsafe, (Register out, Register index)) {
ASSERT(instr->RequiredInputRepresentation(0) == kTagged); // It is a Smi.
__ movq(out, Address(instr->base_reg(), index, TIMES_4, instr->offset()));
ASSERT(kSmiTag == 0);
ASSERT(kSmiTagSize == 1);
}
DEFINE_BACKEND(StoreIndexedUnsafe,
(NoLocation, Register index, Register value)) {
ASSERT(instr->RequiredInputRepresentation(
StoreIndexedUnsafeInstr::kIndexPos) == kTagged); // It is a Smi.
__ movq(Address(instr->base_reg(), index, TIMES_4, instr->offset()), value);
ASSERT(kSmiTag == 0);
ASSERT(kSmiTagSize == 1);
}
DEFINE_BACKEND(TailCall, (NoLocation, Fixed<Register, ARGS_DESC_REG>)) {
__ LoadObject(CODE_REG, instr->code());
__ LeaveDartFrame(); // The arguments are still on the stack.
__ jmp(FieldAddress(CODE_REG, Code::entry_point_offset()));
// Even though the TailCallInstr will be the last instruction in a basic
// block, the flow graph compiler will emit native code for other blocks after
// the one containing this instruction and needs to be able to use the pool.
// (The `LeaveDartFrame` above disables usages of the pool.)
__ set_constant_pool_allowed(true);
}
LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::AnyOrConstant(value()));
return locs;
}
void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// In SSA mode, we need an explicit push. Nothing to do in non-SSA mode
// where PushArgument is handled by BindInstr::EmitNativeCode.
if (compiler->is_optimizing()) {
Location value = locs()->in(0);
if (value.IsRegister()) {
__ pushq(value.reg());
} else if (value.IsConstant()) {
__ PushObject(value.constant());
} else {
ASSERT(value.IsStackSlot());
__ pushq(value.ToStackSlotAddress());
}
}
}
LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterLocation(RAX));
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instruction: a jump).
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->in(0).reg();
ASSERT(result == RAX);
if (compiler->intrinsic_mode()) {
// Intrinsics don't have a frame.
__ ret();
return;
}
#if defined(DEBUG)
__ Comment("Stack Check");
Label done;
const intptr_t fp_sp_dist =
(compiler_frame_layout.first_local_from_fp + 1 - compiler->StackSize()) *
kWordSize;
ASSERT(fp_sp_dist <= 0);
__ movq(RDI, RSP);
__ subq(RDI, RBP);
__ CompareImmediate(RDI, Immediate(fp_sp_dist));
__ j(EQUAL, &done, Assembler::kNearJump);
__ int3();
__ Bind(&done);
#endif
ASSERT(__ constant_pool_allowed());
__ LeaveDartFrame(); // Disallows constant pool use.
__ ret();
// This ReturnInstr may be emitted out of order by the optimizer. The next
// block may be a target expecting a properly set constant pool pointer.
__ set_constant_pool_allowed(true);
}
static Condition NegateCondition(Condition condition) {
switch (condition) {
case EQUAL:
return NOT_EQUAL;
case NOT_EQUAL:
return EQUAL;
case LESS:
return GREATER_EQUAL;
case LESS_EQUAL:
return GREATER;
case GREATER:
return LESS_EQUAL;
case GREATER_EQUAL:
return LESS;
case BELOW:
return ABOVE_EQUAL;
case BELOW_EQUAL:
return ABOVE;
case ABOVE:
return BELOW_EQUAL;
case ABOVE_EQUAL:
return BELOW;
case PARITY_EVEN:
return PARITY_ODD;
case PARITY_ODD:
return PARITY_EVEN;
default:
UNIMPLEMENTED();
return EQUAL;
}
}
// Detect pattern when one value is zero and another is a power of 2.
static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) {
return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) ||
(Utils::IsPowerOfTwo(v2) && (v1 == 0));
}
LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
// TODO(dartbug.com/30952) support convertion of Register to corresponding
// least significant byte register (e.g. RAX -> AL, RSI -> SIL, r15 -> r15b).
comparison()->locs()->set_out(0, Location::RegisterLocation(RDX));
return comparison()->locs();
}
void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->out(0).reg() == RDX);
// Clear upper part of the out register. We are going to use setcc on it
// which is a byte move.
__ xorq(RDX, RDX);
// Emit comparison code. This must not overwrite the result register.
// IfThenElseInstr::Supports() should prevent EmitComparisonCode from using
// the labels or returning an invalid condition.
BranchLabels labels = {NULL, NULL, NULL};
Condition true_condition = comparison()->EmitComparisonCode(compiler, labels);
ASSERT(true_condition != INVALID_CONDITION);
const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_);
intptr_t true_value = if_true_;
intptr_t false_value = if_false_;
if (is_power_of_two_kind) {
if (true_value == 0) {
// We need to have zero in RDX on true_condition.
true_condition = NegateCondition(true_condition);
}
} else {
if (true_value == 0) {
// Swap values so that false_value is zero.
intptr_t temp = true_value;
true_value = false_value;
false_value = temp;
} else {
true_condition = NegateCondition(true_condition);
}
}
__ setcc(true_condition, DL);
if (is_power_of_two_kind) {
const intptr_t shift =
Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value));
__ shlq(RDX, Immediate(shift + kSmiTagSize));
} else {
__ decq(RDX);
__ AndImmediate(
RDX, Immediate(Smi::RawValue(true_value) - Smi::RawValue(false_value)));
if (false_value != 0) {
__ AddImmediate(RDX, Immediate(Smi::RawValue(false_value)));
}
}
}
LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t stack_index =
compiler_frame_layout.FrameSlotForVariable(&local());
return LocationSummary::Make(zone, kNumInputs,
Location::StackSlot(stack_index),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(!compiler->is_optimizing());
// Nothing to do.
}
LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out(0).reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ movq(Address(RBP, compiler_frame_layout.FrameOffsetInBytesForVariable(
&local())),
value);
}
LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
return LocationSummary::Make(zone, kNumInputs,
Assembler::IsSafe(value())
? Location::Constant(this)
: Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
Location out = locs()->out(0);
ASSERT(out.IsRegister() || out.IsConstant() || out.IsInvalid());
if (out.IsRegister()) {
Register result = out.reg();
__ LoadObject(result, value());
}
}
void ConstantInstr::EmitMoveToLocation(FlowGraphCompiler* compiler,
const Location& destination,
Register tmp) {
if (destination.IsRegister()) {
if (representation() == kUnboxedInt32 ||
representation() == kUnboxedInt64) {
const int64_t value = value_.IsSmi() ? Smi::Cast(value_).Value()
: Mint::Cast(value_).value();
if (value == 0) {
__ xorl(destination.reg(), destination.reg());
} else {
__ movq(destination.reg(), Immediate(value));
}
} else {
ASSERT(representation() == kTagged);
__ LoadObject(destination.reg(), value_);
}
} else if (destination.IsFpuRegister()) {
if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0)) {
__ xorps(destination.fpu_reg(), destination.fpu_reg());
} else {
ASSERT(tmp != kNoRegister);
__ LoadObject(tmp, value_);
__ movsd(destination.fpu_reg(),
FieldAddress(tmp, Double::value_offset()));
}
} else if (destination.IsDoubleStackSlot()) {
if (Utils::DoublesBitEqual(Double::Cast(value_).value(), 0.0)) {
__ xorps(XMM0, XMM0);
} else {
ASSERT(tmp != kNoRegister);
__ LoadObject(tmp, value_);
__ movsd(XMM0, FieldAddress(tmp, Double::value_offset()));
}
__ movsd(destination.ToStackSlotAddress(), XMM0);
} else {
ASSERT(destination.IsStackSlot());
if (value_.IsSmi() && representation() == kUnboxedInt32) {
__ movl(destination.ToStackSlotAddress(),
Immediate(Smi::Cast(value_).Value()));
} else {
__ StoreObject(destination.ToStackSlotAddress(), value_);
}
}
}
LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = IsUnboxedSignedIntegerConstant() ? 0 : 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
switch (representation()) {
case kUnboxedDouble:
locs->set_out(0, Location::RequiresFpuRegister());
locs->set_temp(0, Location::RequiresRegister());
break;
case kUnboxedInt32:
case kUnboxedInt64:
locs->set_out(0, Location::RequiresRegister());
break;
default:
UNREACHABLE();
break;
}
return locs;
}
void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out(0).IsInvalid()) {
const Register scratch =
IsUnboxedSignedIntegerConstant() ? kNoRegister : locs()->temp(0).reg();
EmitMoveToLocation(compiler, locs()->out(0), scratch);
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
// When using a type testing stub, we want to prevent spilling of the
// function/instantiator type argument vectors, since stub preserves them. So
// we make this a `kNoCall` summary, even though most other registers can be
// modified by the stub. To tell the register allocator about it, we reserve
// all the other registers as temporary registers.
// TODO(http://dartbug.com/32788): Simplify this.
const Register kInstanceReg = RAX;
const Register kInstantiatorTypeArgumentsReg = RDX;
const Register kFunctionTypeArgumentsReg = RCX;
const bool using_stub =
FlowGraphCompiler::ShouldUseTypeTestingStubFor(opt, dst_type());
const intptr_t kNonChangeableInputRegs =
(1 << kInstanceReg) | (1 << kInstantiatorTypeArgumentsReg) |
(1 << kFunctionTypeArgumentsReg);
const intptr_t kNumInputs = 3;
// We invoke a stub that can potentially clobber any CPU register
// but can only clobber FPU registers on the slow path when
// entering runtime. Preserve all FPU registers that are
// not guarateed to be preserved by the ABI.
const intptr_t kCpuRegistersToPreserve =
kDartAvailableCpuRegs & ~kNonChangeableInputRegs;
const intptr_t kFpuRegistersToPreserve =
CallingConventions::kVolatileXmmRegisters & ~(1 << FpuTMP);
const intptr_t kNumTemps =
using_stub ? (Utils::CountOneBits64(kCpuRegistersToPreserve) +
Utils::CountOneBits64(kFpuRegistersToPreserve))
: 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
using_stub ? LocationSummary::kCallCalleeSafe : LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(kInstanceReg)); // Value.
summary->set_in(1,
Location::RegisterLocation(
kInstantiatorTypeArgumentsReg)); // Instant. type args.
summary->set_in(2, Location::RegisterLocation(
kFunctionTypeArgumentsReg)); // Function type args.
// TODO(http://dartbug.com/32787): Use Location::SameAsFirstInput() instead,
// once register allocator no longer hits assertion.
summary->set_out(0, Location::RegisterLocation(kInstanceReg));
if (using_stub) {
// Let's reserve all registers except for the input ones.
intptr_t next_temp = 0;
for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) {
const bool should_preserve = ((1 << i) & kCpuRegistersToPreserve) != 0;
if (should_preserve) {
summary->set_temp(next_temp++,
Location::RegisterLocation(static_cast<Register>(i)));
}
}
for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) {
const bool should_preserve = ((1 << i) & kFpuRegistersToPreserve) != 0;
if (should_preserve) {
summary->set_temp(next_temp++, Location::FpuRegisterLocation(
static_cast<FpuRegister>(i)));
}
}
}
return summary;
}
LocationSummary* AssertSubtypeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RDX)); // Instant. type args
summary->set_in(1, Location::RegisterLocation(RCX)); // Function type args
return summary;
}
LocationSummary* AssertBooleanInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
static void EmitAssertBoolean(Register reg,
TokenPosition token_pos,
intptr_t deopt_id,
LocationSummary* locs,
FlowGraphCompiler* compiler) {
// Check that the type of the value is allowed in conditional context.
// Call the runtime if the object is not bool::true or bool::false.
ASSERT(locs->always_calls());
Label done;
Isolate* isolate = Isolate::Current();
if (isolate->type_checks()) {
__ CompareObject(reg, Bool::True());
__ j(EQUAL, &done, Assembler::kNearJump);
__ CompareObject(reg, Bool::False());
__ j(EQUAL, &done, Assembler::kNearJump);
} else {
ASSERT(isolate->asserts() || FLAG_strong);
__ CompareObject(reg, Object::null_instance());
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
}
__ pushq(reg); // Push the source object.
compiler->GenerateRuntimeCall(token_pos, deopt_id,
kNonBoolTypeErrorRuntimeEntry, 1, locs);
// We should never return here.
__ int3();
__ Bind(&done);
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register obj = locs()->in(0).reg();
Register result = locs()->out(0).reg();
EmitAssertBoolean(obj, token_pos(), deopt_id(), locs(), compiler);
ASSERT(obj == result);
}
static Condition TokenKindToIntCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ:
return EQUAL;
case Token::kNE:
return NOT_EQUAL;
case Token::kLT:
return LESS;
case Token::kGT:
return GREATER;
case Token::kLTE:
return LESS_EQUAL;
case Token::kGTE:
return GREATER_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
if (operation_cid() == kDoubleCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
// Only right can be a stack slot.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
UNREACHABLE();
return NULL;
}
static void LoadValueCid(FlowGraphCompiler* compiler,
Register value_cid_reg,
Register value_reg,
Label* value_is_smi = NULL) {
Label done;
if (value_is_smi == NULL) {
__ LoadImmediate(value_cid_reg, Immediate(kSmiCid));
}
__ testq(value_reg, Immediate(kSmiTagMask));
if (value_is_smi == NULL) {
__ j(ZERO, &done, Assembler::kNearJump);
} else {
__ j(ZERO, value_is_smi);
}
__ LoadClassId(value_cid_reg, value_reg);
__ Bind(&done);
}
static Condition FlipCondition(Condition condition) {
switch (condition) {
case EQUAL:
return EQUAL;
case NOT_EQUAL:
return NOT_EQUAL;
case LESS:
return GREATER;
case LESS_EQUAL:
return GREATER_EQUAL;
case GREATER:
return LESS;
case GREATER_EQUAL:
return LESS_EQUAL;
case BELOW:
return ABOVE;
case BELOW_EQUAL:
return ABOVE_EQUAL;
case ABOVE:
return BELOW;
case ABOVE_EQUAL:
return BELOW_EQUAL;
default:
UNIMPLEMENTED();
return EQUAL;
}
}
static void EmitBranchOnCondition(FlowGraphCompiler* compiler,
Condition true_condition,
BranchLabels labels) {
if (labels.fall_through == labels.false_label) {
// If the next block is the false successor, fall through to it.
__ j(true_condition, labels.true_label);
} else {
// If the next block is not the false successor, branch to it.
Condition false_condition = NegateCondition(true_condition);
__ j(false_condition, labels.false_label);
// Fall through or jump to the true successor.
if (labels.fall_through != labels.true_label) {
__ jmp(labels.true_label);
}
}
}
static Condition EmitInt64ComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind) {
Location left = locs.in(0);
Location right = locs.in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToIntCondition(kind);
if (left.IsConstant() || right.IsConstant()) {
// Ensure constant is on the right.
ConstantInstr* constant = NULL;
if (left.IsConstant()) {
constant = left.constant_instruction();
Location tmp = right;
right = left;
left = tmp;
true_condition = FlipCondition(true_condition);
} else {
constant = right.constant_instruction();
}
if (constant->IsUnboxedSignedIntegerConstant()) {
__ cmpq(left.reg(),
Immediate(constant->GetUnboxedSignedIntegerConstantValue()));
} else {
ASSERT(constant->representation() == kTagged);
__ CompareObject(left.reg(), right.constant());
}
} else if (right.IsStackSlot()) {
__ cmpq(left.reg(), right.ToStackSlotAddress());
} else {
__ cmpq(left.reg(), right.reg());
}
return true_condition;
}
static Condition TokenKindToDoubleCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ:
return EQUAL;
case Token::kNE:
return NOT_EQUAL;
case Token::kLT:
return BELOW;
case Token::kGT:
return ABOVE;
case Token::kLTE:
return BELOW_EQUAL;
case Token::kGTE:
return ABOVE_EQUAL;
default:
UNREACHABLE();
return OVERFLOW;
}
}
static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
const LocationSummary& locs,
Token::Kind kind,
BranchLabels labels) {
XmmRegister left = locs.in(0).fpu_reg();
XmmRegister right = locs.in(1).fpu_reg();
__ comisd(left, right);
Condition true_condition = TokenKindToDoubleCondition(kind);
Label* nan_result =
(true_condition == NOT_EQUAL) ? labels.true_label : labels.false_label;
__ j(PARITY_EVEN, nan_result);
return true_condition;
}
Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if ((operation_cid() == kSmiCid) || (operation_cid() == kMintCid)) {
return EmitInt64ComparisonOp(compiler, *locs(), kind());
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels);
}
}
void ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label is_true, is_false;
BranchLabels labels = {&is_true, &is_false, &is_false};
Condition true_condition = EmitComparisonCode(compiler, labels);
if (true_condition != INVALID_CONDITION) {
EmitBranchOnCondition(compiler, true_condition, labels);
}
Register result = locs()->out(0).reg();
Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False());
__ jmp(&done);
__ Bind(&is_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
}
void ComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
if (true_condition != INVALID_CONDITION) {
EmitBranchOnCondition(compiler, true_condition, labels);
}
}
LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, Location::RegisterOrConstant(right()));
return locs;
}
Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
Register left_reg = locs()->in(0).reg();
Location right = locs()->in(1);
if (right.IsConstant()) {
ASSERT(right.constant().IsSmi());
const int64_t imm = reinterpret_cast<int64_t>(right.constant().raw());
__ TestImmediate(left_reg, Immediate(imm));
} else {
__ testq(left_reg, right.reg());
}
Condition true_condition = (kind() == Token::kNE) ? NOT_ZERO : ZERO;
return true_condition;
}
LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT));
Register val_reg = locs()->in(0).reg();
Register cid_reg = locs()->temp(0).reg();
Label* deopt = CanDeoptimize() ? compiler->AddDeoptStub(
deopt_id(), ICData::kDeoptTestCids,
licm_hoisted_ ? ICData::kHoisted : 0)
: NULL;
const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0;
const ZoneGrowableArray<intptr_t>& data = cid_results();
ASSERT(data[0] == kSmiCid);
bool result = data[1] == true_result;
__ testq(val_reg, Immediate(kSmiTagMask));
__ j(ZERO, result ? labels.true_label : labels.false_label);
__ LoadClassId(cid_reg, val_reg);
for (intptr_t i = 2; i < data.length(); i += 2) {
const intptr_t test_cid = data[i];
ASSERT(test_cid != kSmiCid);
result = data[i + 1] == true_result;
__ cmpq(cid_reg, Immediate(test_cid));
__ j(EQUAL, result ? labels.true_label : labels.false_label);
}
// No match found, deoptimize or default action.
if (deopt == NULL) {
// If the cid is not in the list, jump to the opposite label from the cids
// that are in the list. These must be all the same (see asserts in the
// constructor).
Label* target = result ? labels.false_label : labels.true_label;
if (target != labels.fall_through) {
__ jmp(target);
}
} else {
__ jmp(deopt);
}
// Dummy result as this method already did the jump, there's no need
// for the caller to branch on a condition.
return INVALID_CONDITION;
}
LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (operation_cid() == kDoubleCid) {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
return NULL;
}
Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
return EmitInt64ComparisonOp(compiler, *locs(), kind());
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels);
}
}
LocationSummary* NativeCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return MakeCallSummary(zone);
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
SetupNative();
Register result = locs()->out(0).reg();
const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function());
// All arguments are already @RSP due to preceding PushArgument()s.
ASSERT(ArgumentCount() ==
function().NumParameters() +
(function().IsGeneric() && FLAG_reify_generic_functions)
? 1
: 0);
// Push the result place holder initialized to NULL.
__ PushObject(Object::null_object());
// Pass a pointer to the first argument in RAX.
__ leaq(RAX, Address(RSP, ArgumentCount() * kWordSize));
__ LoadImmediate(R10, Immediate(argc_tag));
const StubEntry* stub_entry;
if (link_lazily()) {
stub_entry = StubCode::CallBootstrapNative_entry();
ExternalLabel label(NativeEntry::LinkNativeCallEntry());
__ LoadNativeEntry(RBX, &label, ObjectPool::kPatchable);
compiler->GeneratePatchableCall(token_pos(), *stub_entry,
RawPcDescriptors::kOther, locs());
} else {
if (is_bootstrap_native()) {
stub_entry = StubCode::CallBootstrapNative_entry();
} else if (is_auto_scope()) {
stub_entry = StubCode::CallAutoScopeNative_entry();
} else {
stub_entry = StubCode::CallNoScopeNative_entry();
}
const ExternalLabel label(reinterpret_cast<uword>(native_c_function()));
__ LoadNativeEntry(RBX, &label, ObjectPool::kNotPatchable);
compiler->GenerateCall(token_pos(), *stub_entry, RawPcDescriptors::kOther,
locs());
}
__ popq(result);
__ Drop(ArgumentCount()); // Drop the arguments.
}
static bool CanBeImmediateIndex(Value* index, intptr_t cid) {
if (!index->definition()->IsConstant()) return false;
const Object& constant = index->definition()->AsConstant()->value();
if (!constant.IsSmi()) return false;
const Smi& smi_const = Smi::Cast(constant);
const intptr_t scale = Instance::ElementSizeFor(cid);
const intptr_t data_offset = Instance::DataOffsetFor(cid);
const int64_t disp = smi_const.AsInt64Value() * scale + data_offset;
return Utils::IsInt(32, disp);
}
LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
// TODO(fschneider): Allow immediate operands for the char code.
