blob: 15506e513600d6234434b1963ff5548f73adcd75 [file] [log] [blame]
// Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_CONSTANTS_KBC_H_
#define RUNTIME_VM_CONSTANTS_KBC_H_
#include "platform/assert.h"
#include "platform/globals.h"
#include "platform/utils.h"
namespace dart {
// clang-format off
// List of KernelBytecode instructions.
//
// INTERPRETER STATE
//
// current frame info (see stack_frame_kbc.h for layout)
// v-----^-----v
// ~----+----~ ~----+-------+-------+-~ ~-+-------+-------+-~
// ~ | ~ ~ | FP[0] | FP[1] | ~ ~ | SP[-1]| SP[0] |
// ~----+----~ ~----+-------+-------+-~ ~-+-------+-------+-~
// ^ ^
// FP SP
//
//
// The state of execution is captured in few interpreter registers:
//
// FP - base of the current frame
// SP - top of the stack (TOS) for the current frame
// PP - object pool for the currently execution function
//
// Frame info stored below FP additionally contains pointers to the currently
// executing function and code (see stack_frame_dbc.h for more information).
//
// In the unoptimized code most of bytecodes take operands implicitly from
// stack and store results again on the stack. Constant operands are usually
// taken from the object pool by index.
//
// ENCODING
//
// Each instruction is a 32-bit integer with opcode stored in the least
// significant byte. The following operand encodings are used:
//
// 0........8.......16.......24.......32
// +--------+--------+--------+--------+
// | opcode |~~~~~~~~~~~~~~~~~~~~~~~~~~| 0: no operands
// +--------+--------+--------+--------+
//
// +--------+--------+--------+--------+
// | opcode | A |~~~~~~~~~~~~~~~~~| A: single unsigned 8-bit operand
// +--------+--------+--------+--------+
//
// +--------+--------+--------+--------+
// | opcode | A | D | A_D: unsigned 8-bit operand and
// +--------+--------+--------+--------+ unsigned 16-bit operand
//
// +--------+--------+--------+--------+
// | opcode | A | X | A_X: unsigned 8-bit operand and
// +--------+--------+--------+--------+ signed 16-bit operand
//
// +--------+--------+--------+--------+
// | opcode |~~~~~~~~| D | D: unsigned 16-bit operand
// +--------+--------+--------+--------+
//
// +--------+--------+--------+--------+
// | opcode |~~~~~~~~| X | X: signed 16-bit operand
// +--------+--------+--------+--------+
//
// +--------+--------+--------+--------+
// | opcode | A | B | C | A_B_C: 3 unsigned 8-bit operands
// +--------+--------+--------+--------+
//
// +--------+--------+--------+--------+
// | opcode | A | B | Y | A_B_Y: 2 unsigned 8-bit operands
// +--------+--------+--------+--------+ 1 signed 8-bit operand
//
// +--------+--------+--------+--------+
// | opcode | T | T: signed 24-bit operand
// +--------+--------+--------+--------+
//
//
// INSTRUCTIONS
//
// - Trap
//
// Unreachable instruction.
//
// - Entry rD
//
// Function prologue for the function
// rD - number of local slots to reserve;
//
// - EntryFixed A, D
//
// Function prologue for functions without optional arguments.
// Checks number of arguments.
// A - expected number of positional arguments;
// D - number of local slots to reserve;
//
// - EntryOptional A, B, C
//
// Function prologue for the function with optional or named arguments:
// A - expected number of positional arguments;
// B - number of optional arguments;
// C - number of named arguments;
//
// Only one of B and C can be not 0.
//
// If B is not 0 then EntryOptional bytecode is followed by B LoadConstant
// bytecodes specifying default values for optional arguments.
//
// If C is not 0 then EntryOptional is followed by 2 * C LoadConstant
// bytecodes.
// Bytecode at 2 * i specifies name of the i-th named argument and at
// 2 * i + 1 default value. rA part of the LoadConstant bytecode specifies
// the location of the parameter on the stack. Here named arguments are
// sorted alphabetically to enable linear matching similar to how function
// prologues are implemented on other architectures.
//
// Note: Unlike Entry bytecode EntryOptional does not setup the frame for
// local variables this is done by a separate bytecode Frame, which should
// follow EntryOptional and its LoadConstant instructions.