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void OneByteStringFromCharCodeInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
ASSERT(compiler->is_optimizing());
Register char_code = locs()->in(0).reg();
Register result = locs()->out(0).reg();
__ movq(result, Address(THR, Thread::predefined_symbols_address_offset()));
__ movq(result, Address(result, char_code,
TIMES_HALF_WORD_SIZE, // Char code is a smi.
Symbols::kNullCharCodeSymbolOffset * kWordSize));
}
LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(cid_ == kOneByteStringCid);
Register str = locs()->in(0).reg();
Register result = locs()->out(0).reg();
Label is_one, done;
__ movq(result, FieldAddress(str, String::length_offset()));
__ cmpq(result, Immediate(Smi::RawValue(1)));
__ j(EQUAL, &is_one, Assembler::kNearJump);
__ movq(result, Immediate(Smi::RawValue(-1)));
__ jmp(&done);
__ Bind(&is_one);
__ movzxb(result, FieldAddress(str, OneByteString::data_offset()));
__ SmiTag(result);
__ Bind(&done);
}
LocationSummary* StringInterpolateInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_out(0, Location::RegisterLocation(RAX));
return summary;
}
void StringInterpolateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register array = locs()->in(0).reg();
__ pushq(array);
const int kTypeArgsLen = 0;
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kNoArgumentNames);
compiler->GenerateStaticCall(deopt_id(), token_pos(), CallFunction(),
args_info, locs(), ICData::Handle(),
ICData::kStatic);
ASSERT(locs()->out(0).reg() == RAX);
}
LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register obj = locs()->in(0).reg();
Register result = locs()->out(0).reg();
if (object()->definition()->representation() == kUntagged) {
__ movq(result, Address(obj, offset()));
} else {
ASSERT(object()->definition()->representation() == kTagged);
__ movq(result, FieldAddress(obj, offset()));
}
}
LocationSummary* LoadClassIdInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register object = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
const AbstractType& value_type = *this->object()->Type()->ToAbstractType();
if (CompileType::Smi().IsAssignableTo(value_type) ||
value_type.IsTypeParameter()) {
// We don't use Assembler::LoadTaggedClassIdMayBeSmi() here---which uses
// a conditional move instead---because it is slower, probably due to
// branch prediction usually working just fine in this case.
Label load, done;
__ testq(object, Immediate(kSmiTagMask));
__ j(NOT_ZERO, &load, Assembler::kNearJump);
__ LoadImmediate(result, Immediate(Smi::RawValue(kSmiCid)));
__ jmp(&done);
__ Bind(&load);
__ LoadClassId(result, object);
__ SmiTag(result);
__ Bind(&done);
} else {
__ LoadClassId(result, object);
__ SmiTag(result);
}
}
class BoxAllocationSlowPath : public TemplateSlowPathCode<Instruction> {
public:
BoxAllocationSlowPath(Instruction* instruction,
const Class& cls,
Register result)
: TemplateSlowPathCode(instruction), cls_(cls), result_(result) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (Assembler::EmittingComments()) {
__ Comment("%s slow path allocation of %s", instruction()->DebugName(),
String::Handle(cls_.ScrubbedName()).ToCString());
}
__ Bind(entry_label());
const Code& stub = Code::ZoneHandle(
compiler->zone(), StubCode::GetAllocationStubForClass(cls_));
const StubEntry stub_entry(stub);
LocationSummary* locs = instruction()->locs();
locs->live_registers()->Remove(Location::RegisterLocation(result_));
compiler->SaveLiveRegisters(locs);
compiler->GenerateCall(TokenPosition::kNoSource, // No token position.
stub_entry, RawPcDescriptors::kOther, locs);
__ MoveRegister(result_, RAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
}
static void Allocate(FlowGraphCompiler* compiler,
Instruction* instruction,
const Class& cls,
Register result,
Register temp) {
if (compiler->intrinsic_mode()) {
__ TryAllocate(cls, compiler->intrinsic_slow_path_label(),
Assembler::kFarJump, result, temp);
} else {
BoxAllocationSlowPath* slow_path =
new BoxAllocationSlowPath(instruction, cls, result);
compiler->AddSlowPathCode(slow_path);
__ TryAllocate(cls, slow_path->entry_label(), Assembler::kFarJump, result,
temp);
__ Bind(slow_path->exit_label());
}
}
private:
const Class& cls_;
const Register result_;
};
CompileType LoadIndexedInstr::ComputeType() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
return CompileType::Dynamic();
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return CompileType::FromCid(kDoubleCid);
case kTypedDataFloat32x4ArrayCid:
return CompileType::FromCid(kFloat32x4Cid);
case kTypedDataInt32x4ArrayCid:
return CompileType::FromCid(kInt32x4Cid);
case kTypedDataFloat64x2ArrayCid:
return CompileType::FromCid(kFloat64x2Cid);
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kExternalOneByteStringCid:
case kExternalTwoByteStringCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
return CompileType::FromCid(kSmiCid);
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return CompileType::Int();
default:
UNIMPLEMENTED();
return CompileType::Dynamic();
}
}
Representation LoadIndexedInstr::representation() const {
switch (class_id_) {
case kArrayCid:
case kImmutableArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kExternalOneByteStringCid:
case kExternalTwoByteStringCid:
return kTagged;
case kTypedDataInt32ArrayCid:
return kUnboxedInt32;
case kTypedDataUint32ArrayCid:
return kUnboxedUint32;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return kUnboxedInt64;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNIMPLEMENTED();
return kTagged;
}
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// The smi index is either untagged (element size == 1), or it is left smi
// tagged (for all element sizes > 1).
if (index_scale() == 1) {
locs->set_in(1,
CanBeImmediateIndex(index(), class_id())
? Location::Constant(index()->definition()->AsConstant())
: Location::WritableRegister());
} else {
locs->set_in(1,
CanBeImmediateIndex(index(), class_id())
? Location::Constant(index()->definition()->AsConstant())
: Location::RequiresRegister());
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
locs->set_out(0, Location::RequiresFpuRegister());
} else {
locs->set_out(0, Location::RequiresRegister());
}
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address =
index.IsRegister()
? Assembler::ElementAddressForRegIndex(
IsExternal(), class_id(), index_scale(), array, index.reg())
: Assembler::ElementAddressForIntIndex(
IsExternal(), class_id(), index_scale(), array,
Smi::Cast(index.constant()).Value());
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
XmmRegister result = locs()->out(0).fpu_reg();
if (class_id() == kTypedDataFloat32ArrayCid) {
// Load single precision float.
__ movss(result, element_address);
} else if (class_id() == kTypedDataFloat64ArrayCid) {
__ movsd(result, element_address);
} else {
ASSERT((class_id() == kTypedDataInt32x4ArrayCid) ||
(class_id() == kTypedDataFloat32x4ArrayCid) ||
(class_id() == kTypedDataFloat64x2ArrayCid));
__ movups(result, element_address);
}
return;
}
if ((representation() == kUnboxedUint32) ||
(representation() == kUnboxedInt32)) {
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
Register result = locs()->out(0).reg();
switch (class_id()) {
case kTypedDataInt32ArrayCid:
ASSERT(representation() == kUnboxedInt32);
__ movsxd(result, element_address);
break;
case kTypedDataUint32ArrayCid:
ASSERT(representation() == kUnboxedUint32);
__ movl(result, element_address);
break;
default:
UNREACHABLE();
}
return;
}
if (representation() == kUnboxedInt64) {
ASSERT(class_id() == kTypedDataInt64ArrayCid ||
class_id() == kTypedDataUint64ArrayCid);
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
Register result = locs()->out(0).reg();
__ movq(result, element_address);
return;
}
ASSERT(representation() == kTagged);
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
Register result = locs()->out(0).reg();
switch (class_id()) {
case kTypedDataInt8ArrayCid:
__ movsxb(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kExternalOneByteStringCid:
__ movzxb(result, element_address);
__ SmiTag(result);
break;
case kTypedDataInt16ArrayCid:
__ movsxw(result, element_address);
__ SmiTag(result);
break;
case kTypedDataUint16ArrayCid:
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
__ movzxw(result, element_address);
__ SmiTag(result);
break;
default:
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid));
__ movq(result, element_address);
break;
}
}
LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// The smi index is either untagged (element size == 1), or it is left smi
// tagged (for all element sizes > 1).
summary->set_in(1, index_scale() == 1 ? Location::WritableRegister()
: Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The string register points to the backing store for external strings.
const Register str = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address = Assembler::ElementAddressForRegIndex(
IsExternal(), class_id(), index_scale(), str, index.reg());
if ((index_scale() == 1)) {
__ SmiUntag(index.reg());
}
Register result = locs()->out(0).reg();
switch (class_id()) {
case kOneByteStringCid:
case kExternalOneByteStringCid:
switch (element_count()) {
case 1:
__ movzxb(result, element_address);
break;
case 2:
__ movzxw(result, element_address);
break;
case 4:
__ movl(result, element_address);
break;
default:
UNREACHABLE();
}
__ SmiTag(result);
break;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
switch (element_count()) {
case 1:
__ movzxw(result, element_address);
break;
case 2:
__ movl(result, element_address);
break;
default:
UNREACHABLE();
}
__ SmiTag(result);
break;
default:
UNREACHABLE();
break;
}
}
Representation StoreIndexedInstr::RequiredInputRepresentation(
intptr_t idx) const {
if (idx == 0) return kNoRepresentation;
if (idx == 1) return kTagged;
ASSERT(idx == 2);
switch (class_id_) {
case kArrayCid:
case kOneByteStringCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
return kTagged;
case kTypedDataInt32ArrayCid:
return kUnboxedInt32;
case kTypedDataUint32ArrayCid:
return kUnboxedUint32;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
return kUnboxedInt64;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
return kUnboxedDouble;
case kTypedDataFloat32x4ArrayCid:
return kUnboxedFloat32x4;
case kTypedDataInt32x4ArrayCid:
return kUnboxedInt32x4;
case kTypedDataFloat64x2ArrayCid:
return kUnboxedFloat64x2;
default:
UNIMPLEMENTED();
return kTagged;
}
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// The smi index is either untagged (element size == 1), or it is left smi
// tagged (for all element sizes > 1).
if (index_scale() == 1) {
locs->set_in(1,
CanBeImmediateIndex(index(), class_id())
? Location::Constant(index()->definition()->AsConstant())
: Location::WritableRegister());
} else {
locs->set_in(1,
CanBeImmediateIndex(index(), class_id())
? Location::Constant(index()->definition()->AsConstant())
: Location::RequiresRegister());
}
switch (class_id()) {
case kArrayCid:
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
break;
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
// TODO(fschneider): Add location constraint for byte registers (RAX,
// RBX, RCX, RDX) instead of using a fixed register.
locs->set_in(2, Location::FixedRegisterOrSmiConstant(value(), RAX));
break;
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
// Writable register because the value must be untagged before storing.
locs->set_in(2, Location::WritableRegister());
break;
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
locs->set_in(2, Location::RequiresRegister());
break;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid:
// TODO(srdjan): Support Float64 constants.
locs->set_in(2, Location::RequiresFpuRegister());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
case kTypedDataFloat32x4ArrayCid:
locs->set_in(2, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
return NULL;
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
Address element_address =
index.IsRegister()
? Assembler::ElementAddressForRegIndex(
IsExternal(), class_id(), index_scale(), array, index.reg())
: Assembler::ElementAddressForIntIndex(
IsExternal(), class_id(), index_scale(), array,
Smi::Cast(index.constant()).Value());
if ((index_scale() == 1) && index.IsRegister()) {
__ SmiUntag(index.reg());
}
switch (class_id()) {
case kArrayCid:
if (ShouldEmitStoreBarrier()) {
Register value = locs()->in(2).reg();
__ StoreIntoObject(array, element_address, value, CanValueBeSmi());
} else if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreIntoObjectNoBarrier(array, element_address, constant);
} else {
Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, element_address, value);
}
break;
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kOneByteStringCid:
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
__ movb(element_address,
Immediate(static_cast<int8_t>(constant.Value())));
} else {
ASSERT(locs()->in(2).reg() == RAX);
__ SmiUntag(RAX);
__ movb(element_address, RAX);
}
break;
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid: {
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
intptr_t value = constant.Value();
// Clamp to 0x0 or 0xFF respectively.
if (value > 0xFF) {
value = 0xFF;
} else if (value < 0) {
value = 0;
}
__ movb(element_address, Immediate(static_cast<int8_t>(value)));
} else {
ASSERT(locs()->in(2).reg() == RAX);
Label store_value, store_0xff;
__ SmiUntag(RAX);
__ CompareImmediate(RAX, Immediate(0xFF));
__ j(BELOW_EQUAL, &store_value, Assembler::kNearJump);
// Clamp to 0x0 or 0xFF respectively.
__ j(GREATER, &store_0xff);
__ xorq(RAX, RAX);
__ jmp(&store_value, Assembler::kNearJump);
__ Bind(&store_0xff);
__ LoadImmediate(RAX, Immediate(0xFF));
__ Bind(&store_value);
__ movb(element_address, RAX);
}
break;
}
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid: {
Register value = locs()->in(2).reg();
__ SmiUntag(value);
__ movw(element_address, value);
break;
}
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid: {
Register value = locs()->in(2).reg();
__ movl(element_address, value);
break;
}
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid: {
Register value = locs()->in(2).reg();
__ movq(element_address, value);
break;
}
case kTypedDataFloat32ArrayCid:
__ movss(element_address, locs()->in(2).fpu_reg());
break;
case kTypedDataFloat64ArrayCid:
__ movsd(element_address, locs()->in(2).fpu_reg());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
case kTypedDataFloat32x4ArrayCid:
__ movups(element_address, locs()->in(2).fpu_reg());
break;
default:
UNREACHABLE();
}
}
LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const bool emit_full_guard = !opt || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
(value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
intptr_t num_temps = 0;
if (needs_value_cid_temp_reg) {
num_temps++;
}
if (needs_field_temp_reg) {
num_temps++;
}
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
for (intptr_t i = 0; i < num_temps; i++) {
summary->set_temp(i, Location::RequiresRegister());
}
return summary;
}
void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(sizeof(classid_t) == kInt16Size);
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid;
if (field_cid == kDynamicCid) {
if (Compiler::IsBackgroundCompilation()) {
// Field state changed while compiling.
Compiler::AbortBackgroundCompilation(
deopt_id(),
"GuardFieldClassInstr: field state changed while compiling");
}
ASSERT(!compiler->is_optimizing());
return; // Nothing to emit.
}
const bool emit_full_guard =
!compiler->is_optimizing() || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
(value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
const Register value_reg = locs()->in(0).reg();
const Register value_cid_reg =
needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister;
const Register field_reg = needs_field_temp_reg
? locs()->temp(locs()->temp_count() - 1).reg()
: kNoRegister;
Label ok, fail_label;
Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
Label* fail = (deopt != NULL) ? deopt : &fail_label;
if (emit_full_guard) {
__ LoadObject(field_reg, Field::ZoneHandle(field().Original()));
FieldAddress field_cid_operand(field_reg, Field::guarded_cid_offset());
FieldAddress field_nullability_operand(field_reg,
Field::is_nullable_offset());
if (value_cid == kDynamicCid) {
LoadValueCid(compiler, value_cid_reg, value_reg);
__ cmpw(value_cid_reg, field_cid_operand);
__ j(EQUAL, &ok);
__ cmpw(value_cid_reg, field_nullability_operand);
} else if (value_cid == kNullCid) {
__ cmpw(field_nullability_operand, Immediate(value_cid));
} else {
__ cmpw(field_cid_operand, Immediate(value_cid));
}
__ j(EQUAL, &ok);
// Check if the tracked state of the guarded field can be initialized
// inline. If the field needs length check or requires type arguments and
// class hierarchy processing for exactness tracking then we fall through
// into runtime which is responsible for computing offset of the length
// field based on the class id.
const bool is_complicated_field =
field().needs_length_check() ||
field().static_type_exactness_state().IsUninitialized();
if (!is_complicated_field) {
// Uninitialized field can be handled inline. Check if the
// field is still unitialized.
__ cmpw(field_cid_operand, Immediate(kIllegalCid));
__ j(NOT_EQUAL, fail);
if (value_cid == kDynamicCid) {
__ movw(field_cid_operand, value_cid_reg);
__ movw(field_nullability_operand, value_cid_reg);
} else {
ASSERT(field_reg != kNoRegister);
__ movw(field_cid_operand, Immediate(value_cid));
__ movw(field_nullability_operand, Immediate(value_cid));
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ jmp(&ok);
}
}
if (deopt == NULL) {
ASSERT(!compiler->is_optimizing());
__ Bind(fail);
__ cmpw(FieldAddress(field_reg, Field::guarded_cid_offset()),
Immediate(kDynamicCid));
__ j(EQUAL, &ok);
__ pushq(field_reg);
__ pushq(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
}
} else {
ASSERT(compiler->is_optimizing());
ASSERT(deopt != NULL);
// Field guard class has been initialized and is known.
if (value_cid == kDynamicCid) {
// Value's class id is not known.
__ testq(value_reg, Immediate(kSmiTagMask));
if (field_cid != kSmiCid) {
__ j(ZERO, fail);
__ LoadClassId(value_cid_reg, value_reg);
__ CompareImmediate(value_cid_reg, Immediate(field_cid));
}
if (field().is_nullable() && (field_cid != kNullCid)) {
__ j(EQUAL, &ok);
__ CompareObject(value_reg, Object::null_object());
}
__ j(NOT_EQUAL, fail);
} else {
// Both value's and field's class id is known.
ASSERT((value_cid != field_cid) && (value_cid != nullability));
__ jmp(fail);
}
}
__ Bind(&ok);
}
LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) {
const intptr_t kNumTemps = 3;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We need temporaries for field object, length offset and expected length.
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, Location::RequiresRegister());
return summary;
} else {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
}
void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (field().guarded_list_length() == Field::kNoFixedLength) {
if (Compiler::IsBackgroundCompilation()) {
// Field state changed while compiling.
Compiler::AbortBackgroundCompilation(
deopt_id(),
"GuardFieldLengthInstr: field state changed while compiling");
}
ASSERT(!compiler->is_optimizing());
return; // Nothing to emit.
}
Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
const Register value_reg = locs()->in(0).reg();
if (!compiler->is_optimizing() ||
(field().guarded_list_length() == Field::kUnknownFixedLength)) {
const Register field_reg = locs()->temp(0).reg();
const Register offset_reg = locs()->temp(1).reg();
const Register length_reg = locs()->temp(2).reg();
Label ok;
__ LoadObject(field_reg, Field::ZoneHandle(field().Original()));
__ movsxb(
offset_reg,
FieldAddress(field_reg,
Field::guarded_list_length_in_object_offset_offset()));
__ movq(length_reg,
FieldAddress(field_reg, Field::guarded_list_length_offset()));
__ cmpq(offset_reg, Immediate(0));
__ j(NEGATIVE, &ok);
// Load the length from the value. GuardFieldClass already verified that
// value's class matches guarded class id of the field.
// offset_reg contains offset already corrected by -kHeapObjectTag that is
// why we use Address instead of FieldAddress.
__ cmpq(length_reg, Address(value_reg, offset_reg, TIMES_1, 0));
if (deopt == NULL) {
__ j(EQUAL, &ok);
__ pushq(field_reg);
__ pushq(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ j(NOT_EQUAL, deopt);
}
__ Bind(&ok);
} else {
ASSERT(compiler->is_optimizing());
ASSERT(field().guarded_list_length() >= 0);
ASSERT(field().guarded_list_length_in_object_offset() !=
Field::kUnknownLengthOffset);
__ CompareImmediate(
FieldAddress(value_reg, field().guarded_list_length_in_object_offset()),
Immediate(Smi::RawValue(field().guarded_list_length())));
__ j(NOT_EQUAL, deopt);
}
}
LocationSummary* GuardFieldTypeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void GuardFieldTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Should never emit GuardFieldType for fields that are marked as NotTracking.
ASSERT(field().static_type_exactness_state().IsTracking());
if (!field().static_type_exactness_state().NeedsFieldGuard()) {
// Nothing to do: we only need to perform checks for trivially invariant
// fields. If optimizing Canonicalize pass should have removed
// this instruction.
if (Compiler::IsBackgroundCompilation()) {
Compiler::AbortBackgroundCompilation(
deopt_id(),
"GuardFieldTypeInstr: field state changed during compilation");
}
ASSERT(!compiler->is_optimizing());
return;
}
Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
Label ok;
const Register value_reg = locs()->in(0).reg();
const Register temp = locs()->temp(0).reg();
// Skip null values for nullable fields.
if (!compiler->is_optimizing() || field().is_nullable()) {
__ CompareObject(value_reg, Object::Handle());
__ j(EQUAL, &ok);
}
// Get the state.
__ LoadObject(temp, Field::ZoneHandle(compiler->zone(), field().Original()));
__ movsxb(temp,
FieldAddress(temp, Field::static_type_exactness_state_offset()));
if (!compiler->is_optimizing()) {
// Check if field requires checking (it is in unitialized or trivially
// exact state).
__ cmpq(temp, Immediate(StaticTypeExactnessState::kUninitialized));
__ j(LESS, &ok);
}
Label call_runtime;
if (field().static_type_exactness_state().IsUninitialized()) {
// Can't initialize the field state inline in optimized code.
__ cmpq(temp, Immediate(StaticTypeExactnessState::kUninitialized));
__ j(EQUAL, compiler->is_optimizing() ? deopt : &call_runtime);
}
// At this point temp is known to be type arguments offset in words.
__ movq(temp, FieldAddress(value_reg, temp, TIMES_8, 0));
__ CompareObject(temp, TypeArguments::ZoneHandle(
compiler->zone(),
AbstractType::Handle(field().type()).arguments()));
if (deopt != nullptr) {
__ j(NOT_EQUAL, deopt);
} else {
__ j(EQUAL, &ok);
__ Bind(&call_runtime);
__ PushObject(field());
__ pushq(value_reg);
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2);
}
__ Bind(&ok);
}
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps =
(IsUnboxedStore() && opt) ? 2 : ((IsPotentialUnboxedStore()) ? 3 : 0);
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
((IsUnboxedStore() && opt && is_initialization()) ||
IsPotentialUnboxedStore())
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (IsUnboxedStore() && opt) {
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
} else if (IsPotentialUnboxedStore()) {
summary->set_in(1, ShouldEmitStoreBarrier() ? Location::WritableRegister()
: Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, opt ? Location::RequiresFpuRegister()
: Location::FpuRegisterLocation(XMM1));
} else {
#if defined(CONCURRENT_MARKING)
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::RequiresRegister()
: Location::RegisterOrConstant(value()));
#else
summary->set_in(1, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RegisterOrConstant(value()));
#endif
}
return summary;
}
static void EnsureMutableBox(FlowGraphCompiler* compiler,
StoreInstanceFieldInstr* instruction,
Register box_reg,
const Class& cls,
Register instance_reg,
intptr_t offset,
Register temp) {
Label done;
__ movq(box_reg, FieldAddress(instance_reg, offset));
__ CompareObject(box_reg, Object::null_object());
__ j(NOT_EQUAL, &done);
BoxAllocationSlowPath::Allocate(compiler, instruction, cls, box_reg, temp);
__ movq(temp, box_reg);
__ StoreIntoObject(instance_reg, FieldAddress(instance_reg, offset), temp,
Assembler::kValueIsNotSmi);
__ Bind(&done);
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(sizeof(classid_t) == kInt16Size);
Label skip_store;
Register instance_reg = locs()->in(0).reg();
if (IsUnboxedStore() && compiler->is_optimizing()) {
XmmRegister value = locs()->in(1).fpu_reg();
Register temp = locs()->temp(0).reg();
Register temp2 = locs()->temp(1).reg();
const intptr_t cid = field().UnboxedFieldCid();
if (is_initialization()) {
const Class* cls = NULL;
switch (cid) {
case kDoubleCid:
cls = &compiler->double_class();
break;
case kFloat32x4Cid:
cls = &compiler->float32x4_class();
break;
case kFloat64x2Cid:
cls = &compiler->float64x2_class();
break;
default:
UNREACHABLE();
}
BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2);
__ movq(temp2, temp);
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_), temp2,
Assembler::kValueIsNotSmi);
} else {
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes_));
}
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleStoreInstanceFieldInstr");
__ movsd(FieldAddress(temp, Double::value_offset()), value);
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4StoreInstanceFieldInstr");
__ movups(FieldAddress(temp, Float32x4::value_offset()), value);
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2StoreInstanceFieldInstr");
__ movups(FieldAddress(temp, Float64x2::value_offset()), value);
break;
default:
UNREACHABLE();
}
return;
}
if (IsPotentialUnboxedStore()) {
Register value_reg = locs()->in(1).reg();
Register temp = locs()->temp(0).reg();
Register temp2 = locs()->temp(1).reg();
FpuRegister fpu_temp = locs()->temp(2).fpu_reg();
if (ShouldEmitStoreBarrier()) {
// Value input is a writable register and should be manually preserved
// across allocation slow-path.
locs()->live_registers()->Add(locs()->in(1), kTagged);
}
Label store_pointer;
Label store_double;
Label store_float32x4;
Label store_float64x2;
__ LoadObject(temp, Field::ZoneHandle(Z, field().Original()));
__ cmpw(FieldAddress(temp, Field::is_nullable_offset()),
Immediate(kNullCid));
__ j(EQUAL, &store_pointer);
__ movzxb(temp2, FieldAddress(temp, Field::kind_bits_offset()));
__ testq(temp2, Immediate(1 << Field::kUnboxingCandidateBit));
__ j(ZERO, &store_pointer);
__ cmpw(FieldAddress(temp, Field::guarded_cid_offset()),
Immediate(kDoubleCid));
__ j(EQUAL, &store_double);
__ cmpw(FieldAddress(temp, Field::guarded_cid_offset()),
Immediate(kFloat32x4Cid));
__ j(EQUAL, &store_float32x4);
__ cmpw(FieldAddress(temp, Field::guarded_cid_offset()),
Immediate(kFloat64x2Cid));
__ j(EQUAL, &store_float64x2);
// Fall through.
__ jmp(&store_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
locs()->live_registers()->Add(locs()->in(1));
}
{
__ Bind(&store_double);
EnsureMutableBox(compiler, this, temp, compiler->double_class(),
instance_reg, offset_in_bytes_, temp2);
__ movsd(fpu_temp, FieldAddress(value_reg, Double::value_offset()));
__ movsd(FieldAddress(temp, Double::value_offset()), fpu_temp);
__ jmp(&skip_store);
}
{
__ Bind(&store_float32x4);
EnsureMutableBox(compiler, this, temp, compiler->float32x4_class(),
instance_reg, offset_in_bytes_, temp2);
__ movups(fpu_temp, FieldAddress(value_reg, Float32x4::value_offset()));
__ movups(FieldAddress(temp, Float32x4::value_offset()), fpu_temp);
__ jmp(&skip_store);
}
{
__ Bind(&store_float64x2);
EnsureMutableBox(compiler, this, temp, compiler->float64x2_class(),
instance_reg, offset_in_bytes_, temp2);
__ movups(fpu_temp, FieldAddress(value_reg, Float64x2::value_offset()));
__ movups(FieldAddress(temp, Float64x2::value_offset()), fpu_temp);
__ jmp(&skip_store);
}
__ Bind(&store_pointer);
}
if (ShouldEmitStoreBarrier()) {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObject(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_), value_reg,
CanValueBeSmi());
} else {
if (locs()->in(1).IsConstant()) {
__ StoreIntoObjectNoBarrier(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_),
locs()->in(1).constant());
} else {
Register value_reg = locs()->in(1).reg();
__ StoreIntoObjectNoBarrier(instance_reg,
FieldAddress(instance_reg, offset_in_bytes_),
value_reg);
}
}
__ Bind(&skip_store);
}
LocationSummary* LoadStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
// When the parser is building an implicit static getter for optimization,
// it can generate a function body where deoptimization ids do not line up
// with the unoptimized code.
//
// This is safe only so long as LoadStaticFieldInstr cannot deoptimize.
void LoadStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register field = locs()->in(0).reg();
Register result = locs()->out(0).reg();
__ movq(result, FieldAddress(field, Field::static_value_offset()));
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
LocationSummary* locs =
new (zone) LocationSummary(zone, 1, 1, LocationSummary::kNoCall);
#if defined(CONCURRENT_MARKING)
locs->set_in(0, Location::RequiresRegister());
#else
locs->set_in(0, value()->NeedsWriteBarrier() ? Location::WritableRegister()
: Location::RequiresRegister());
#endif
locs->set_temp(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
__ LoadObject(temp, Field::ZoneHandle(Z, field().Original()));
if (this->value()->NeedsWriteBarrier()) {
__ StoreIntoObject(temp, FieldAddress(temp, Field::static_value_offset()),
value, CanValueBeSmi());
} else {
__ StoreIntoObjectNoBarrier(
temp, FieldAddress(temp, Field::static_value_offset()), value);
}
}
LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX)); // Instance.
summary->set_in(1, Location::RegisterLocation(RDX)); // Instant. type args.
summary->set_in(2, Location::RegisterLocation(RCX)); // Function type args.
summary->set_out(0, Location::RegisterLocation(RAX));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == RAX); // Value.
ASSERT(locs()->in(1).reg() == RDX); // Instantiator type arguments.
ASSERT(locs()->in(2).reg() == RCX); // Function type arguments.
compiler->GenerateInstanceOf(token_pos(), deopt_id(), type(), locs());
ASSERT(locs()->out(0).reg() == RAX);
}
// TODO(srdjan): In case of constant inputs make CreateArray kNoCall and
// use slow path stub.
LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RBX));
locs->set_in(1, Location::RegisterLocation(R10));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
// Inlines array allocation for known constant values.
static void InlineArrayAllocation(FlowGraphCompiler* compiler,
intptr_t num_elements,
Label* slow_path,
Label* done) {
const int kInlineArraySize = 12; // Same as kInlineInstanceSize.
const Register kLengthReg = R10;
const Register kElemTypeReg = RBX;
const intptr_t instance_size = Array::InstanceSize(num_elements);
__ TryAllocateArray(kArrayCid, instance_size, slow_path, Assembler::kFarJump,
RAX, // instance
RCX, // end address
R13); // temp
// RAX: new object start as a tagged pointer.
// Store the type argument field.
__ StoreIntoObjectNoBarrier(
RAX, FieldAddress(RAX, Array::type_arguments_offset()), kElemTypeReg);
// Set the length field.
__ StoreIntoObjectNoBarrier(RAX, FieldAddress(RAX, Array::length_offset()),
kLengthReg);
// Initialize all array elements to raw_null.
// RAX: new object start as a tagged pointer.
// RCX: new object end address.
// RDI: iterator which initially points to the start of the variable
// data area to be initialized.
if (num_elements > 0) {
const intptr_t array_size = instance_size - sizeof(RawArray);
__ LoadObject(R12, Object::null_object());
__ leaq(RDI, FieldAddress(RAX, sizeof(RawArray)));
if (array_size < (kInlineArraySize * kWordSize)) {
intptr_t current_offset = 0;
while (current_offset < array_size) {
__ StoreIntoObjectNoBarrier(RAX, Address(RDI, current_offset), R12);
current_offset += kWordSize;
}
} else {
Label init_loop;
__ Bind(&init_loop);
__ StoreIntoObjectNoBarrier(RAX, Address(RDI, 0), R12);
__ addq(RDI, Immediate(kWordSize));
__ cmpq(RDI, RCX);
__ j(BELOW, &init_loop, Assembler::kNearJump);
}
}
__ jmp(done, Assembler::kNearJump);
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info();
if (type_usage_info != nullptr) {
const Class& list_class = Class::Handle(
compiler->thread()->isolate()->class_table()->At(kArrayCid));
RegisterTypeArgumentsUse(compiler->function(), type_usage_info, list_class,
element_type()->definition());
}
// Allocate the array. R10 = length, RBX = element type.
const Register kLengthReg = R10;
const Register kElemTypeReg = RBX;
const Register kResultReg = RAX;
ASSERT(locs()->in(0).reg() == kElemTypeReg);
ASSERT(locs()->in(1).reg() == kLengthReg);
Label slow_path, done;
if (compiler->is_optimizing() && !FLAG_precompiled_mode &&
num_elements()->BindsToConstant() &&
num_elements()->BoundConstant().IsSmi()) {
const intptr_t length = Smi::Cast(num_elements()->BoundConstant()).Value();
if ((length >= 0) && (length <= Array::kMaxElements)) {
Label slow_path, done;
InlineArrayAllocation(compiler, length, &slow_path, &done);
__ Bind(&slow_path);
__ PushObject(Object::null_object()); // Make room for the result.
__ pushq(kLengthReg);
__ pushq(kElemTypeReg);
compiler->GenerateRuntimeCall(token_pos(), deopt_id(),
kAllocateArrayRuntimeEntry, 2, locs());
__ Drop(2);
__ popq(kResultReg);
__ Bind(&done);
return;
}
}
__ Bind(&slow_path);
compiler->GenerateCallWithDeopt(token_pos(), deopt_id(),
*StubCode::AllocateArray_entry(),
RawPcDescriptors::kOther, locs());
__ Bind(&done);
ASSERT(locs()->out(0).reg() == kResultReg);
}
LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps =
(IsUnboxedLoad() && opt) ? 1 : ((IsPotentialUnboxedLoad()) ? 2 : 0);
LocationSummary* locs = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
(opt && !IsPotentialUnboxedLoad()) ? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath);
locs->set_in(0, Location::RequiresRegister());
if (IsUnboxedLoad() && opt) {
locs->set_temp(0, Location::RequiresRegister());
} else if (IsPotentialUnboxedLoad()) {
locs->set_temp(0, opt ? Location::RequiresFpuRegister()
: Location::FpuRegisterLocation(XMM1));
locs->set_temp(1, Location::RequiresRegister());
}
locs->set_out(0, Location::RequiresRegister());
return locs;
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(sizeof(classid_t) == kInt16Size);
Register instance_reg = locs()->in(0).reg();
if (IsUnboxedLoad() && compiler->is_optimizing()) {
XmmRegister result = locs()->out(0).fpu_reg();
Register temp = locs()->temp(0).reg();
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes()));
intptr_t cid = field()->UnboxedFieldCid();
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleLoadFieldInstr");
__ movsd(result, FieldAddress(temp, Double::value_offset()));
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4LoadFieldInstr");
__ movups(result, FieldAddress(temp, Float32x4::value_offset()));
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2LoadFieldInstr");
__ movups(result, FieldAddress(temp, Float64x2::value_offset()));
break;
default:
UNREACHABLE();
}
return;
}
Label done;
Register result = locs()->out(0).reg();
if (IsPotentialUnboxedLoad()) {
Register temp = locs()->temp(1).reg();
XmmRegister value = locs()->temp(0).fpu_reg();
Label load_pointer;
Label load_double;
Label load_float32x4;
Label load_float64x2;
__ LoadObject(result, Field::ZoneHandle(field()->Original()));
FieldAddress field_cid_operand(result, Field::guarded_cid_offset());
FieldAddress field_nullability_operand(result, Field::is_nullable_offset());
__ cmpw(field_nullability_operand, Immediate(kNullCid));
__ j(EQUAL, &load_pointer);
__ cmpw(field_cid_operand, Immediate(kDoubleCid));
__ j(EQUAL, &load_double);
__ cmpw(field_cid_operand, Immediate(kFloat32x4Cid));
__ j(EQUAL, &load_float32x4);
__ cmpw(field_cid_operand, Immediate(kFloat64x2Cid));
__ j(EQUAL, &load_float64x2);
// Fall through.
__ jmp(&load_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
}
{
__ Bind(&load_double);
BoxAllocationSlowPath::Allocate(compiler, this, compiler->double_class(),
result, temp);
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes()));
__ movsd(value, FieldAddress(temp, Double::value_offset()));
__ movsd(FieldAddress(result, Double::value_offset()), value);
__ jmp(&done);
}
{
__ Bind(&load_float32x4);
BoxAllocationSlowPath::Allocate(
compiler, this, compiler->float32x4_class(), result, temp);
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes()));
__ movups(value, FieldAddress(temp, Float32x4::value_offset()));
__ movups(FieldAddress(result, Float32x4::value_offset()), value);
__ jmp(&done);
}
{
__ Bind(&load_float64x2);
BoxAllocationSlowPath::Allocate(
compiler, this, compiler->float64x2_class(), result, temp);
__ movq(temp, FieldAddress(instance_reg, offset_in_bytes()));
__ movups(value, FieldAddress(temp, Float64x2::value_offset()));
__ movups(FieldAddress(result, Float64x2::value_offset()), value);
__ jmp(&done);
}
__ Bind(&load_pointer);
}
__ movq(result, FieldAddress(instance_reg, offset_in_bytes()));
__ Bind(&done);
}
LocationSummary* InstantiateTypeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX)); // Instant. type args.
locs->set_in(1, Location::RegisterLocation(RDX)); // Function type args.
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void InstantiateTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register instantiator_type_args_reg = locs()->in(0).reg();
Register function_type_args_reg = locs()->in(1).reg();
Register result_reg = locs()->out(0).reg();
// 'instantiator_type_args_reg' is a TypeArguments object (or null).
// 'function_type_args_reg' is a TypeArguments object (or null).
// A runtime call to instantiate the type is required.
__ PushObject(Object::null_object()); // Make room for the result.
__ PushObject(type());
__ pushq(instantiator_type_args_reg); // Push instantiator type arguments.
__ pushq(function_type_args_reg); // Push function type arguments.
compiler->GenerateRuntimeCall(token_pos(), deopt_id(),
kInstantiateTypeRuntimeEntry, 3, locs());
__ Drop(3); // Drop 2 type argument vectors and uninstantiated type.
__ popq(result_reg); // Pop instantiated type.
}
LocationSummary* InstantiateTypeArgumentsInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX)); // Instant. type args.
locs->set_in(1, Location::RegisterLocation(RCX)); // Function type args.
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void InstantiateTypeArgumentsInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register instantiator_type_args_reg = locs()->in(0).reg();
Register function_type_args_reg = locs()->in(1).reg();
Register result_reg = locs()->out(0).reg();
ASSERT(instantiator_type_args_reg == RAX);
ASSERT(instantiator_type_args_reg == result_reg);
// 'instantiator_type_args_reg' is a TypeArguments object (or null).
// 'function_type_args_reg' is a TypeArguments object (or null).
ASSERT(!type_arguments().IsUninstantiatedIdentity() &&
!type_arguments().CanShareInstantiatorTypeArguments(
instantiator_class()));
// If both the instantiator and function type arguments are null and if the
// type argument vector instantiated from null becomes a vector of dynamic,
// then use null as the type arguments.
Label type_arguments_instantiated;
const intptr_t len = type_arguments().Length();
if (type_arguments().IsRawWhenInstantiatedFromRaw(len)) {
Label non_null_type_args;
__ CompareObject(instantiator_type_args_reg, Object::null_object());
__ j(NOT_EQUAL, &non_null_type_args, Assembler::kNearJump);
__ CompareObject(function_type_args_reg, Object::null_object());
__ j(EQUAL, &type_arguments_instantiated, Assembler::kNearJump);
__ Bind(&non_null_type_args);
}
// Lookup cache before calling runtime.
// TODO(regis): Consider moving this into a shared stub to reduce
// generated code size.
__ LoadObject(RDI, type_arguments());
__ movq(RDI, FieldAddress(RDI, TypeArguments::instantiations_offset()));
__ leaq(RDI, FieldAddress(RDI, Array::data_offset()));
// The instantiations cache is initialized with Object::zero_array() and is
// therefore guaranteed to contain kNoInstantiator. No length check needed.
Label loop, next, found, slow_case;
__ Bind(&loop);
__ movq(RDX, Address(RDI, 0 * kWordSize)); // Cached instantiator type args.
__ cmpq(RDX, instantiator_type_args_reg);
__ j(NOT_EQUAL, &next, Assembler::kNearJump);
__ movq(R10, Address(RDI, 1 * kWordSize)); // Cached function type args.
__ cmpq(R10, function_type_args_reg);
__ j(EQUAL, &found, Assembler::kNearJump);
__ Bind(&next);
__ addq(RDI, Immediate(StubCode::kInstantiationSizeInWords * kWordSize));
__ cmpq(RDX, Immediate(Smi::RawValue(StubCode::kNoInstantiator)));
__ j(NOT_EQUAL, &loop, Assembler::kNearJump);
__ jmp(&slow_case, Assembler::kNearJump);
__ Bind(&found);
__ movq(result_reg, Address(RDI, 2 * kWordSize)); // Cached instantiated ta.
__ jmp(&type_arguments_instantiated, Assembler::kNearJump);
__ Bind(&slow_case);
// Instantiate non-null type arguments.
// A runtime call to instantiate the type arguments is required.
__ PushObject(Object::null_object()); // Make room for the result.
__ PushObject(type_arguments());
__ pushq(instantiator_type_args_reg); // Push instantiator type arguments.
__ pushq(function_type_args_reg); // Push function type arguments.
compiler->GenerateRuntimeCall(token_pos(), deopt_id(),
kInstantiateTypeArgumentsRuntimeEntry, 3,
locs());
__ Drop(3); // Drop 2 type argument vectors and uninstantiated args.
__ popq(result_reg); // Pop instantiated type arguments.
__ Bind(&type_arguments_instantiated);
}
LocationSummary* AllocateUninitializedContextInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
ASSERT(opt);
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 2;
LocationSummary* locs = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
locs->set_temp(0, Location::RegisterLocation(R10));
locs->set_temp(1, Location::RegisterLocation(R13));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
class AllocateContextSlowPath
: public TemplateSlowPathCode<AllocateUninitializedContextInstr> {
public:
explicit AllocateContextSlowPath(
AllocateUninitializedContextInstr* instruction)
: TemplateSlowPathCode(instruction) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("AllocateContextSlowPath");
__ Bind(entry_label());
LocationSummary* locs = instruction()->locs();
locs->live_registers()->Remove(locs->out(0));
compiler->SaveLiveRegisters(locs);
__ LoadImmediate(R10, Immediate(instruction()->num_context_variables()));
compiler->GenerateCall(instruction()->token_pos(),
*StubCode::AllocateContext_entry(),
RawPcDescriptors::kOther, locs);
ASSERT(instruction()->locs()->out(0).reg() == RAX);
compiler->RestoreLiveRegisters(instruction()->locs());
__ jmp(exit_label());
}
};
void AllocateUninitializedContextInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
ASSERT(compiler->is_optimizing());
Register temp = locs()->temp(0).reg();
Register result = locs()->out(0).reg();
// Try allocate the object.