//
// - LoadConstant rA, D
//
// Used in conjunction with EntryOptional instruction to describe names and
// default values of optional parameters.
//
// - Frame D
//
// Reserve and initialize with null space for D local variables.
//
// - CheckFunctionTypeArgs A, D
//
// Check for a passed-in type argument vector of length A and
// store it at FP[D].
//
// - CheckStack A
//
// Compare SP against isolate stack limit and call StackOverflow handler if
// necessary. Should be used in prologue (A = 0), or at the beginning of
// a loop with depth A.
//
// - Allocate D
//
// Allocate object of class PP[D] with no type arguments.
//
// - AllocateT
//
// Allocate object of class SP[0] with type arguments SP[-1].
//
// - CreateArrayTOS
//
// Allocate array of length SP[0] with type arguments SP[-1].
//
// - AllocateContext A, D
//
// Allocate Context object holding D context variables.
// A is a static ID of the context. Static ID of a context may be used to
// disambiguate accesses to different context objects.
// Context objects with the same ID should have the same number of
// context variables.
//
// - CloneContext A, D
//
// Clone Context object SP[0] holding D context variables.
// A is a static ID of the context. Cloned context has the same ID.
//
// - LoadContextParent
//
// Load parent from context SP[0].
//
// - StoreContextParent
//
// Store context SP[0] into `parent` field of context SP[-1].
//
// - LoadContextVar A, D
//
// Load value from context SP[0] at index D.
// A is a static ID of the context.
//
// - StoreContextVar A, D
//
// Store value SP[0] into context SP[-1] at index D.
// A is a static ID of the context.
//
// - PushConstant D
//
// Push value at index D from constant pool onto the stack.
//
// - PushNull
//
// Push `null` onto the stack.
//
// - PushTrue
//
// Push `true` onto the stack.
//
// - PushFalse
//
// Push `false` onto the stack.
//
// - PushInt rX
//
// Push int rX onto the stack.
//
// - Drop1
//
// Drop 1 value from the stack
//
// - Push rX
//
// Push FP[rX] to the stack.
//
// - StoreLocal rX; PopLocal rX
//
// Store top of the stack into FP[rX] and pop it if needed.
//
// - LoadFieldTOS D
//
// Push value at offset (in words) PP[D] from object SP[0].
//
// - StoreFieldTOS D
//
// Store value SP[0] into object SP[-1] at offset (in words) PP[D].
//
// - StoreIndexedTOS
//
// Store SP[0] into array SP[-2] at index SP[-1]. No typechecking is done.
// SP[-2] is assumed to be a RawArray, SP[-1] to be a smi.
//
// - PushStatic
//
// Pushes value of the static field PP[D] on to the stack.
//
// - StoreStaticTOS D
//
// Stores TOS into the static field PP[D].
//
// - Jump target
//
// Jump to the given target. Target is specified as offset from the PC of the
// jump instruction.
//
// - JumpIfNoAsserts target
//
// Jump to the given target if assertions are not enabled.
// Target is specified as offset from the PC of the jump instruction.
//
// - JumpIfNotZeroTypeArgs target
//
// Jump to the given target if number of passed function type
// arguments is not zero.
// Target is specified as offset from the PC of the jump instruction.
//
// - JumpIfEqStrict target; JumpIfNeStrict target
//
// Jump to the given target if SP[-1] is the same (JumpIfEqStrict) /
// not the same (JumpIfNeStrict) object as SP[0].
//
// - JumpIfTrue target; JumpIfFalse target
// - JumpIfNull target; JumpIfNotNull target
//
// Jump to the given target if SP[0] is true/false/null/not null.
//
// - IndirectStaticCall ArgC, D
//
// Invoke the function given by the ICData in SP[0] with arguments
// SP[-(1+ArgC)], ..., SP[-1] and argument descriptor PP[D], which
// indicates whether the first argument is a type argument vector.
//
// - InterfaceCall ArgC, D
//
// Lookup and invoke method using ICData in PP[D]
// with arguments SP[-(1+ArgC)], ..., SP[-1].
// Method has to be declared (explicitly or implicitly) in an interface
// implemented by a receiver, and passed arguments are valid for the
// interface method declaration.