AllocateContextSlowPath* slow_path = new AllocateContextSlowPath(this);
compiler->AddSlowPathCode(slow_path);
intptr_t instance_size = Context::InstanceSize(num_context_variables());
__ TryAllocateArray(kContextCid, instance_size, slow_path->entry_label(),
Assembler::kFarJump,
result, // instance
temp, // end address
locs()->temp(1).reg());
// Setup up number of context variables field.
__ movq(FieldAddress(result, Context::num_variables_offset()),
Immediate(num_context_variables()));
__ Bind(slow_path->exit_label());
}
LocationSummary* AllocateContextInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(R10));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == R10);
ASSERT(locs()->out(0).reg() == RAX);
__ LoadImmediate(R10, Immediate(num_context_variables()));
compiler->GenerateCall(token_pos(), *StubCode::AllocateContext_entry(),
RawPcDescriptors::kOther, locs());
}
LocationSummary* InitStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_temp(0, Location::RegisterLocation(RCX));
return locs;
}
void InitStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register field = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
Label call_runtime, no_call;
__ movq(temp, FieldAddress(field, Field::static_value_offset()));
__ CompareObject(temp, Object::sentinel());
__ j(EQUAL, &call_runtime);
__ CompareObject(temp, Object::transition_sentinel());
__ j(NOT_EQUAL, &no_call);
__ Bind(&call_runtime);
__ PushObject(Object::null_object()); // Make room for (unused) result.
__ pushq(field);
compiler->GenerateRuntimeCall(token_pos(), deopt_id(),
kInitStaticFieldRuntimeEntry, 1, locs());
__ Drop(2); // Remove argument and unused result.
__ Bind(&no_call);
}
LocationSummary* CloneContextInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register context_value = locs()->in(0).reg();
Register result = locs()->out(0).reg();
__ PushObject(Object::null_object()); // Make room for the result.
__ pushq(context_value);
compiler->GenerateRuntimeCall(token_pos(), deopt_id(),
kCloneContextRuntimeEntry, 1, locs());
__ popq(result); // Remove argument.
__ popq(result); // Get result (cloned context).
}
LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
UNREACHABLE();
return NULL;
}
void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
compiler->AddExceptionHandler(catch_try_index(), try_index(),
compiler->assembler()->CodeSize(),
handler_token_pos(), is_generated(),
catch_handler_types_, needs_stacktrace());
// On lazy deoptimization we patch the optimized code here to enter the
// deoptimization stub.
const intptr_t deopt_id = DeoptId::ToDeoptAfter(GetDeoptId());
if (compiler->is_optimizing()) {
compiler->AddDeoptIndexAtCall(deopt_id);
} else {
compiler->AddCurrentDescriptor(RawPcDescriptors::kDeopt, deopt_id,
TokenPosition::kNoSource);
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// Restore RSP from RBP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t fp_sp_dist =
(compiler_frame_layout.first_local_from_fp + 1 - compiler->StackSize()) *
kWordSize;
ASSERT(fp_sp_dist <= 0);
__ leaq(RSP, Address(RBP, fp_sp_dist));
if (!compiler->is_optimizing()) {
if (raw_exception_var_ != nullptr) {
__ movq(Address(RBP, compiler_frame_layout.FrameOffsetInBytesForVariable(
raw_exception_var_)),
kExceptionObjectReg);
}
if (raw_stacktrace_var_ != nullptr) {
__ movq(Address(RBP, compiler_frame_layout.FrameOffsetInBytesForVariable(
raw_stacktrace_var_)),
kStackTraceObjectReg);
}
}
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
const bool using_shared_stub = UseSharedSlowPathStub(opt);
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
using_shared_stub ? LocationSummary::kCallOnSharedSlowPath
: LocationSummary::kCallOnSlowPath);
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
class CheckStackOverflowSlowPath
: public TemplateSlowPathCode<CheckStackOverflowInstr> {
public:
static constexpr intptr_t kNumSlowPathArgs = 0;
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: TemplateSlowPathCode(instruction) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (compiler->isolate()->use_osr() && osr_entry_label()->IsLinked()) {
__ Comment("CheckStackOverflowSlowPathOsr");
__ Bind(osr_entry_label());
__ movq(Address(THR, Thread::stack_overflow_flags_offset()),
Immediate(Thread::kOsrRequest));
}
__ Comment("CheckStackOverflowSlowPath");
__ Bind(entry_label());
const bool using_shared_stub =
instruction()->locs()->call_on_shared_slow_path();
if (!using_shared_stub) {
compiler->SaveLiveRegisters(instruction()->locs());
}
// pending_deoptimization_env_ is needed to generate a runtime call that
// may throw an exception.
ASSERT(compiler->pending_deoptimization_env_ == NULL);
Environment* env =
compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs);
compiler->pending_deoptimization_env_ = env;
if (using_shared_stub) {
uword entry_point_offset =
instruction()->locs()->live_registers()->FpuRegisterCount() > 0
? Thread::stack_overflow_shared_with_fpu_regs_entry_point_offset()
: Thread::
stack_overflow_shared_without_fpu_regs_entry_point_offset();
__ call(Address(THR, entry_point_offset));
compiler->RecordSafepoint(instruction()->locs(), kNumSlowPathArgs);
compiler->RecordCatchEntryMoves();
compiler->AddDescriptor(
RawPcDescriptors::kOther, compiler->assembler()->CodeSize(),
instruction()->deopt_id(), instruction()->token_pos(),
compiler->CurrentTryIndex());
} else {
compiler->GenerateRuntimeCall(
instruction()->token_pos(), instruction()->deopt_id(),
kStackOverflowRuntimeEntry, kNumSlowPathArgs, instruction()->locs());
}
if (compiler->isolate()->use_osr() && !compiler->is_optimizing() &&
instruction()->in_loop()) {
// In unoptimized code, record loop stack checks as possible OSR entries.
compiler->AddCurrentDescriptor(RawPcDescriptors::kOsrEntry,
instruction()->deopt_id(),
TokenPosition::kNoSource);
}
compiler->pending_deoptimization_env_ = NULL;
if (!using_shared_stub) {
compiler->RestoreLiveRegisters(instruction()->locs());
}
__ jmp(exit_label());
}
Label* osr_entry_label() {
ASSERT(Isolate::Current()->use_osr());
return &osr_entry_label_;
}
private:
Label osr_entry_label_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register temp = locs()->temp(0).reg();
// Generate stack overflow check.
__ cmpq(RSP, Address(THR, Thread::stack_limit_offset()));
__ j(BELOW_EQUAL, slow_path->entry_label());
if (compiler->CanOSRFunction() && in_loop()) {
// In unoptimized code check the usage counter to trigger OSR at loop
// stack checks. Use progressively higher thresholds for more deeply
// nested loops to attempt to hit outer loops with OSR when possible.
__ LoadObject(temp, compiler->parsed_function().function());
int32_t threshold =
FLAG_optimization_counter_threshold * (loop_depth() + 1);
__ cmpl(FieldAddress(temp, Function::usage_counter_offset()),
Immediate(threshold));
__ j(GREATER_EQUAL, slow_path->osr_entry_label());
}
if (compiler->ForceSlowPathForStackOverflow()) {
__ jmp(slow_path->entry_label());
}
__ Bind(slow_path->exit_label());
}
static void EmitSmiShiftLeft(FlowGraphCompiler* compiler,
BinarySmiOpInstr* shift_left) {
const LocationSummary& locs = *shift_left->locs();
Register left = locs.in(0).reg();
Register result = locs.out(0).reg();
ASSERT(left == result);
Label* deopt = shift_left->CanDeoptimize()
? compiler->AddDeoptStub(shift_left->deopt_id(),
ICData::kDeoptBinarySmiOp)
: NULL;
if (locs.in(1).IsConstant()) {
const Object& constant = locs.in(1).constant();
ASSERT(constant.IsSmi());
// shlq operation masks the count to 6 bits.
const intptr_t kCountLimit = 0x3F;
const intptr_t value = Smi::Cast(constant).Value();
ASSERT((0 < value) && (value < kCountLimit));
if (shift_left->can_overflow()) {
if (value == 1) {
// Use overflow flag.
__ shlq(left, Immediate(1));
__ j(OVERFLOW, deopt);
return;
}
// Check for overflow.
Register temp = locs.temp(0).reg();
__ movq(temp, left);
__ shlq(left, Immediate(value));
__ sarq(left, Immediate(value));
__ cmpq(left, temp);
__ j(NOT_EQUAL, deopt); // Overflow.
}
// Shift for result now we know there is no overflow.
__ shlq(left, Immediate(value));
return;
}
// Right (locs.in(1)) is not constant.
Register right = locs.in(1).reg();
Range* right_range = shift_left->right_range();
if (shift_left->left()->BindsToConstant() && shift_left->can_overflow()) {
// TODO(srdjan): Implement code below for is_truncating().
// If left is constant, we know the maximal allowed size for right.
const Object& obj = shift_left->left()->BoundConstant();
if (obj.IsSmi()) {
const intptr_t left_int = Smi::Cast(obj).Value();
if (left_int == 0) {
__ CompareImmediate(right, Immediate(0));
__ j(NEGATIVE, deopt);
return;
}
const intptr_t max_right = kSmiBits - Utils::HighestBit(left_int);
const bool right_needs_check =
!RangeUtils::IsWithin(right_range, 0, max_right - 1);
if (right_needs_check) {
__ CompareImmediate(
right, Immediate(reinterpret_cast<int64_t>(Smi::New(max_right))));
__ j(ABOVE_EQUAL, deopt);
}
__ SmiUntag(right);
__ shlq(left, right);
}
return;
}
const bool right_needs_check =
!RangeUtils::IsWithin(right_range, 0, (Smi::kBits - 1));
ASSERT(right == RCX); // Count must be in RCX
if (!shift_left->can_overflow()) {
if (right_needs_check) {
const bool right_may_be_negative =
(right_range == NULL) || !right_range->IsPositive();
if (right_may_be_negative) {
ASSERT(shift_left->CanDeoptimize());
__ CompareImmediate(right, Immediate(0));
__ j(NEGATIVE, deopt);
}
Label done, is_not_zero;
__ CompareImmediate(
right, Immediate(reinterpret_cast<int64_t>(Smi::New(Smi::kBits))));
__ j(BELOW, &is_not_zero, Assembler::kNearJump);
__ xorq(left, left);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&is_not_zero);
__ SmiUntag(right);
__ shlq(left, right);
__ Bind(&done);
} else {
__ SmiUntag(right);
__ shlq(left, right);
}
} else {
if (right_needs_check) {
ASSERT(shift_left->CanDeoptimize());
__ CompareImmediate(
right, Immediate(reinterpret_cast<int64_t>(Smi::New(Smi::kBits))));
__ j(ABOVE_EQUAL, deopt);
}
// Left is not a constant.
Register temp = locs.temp(0).reg();
// Check if count too large for handling it inlined.
__ movq(temp, left);
__ SmiUntag(right);
// Overflow test (preserve temp and right);
__ shlq(left, right);
__ sarq(left, right);
__ cmpq(left, temp);
__ j(NOT_EQUAL, deopt); // Overflow.
// Shift for result now we know there is no overflow.
__ shlq(left, right);
}
}
class CheckedSmiSlowPath : public TemplateSlowPathCode<CheckedSmiOpInstr> {
public:
CheckedSmiSlowPath(CheckedSmiOpInstr* instruction, intptr_t try_index)
: TemplateSlowPathCode(instruction), try_index_(try_index) {}
static constexpr intptr_t kNumSlowPathArgs = 2;
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (Assembler::EmittingComments()) {
__ Comment("slow path smi operation");
}
__ Bind(entry_label());
LocationSummary* locs = instruction()->locs();
Register result = locs->out(0).reg();
locs->live_registers()->Remove(Location::RegisterLocation(result));
compiler->SaveLiveRegisters(locs);
if (instruction()->env() != NULL) {
Environment* env =
compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs);
compiler->pending_deoptimization_env_ = env;
}
__ pushq(locs->in(0).reg());
__ pushq(locs->in(1).reg());
const String& selector =
String::Handle(instruction()->call()->ic_data()->target_name());
const Array& arguments_descriptor =
Array::Handle(instruction()->call()->ic_data()->arguments_descriptor());
compiler->EmitMegamorphicInstanceCall(
selector, arguments_descriptor, instruction()->call()->deopt_id(),
instruction()->call()->token_pos(), locs, try_index_, kNumSlowPathArgs);
__ MoveRegister(result, RAX);
compiler->RestoreLiveRegisters(locs);
__ jmp(exit_label());
compiler->pending_deoptimization_env_ = NULL;
}
private:
intptr_t try_index_;
};
LocationSummary* CheckedSmiOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
bool is_shift = (op_kind() == Token::kSHL) || (op_kind() == Token::kSHR);
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = is_shift ? 1 : 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
switch (op_kind()) {
case Token::kADD:
case Token::kSUB:
case Token::kMUL:
case Token::kSHL:
case Token::kSHR:
summary->set_out(0, Location::RequiresRegister());
break;
case Token::kBIT_OR:
case Token::kBIT_AND:
case Token::kBIT_XOR:
summary->set_out(0, Location::SameAsFirstInput());
break;
default:
UNIMPLEMENTED();
}
if (is_shift) {
summary->set_temp(0, Location::RegisterLocation(RCX));
}
return summary;
}
void CheckedSmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckedSmiSlowPath* slow_path =
new CheckedSmiSlowPath(this, compiler->CurrentTryIndex());
compiler->AddSlowPathCode(slow_path);
// Test operands if necessary.
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
if (this->left()->definition() == this->right()->definition()) {
__ testq(left, Immediate(kSmiTagMask));
} else if (left_cid == kSmiCid) {
__ testq(right, Immediate(kSmiTagMask));
} else if (right_cid == kSmiCid) {
__ testq(left, Immediate(kSmiTagMask));
} else {
__ movq(TMP, left);
__ orq(TMP, right);
__ testq(TMP, Immediate(kSmiTagMask));
}
__ j(NOT_ZERO, slow_path->entry_label());
Register result = locs()->out(0).reg();
switch (op_kind()) {
case Token::kADD:
__ movq(result, left);
__ addq(result, right);
__ j(OVERFLOW, slow_path->entry_label());
break;
case Token::kSUB:
__ movq(result, left);
__ subq(result, right);
__ j(OVERFLOW, slow_path->entry_label());
break;
case Token::kMUL:
__ movq(result, left);
__ SmiUntag(result);
__ imulq(result, right);
__ j(OVERFLOW, slow_path->entry_label());
break;
case Token::kBIT_OR:
ASSERT(left == result);
__ orq(result, right);
break;
case Token::kBIT_AND:
ASSERT(left == result);
__ andq(result, right);
break;
case Token::kBIT_XOR:
ASSERT(left == result);
__ xorq(result, right);
break;
case Token::kSHL:
ASSERT(result != right);
ASSERT(locs()->temp(0).reg() == RCX);
__ cmpq(right, Immediate(Smi::RawValue(Smi::kBits)));
__ j(ABOVE_EQUAL, slow_path->entry_label());
__ movq(RCX, right);
__ SmiUntag(RCX);
__ movq(result, left);
__ shlq(result, RCX);
__ movq(TMP, result);
__ sarq(TMP, RCX);
__ cmpq(TMP, left);
__ j(NOT_EQUAL, slow_path->entry_label());
break;
case Token::kSHR: {
Label shift_count_ok;
ASSERT(result != right);
ASSERT(locs()->temp(0).reg() == RCX);
__ cmpq(right, Immediate(Smi::RawValue(Smi::kBits)));
__ j(ABOVE_EQUAL, slow_path->entry_label());
__ movq(RCX, right);
__ SmiUntag(RCX);
__ movq(result, left);
__ SmiUntag(result);
__ sarq(result, RCX);
__ SmiTag(result);
break;
}
default:
UNIMPLEMENTED();
}
__ Bind(slow_path->exit_label());
}
class CheckedSmiComparisonSlowPath
: public TemplateSlowPathCode<CheckedSmiComparisonInstr> {
public:
static constexpr intptr_t kNumSlowPathArgs = 2;
CheckedSmiComparisonSlowPath(CheckedSmiComparisonInstr* instruction,
intptr_t try_index,
BranchLabels labels,
bool merged)
: TemplateSlowPathCode(instruction),
try_index_(try_index),
labels_(labels),
merged_(merged) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
if (Assembler::EmittingComments()) {
__ Comment("slow path smi comparison");
}
__ Bind(entry_label());
LocationSummary* locs = instruction()->locs();
Register result = merged_ ? locs->temp(0).reg() : locs->out(0).reg();
locs->live_registers()->Remove(Location::RegisterLocation(result));
compiler->SaveLiveRegisters(locs);
if (instruction()->env() != NULL) {
Environment* env =
compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs);
compiler->pending_deoptimization_env_ = env;
}
__ pushq(locs->in(0).reg());
__ pushq(locs->in(1).reg());
String& selector =
String::Handle(instruction()->call()->ic_data()->target_name());
const Array& arguments_descriptor =
Array::Handle(instruction()->call()->ic_data()->arguments_descriptor());
compiler->EmitMegamorphicInstanceCall(
selector, arguments_descriptor, instruction()->call()->deopt_id(),
instruction()->call()->token_pos(), locs, try_index_, kNumSlowPathArgs);
__ MoveRegister(result, RAX);
compiler->RestoreLiveRegisters(locs);
compiler->pending_deoptimization_env_ = NULL;
if (merged_) {
__ CompareObject(result, Bool::True());
__ j(EQUAL, instruction()->is_negated() ? labels_.false_label
: labels_.true_label);
__ jmp(instruction()->is_negated() ? labels_.true_label
: labels_.false_label);
ASSERT(exit_label()->IsUnused());
} else {
ASSERT(!instruction()->is_negated());
__ jmp(exit_label());
}
}
private:
intptr_t try_index_;
BranchLabels labels_;
bool merged_;
};
LocationSummary* CheckedSmiComparisonInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
Condition CheckedSmiComparisonInstr::EmitComparisonCode(
FlowGraphCompiler* compiler,
BranchLabels labels) {
return EmitInt64ComparisonOp(compiler, *locs(), kind());
}
#define EMIT_SMI_CHECK \
intptr_t left_cid = left()->Type()->ToCid(); \
intptr_t right_cid = right()->Type()->ToCid(); \
Register left = locs()->in(0).reg(); \
Register right = locs()->in(1).reg(); \
if (this->left()->definition() == this->right()->definition()) { \
__ testq(left, Immediate(kSmiTagMask)); \
} else if (left_cid == kSmiCid) { \
__ testq(right, Immediate(kSmiTagMask)); \
} else if (right_cid == kSmiCid) { \
__ testq(left, Immediate(kSmiTagMask)); \
} else { \
__ movq(TMP, left); \
__ orq(TMP, right); \
__ testq(TMP, Immediate(kSmiTagMask)); \
} \
__ j(NOT_ZERO, slow_path->entry_label())
void CheckedSmiComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
CheckedSmiComparisonSlowPath* slow_path = new CheckedSmiComparisonSlowPath(
this, compiler->CurrentTryIndex(), labels,
/* merged = */ true);
compiler->AddSlowPathCode(slow_path);
EMIT_SMI_CHECK;
Condition true_condition = EmitComparisonCode(compiler, labels);
ASSERT(true_condition != INVALID_CONDITION);
EmitBranchOnCondition(compiler, true_condition, labels);
// No need to bind slow_path->exit_label() as slow path exits through
// true/false branch labels.
}
void CheckedSmiComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Zone-allocate labels to pass them to slow-path which outlives local scope.
Label* true_label = new (Z) Label();
Label* false_label = new (Z) Label();
Label done;
BranchLabels labels = {true_label, false_label, false_label};
// In case of negated comparison result of a slow path call should be negated.
// For this purpose, 'merged' slow path is generated: it tests
// result of a call and jumps directly to true or false label.
CheckedSmiComparisonSlowPath* slow_path = new CheckedSmiComparisonSlowPath(
this, compiler->CurrentTryIndex(), labels,
/* merged = */ is_negated());
compiler->AddSlowPathCode(slow_path);
EMIT_SMI_CHECK;
Condition true_condition = EmitComparisonCode(compiler, labels);
ASSERT(true_condition != INVALID_CONDITION);
EmitBranchOnCondition(compiler, true_condition, labels);
Register result = locs()->out(0).reg();
__ Bind(false_label);
__ LoadObject(result, Bool::False());
__ jmp(&done);
__ Bind(true_label);
__ LoadObject(result, Bool::True());
__ Bind(&done);
// In case of negated comparison slow path exits through true/false labels.
if (!is_negated()) {
__ Bind(slow_path->exit_label());
}
}
static bool CanBeImmediate(const Object& constant) {
return constant.IsSmi() &&
Immediate(reinterpret_cast<int64_t>(constant.raw())).is_int32();
}
static bool IsSmiValue(const Object& constant, intptr_t value) {
return constant.IsSmi() && (Smi::Cast(constant).Value() == value);
}
LocationSummary* BinarySmiOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
ConstantInstr* right_constant = right()->definition()->AsConstant();
if ((right_constant != NULL) && (op_kind() != Token::kTRUNCDIV) &&
(op_kind() != Token::kSHL) && (op_kind() != Token::kMUL) &&
(op_kind() != Token::kMOD) && CanBeImmediate(right_constant->value())) {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::Constant(right_constant));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
if (op_kind() == Token::kTRUNCDIV) {
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (RightIsPowerOfTwoConstant()) {
summary->set_in(0, Location::RequiresRegister());
ConstantInstr* right_constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(right_constant));
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
} else {
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(0, Location::SameAsFirstInput());
// Will be used for sign extension and division.
summary->set_temp(0, Location::RegisterLocation(RDX));
}
return summary;
} else if (op_kind() == Token::kMOD) {
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(RDX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(0, Location::SameAsFirstInput());
// Will be used for sign extension and division.
summary->set_temp(0, Location::RegisterLocation(RAX));
return summary;
} else if (op_kind() == Token::kSHR) {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), RCX));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
} else if (op_kind() == Token::kSHL) {
// Shift-by-1 overflow checking can use flags, otherwise we need a temp.
const bool shiftBy1 =
(right_constant != NULL) && IsSmiValue(right_constant->value(), 1);
const intptr_t kNumTemps = (can_overflow() && !shiftBy1) ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), RCX));
if (kNumTemps == 1) {
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(0, Location::SameAsFirstInput());
return summary;
} else {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
ConstantInstr* constant = right()->definition()->AsConstant();
if (constant != NULL) {
summary->set_in(1, Location::RegisterOrSmiConstant(right()));
} else {
summary->set_in(1, Location::PrefersRegister());
}
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
}
void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (op_kind() == Token::kSHL) {
EmitSmiShiftLeft(compiler, this);
return;
}
Register left = locs()->in(0).reg();
Register result = locs()->out(0).reg();
ASSERT(left == result);
Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
const int64_t imm = reinterpret_cast<int64_t>(constant.raw());
switch (op_kind()) {
case Token::kADD: {
__ AddImmediate(left, Immediate(imm));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ SubImmediate(left, Immediate(imm));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
// Keep left value tagged and untag right value.
const intptr_t value = Smi::Cast(constant).Value();
__ MulImmediate(left, Immediate(value));
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kTRUNCDIV: {
const intptr_t value = Smi::Cast(constant).Value();
ASSERT(value != kIntptrMin);
ASSERT(Utils::IsPowerOfTwo(Utils::Abs(value)));
const intptr_t shift_count =
Utils::ShiftForPowerOfTwo(Utils::Abs(value)) + kSmiTagSize;
ASSERT(kSmiTagSize == 1);
Register temp = locs()->temp(0).reg();
__ movq(temp, left);
__ sarq(temp, Immediate(63));
ASSERT(shift_count > 1); // 1, -1 case handled above.
__ shrq(temp, Immediate(64 - shift_count));
__ addq(left, temp);
ASSERT(shift_count > 0);
__ sarq(left, Immediate(shift_count));
if (value < 0) {
__ negq(left);
}
__ SmiTag(left);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ AndImmediate(left, Immediate(imm));
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ OrImmediate(left, Immediate(imm));
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ XorImmediate(left, Immediate(imm));
break;
}
case Token::kSHR: {
// sarq operation masks the count to 6 bits.
const intptr_t kCountLimit = 0x3F;
const intptr_t value = Smi::Cast(constant).Value();
__ sarq(left,
Immediate(Utils::Minimum(value + kSmiTagSize, kCountLimit)));
__ SmiTag(left);
break;
}
default:
UNREACHABLE();
break;
}
return;
} // locs()->in(1).IsConstant().
if (locs()->in(1).IsStackSlot()) {
const Address& right = locs()->in(1).ToStackSlotAddress();
switch (op_kind()) {
case Token::kADD: {
__ addq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
__ SmiUntag(left);
__ imulq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andq(left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orq(left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorq(left, right);
break;
}
default:
UNREACHABLE();
break;
}
return;
} // locs()->in(1).IsStackSlot().
// if locs()->in(1).IsRegister.
Register right = locs()->in(1).reg();
switch (op_kind()) {
case Token::kADD: {
__ addq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kSUB: {
__ subq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kMUL: {
__ SmiUntag(left);
__ imulq(left, right);
if (deopt != NULL) __ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ andq(left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ orq(left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xorq(left, right);
break;
}
case Token::kTRUNCDIV: {
Label not_32bit, done;
Register temp = locs()->temp(0).reg();
ASSERT(left == RAX);
ASSERT((right != RDX) && (right != RAX));
ASSERT(temp == RDX);
ASSERT(result == RAX);
if (RangeUtils::CanBeZero(right_range())) {
// Handle divide by zero in runtime.
__ testq(right, right);
__ j(ZERO, deopt);
}
// Check if both operands fit into 32bits as idiv with 64bit operands
// requires twice as many cycles and has much higher latency.
// We are checking this before untagging them to avoid corner case
// dividing INT_MAX by -1 that raises exception because quotient is
// too large for 32bit register.
__ movsxd(temp, left);
__ cmpq(temp, left);
__ j(NOT_EQUAL, &not_32bit);
__ movsxd(temp, right);
__ cmpq(temp, right);
__ j(NOT_EQUAL, &not_32bit);
// Both operands are 31bit smis. Divide using 32bit idiv.
__ SmiUntag(left);
__ SmiUntag(right);
__ cdq();
__ idivl(right);
__ movsxd(result, result);
__ jmp(&done);
// Divide using 64bit idiv.
__ Bind(&not_32bit);
__ SmiUntag(left);
__ SmiUntag(right);
__ cqo(); // Sign extend RAX -> RDX:RAX.
__ idivq(right); // RAX: quotient, RDX: remainder.
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ CompareImmediate(result, Immediate(0x4000000000000000));
__ j(EQUAL, deopt);
__ Bind(&done);
__ SmiTag(result);
break;
}
case Token::kMOD: {
Label not_32bit, div_done;
Register temp = locs()->temp(0).reg();
ASSERT(left == RDX);
ASSERT((right != RDX) && (right != RAX));
ASSERT(temp == RAX);
ASSERT(result == RDX);
if (RangeUtils::CanBeZero(right_range())) {
// Handle divide by zero in runtime.
__ testq(right, right);
__ j(ZERO, deopt);
}
// Check if both operands fit into 32bits as idiv with 64bit operands
// requires twice as many cycles and has much higher latency.
// We are checking this before untagging them to avoid corner case
// dividing INT_MAX by -1 that raises exception because quotient is
// too large for 32bit register.
__ movsxd(temp, left);
__ cmpq(temp, left);
__ j(NOT_EQUAL, &not_32bit);
__ movsxd(temp, right);
__ cmpq(temp, right);
__ j(NOT_EQUAL, &not_32bit);
// Both operands are 31bit smis. Divide using 32bit idiv.
__ SmiUntag(left);
__ SmiUntag(right);
__ movq(RAX, RDX);
__ cdq();
__ idivl(right);
__ movsxd(result, result);
__ jmp(&div_done);
// Divide using 64bit idiv.
__ Bind(&not_32bit);
__ SmiUntag(left);
__ SmiUntag(right);
__ movq(RAX, RDX);
__ cqo(); // Sign extend RAX -> RDX:RAX.
__ idivq(right); // RAX: quotient, RDX: remainder.
__ Bind(&div_done);
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
Label all_done;
__ cmpq(result, Immediate(0));
__ j(GREATER_EQUAL, &all_done, Assembler::kNearJump);
// Result is negative, adjust it.
if (RangeUtils::Overlaps(right_range(), -1, 1)) {
Label subtract;
__ cmpq(right, Immediate(0));
__ j(LESS, &subtract, Assembler::kNearJump);
__ addq(result, right);
__ jmp(&all_done, Assembler::kNearJump);
__ Bind(&subtract);
__ subq(result, right);
} else if (right_range()->IsPositive()) {
// Right is positive.
__ addq(result, right);
} else {
// Right is negative.
__ subq(result, right);
}
__ Bind(&all_done);
__ SmiTag(result);
break;
}
case Token::kSHR: {
if (CanDeoptimize()) {
__ CompareImmediate(right, Immediate(0));
__ j(LESS, deopt);
}
__ SmiUntag(right);
// sarq operation masks the count to 6 bits.
const intptr_t kCountLimit = 0x3F;
if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(), kCountLimit)) {
__ CompareImmediate(right, Immediate(kCountLimit));
Label count_ok;
__ j(LESS, &count_ok, Assembler::kNearJump);
__ LoadImmediate(right, Immediate(kCountLimit));
__ Bind(&count_ok);
}
ASSERT(right == RCX); // Count must be in RCX
__ SmiUntag(left);
__ sarq(left, right);
__ SmiTag(left);
break;
}
case Token::kDIV: {
// Dispatches to 'Double./'.
// TODO(srdjan): Implement as conversion to double and double division.
UNREACHABLE();
break;
}
case Token::kOR:
case Token::kAND: {
// Flow graph builder has dissected this operation to guarantee correct
// behavior (short-circuit evaluation).
UNREACHABLE();
break;
}
default:
UNREACHABLE();
break;
}
}
LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
ASSERT((left_cid != kDoubleCid) && (right_cid != kDoubleCid));
const intptr_t kNumInputs = 2;
const bool need_temp = (left()->definition() != right()->definition()) &&
(left_cid != kSmiCid) && (right_cid != kSmiCid);
const intptr_t kNumTemps = need_temp ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
if (need_temp) summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryDoubleOp,
licm_hoisted_ ? ICData::kHoisted : 0);
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
if (this->left()->definition() == this->right()->definition()) {
__ testq(left, Immediate(kSmiTagMask));
} else if (left_cid == kSmiCid) {
__ testq(right, Immediate(kSmiTagMask));
} else if (right_cid == kSmiCid) {
__ testq(left, Immediate(kSmiTagMask));
} else {
Register temp = locs()->temp(0).reg();
__ movq(temp, left);
__ orq(temp, right);
__ testq(temp, Immediate(kSmiTagMask));
}
__ j(ZERO, deopt);
}
LocationSummary* BoxInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register out_reg = locs()->out(0).reg();
Register temp = locs()->temp(0).reg();
XmmRegister value = locs()->in(0).fpu_reg();
BoxAllocationSlowPath::Allocate(compiler, this,
compiler->BoxClassFor(from_representation()),
out_reg, temp);
switch (from_representation()) {
case kUnboxedDouble:
__ movsd(FieldAddress(out_reg, ValueOffset()), value);
break;
case kUnboxedFloat32x4:
case kUnboxedFloat64x2:
case kUnboxedInt32x4:
__ movups(FieldAddress(out_reg, ValueOffset()), value);
break;
default:
UNREACHABLE();
break;
}
}
LocationSummary* UnboxInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
const bool needs_writable_input =
(representation() != kUnboxedInt64) &&
(value()->Type()->ToNullableCid() != BoxCid());
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, needs_writable_input ? Location::WritableRegister()
: Location::RequiresRegister());
if (representation() == kUnboxedInt64) {
summary->set_out(0, Location::SameAsFirstInput());
} else {
summary->set_out(0, Location::RequiresFpuRegister());
}
return summary;
}
void UnboxInstr::EmitLoadFromBox(FlowGraphCompiler* compiler) {
const Register box = locs()->in(0).reg();
switch (representation()) {
case kUnboxedInt64: {
const Register result = locs()->out(0).reg();
__ movq(result, FieldAddress(box, ValueOffset()));
break;
}
case kUnboxedDouble: {
const FpuRegister result = locs()->out(0).fpu_reg();
__ movsd(result, FieldAddress(box, ValueOffset()));
break;
}
case kUnboxedFloat32x4:
case kUnboxedFloat64x2:
case kUnboxedInt32x4: {
const FpuRegister result = locs()->out(0).fpu_reg();
__ movups(result, FieldAddress(box, ValueOffset()));
break;
}
default:
UNREACHABLE();
break;
}
}
void UnboxInstr::EmitSmiConversion(FlowGraphCompiler* compiler) {
const Register box = locs()->in(0).reg();
switch (representation()) {
case kUnboxedInt64: {
const Register result = locs()->out(0).reg();
ASSERT(result == box);
__ SmiUntag(box);
break;
}
case kUnboxedDouble: {
const FpuRegister result = locs()->out(0).fpu_reg();
__ SmiUntag(box);
__ cvtsi2sdq(result, box);
break;
}
default:
UNREACHABLE();
break;
}
}
void UnboxInstr::EmitLoadInt64FromBoxOrSmi(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
ASSERT(value == result);
Label done;
__ SmiUntag(value);
__ j(NOT_CARRY, &done, Assembler::kNearJump);
__ movq(value, Address(value, TIMES_2, Mint::value_offset()));
__ Bind(&done);
}
LocationSummary* UnboxInteger32Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = (!is_truncating() && CanDeoptimize()) ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
if (kNumTemps > 0) {
summary->set_temp(0, Location::RequiresRegister());
}
return summary;
}
void UnboxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
Label* deopt = CanDeoptimize() ? compiler->AddDeoptStub(
GetDeoptId(), ICData::kDeoptUnboxInteger)
: NULL;
ASSERT(value == locs()->out(0).reg());
if (value_cid == kSmiCid) {
__ SmiUntag(value);
} else if (value_cid == kMintCid) {
__ movq(value, FieldAddress(value, Mint::value_offset()));
} else if (!CanDeoptimize()) {
// Type information is not conclusive, but range analysis found
// the value to be in int64 range. Therefore it must be a smi
// or mint value.
ASSERT(is_truncating());
Label done;
__ SmiUntag(value);
__ j(NOT_CARRY, &done, Assembler::kNearJump);
__ movq(value, Address(value, TIMES_2, Mint::value_offset()));
__ Bind(&done);
return;
} else {
Label done;
// Optimistically untag value.
__ SmiUntagOrCheckClass(value, kMintCid, &done);
__ j(NOT_EQUAL, deopt);
// Undo untagging by multiplying value with 2.
__ movq(value, Address(value, TIMES_2, Mint::value_offset()));
__ Bind(&done);
}
// TODO(vegorov): as it is implemented right now truncating unboxing would
// leave "garbage" in the higher word.
if (!is_truncating() && (deopt != NULL)) {
ASSERT(representation() == kUnboxedInt32);
Register temp = locs()->temp(0).reg();
__ movsxd(temp, value);
__ cmpq(temp, value);
__ j(NOT_EQUAL, deopt);
}
}
LocationSummary* BoxInteger32Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((from_representation() == kUnboxedInt32) ||
(from_representation() == kUnboxedUint32));
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
ASSERT(value != out);
ASSERT(kSmiTagSize == 1);
if (from_representation() == kUnboxedInt32) {
__ movsxd(out, value);
} else {
ASSERT(from_representation() == kUnboxedUint32);
__ movl(out, value);
}
__ SmiTag(out);
}
LocationSummary* BoxInt64Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = ValueFitsSmi() ? 0 : 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
ValueFitsSmi() ? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
if (!ValueFitsSmi()) {
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxInt64Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register out = locs()->out(0).reg();
const Register value = locs()->in(0).reg();
__ MoveRegister(out, value);
__ SmiTag(out);
if (!ValueFitsSmi()) {
const Register temp = locs()->temp(0).reg();
Label done;
__ j(NO_OVERFLOW, &done);
BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(), out,
temp);
__ movq(FieldAddress(out, Mint::value_offset()), value);
__ Bind(&done);
}
}
LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == left);
switch (op_kind()) {
case Token::kADD:
__ addsd(left, right);
break;
case Token::kSUB:
__ subsd(left, right);
break;
case Token::kMUL:
__ mulsd(left, right);
break;
case Token::kDIV:
__ divsd(left, right);
break;
default:
UNREACHABLE();
}
}
LocationSummary* DoubleTestOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps =
(op_kind() == MethodRecognizer::kDouble_getIsInfinite) ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
if (op_kind() == MethodRecognizer::kDouble_getIsInfinite) {
summary->set_temp(0, Location::RequiresRegister());
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
Condition DoubleTestOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
ASSERT(compiler->is_optimizing());
const XmmRegister value = locs()->in(0).fpu_reg();
const bool is_negated = kind() != Token::kEQ;
if (op_kind() == MethodRecognizer::kDouble_getIsNaN) {
Label is_nan;
__ comisd(value, value);
return is_negated ? PARITY_ODD : PARITY_EVEN;
} else {
ASSERT(op_kind() == MethodRecognizer::kDouble_getIsInfinite);
const Register temp = locs()->temp(0).reg();
__ AddImmediate(RSP, Immediate(-kDoubleSize));
__ movsd(Address(RSP, 0), value);
__ movq(temp, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(kDoubleSize));
// Mask off the sign.
__ AndImmediate(temp, Immediate(0x7FFFFFFFFFFFFFFFLL));
// Compare with +infinity.
__ CompareImmediate(temp, Immediate(0x7FF0000000000000LL));
return is_negated ? NOT_EQUAL : EQUAL;
}
}
// SIMD
#define DEFINE_EMIT(Name, Args) \
static void Emit##Name(FlowGraphCompiler* compiler, SimdOpInstr* instr, \
PP_APPLY(PP_UNPACK, Args))
#define SIMD_OP_FLOAT_ARITH(V, Name, op) \
V(Float32x4##Name, op##ps) \
V(Float64x2##Name, op##pd)
#define SIMD_OP_SIMPLE_BINARY(V) \
SIMD_OP_FLOAT_ARITH(V, Add, add) \
SIMD_OP_FLOAT_ARITH(V, Sub, sub) \
SIMD_OP_FLOAT_ARITH(V, Mul, mul) \
SIMD_OP_FLOAT_ARITH(V, Div, div) \
SIMD_OP_FLOAT_ARITH(V, Min, min) \
SIMD_OP_FLOAT_ARITH(V, Max, max) \
V(Int32x4Add, addpl) \
V(Int32x4Sub, subpl) \
V(Int32x4BitAnd, andps) \
V(Int32x4BitOr, orps) \
V(Int32x4BitXor, xorps) \
V(Float32x4Equal, cmppseq) \
V(Float32x4NotEqual, cmppsneq) \
V(Float32x4GreaterThan, cmppsnle) \
V(Float32x4GreaterThanOrEqual, cmppsnlt) \
V(Float32x4LessThan, cmppslt) \
V(Float32x4LessThanOrEqual, cmppsle)
DEFINE_EMIT(SimdBinaryOp,
(SameAsFirstInput, XmmRegister left, XmmRegister right)) {
switch (instr->kind()) {
#define EMIT(Name, op) \
case SimdOpInstr::k##Name: \
__ op(left, right); \
break;
SIMD_OP_SIMPLE_BINARY(EMIT)
#undef EMIT
case SimdOpInstr::kFloat32x4Scale:
__ cvtsd2ss(left, left);
__ shufps(left, left, Immediate(0x00));
__ mulps(left, right);
break;
case SimdOpInstr::kFloat32x4ShuffleMix:
case SimdOpInstr::kInt32x4ShuffleMix:
__ shufps(left, right, Immediate(instr->mask()));
break;
case SimdOpInstr::kFloat64x2Constructor:
// shufpd mask 0x0 results in:
// Lower 64-bits of left = Lower 64-bits of left.
// Upper 64-bits of left = Lower 64-bits of right.
__ shufpd(left, right, Immediate(0x0));
break;
case SimdOpInstr::kFloat64x2Scale:
__ shufpd(right, right, Immediate(0x00));
__ mulpd(left, right);
break;
case SimdOpInstr::kFloat64x2WithX:
case SimdOpInstr::kFloat64x2WithY: {
// TODO(dartbug.com/30949) avoid transfer through memory.
COMPILE_ASSERT(SimdOpInstr::kFloat64x2WithY ==
(SimdOpInstr::kFloat64x2WithX + 1));
const intptr_t lane_index = instr->kind() - SimdOpInstr::kFloat64x2WithX;
ASSERT(0 <= lane_index && lane_index < 2);
__ SubImmediate(RSP, Immediate(kSimd128Size));
__ movups(Address(RSP, 0), left);
__ movsd(Address(RSP, lane_index * kDoubleSize), right);
__ movups(left, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(kSimd128Size));
break;
}
case SimdOpInstr::kFloat32x4WithX:
case SimdOpInstr::kFloat32x4WithY:
case SimdOpInstr::kFloat32x4WithZ:
case SimdOpInstr::kFloat32x4WithW: {
// TODO(dartbug.com/30949) avoid transfer through memory. SSE4.1 has
// insertps. SSE2 these instructions can be implemented via a combination
// of shufps/movss/movlhps.