// The ICData indicates whether the first argument is a type argument vector.
//
// - DynamicCall ArgC, D
//
// Lookup and invoke method using ICData in PP[D]
// with arguments SP[-(1+ArgC)], ..., SP[-1].
// The ICData indicates whether the first argument is a type argument vector.
//
// - NativeCall D
//
// Invoke native function described by array at pool[D].
// array[0] is wrapper, array[1] is function, array[2] is argc_tag.
//
// - ReturnTOS
//
// Return to the caller using a value from the top-of-stack as a result.
//
// Note: return instruction knows how many arguments to remove from the
// stack because it can look at the call instruction at caller's PC and
// take argument count from it.
//
// - AssertAssignable A, D
//
// Assert that instance SP[-4] is assignable to variable named SP[0] of
// type SP[-1] with instantiator type arguments SP[-3] and function type
// arguments SP[-2] using SubtypeTestCache PP[D].
// If A is 1, then the instance may be a Smi.
//
// Instance remains on stack. Other arguments are consumed.
//
// - AssertBoolean A
//
// Assert that TOS is a boolean (A = 1) or that TOS is not null (A = 0).
//
// - AssertSubtype
//
// Assert that one type is a subtype of another. Throws a TypeError
// otherwise. The stack has the following arguments on it:
//
// SP[-4] instantiator type args
// SP[-3] function type args
// SP[-2] sub_type
// SP[-1] super_type
// SP[-0] dst_name
//
// All 5 arguments are consumed from the stack and no results is pushed.
//
// - LoadTypeArgumentsField D
//
// Load instantiator type arguments from an instance SP[0].
// PP[D] = offset (in words) of type arguments field corresponding
// to an instance's class.
//
// - InstantiateType D
//
// Instantiate type PP[D] with instantiator type arguments SP[-1] and
// function type arguments SP[0].
//
// - InstantiateTypeArgumentsTOS D
//
// Instantiate type arguments PP[D] with instantiator type arguments SP[-1]
// and function type arguments SP[0].
//
// - Throw A
//
// Throw (Rethrow if A != 0) exception. Exception object and stack object
// are taken from TOS.
//
// - MoveSpecial A, rX
//
// Copy value from special variable to FP[rX]. Currently only
// used to pass exception object (A = 0) and stack trace object (A = 1) to
// catch handler.
//
// - SetFrame A
//
// Reinitialize SP assuming that current frame has size A.
// Used to drop temporaries from the stack in the exception handler.
//
// - BooleanNegateTOS
//
// SP[0] = !SP[0]
//
// - EqualsNull
//
// SP[0] = (SP[0] == null) ? true : false
//
// - NegateInt
//
// Equivalent to invocation of unary int operator-.
// Receiver should have static type int.
// Check SP[0] for null; SP[0] = -SP[0].
//
// - AddInt; SubInt; MulInt; TruncDivInt; ModInt; BitAndInt; BitOrInt;
// BitXorInt; ShlInt; ShrInt
//
// Equivalent to invocation of binary int operator +, -, *, ~/, %, &, |,
// ^, << or >>. Receiver and argument should have static type int.
// Check SP[-1] and SP[0] for null; push SP[-1] <op> SP[0].
//
// - CompareIntEq; CompareIntGt; CompareIntLt; CompareIntGe; CompareIntLe
//
// Equivalent to invocation of binary int operator ==, >, <, >= or <=.
// Receiver and argument should have static type int.
// Check SP[-1] and SP[0] for null; push SP[-1] <op> SP[0] ? true : false.
//
// BYTECODE LIST FORMAT
//
// KernelBytecode list below is specified using the following format:
//
// V(BytecodeName, OperandForm, Op1, Op2, Op3)
//
// - OperandForm specifies operand encoding and should be one of 0, A, T, A_D,
// A_X, X, D (see ENCODING section above).
//
// - Op1, Op2, Op2 specify operand meaning. Possible values:
//
// ___ ignored / non-existent operand
// num immediate operand
// lit constant literal from object pool
// reg register (unsigned FP relative local)
// xeg x-register (signed FP relative local)
// tgt jump target relative to the PC of the current instruction
//
// TODO(vegorov) jump targets should be encoded relative to PC of the next
// instruction because PC is incremented immediately after fetch
// and before decoding.