COMPILE_ASSERT(
SimdOpInstr::kFloat32x4WithY == (SimdOpInstr::kFloat32x4WithX + 1) &&
SimdOpInstr::kFloat32x4WithZ == (SimdOpInstr::kFloat32x4WithX + 2) &&
SimdOpInstr::kFloat32x4WithW == (SimdOpInstr::kFloat32x4WithX + 3));
const intptr_t lane_index = instr->kind() - SimdOpInstr::kFloat32x4WithX;
ASSERT(0 <= lane_index && lane_index < 4);
__ cvtsd2ss(left, left);
__ SubImmediate(RSP, Immediate(kSimd128Size));
__ movups(Address(RSP, 0), right);
__ movss(Address(RSP, lane_index * kFloatSize), left);
__ movups(left, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(kSimd128Size));
break;
}
default:
UNREACHABLE();
}
}
#define SIMD_OP_SIMPLE_UNARY(V) \
SIMD_OP_FLOAT_ARITH(V, Sqrt, sqrt) \
SIMD_OP_FLOAT_ARITH(V, Negate, negate) \
SIMD_OP_FLOAT_ARITH(V, Abs, abs) \
V(Float32x4Reciprocal, rcpps) \
V(Float32x4ReciprocalSqrt, rsqrtps)
DEFINE_EMIT(SimdUnaryOp, (SameAsFirstInput, XmmRegister value)) {
// TODO(dartbug.com/30949) select better register constraints to avoid
// redundant move of input into a different register.
switch (instr->kind()) {
#define EMIT(Name, op) \
case SimdOpInstr::k##Name: \
__ op(value, value); \
break;
SIMD_OP_SIMPLE_UNARY(EMIT)
#undef EMIT
case SimdOpInstr::kFloat32x4ShuffleX:
// Shuffle not necessary.
__ cvtss2sd(value, value);
break;
case SimdOpInstr::kFloat32x4ShuffleY:
__ shufps(value, value, Immediate(0x55));
__ cvtss2sd(value, value);
break;
case SimdOpInstr::kFloat32x4ShuffleZ:
__ shufps(value, value, Immediate(0xAA));
__ cvtss2sd(value, value);
break;
case SimdOpInstr::kFloat32x4ShuffleW:
__ shufps(value, value, Immediate(0xFF));
__ cvtss2sd(value, value);
break;
case SimdOpInstr::kFloat32x4Shuffle:
case SimdOpInstr::kInt32x4Shuffle:
__ shufps(value, value, Immediate(instr->mask()));
break;
case SimdOpInstr::kFloat32x4Splat:
// Convert to Float32.
__ cvtsd2ss(value, value);
// Splat across all lanes.
__ shufps(value, value, Immediate(0x00));
break;
case SimdOpInstr::kFloat32x4ToFloat64x2:
__ cvtps2pd(value, value);
break;
case SimdOpInstr::kFloat64x2ToFloat32x4:
__ cvtpd2ps(value, value);
break;
case SimdOpInstr::kInt32x4ToFloat32x4:
case SimdOpInstr::kFloat32x4ToInt32x4:
// TODO(dartbug.com/30949) these operations are essentially nop and should
// not generate any code. They should be removed from the graph before
// code generation.
break;
case SimdOpInstr::kFloat64x2GetX:
// NOP.
break;
case SimdOpInstr::kFloat64x2GetY:
__ shufpd(value, value, Immediate(0x33));
break;
case SimdOpInstr::kFloat64x2Splat:
__ shufpd(value, value, Immediate(0x0));
break;
default:
UNREACHABLE();
break;
}
}
DEFINE_EMIT(SimdGetSignMask, (Register out, XmmRegister value)) {
switch (instr->kind()) {
case SimdOpInstr::kFloat32x4GetSignMask:
case SimdOpInstr::kInt32x4GetSignMask:
__ movmskps(out, value);
break;
case SimdOpInstr::kFloat64x2GetSignMask:
__ movmskpd(out, value);
break;
default:
UNREACHABLE();
break;
}
}
DEFINE_EMIT(
Float32x4Constructor,
(SameAsFirstInput, XmmRegister v0, XmmRegister, XmmRegister, XmmRegister)) {
// TODO(dartbug.com/30949) avoid transfer through memory. SSE4.1 has
// insertps, with SSE2 this instruction can be implemented through unpcklps.
const XmmRegister out = v0;
__ SubImmediate(RSP, Immediate(kSimd128Size));
for (intptr_t i = 0; i < 4; i++) {
__ cvtsd2ss(out, instr->locs()->in(i).fpu_reg());
__ movss(Address(RSP, i * kFloatSize), out);
}
__ movups(out, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(kSimd128Size));
}
DEFINE_EMIT(Float32x4Zero, (XmmRegister value)) {
__ xorps(value, value);
}
DEFINE_EMIT(Float64x2Zero, (XmmRegister value)) {
__ xorpd(value, value);
}
DEFINE_EMIT(Float32x4Clamp,
(SameAsFirstInput,
XmmRegister value,
XmmRegister lower,
XmmRegister upper)) {
__ minps(value, upper);
__ maxps(value, lower);
}
DEFINE_EMIT(Int32x4Constructor,
(XmmRegister result, Register, Register, Register, Register)) {
// TODO(dartbug.com/30949) avoid transfer through memory.
__ SubImmediate(RSP, Immediate(kSimd128Size));
for (intptr_t i = 0; i < 4; i++) {
__ movl(Address(RSP, i * kInt32Size), instr->locs()->in(i).reg());
}
__ movups(result, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(kSimd128Size));
}
DEFINE_EMIT(Int32x4BoolConstructor,
(XmmRegister result,
Register,
Register,
Register,
Register,
Temp<Register> temp)) {
// TODO(dartbug.com/30949) avoid transfer through memory.
__ SubImmediate(RSP, Immediate(kSimd128Size));
for (intptr_t i = 0; i < 4; i++) {
Label done, load_false;
__ xorq(temp, temp);
__ CompareObject(instr->locs()->in(i).reg(), Bool::True());
__ setcc(EQUAL, ByteRegisterOf(temp));
__ negl(temp); // temp = input ? -1 : 0
__ movl(Address(RSP, kInt32Size * i), temp);
}
__ movups(result, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(kSimd128Size));
}
static void EmitToBoolean(FlowGraphCompiler* compiler, Register out) {
ASSERT_BOOL_FALSE_FOLLOWS_BOOL_TRUE();
__ testl(out, out);
__ setcc(ZERO, ByteRegisterOf(out));
__ movzxb(out, out);
__ movq(out, Address(THR, out, TIMES_8, Thread::bool_true_offset()));
}
DEFINE_EMIT(Int32x4GetFlagZorW,
(Register out, XmmRegister value, Temp<XmmRegister> temp)) {
__ movhlps(temp, value); // extract upper half.
__ movq(out, temp);
if (instr->kind() == SimdOpInstr::kInt32x4GetFlagW) {
__ shrq(out, Immediate(32)); // extract upper 32bits.
}
EmitToBoolean(compiler, out);
}
DEFINE_EMIT(Int32x4GetFlagXorY, (Register out, XmmRegister value)) {
__ movq(out, value);
if (instr->kind() == SimdOpInstr::kInt32x4GetFlagY) {
__ shrq(out, Immediate(32)); // extract upper 32bits.
}
EmitToBoolean(compiler, out);
}
DEFINE_EMIT(
Int32x4WithFlag,
(SameAsFirstInput, XmmRegister mask, Register flag, Temp<Register> temp)) {
// TODO(dartbug.com/30949) avoid transfer through memory.
COMPILE_ASSERT(
SimdOpInstr::kInt32x4WithFlagY == (SimdOpInstr::kInt32x4WithFlagX + 1) &&
SimdOpInstr::kInt32x4WithFlagZ == (SimdOpInstr::kInt32x4WithFlagX + 2) &&
SimdOpInstr::kInt32x4WithFlagW == (SimdOpInstr::kInt32x4WithFlagX + 3));
const intptr_t lane_index = instr->kind() - SimdOpInstr::kInt32x4WithFlagX;
ASSERT(0 <= lane_index && lane_index < 4);
__ SubImmediate(RSP, Immediate(kSimd128Size));
__ movups(Address(RSP, 0), mask);
// temp = flag == true ? -1 : 0
__ xorq(temp, temp);
__ CompareObject(flag, Bool::True());
__ setcc(EQUAL, ByteRegisterOf(temp));
__ negl(temp);
__ movl(Address(RSP, lane_index * kInt32Size), temp);
__ movups(mask, Address(RSP, 0));
__ AddImmediate(RSP, Immediate(kSimd128Size));
}
DEFINE_EMIT(Int32x4Select,
(SameAsFirstInput,
XmmRegister mask,
XmmRegister trueValue,
XmmRegister falseValue,
Temp<XmmRegister> temp)) {
// Copy mask.
__ movaps(temp, mask);
// Invert it.
__ notps(temp, temp);
// mask = mask & trueValue.
__ andps(mask, trueValue);
// temp = temp & falseValue.
__ andps(temp, falseValue);
// out = mask | temp.
__ orps(mask, temp);
}
// Map SimdOpInstr::Kind-s to corresponding emit functions. Uses the following
// format:
//
// CASE(OpA) CASE(OpB) ____(Emitter) - Emitter is used to emit OpA and OpB.
// SIMPLE(OpA) - Emitter with name OpA is used to emit OpA.
//
#define SIMD_OP_VARIANTS(CASE, ____, SIMPLE) \
SIMD_OP_SIMPLE_BINARY(CASE) \
CASE(Float32x4Scale) \
CASE(Float32x4ShuffleMix) \
CASE(Int32x4ShuffleMix) \
CASE(Float64x2Constructor) \
CASE(Float64x2Scale) \
CASE(Float64x2WithX) \
CASE(Float64x2WithY) \
CASE(Float32x4WithX) \
CASE(Float32x4WithY) \
CASE(Float32x4WithZ) \
CASE(Float32x4WithW) \
____(SimdBinaryOp) \
SIMD_OP_SIMPLE_UNARY(CASE) \
CASE(Float32x4ShuffleX) \
CASE(Float32x4ShuffleY) \
CASE(Float32x4ShuffleZ) \
CASE(Float32x4ShuffleW) \
CASE(Float32x4Shuffle) \
CASE(Int32x4Shuffle) \
CASE(Float32x4Splat) \
CASE(Float32x4ToFloat64x2) \
CASE(Float64x2ToFloat32x4) \
CASE(Int32x4ToFloat32x4) \
CASE(Float32x4ToInt32x4) \
CASE(Float64x2GetX) \
CASE(Float64x2GetY) \
CASE(Float64x2Splat) \
____(SimdUnaryOp) \
CASE(Float32x4GetSignMask) \
CASE(Int32x4GetSignMask) \
CASE(Float64x2GetSignMask) \
____(SimdGetSignMask) \
SIMPLE(Float32x4Constructor) \
SIMPLE(Int32x4Constructor) \
SIMPLE(Int32x4BoolConstructor) \
SIMPLE(Float32x4Zero) \
SIMPLE(Float64x2Zero) \
SIMPLE(Float32x4Clamp) \
CASE(Int32x4GetFlagX) \
CASE(Int32x4GetFlagY) \
____(Int32x4GetFlagXorY) \
CASE(Int32x4GetFlagZ) \
CASE(Int32x4GetFlagW) \
____(Int32x4GetFlagZorW) \
CASE(Int32x4WithFlagX) \
CASE(Int32x4WithFlagY) \
CASE(Int32x4WithFlagZ) \
CASE(Int32x4WithFlagW) \
____(Int32x4WithFlag) \
SIMPLE(Int32x4Select)
LocationSummary* SimdOpInstr::MakeLocationSummary(Zone* zone, bool opt) const {
switch (kind()) {
#define CASE(Name, ...) case k##Name:
#define EMIT(Name) \
return MakeLocationSummaryFromEmitter(zone, this, &Emit##Name);
#define SIMPLE(Name) CASE(Name) EMIT(Name)
SIMD_OP_VARIANTS(CASE, EMIT, SIMPLE)
#undef CASE
#undef EMIT
#undef SIMPLE
case kIllegalSimdOp:
break;
}
UNREACHABLE();
return NULL;
}
void SimdOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
switch (kind()) {
#define CASE(Name, ...) case k##Name:
#define EMIT(Name) \
InvokeEmitter(compiler, this, &Emit##Name); \
break;
#define SIMPLE(Name) CASE(Name) EMIT(Name)
SIMD_OP_VARIANTS(CASE, EMIT, SIMPLE)
#undef CASE
#undef EMIT
#undef SIMPLE
case kIllegalSimdOp:
UNREACHABLE();
break;
}
}
#undef DEFINE_EMIT
LocationSummary* MathUnaryInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((kind() == MathUnaryInstr::kSqrt) ||
(kind() == MathUnaryInstr::kDoubleSquare));
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
if (kind() == MathUnaryInstr::kDoubleSquare) {
summary->set_out(0, Location::SameAsFirstInput());
} else {
summary->set_out(0, Location::RequiresFpuRegister());
}
return summary;
}
void MathUnaryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (kind() == MathUnaryInstr::kSqrt) {
__ sqrtsd(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg());
} else if (kind() == MathUnaryInstr::kDoubleSquare) {
XmmRegister value_reg = locs()->in(0).fpu_reg();
__ mulsd(value_reg, value_reg);
ASSERT(value_reg == locs()->out(0).fpu_reg());
} else {
UNREACHABLE();
}
}
LocationSummary* CaseInsensitiveCompareUC16Instr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(CallingConventions::kArg1Reg));
summary->set_in(1, Location::RegisterLocation(CallingConventions::kArg2Reg));
summary->set_in(2, Location::RegisterLocation(CallingConventions::kArg3Reg));
summary->set_in(3, Location::RegisterLocation(CallingConventions::kArg4Reg));
summary->set_out(0, Location::RegisterLocation(RAX));
return summary;
}
void CaseInsensitiveCompareUC16Instr::EmitNativeCode(
FlowGraphCompiler* compiler) {
// Save RSP. R13 is chosen because it is callee saved so we do not need to
// back it up before calling into the runtime.
static const Register kSavedSPReg = R13;
__ movq(kSavedSPReg, RSP);
__ ReserveAlignedFrameSpace(0);
// Call the function. Parameters are already in their correct spots.
__ CallRuntime(TargetFunction(), TargetFunction().argument_count());
// Restore RSP.
__ movq(RSP, kSavedSPReg);
}
LocationSummary* UnarySmiOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
ASSERT(value == locs()->out(0).reg());
switch (op_kind()) {
case Token::kNEGATE: {
Label* deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnaryOp);
__ negq(value);
__ j(OVERFLOW, deopt);
break;
}
case Token::kBIT_NOT:
__ notq(value);
// Remove inverted smi-tag.
__ AndImmediate(value, Immediate(~kSmiTagMask));
break;
default:
UNREACHABLE();
}
}
LocationSummary* UnaryDoubleOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void UnaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
ASSERT(locs()->out(0).fpu_reg() == value);
__ DoubleNegate(value, value);
}
LocationSummary* MathMinMaxInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
if (result_cid() == kDoubleCid) {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(0, Location::SameAsFirstInput());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
ASSERT(result_cid() == kSmiCid);
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void MathMinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((op_kind() == MethodRecognizer::kMathMin) ||
(op_kind() == MethodRecognizer::kMathMax));
const intptr_t is_min = (op_kind() == MethodRecognizer::kMathMin);
if (result_cid() == kDoubleCid) {
Label done, returns_nan, are_equal;
XmmRegister left = locs()->in(0).fpu_reg();
XmmRegister right = locs()->in(1).fpu_reg();
XmmRegister result = locs()->out(0).fpu_reg();
Register temp = locs()->temp(0).reg();
__ comisd(left, right);
__ j(PARITY_EVEN, &returns_nan, Assembler::kNearJump);
__ j(EQUAL, &are_equal, Assembler::kNearJump);
const Condition double_condition =
is_min ? TokenKindToDoubleCondition(Token::kLT)
: TokenKindToDoubleCondition(Token::kGT);
ASSERT(left == result);
__ j(double_condition, &done, Assembler::kNearJump);
__ movsd(result, right);
__ jmp(&done, Assembler::kNearJump);
__ Bind(&returns_nan);
__ movq(temp, Address(THR, Thread::double_nan_address_offset()));
__ movsd(result, Address(temp, 0));
__ jmp(&done, Assembler::kNearJump);
__ Bind(&are_equal);
Label left_is_negative;
// Check for negative zero: -0.0 is equal 0.0 but min or max must return
// -0.0 or 0.0 respectively.
// Check for negative left value (get the sign bit):
// - min -> left is negative ? left : right.
// - max -> left is negative ? right : left
// Check the sign bit.
__ movmskpd(temp, left);
__ testq(temp, Immediate(1));
if (is_min) {
ASSERT(left == result);
__ j(NOT_ZERO, &done, Assembler::kNearJump); // Negative -> return left.
} else {
ASSERT(left == result);
__ j(ZERO, &done, Assembler::kNearJump); // Positive -> return left.
}
__ movsd(result, right);
__ Bind(&done);
return;
}
ASSERT(result_cid() == kSmiCid);
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register result = locs()->out(0).reg();
__ cmpq(left, right);
ASSERT(result == left);
if (is_min) {
__ cmovgeq(result, right);
} else {
__ cmovlq(result, right);
}
}
LocationSummary* Int32ToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void Int32ToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
FpuRegister result = locs()->out(0).fpu_reg();
__ cvtsi2sdl(result, value);
}
LocationSummary* SmiToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::WritableRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
FpuRegister result = locs()->out(0).fpu_reg();
__ SmiUntag(value);
__ cvtsi2sdq(result, value);
}
DEFINE_BACKEND(Int64ToDouble, (FpuRegister result, Register value)) {
__ cvtsi2sdq(result, value);
}
LocationSummary* DoubleToIntegerInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::RegisterLocation(RCX));
result->set_out(0, Location::RegisterLocation(RAX));
result->set_temp(0, Location::RegisterLocation(RBX));
return result;
}
void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register result = locs()->out(0).reg();
Register value_obj = locs()->in(0).reg();
Register temp = locs()->temp(0).reg();
XmmRegister value_double = XMM0;
ASSERT(result == RAX);
ASSERT(result != value_obj);
ASSERT(result != temp);
__ movsd(value_double, FieldAddress(value_obj, Double::value_offset()));
__ cvttsd2siq(result, value_double);
// Overflow is signalled with minint.
Label do_call, done;
// Check for overflow and that it fits into Smi.
__ movq(temp, result);
__ shlq(temp, Immediate(1));
__ j(OVERFLOW, &do_call, Assembler::kNearJump);
__ SmiTag(result);
__ jmp(&done);
__ Bind(&do_call);
__ pushq(value_obj);
ASSERT(instance_call()->HasICData());
const ICData& ic_data = *instance_call()->ic_data();
ASSERT(ic_data.NumberOfChecksIs(1));
const Function& target = Function::ZoneHandle(ic_data.GetTargetAt(0));
const int kTypeArgsLen = 0;
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
ArgumentsInfo args_info(kTypeArgsLen, kNumberOfArguments, kNoArgumentNames);
compiler->GenerateStaticCall(deopt_id(), instance_call()->token_pos(), target,
args_info, locs(), ICData::Handle(),
ICData::kStatic);
__ Bind(&done);
}
LocationSummary* DoubleToSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresRegister());
result->set_temp(0, Location::RequiresRegister());
return result;
}
void DoubleToSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label* deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptDoubleToSmi);
Register result = locs()->out(0).reg();
XmmRegister value = locs()->in(0).fpu_reg();
Register temp = locs()->temp(0).reg();
__ cvttsd2siq(result, value);
// Overflow is signalled with minint.
Label do_call, done;
// Check for overflow and that it fits into Smi.
__ movq(temp, result);
__ shlq(temp, Immediate(1));
__ j(OVERFLOW, deopt);
__ SmiTag(result);
}
LocationSummary* DoubleToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void DoubleToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
XmmRegister value = locs()->in(0).fpu_reg();
XmmRegister result = locs()->out(0).fpu_reg();
switch (recognized_kind()) {
case MethodRecognizer::kDoubleTruncate:
__ roundsd(result, value, Assembler::kRoundToZero);
break;
case MethodRecognizer::kDoubleFloor:
__ roundsd(result, value, Assembler::kRoundDown);
break;
case MethodRecognizer::kDoubleCeil:
__ roundsd(result, value, Assembler::kRoundUp);
break;
default:
UNREACHABLE();
}
}
LocationSummary* DoubleToFloatInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::SameAsFirstInput());
return result;
}
void DoubleToFloatInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ cvtsd2ss(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg());
}
LocationSummary* FloatToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::SameAsFirstInput());
return result;
}
void FloatToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ cvtss2sd(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg());
}
LocationSummary* InvokeMathCFunctionInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
// Calling convention on x64 uses XMM0 and XMM1 to pass the first two
// double arguments and XMM0 to return the result. Unfortunately
// currently we can't specify these registers because ParallelMoveResolver
// assumes that XMM0 is free at all times.
// TODO(vegorov): allow XMM0 to be used.
ASSERT((InputCount() == 1) || (InputCount() == 2));
const intptr_t kNumTemps =
(recognized_kind() == MethodRecognizer::kMathDoublePow) ? 3 : 1;
LocationSummary* result = new (zone)
LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall);
ASSERT(R13 != CALLEE_SAVED_TEMP);
ASSERT(((1 << R13) & CallingConventions::kCalleeSaveCpuRegisters) != 0);
result->set_temp(0, Location::RegisterLocation(R13));
result->set_in(0, Location::FpuRegisterLocation(XMM2));
if (InputCount() == 2) {
result->set_in(1, Location::FpuRegisterLocation(XMM1));
}
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
// Temp index 1.
result->set_temp(1, Location::RegisterLocation(RAX));
// Temp index 2.
result->set_temp(2, Location::FpuRegisterLocation(XMM4));
}
result->set_out(0, Location::FpuRegisterLocation(XMM3));
return result;
}
// Pseudo code:
// if (exponent == 0.0) return 1.0;
// // Speed up simple cases.
// if (exponent == 1.0) return base;
// if (exponent == 2.0) return base * base;
// if (exponent == 3.0) return base * base * base;
// if (base == 1.0) return 1.0;
// if (base.isNaN || exponent.isNaN) {
// return double.NAN;
// }
// if (base != -Infinity && exponent == 0.5) {
// if (base == 0.0) return 0.0;
// return sqrt(value);
// }
// TODO(srdjan): Move into a stub?
static void InvokeDoublePow(FlowGraphCompiler* compiler,
InvokeMathCFunctionInstr* instr) {
ASSERT(instr->recognized_kind() == MethodRecognizer::kMathDoublePow);
const intptr_t kInputCount = 2;
ASSERT(instr->InputCount() == kInputCount);
LocationSummary* locs = instr->locs();
XmmRegister base = locs->in(0).fpu_reg();
XmmRegister exp = locs->in(1).fpu_reg();
XmmRegister result = locs->out(0).fpu_reg();
Register temp = locs->temp(InvokeMathCFunctionInstr::kObjectTempIndex).reg();
XmmRegister zero_temp =
locs->temp(InvokeMathCFunctionInstr::kDoubleTempIndex).fpu_reg();
__ xorps(zero_temp, zero_temp);
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(1)));
__ movsd(result, FieldAddress(temp, Double::value_offset()));
Label check_base, skip_call;
// exponent == 0.0 -> return 1.0;
__ comisd(exp, zero_temp);
__ j(PARITY_EVEN, &check_base, Assembler::kNearJump);
__ j(EQUAL, &skip_call); // 'result' is 1.0.
// exponent == 1.0 ?
__ comisd(exp, result);
Label return_base;
__ j(EQUAL, &return_base, Assembler::kNearJump);
// exponent == 2.0 ?
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(2.0)));
__ movsd(XMM0, FieldAddress(temp, Double::value_offset()));
__ comisd(exp, XMM0);
Label return_base_times_2;
__ j(EQUAL, &return_base_times_2, Assembler::kNearJump);
// exponent == 3.0 ?
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(3.0)));
__ movsd(XMM0, FieldAddress(temp, Double::value_offset()));
__ comisd(exp, XMM0);
__ j(NOT_EQUAL, &check_base);
// Base times 3.
__ movsd(result, base);
__ mulsd(result, base);
__ mulsd(result, base);
__ jmp(&skip_call);
__ Bind(&return_base);
__ movsd(result, base);
__ jmp(&skip_call);
__ Bind(&return_base_times_2);
__ movsd(result, base);
__ mulsd(result, base);
__ jmp(&skip_call);
__ Bind(&check_base);
// Note: 'exp' could be NaN.
Label return_nan;
// base == 1.0 -> return 1.0;
__ comisd(base, result);
__ j(PARITY_EVEN, &return_nan, Assembler::kNearJump);
__ j(EQUAL, &skip_call, Assembler::kNearJump);
// Note: 'base' could be NaN.
__ comisd(exp, base);
// Neither 'exp' nor 'base' is NaN.
Label try_sqrt;
__ j(PARITY_ODD, &try_sqrt, Assembler::kNearJump);
// Return NaN.
__ Bind(&return_nan);
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(NAN)));
__ movsd(result, FieldAddress(temp, Double::value_offset()));
__ jmp(&skip_call);
Label do_pow, return_zero;
__ Bind(&try_sqrt);
// Before calling pow, check if we could use sqrt instead of pow.
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(kNegInfinity)));
__ movsd(result, FieldAddress(temp, Double::value_offset()));
// base == -Infinity -> call pow;
__ comisd(base, result);
__ j(EQUAL, &do_pow, Assembler::kNearJump);
// exponent == 0.5 ?
__ LoadObject(temp, Double::ZoneHandle(Double::NewCanonical(0.5)));
__ movsd(result, FieldAddress(temp, Double::value_offset()));
__ comisd(exp, result);
__ j(NOT_EQUAL, &do_pow, Assembler::kNearJump);
// base == 0 -> return 0;
__ comisd(base, zero_temp);
__ j(EQUAL, &return_zero, Assembler::kNearJump);
__ sqrtsd(result, base);
__ jmp(&skip_call, Assembler::kNearJump);
__ Bind(&return_zero);
__ movsd(result, zero_temp);
__ jmp(&skip_call);
__ Bind(&do_pow);
// Save RSP.
__ movq(locs->temp(InvokeMathCFunctionInstr::kSavedSpTempIndex).reg(), RSP);
__ ReserveAlignedFrameSpace(0);
__ movaps(XMM0, locs->in(0).fpu_reg());
ASSERT(locs->in(1).fpu_reg() == XMM1);
__ CallRuntime(instr->TargetFunction(), kInputCount);
__ movaps(locs->out(0).fpu_reg(), XMM0);
// Restore RSP.
__ movq(RSP, locs->temp(InvokeMathCFunctionInstr::kSavedSpTempIndex).reg());
__ Bind(&skip_call);
}
void InvokeMathCFunctionInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (recognized_kind() == MethodRecognizer::kMathDoublePow) {
InvokeDoublePow(compiler, this);
return;
}
// Save RSP.
__ movq(locs()->temp(kSavedSpTempIndex).reg(), RSP);
__ ReserveAlignedFrameSpace(0);
__ movaps(XMM0, locs()->in(0).fpu_reg());
if (InputCount() == 2) {
ASSERT(locs()->in(1).fpu_reg() == XMM1);
}
__ CallRuntime(TargetFunction(), InputCount());
__ movaps(locs()->out(0).fpu_reg(), XMM0);
// Restore RSP.
__ movq(RSP, locs()->temp(kSavedSpTempIndex).reg());
}
LocationSummary* ExtractNthOutputInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
// Only use this instruction in optimized code.
ASSERT(opt);
const intptr_t kNumInputs = 1;
LocationSummary* summary =
new (zone) LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall);
if (representation() == kUnboxedDouble) {
if (index() == 0) {
summary->set_in(
0, Location::Pair(Location::RequiresFpuRegister(), Location::Any()));
} else {
ASSERT(index() == 1);
summary->set_in(
0, Location::Pair(Location::Any(), Location::RequiresFpuRegister()));
}
summary->set_out(0, Location::RequiresFpuRegister());
} else {
ASSERT(representation() == kTagged);
if (index() == 0) {
summary->set_in(
0, Location::Pair(Location::RequiresRegister(), Location::Any()));
} else {
ASSERT(index() == 1);
summary->set_in(
0, Location::Pair(Location::Any(), Location::RequiresRegister()));
}
summary->set_out(0, Location::RequiresRegister());
}
return summary;
}
void ExtractNthOutputInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).IsPairLocation());
PairLocation* pair = locs()->in(0).AsPairLocation();
Location in_loc = pair->At(index());
if (representation() == kUnboxedDouble) {
XmmRegister out = locs()->out(0).fpu_reg();
XmmRegister in = in_loc.fpu_reg();
__ movaps(out, in);
} else {
ASSERT(representation() == kTagged);
Register out = locs()->out(0).reg();
Register in = in_loc.reg();
__ movq(out, in);
}
}
LocationSummary* TruncDivModInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
// Both inputs must be writable because they will be untagged.
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::WritableRegister());
summary->set_out(0, Location::Pair(Location::RegisterLocation(RAX),
Location::RegisterLocation(RDX)));
return summary;
}
void TruncDivModInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(CanDeoptimize());
Label* deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
ASSERT(locs()->out(0).IsPairLocation());
PairLocation* pair = locs()->out(0).AsPairLocation();
Register result1 = pair->At(0).reg();
Register result2 = pair->At(1).reg();
Label not_32bit, done;
Register temp = RDX;
ASSERT(left == RAX);
ASSERT((right != RDX) && (right != RAX));
ASSERT(result1 == RAX);
ASSERT(result2 == RDX);
if (RangeUtils::CanBeZero(divisor_range())) {
// Handle divide by zero in runtime.
__ testq(right, right);
__ j(ZERO, deopt);
}
// Check if both operands fit into 32bits as idiv with 64bit operands
// requires twice as many cycles and has much higher latency.
// We are checking this before untagging them to avoid corner case
// dividing INT_MAX by -1 that raises exception because quotient is
// too large for 32bit register.
__ movsxd(temp, left);
__ cmpq(temp, left);
__ j(NOT_EQUAL, &not_32bit);
__ movsxd(temp, right);
__ cmpq(temp, right);
__ j(NOT_EQUAL, &not_32bit);
// Both operands are 31bit smis. Divide using 32bit idiv.
__ SmiUntag(left);
__ SmiUntag(right);
__ cdq();
__ idivl(right);
__ movsxd(RAX, RAX);
__ movsxd(RDX, RDX);
__ jmp(&done);
// Divide using 64bit idiv.
__ Bind(&not_32bit);
__ SmiUntag(left);
__ SmiUntag(right);
__ cqo(); // Sign extend RAX -> RDX:RAX.
__ idivq(right); // RAX: quotient, RDX: remainder.
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ CompareImmediate(RAX, Immediate(0x4000000000000000));
__ j(EQUAL, deopt);
__ Bind(&done);
// Modulo correction (RDX).
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
Label all_done;
__ cmpq(RDX, Immediate(0));
__ j(GREATER_EQUAL, &all_done, Assembler::kNearJump);
// Result is negative, adjust it.
if ((divisor_range() == NULL) || divisor_range()->Overlaps(-1, 1)) {
Label subtract;
__ cmpq(right, Immediate(0));
__ j(LESS, &subtract, Assembler::kNearJump);
__ addq(RDX, right);
__ jmp(&all_done, Assembler::kNearJump);
__ Bind(&subtract);
__ subq(RDX, right);
} else if (divisor_range()->IsPositive()) {
// Right is positive.
__ addq(RDX, right);
} else {
// Right is negative.
__ subq(RDX, right);
}
__ Bind(&all_done);
__ SmiTag(RAX);
__ SmiTag(RDX);
// Note that the result of an integer division/modulo of two
// in-range arguments, cannot create out-of-range result.
}
LocationSummary* PolymorphicInstanceCallInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
return MakeCallSummary(zone);
}
LocationSummary* BranchInstr::MakeLocationSummary(Zone* zone, bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
// Branches don't produce a result.
comparison()->locs()->set_out(0, Location::NoLocation());
return comparison()->locs();
}
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
comparison()->EmitBranchCode(compiler, this);
}
LocationSummary* CheckClassInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const bool need_mask_temp = IsBitTest();
const intptr_t kNumTemps = !IsNullCheck() ? (need_mask_temp ? 2 : 1) : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (!IsNullCheck()) {
summary->set_temp(0, Location::RequiresRegister());
if (need_mask_temp) {
summary->set_temp(1, Location::RequiresRegister());
}
}
return summary;
}
void CheckClassInstr::EmitNullCheck(FlowGraphCompiler* compiler, Label* deopt) {
__ CompareObject(locs()->in(0).reg(), Object::null_object());
Condition cond = IsDeoptIfNull() ? EQUAL : NOT_EQUAL;
__ j(cond, deopt);
}
void CheckClassInstr::EmitBitTest(FlowGraphCompiler* compiler,
intptr_t min,
intptr_t max,
intptr_t mask,
Label* deopt) {
Register biased_cid = locs()->temp(0).reg();
__ subq(biased_cid, Immediate(min));
__ cmpq(biased_cid, Immediate(max - min));
__ j(ABOVE, deopt);
Register mask_reg = locs()->temp(1).reg();
__ movq(mask_reg, Immediate(mask));
__ btq(mask_reg, biased_cid);
__ j(NOT_CARRY, deopt);
}
int CheckClassInstr::EmitCheckCid(FlowGraphCompiler* compiler,
int bias,
intptr_t cid_start,
intptr_t cid_end,
bool is_last,
Label* is_ok,
Label* deopt,
bool use_near_jump) {
Register biased_cid = locs()->temp(0).reg();
Condition no_match, match;
if (cid_start == cid_end) {
__ cmpl(biased_cid, Immediate(cid_start - bias));
no_match = NOT_EQUAL;
match = EQUAL;
} else {
// For class ID ranges use a subtract followed by an unsigned
// comparison to check both ends of the ranges with one comparison.
__ addl(biased_cid, Immediate(bias - cid_start));
bias = cid_start;
__ cmpl(biased_cid, Immediate(cid_end - cid_start));
no_match = ABOVE;
match = BELOW_EQUAL;
}
if (is_last) {
__ j(no_match, deopt);
} else {
if (use_near_jump) {
__ j(match, is_ok, Assembler::kNearJump);
} else {
__ j(match, is_ok);
}
}
return bias;
}
LocationSummary* CheckSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckSmi,
licm_hoisted_ ? ICData::kHoisted : 0);
__ BranchIfNotSmi(value, deopt);
}
LocationSummary* CheckClassIdInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, cids_.IsSingleCid() ? Location::RequiresRegister()
: Location::WritableRegister());
return summary;
}
void CheckClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Label* deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckClass);
if (cids_.IsSingleCid()) {
__ CompareImmediate(value, Immediate(Smi::RawValue(cids_.cid_start)));
__ j(NOT_ZERO, deopt);
} else {
__ AddImmediate(value, Immediate(-Smi::RawValue(cids_.cid_start)));
__ cmpq(value, Immediate(Smi::RawValue(cids_.Extent())));
__ j(ABOVE, deopt);
}
}
LocationSummary* CheckConditionInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
comparison()->locs()->set_out(0, Location::NoLocation());
return comparison()->locs();
}
void CheckConditionInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Label if_true;
Label* if_false = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnknown);
BranchLabels labels = {&if_true, if_false, &if_true};
Condition true_condition = comparison()->EmitComparisonCode(compiler, labels);
if (true_condition != INVALID_CONDITION) {
__ j(NegateCondition(true_condition), if_false);
}
__ Bind(&if_true);
}
LocationSummary* CheckArrayBoundInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(kLengthPos, Location::RegisterOrSmiConstant(length()));
locs->set_in(kIndexPos, Location::RegisterOrSmiConstant(index()));
return locs;
}
void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
uint32_t flags = generalized_ ? ICData::kGeneralized : 0;
flags |= licm_hoisted_ ? ICData::kHoisted : 0;
Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckArrayBound, flags);
Location length_loc = locs()->in(kLengthPos);
Location index_loc = locs()->in(kIndexPos);
if (length_loc.IsConstant() && index_loc.IsConstant()) {
ASSERT((Smi::Cast(length_loc.constant()).Value() <=
Smi::Cast(index_loc.constant()).Value()) ||
(Smi::Cast(index_loc.constant()).Value() < 0));
// Unconditionally deoptimize for constant bounds checks because they
// only occur only when index is out-of-bounds.
__ jmp(deopt);
return;
}
const intptr_t index_cid = index()->Type()->ToCid();
if (index_loc.IsConstant()) {
Register length = length_loc.reg();
const Smi& index = Smi::Cast(index_loc.constant());
__ CompareImmediate(length,
Immediate(reinterpret_cast<int64_t>(index.raw())));
__ j(BELOW_EQUAL, deopt);
} else if (length_loc.IsConstant()) {
const Smi& length = Smi::Cast(length_loc.constant());
Register index = index_loc.reg();
if (index_cid != kSmiCid) {
__ BranchIfNotSmi(index, deopt);
}
if (length.Value() == Smi::kMaxValue) {
__ testq(index, index);
__ j(NEGATIVE, deopt);
} else {
__ CompareImmediate(index,
Immediate(reinterpret_cast<int64_t>(length.raw())));
__ j(ABOVE_EQUAL, deopt);
}
} else {
Register length = length_loc.reg();
Register index = index_loc.reg();
if (index_cid != kSmiCid) {
__ BranchIfNotSmi(index, deopt);
}
__ cmpq(index, length);
__ j(ABOVE_EQUAL, deopt);
}
}
class Int64DivideSlowPath : public ThrowErrorSlowPathCode {
public:
static const intptr_t kNumberOfArguments = 0;
Int64DivideSlowPath(BinaryInt64OpInstr* instruction,
Register divisor,
Range* divisor_range,
intptr_t try_index)
: ThrowErrorSlowPathCode(instruction,
kIntegerDivisionByZeroExceptionRuntimeEntry,
kNumberOfArguments,
try_index),
is_mod_(instruction->op_kind() == Token::kMOD),
divisor_(divisor),
divisor_range_(divisor_range),
div_by_minus_one_label_(),
adjust_sign_label_() {}
void EmitNativeCode(FlowGraphCompiler* compiler) override {
// Handle modulo/division by zero, if needed. Use superclass code.
if (has_divide_by_zero()) {
ThrowErrorSlowPathCode::EmitNativeCode(compiler);
} else {
__ Bind(entry_label()); // not used, but keeps destructor happy
if (Assembler::EmittingComments()) {
__ Comment("slow path %s operation (no throw)", name());
}
}
// Handle modulo/division by minus one, if needed.
// Note: an exact -1 divisor is best optimized prior to codegen.
if (has_divide_by_minus_one()) {
__ Bind(div_by_minus_one_label());
if (is_mod_) {
__ xorq(RDX, RDX); // x % -1 = 0
} else {
__ negq(RAX); // x / -1 = -x
}
__ jmp(exit_label());
}
// Adjust modulo for negative sign, optimized for known ranges.
// if (divisor < 0)
// out -= divisor;
// else
// out += divisor;
if (has_adjust_sign()) {
__ Bind(adjust_sign_label());
if (RangeUtils::Overlaps(divisor_range_, -1, 1)) {
// General case.
Label subtract;
__ testq(divisor_, divisor_);
__ j(LESS, &subtract, Assembler::kNearJump);
__ addq(RDX, divisor_);
__ jmp(exit_label());
__ Bind(&subtract);
__ subq(RDX, divisor_);
} else if (divisor_range_->IsPositive()) {
// Always positive.
__ addq(RDX, divisor_);
} else {
// Always negative.
__ subq(RDX, divisor_);
}
__ jmp(exit_label());
}
}
const char* name() override { return "int64 divide"; }
bool has_divide_by_zero() { return RangeUtils::CanBeZero(divisor_range_); }
bool has_divide_by_minus_one() {
return RangeUtils::Overlaps(divisor_range_, -1, -1);
}
bool has_adjust_sign() { return is_mod_; }
bool is_needed() {
return has_divide_by_zero() || has_divide_by_minus_one() ||
has_adjust_sign();
}
Label* div_by_minus_one_label() {
ASSERT(has_divide_by_minus_one());
return &div_by_minus_one_label_;
}
Label* adjust_sign_label() {
ASSERT(has_adjust_sign());
return &adjust_sign_label_;
}
private:
bool is_mod_;
Register divisor_;
Range* divisor_range_;
Label div_by_minus_one_label_;
Label adjust_sign_label_;
};
static void EmitInt64ModTruncDiv(FlowGraphCompiler* compiler,
BinaryInt64OpInstr* instruction,
Token::Kind op_kind,
Register left,
Register right,
Register tmp,
Register out) {
ASSERT(op_kind == Token::kMOD || op_kind == Token::kTRUNCDIV);
// Prepare a slow path.
Range* right_range = instruction->right()->definition()->range();
Int64DivideSlowPath* slow_path = new (Z) Int64DivideSlowPath(
instruction, right, right_range, compiler->CurrentTryIndex());
// Handle modulo/division by zero exception on slow path.
if (slow_path->has_divide_by_zero()) {
__ testq(right, right);
__ j(EQUAL, slow_path->entry_label());
}
// Handle modulo/division by minus one explicitly on slow path
// (to avoid arithmetic exception on 0x8000000000000000 / -1).
if (slow_path->has_divide_by_minus_one()) {
__ cmpq(right, Immediate(-1));
__ j(EQUAL, slow_path->div_by_minus_one_label());
}
// Perform actual operation
// out = left % right
// or
// out = left / right.
//
// Note that since 64-bit division requires twice as many cycles
// and has much higher latency compared to the 32-bit division,
// even for this non-speculative 64-bit path we add a "fast path".