//
#define KERNEL_BYTECODES_LIST(V) \
V(Trap, 0, ___, ___, ___) \
V(Entry, D, num, ___, ___) \
V(EntryFixed, A_D, num, num, ___) \
V(EntryOptional, A_B_C, num, num, num) \
V(LoadConstant, A_D, reg, lit, ___) \
V(Frame, D, num, ___, ___) \
V(CheckFunctionTypeArgs, A_D, num, reg, ___) \
V(CheckStack, A, num, ___, ___) \
V(Allocate, D, lit, ___, ___) \
V(AllocateT, 0, ___, ___, ___) \
V(CreateArrayTOS, 0, ___, ___, ___) \
V(AllocateContext, D, num, ___, ___) \
V(CloneContext, D, num, ___, ___) \
V(LoadContextParent, 0, ___, ___, ___) \
V(StoreContextParent, 0, ___, ___, ___) \
V(LoadContextVar, D, num, ___, ___) \
V(StoreContextVar, D, num, ___, ___) \
V(PushConstant, D, lit, ___, ___) \
V(PushNull, 0, ___, ___, ___) \
V(PushTrue, 0, ___, ___, ___) \
V(PushFalse, 0, ___, ___, ___) \
V(PushInt, X, num, ___, ___) \
V(Drop1, 0, ___, ___, ___) \
V(Push, X, xeg, ___, ___) \
V(PopLocal, X, xeg, ___, ___) \
V(StoreLocal, X, xeg, ___, ___) \
V(LoadFieldTOS, D, lit, ___, ___) \
V(StoreFieldTOS, D, lit, ___, ___) \
V(StoreIndexedTOS, 0, ___, ___, ___) \
V(PushStatic, D, lit, ___, ___) \
V(StoreStaticTOS, D, lit, ___, ___) \
V(Jump, T, tgt, ___, ___) \
V(JumpIfNoAsserts, T, tgt, ___, ___) \
V(JumpIfNotZeroTypeArgs, T, tgt, ___, ___) \
V(JumpIfEqStrict, T, tgt, ___, ___) \
V(JumpIfNeStrict, T, tgt, ___, ___) \
V(JumpIfTrue, T, tgt, ___, ___) \
V(JumpIfFalse, T, tgt, ___, ___) \
V(JumpIfNull, T, tgt, ___, ___) \
V(JumpIfNotNull, T, tgt, ___, ___) \
V(IndirectStaticCall, A_D, num, num, ___) \
V(InterfaceCall, A_D, num, num, ___) \
V(DynamicCall, A_D, num, num, ___) \
V(NativeCall, D, lit, ___, ___) \
V(ReturnTOS, 0, ___, ___, ___) \
V(AssertAssignable, A_D, num, lit, ___) \
V(AssertBoolean, A, num, ___, ___) \
V(AssertSubtype, 0, ___, ___, ___) \
V(LoadTypeArgumentsField, D, lit, ___, ___) \
V(InstantiateType, D, lit, ___, ___) \
V(InstantiateTypeArgumentsTOS, A_D, num, lit, ___) \
V(Throw, A, num, ___, ___) \
V(MoveSpecial, A_X, num, xeg, ___) \
V(SetFrame, A, num, ___, num) \
V(BooleanNegateTOS, 0, ___, ___, ___) \
V(EqualsNull, 0, ___, ___, ___) \
V(NegateInt, 0, ___, ___, ___) \
V(AddInt, 0, ___, ___, ___) \
V(SubInt, 0, ___, ___, ___) \
V(MulInt, 0, ___, ___, ___) \
V(TruncDivInt, 0, ___, ___, ___) \
V(ModInt, 0, ___, ___, ___) \
V(BitAndInt, 0, ___, ___, ___) \
V(BitOrInt, 0, ___, ___, ___) \
V(BitXorInt, 0, ___, ___, ___) \
V(ShlInt, 0, ___, ___, ___) \
V(ShrInt, 0, ___, ___, ___) \
V(CompareIntEq, 0, ___, ___, ___) \
V(CompareIntGt, 0, ___, ___, ___) \
V(CompareIntLt, 0, ___, ___, ___) \
V(CompareIntGe, 0, ___, ___, ___) \
V(CompareIntLe, 0, ___, ___, ___)
// clang-format on
typedef uint32_t KBCInstr;
class KernelBytecode {
public:
// Minimum bytecode format version supported by VM.
static const intptr_t kMinSupportedBytecodeFormatVersion = 1;
// Maximum bytecode format version supported by VM.