// Integers are untagged at this stage, so testing if sign extending
// the lower half of each operand equals the full operand, effectively
// tests if the values fit in 32-bit operands (and the slightly
// dangerous division by -1 has been handled above already).
ASSERT(left == RAX);
ASSERT(right != RDX); // available at this stage
Label div_64;
Label div_merge;
__ movsxd(RDX, left);
__ cmpq(RDX, left);
__ j(NOT_EQUAL, &div_64, Assembler::kNearJump);
__ movsxd(RDX, right);
__ cmpq(RDX, right);
__ j(NOT_EQUAL, &div_64, Assembler::kNearJump);
__ cdq(); // sign-ext eax into edx:eax
__ idivl(right); // quotient eax, remainder edx
__ movsxd(out, out);
__ jmp(&div_merge, Assembler::kNearJump);
__ Bind(&div_64);
__ cqo(); // sign-ext rax into rdx:rax
__ idivq(right); // quotient rax, remainder rdx
__ Bind(&div_merge);
if (op_kind == Token::kMOD) {
ASSERT(out == RDX);
ASSERT(tmp == RAX);
// For the % operator, again the idiv instruction does
// not quite do what we want. Adjust for sign on slow path.
__ testq(out, out);
__ j(LESS, slow_path->adjust_sign_label());
} else {
ASSERT(out == RAX);
ASSERT(tmp == RDX);
}
if (slow_path->is_needed()) {
__ Bind(slow_path->exit_label());
compiler->AddSlowPathCode(slow_path);
}
}
template <typename OperandType>
static void EmitInt64Arithmetic(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register left,
const OperandType& right) {
switch (op_kind) {
case Token::kADD:
__ addq(left, right);
break;
case Token::kSUB:
__ subq(left, right);
break;
case Token::kBIT_AND:
__ andq(left, right);
break;
case Token::kBIT_OR:
__ orq(left, right);
break;
case Token::kBIT_XOR:
__ xorq(left, right);
break;
case Token::kMUL:
__ imulq(left, right);
break;
default:
UNREACHABLE();
}
}
LocationSummary* BinaryInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
switch (op_kind()) {
case Token::kMOD:
case Token::kTRUNCDIV: {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RegisterLocation(RAX));
summary->set_in(1, Location::RequiresRegister());
// Intel uses rdx:rax with quotient rax and remainder rdx. Pick the
// appropriate one for output and reserve the other as temp.
summary->set_out(
0, Location::RegisterLocation(op_kind() == Token::kMOD ? RDX : RAX));
summary->set_temp(
0, Location::RegisterLocation(op_kind() == Token::kMOD ? RAX : RDX));
return summary;
}
default: {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RegisterOrConstant(right()));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
}
}
void BinaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Location left = locs()->in(0);
const Location right = locs()->in(1);
const Location out = locs()->out(0);
ASSERT(!can_overflow());
ASSERT(!CanDeoptimize());
if (op_kind() == Token::kMOD || op_kind() == Token::kTRUNCDIV) {
const Location temp = locs()->temp(0);
EmitInt64ModTruncDiv(compiler, this, op_kind(), left.reg(), right.reg(),
temp.reg(), out.reg());
} else if (right.IsConstant()) {
ASSERT(out.reg() == left.reg());
ConstantInstr* constant_instr = right.constant_instruction();
const int64_t value =
constant_instr->GetUnboxedSignedIntegerConstantValue();
EmitInt64Arithmetic(compiler, op_kind(), left.reg(), Immediate(value));
} else {
ASSERT(out.reg() == left.reg());
EmitInt64Arithmetic(compiler, op_kind(), left.reg(), right.reg());
}
}
LocationSummary* UnaryInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void UnaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register left = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
ASSERT(out == left);
switch (op_kind()) {
case Token::kBIT_NOT:
__ notq(left);
break;
case Token::kNEGATE:
__ negq(left);
break;
default:
UNREACHABLE();
}
}
static void EmitShiftInt64ByConstant(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register left,
const Object& right) {
const int64_t shift = Integer::Cast(right).AsInt64Value();
ASSERT(shift >= 0);
switch (op_kind) {
case Token::kSHR:
__ sarq(left,
Immediate(Utils::Minimum<int64_t>(shift, kBitsPerWord - 1)));
break;
case Token::kSHL: {
ASSERT(shift < 64);
__ shlq(left, Immediate(shift));
break;
}
default:
UNREACHABLE();
}
}
static void EmitShiftInt64ByRCX(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register left) {
switch (op_kind) {
case Token::kSHR: {
__ sarq(left, RCX);
break;
}
case Token::kSHL: {
__ shlq(left, RCX);
break;
}
default:
UNREACHABLE();
}
}
static void EmitShiftUint32ByConstant(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register left,
const Object& right) {
const int64_t shift = Integer::Cast(right).AsInt64Value();
ASSERT(shift >= 0);
if (shift >= 32) {
__ xorl(left, left);
} else {
switch (op_kind) {
case Token::kSHR: {
__ shrl(left, Immediate(shift));
break;
}
case Token::kSHL: {
__ shll(left, Immediate(shift));
break;
}
default:
UNREACHABLE();
}
}
}
static void EmitShiftUint32ByRCX(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register left) {
switch (op_kind) {
case Token::kSHR: {
__ shrl(left, RCX);
break;
}
case Token::kSHL: {
__ shll(left, RCX);
break;
}
default:
UNREACHABLE();
}
}
class ShiftInt64OpSlowPath : public ThrowErrorSlowPathCode {
public:
static const intptr_t kNumberOfArguments = 0;
ShiftInt64OpSlowPath(ShiftInt64OpInstr* instruction, intptr_t try_index)
: ThrowErrorSlowPathCode(instruction,
kArgumentErrorUnboxedInt64RuntimeEntry,
kNumberOfArguments,
try_index) {}
const char* name() override { return "int64 shift"; }
void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override {
const Register out = instruction()->locs()->out(0).reg();
ASSERT(out == instruction()->locs()->in(0).reg());
Label throw_error;
__ testq(RCX, RCX);
__ j(LESS, &throw_error);
switch (instruction()->AsShiftInt64Op()->op_kind()) {
case Token::kSHR:
__ sarq(out, Immediate(kBitsPerInt64 - 1));
break;
case Token::kSHL:
__ xorq(out, out);
break;
default:
UNREACHABLE();
}
__ jmp(exit_label());
__ Bind(&throw_error);
// Can't pass unboxed int64 value directly to runtime call, as all
// arguments are expected to be tagged (boxed).
// The unboxed int64 argument is passed through a dedicated slot in Thread.
// TODO(dartbug.com/33549): Clean this up when unboxed values
// could be passed as arguments.
__ movq(Address(THR, Thread::unboxed_int64_runtime_arg_offset()), RCX);
}
};
LocationSummary* ShiftInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, RangeUtils::IsPositive(shift_range())
? Location::FixedRegisterOrConstant(right(), RCX)
: Location::RegisterLocation(RCX));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void ShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register left = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
ASSERT(left == out);
ASSERT(!can_overflow());
if (locs()->in(1).IsConstant()) {
EmitShiftInt64ByConstant(compiler, op_kind(), left,
locs()->in(1).constant());
} else {
// Code for a variable shift amount (or constant that throws).
ASSERT(locs()->in(1).reg() == RCX);
// Jump to a slow path if shift count is > 63 or negative.
ShiftInt64OpSlowPath* slow_path = NULL;
if (!IsShiftCountInRange()) {
slow_path =
new (Z) ShiftInt64OpSlowPath(this, compiler->CurrentTryIndex());
compiler->AddSlowPathCode(slow_path);
__ cmpq(RCX, Immediate(kShiftCountLimit));
__ j(ABOVE, slow_path->entry_label());
}
EmitShiftInt64ByRCX(compiler, op_kind(), left);
if (slow_path != NULL) {
__ Bind(slow_path->exit_label());
}
}
}
LocationSummary* SpeculativeShiftInt64OpInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), RCX));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void SpeculativeShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register left = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
ASSERT(left == out);
ASSERT(!can_overflow());
if (locs()->in(1).IsConstant()) {
EmitShiftInt64ByConstant(compiler, op_kind(), left,
locs()->in(1).constant());
} else {
ASSERT(locs()->in(1).reg() == RCX);
__ SmiUntag(RCX);
// Deoptimize if shift count is > 63 or negative.
if (!IsShiftCountInRange()) {
ASSERT(CanDeoptimize());
Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op);
__ cmpq(RCX, Immediate(kShiftCountLimit));
__ j(ABOVE, deopt);
}
EmitShiftInt64ByRCX(compiler, op_kind(), left);
}
}
class ShiftUint32OpSlowPath : public ThrowErrorSlowPathCode {
public:
static const intptr_t kNumberOfArguments = 0;
ShiftUint32OpSlowPath(ShiftUint32OpInstr* instruction, intptr_t try_index)
: ThrowErrorSlowPathCode(instruction,
kArgumentErrorUnboxedInt64RuntimeEntry,
kNumberOfArguments,
try_index) {}
const char* name() override { return "uint32 shift"; }
void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override {
const Register out = instruction()->locs()->out(0).reg();
ASSERT(out == instruction()->locs()->in(0).reg());
Label throw_error;
__ testq(RCX, RCX);
__ j(LESS, &throw_error);
__ xorl(out, out);
__ jmp(exit_label());
__ Bind(&throw_error);
// Can't pass unboxed int64 value directly to runtime call, as all
// arguments are expected to be tagged (boxed).
// The unboxed int64 argument is passed through a dedicated slot in Thread.
// TODO(dartbug.com/33549): Clean this up when unboxed values
// could be passed as arguments.
__ movq(Address(THR, Thread::unboxed_int64_runtime_arg_offset()), RCX);
}
};
LocationSummary* ShiftUint32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, RangeUtils::IsPositive(shift_range())
? Location::FixedRegisterOrConstant(right(), RCX)
: Location::RegisterLocation(RCX));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void ShiftUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
ASSERT(left == out);
if (locs()->in(1).IsConstant()) {
EmitShiftUint32ByConstant(compiler, op_kind(), left,
locs()->in(1).constant());
} else {
// Code for a variable shift amount (or constant that throws).
ASSERT(locs()->in(1).reg() == RCX);
// Jump to a slow path if shift count is > 31 or negative.
ShiftUint32OpSlowPath* slow_path = NULL;
if (!IsShiftCountInRange(kUint32ShiftCountLimit)) {
slow_path =
new (Z) ShiftUint32OpSlowPath(this, compiler->CurrentTryIndex());
compiler->AddSlowPathCode(slow_path);
__ cmpq(RCX, Immediate(kUint32ShiftCountLimit));
__ j(ABOVE, slow_path->entry_label());
}
EmitShiftUint32ByRCX(compiler, op_kind(), left);
if (slow_path != NULL) {
__ Bind(slow_path->exit_label());
}
}
}
LocationSummary* SpeculativeShiftUint32OpInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::FixedRegisterOrSmiConstant(right(), RCX));
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void SpeculativeShiftUint32OpInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
ASSERT(left == out);
if (locs()->in(1).IsConstant()) {
EmitShiftUint32ByConstant(compiler, op_kind(), left,
locs()->in(1).constant());
} else {
ASSERT(locs()->in(1).reg() == RCX);
__ SmiUntag(RCX);
if (!IsShiftCountInRange(kUint32ShiftCountLimit)) {
if (!IsShiftCountInRange()) {
// Deoptimize if shift count is negative.
ASSERT(CanDeoptimize());
Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op);
__ testq(RCX, RCX);
__ j(LESS, deopt);
}
Label cont;
__ cmpq(RCX, Immediate(kUint32ShiftCountLimit));
__ j(LESS_EQUAL, &cont);
__ xorl(left, left);
__ Bind(&cont);
}
EmitShiftUint32ByRCX(compiler, op_kind(), left);
}
}
CompileType BinaryUint32OpInstr::ComputeType() const {
return CompileType::FromCid(kSmiCid);
}
CompileType ShiftUint32OpInstr::ComputeType() const {
return CompileType::FromCid(kSmiCid);
}
CompileType SpeculativeShiftUint32OpInstr::ComputeType() const {
return CompileType::FromCid(kSmiCid);
}
CompileType UnaryUint32OpInstr::ComputeType() const {
return CompileType::FromCid(kSmiCid);
}
LocationSummary* BinaryUint32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
template <typename OperandType>
static void EmitIntegerArithmetic(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register left,
const OperandType& right) {
switch (op_kind) {
case Token::kADD:
__ addl(left, right);
break;
case Token::kSUB:
__ subl(left, right);
break;
case Token::kBIT_AND:
__ andl(left, right);
break;
case Token::kBIT_OR:
__ orl(left, right);
break;
case Token::kBIT_XOR:
__ xorl(left, right);
break;
case Token::kMUL:
__ imull(left, right);
break;
default:
UNREACHABLE();
}
}
void BinaryUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register out = locs()->out(0).reg();
ASSERT(out == left);
switch (op_kind()) {
case Token::kBIT_AND:
case Token::kBIT_OR:
case Token::kBIT_XOR:
case Token::kADD:
case Token::kSUB:
case Token::kMUL:
EmitIntegerArithmetic(compiler, op_kind(), left, right);
return;
default:
UNREACHABLE();
}
}
DEFINE_BACKEND(UnaryUint32Op, (SameAsFirstInput, Register value)) {
__ notl(value);
}
DEFINE_UNIMPLEMENTED_INSTRUCTION(BinaryInt32OpInstr)
LocationSummary* UnboxedIntConverterInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (from() == kUnboxedInt64) {
ASSERT((to() == kUnboxedUint32) || (to() == kUnboxedInt32));
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
} else if (to() == kUnboxedInt64) {
ASSERT((from() == kUnboxedInt32) || (from() == kUnboxedUint32));
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
} else {
ASSERT((to() == kUnboxedUint32) || (to() == kUnboxedInt32));
ASSERT((from() == kUnboxedUint32) || (from() == kUnboxedInt32));
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
}
return summary;
}
void UnboxedIntConverterInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (from() == kUnboxedInt32 && to() == kUnboxedUint32) {
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
// Representations are bitwise equivalent but we want to normalize
// upperbits for safety reasons.
// TODO(vegorov) if we ensure that we never use upperbits we could
// avoid this.
__ movl(out, value);
} else if (from() == kUnboxedUint32 && to() == kUnboxedInt32) {
// Representations are bitwise equivalent.
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
__ movsxd(out, value);
if (CanDeoptimize()) {
Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger);
__ testl(out, out);
__ j(NEGATIVE, deopt);
}
} else if (from() == kUnboxedInt64) {
ASSERT((to() == kUnboxedUint32) || (to() == kUnboxedInt32));
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
if (!CanDeoptimize()) {
// Copy low.
__ movl(out, value);
} else {
Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger);
// Sign extend.
__ movsxd(out, value);
// Compare with original value.
__ cmpq(out, value);
// Value cannot be held in Int32, deopt.
__ j(NOT_EQUAL, deopt);
}
} else if (to() == kUnboxedInt64) {
ASSERT((from() == kUnboxedUint32) || (from() == kUnboxedInt32));
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
if (from() == kUnboxedUint32) {
// Zero extend.
__ movl(out, value);
} else {
// Sign extend.
ASSERT(from() == kUnboxedInt32);
__ movsxd(out, value);
}
} else {
UNREACHABLE();
}
}
LocationSummary* ThrowInstr::MakeLocationSummary(Zone* zone, bool opt) const {
return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall);
}
void ThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler->GenerateRuntimeCall(token_pos(), deopt_id(), kThrowRuntimeEntry, 1,
locs());
__ int3();
}
LocationSummary* ReThrowInstr::MakeLocationSummary(Zone* zone, bool opt) const {
return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall);
}
void ReThrowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler->SetNeedsStackTrace(catch_try_index());
compiler->GenerateRuntimeCall(token_pos(), deopt_id(), kReThrowRuntimeEntry,
2, locs());
__ int3();
}
LocationSummary* StopInstr::MakeLocationSummary(Zone* zone, bool opt) const {
return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall);
}
void StopInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Stop(message());
}
void GraphEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->CanFallThroughTo(normal_entry())) {
__ jmp(compiler->GetJumpLabel(normal_entry()));
}
}
LocationSummary* GotoInstr::MakeLocationSummary(Zone* zone, bool opt) const {
return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall);
}
void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->is_optimizing()) {
if (FLAG_reorder_basic_blocks) {
compiler->EmitEdgeCounter(block()->preorder_number());
}
// Add a deoptimization descriptor for deoptimizing instructions that
// may be inserted before this instruction.
compiler->AddCurrentDescriptor(RawPcDescriptors::kDeopt, GetDeoptId(),
TokenPosition::kNoSource);
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// We can fall through if the successor is the next block in the list.
// Otherwise, we need a jump.
if (!compiler->CanFallThroughTo(successor())) {
__ jmp(compiler->GetJumpLabel(successor()));
}
}
LocationSummary* IndirectGotoInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
void IndirectGotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register offset_reg = locs()->in(0).reg();
Register target_address_reg = locs()->temp(0).reg();
{
const intptr_t kRIPRelativeLeaqSize = 7;
const intptr_t entry_to_rip_offset = __ CodeSize() + kRIPRelativeLeaqSize;
__ leaq(target_address_reg,
Address::AddressRIPRelative(-entry_to_rip_offset));
ASSERT(__ CodeSize() == entry_to_rip_offset);
}
// Load from [current frame pointer] + compiler_frame_layout.code_from_fp.
// Calculate the final absolute address.
if (offset()->definition()->representation() == kTagged) {
__ SmiUntag(offset_reg);
}
__ addq(target_address_reg, offset_reg);
// Jump to the absolute address.
__ jmp(target_address_reg);
}
LocationSummary* StrictCompareInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (needs_number_check()) {
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(RAX));
locs->set_in(1, Location::RegisterLocation(RCX));
locs->set_out(0, Location::RegisterLocation(RAX));
return locs;
}
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RegisterOrConstant(left()));
// Only one of the inputs can be a constant. Choose register if the first one
// is a constant.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: Location::RegisterOrConstant(right()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition StrictCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
Location left = locs()->in(0);
Location right = locs()->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition;
if (left.IsConstant()) {
true_condition = compiler->EmitEqualityRegConstCompare(
right.reg(), left.constant(), needs_number_check(), token_pos(),
deopt_id_);
} else if (right.IsConstant()) {
true_condition = compiler->EmitEqualityRegConstCompare(
left.reg(), right.constant(), needs_number_check(), token_pos(),
deopt_id_);
} else {
true_condition = compiler->EmitEqualityRegRegCompare(
left.reg(), right.reg(), needs_number_check(), token_pos(), deopt_id_);
}
if (kind() != Token::kEQ_STRICT) {
ASSERT(kind() == Token::kNE_STRICT);
true_condition = NegateCondition(true_condition);
}
return true_condition;
}
LocationSummary* ClosureCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(RAX)); // Function.
summary->set_out(0, Location::RegisterLocation(RAX));
return summary;
}
void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Arguments descriptor is expected in R10.
const intptr_t argument_count = ArgumentCount(); // Includes type args.
const Array& arguments_descriptor =
Array::ZoneHandle(Z, GetArgumentsDescriptor());
__ LoadObject(R10, arguments_descriptor);
// Function in RAX.
ASSERT(locs()->in(0).reg() == RAX);
__ movq(CODE_REG, FieldAddress(RAX, Function::code_offset()));
__ movq(RCX,
FieldAddress(RAX, Code::function_entry_point_offset(entry_kind())));
// RAX: Function.
// R10: Arguments descriptor array.
// RBX: Smi 0 (no IC data; the lazy-compile stub expects a GC-safe value).
__ xorq(RBX, RBX);
__ call(RCX);
compiler->EmitCallsiteMetadata(token_pos(), deopt_id(),
RawPcDescriptors::kOther, locs());
__ Drop(argument_count);
}
LocationSummary* BooleanNegateInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 1, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void BooleanNegateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register result = locs()->out(0).reg();
Label done;
__ LoadObject(result, Bool::True());
__ CompareRegisters(result, value);
__ j(NOT_EQUAL, &done, Assembler::kNearJump);
__ LoadObject(result, Bool::False());
__ Bind(&done);
}
LocationSummary* AllocateObjectInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return MakeCallSummary(zone);
}
void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (ArgumentCount() == 1) {
TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info();
if (type_usage_info != nullptr) {
RegisterTypeArgumentsUse(compiler->function(), type_usage_info, cls_,
ArgumentAt(0));
}
}
const Code& stub = Code::ZoneHandle(
compiler->zone(), StubCode::GetAllocationStubForClass(cls()));
const StubEntry stub_entry(stub);
compiler->GenerateCall(token_pos(), stub_entry, RawPcDescriptors::kOther,
locs());
__ Drop(ArgumentCount()); // Discard arguments.
}
void DebugStepCheckInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(!compiler->is_optimizing());
__ CallPatchable(*StubCode::DebugStepCheck_entry());
compiler->AddCurrentDescriptor(stub_kind_, deopt_id_, token_pos());
compiler->RecordSafepoint(locs());
}
} // namespace dart
#undef __
#endif // defined(TARGET_ARCH_X64) && !defined(DART_PRECOMPILED_RUNTIME)