// Should match futureBytecodeFormatVersion in pkg/vm/lib/bytecode/dbc.dart.
static const intptr_t kMaxSupportedBytecodeFormatVersion = 2;
enum Opcode {
#define DECLARE_BYTECODE(name, encoding, op1, op2, op3) k##name,
KERNEL_BYTECODES_LIST(DECLARE_BYTECODE)
#undef DECLARE_BYTECODE
};
static const char* NameOf(KBCInstr instr) {
const char* names[] = {
#define NAME(name, encoding, op1, op2, op3) #name,
KERNEL_BYTECODES_LIST(NAME)
#undef NAME
};
return names[DecodeOpcode(instr)];
}
enum SpecialIndex {
kExceptionSpecialIndex,
kStackTraceSpecialIndex,
kSpecialIndexCount
};
static const intptr_t kOpShift = 0;
static const intptr_t kAShift = 8;
static const intptr_t kAMask = 0xFF;
static const intptr_t kBShift = 16;
static const intptr_t kBMask = 0xFF;
static const intptr_t kCShift = 24;
static const intptr_t kCMask = 0xFF;
static const intptr_t kDShift = 16;
static const intptr_t kDMask = 0xFFFF;
static const intptr_t kYShift = 24;
static const intptr_t kYMask = 0xFF;
static const intptr_t kTShift = 8;
static KBCInstr Encode(Opcode op, uintptr_t a, uintptr_t b, uintptr_t c) {
ASSERT((a & kAMask) == a);
ASSERT((b & kBMask) == b);
ASSERT((c & kCMask) == c);
return op | (a << kAShift) | (b << kBShift) | (c << kCShift);
}
static KBCInstr Encode(Opcode op, uintptr_t a, uintptr_t d) {
ASSERT((a & kAMask) == a);
ASSERT((d & kDMask) == d);
return op | (a << kAShift) | (d << kDShift);
}
static KBCInstr EncodeSigned(Opcode op, uintptr_t a, intptr_t x) {
ASSERT((a & kAMask) == a);
ASSERT((x << kDShift) >> kDShift == x);
return op | (a << kAShift) | (x << kDShift);
}
static KBCInstr EncodeSigned(Opcode op, intptr_t x) {
ASSERT((x << kAShift) >> kAShift == x);
return op | (x << kAShift);
}
static KBCInstr Encode(Opcode op) { return op; }
DART_FORCE_INLINE static uint8_t DecodeA(KBCInstr bc) {
return (bc >> kAShift) & kAMask;
}
DART_FORCE_INLINE static uint8_t DecodeB(KBCInstr bc) {
return (bc >> kBShift) & kBMask;
}
DART_FORCE_INLINE static uint8_t DecodeC(KBCInstr bc) {
return (bc >> kCShift) & kCMask;
}
DART_FORCE_INLINE static uint16_t DecodeD(KBCInstr bc) {
return (bc >> kDShift) & kDMask;
}
DART_FORCE_INLINE static int16_t DecodeX(KBCInstr bc) {
return static_cast<int16_t>((bc >> kDShift) & kDMask);
}
DART_FORCE_INLINE static int32_t DecodeT(KBCInstr bc) {
return static_cast<int32_t>(bc) >> kTShift;
}
DART_FORCE_INLINE static Opcode DecodeOpcode(KBCInstr bc) {
return static_cast<Opcode>(bc & 0xFF);
}
DART_FORCE_INLINE static bool IsTrap(KBCInstr instr) {
return DecodeOpcode(instr) == KernelBytecode::kTrap;
}
DART_FORCE_INLINE static bool IsJumpOpcode(KBCInstr instr) {
switch (DecodeOpcode(instr)) {
case KernelBytecode::kJump:
case KernelBytecode::kJumpIfNoAsserts:
case KernelBytecode::kJumpIfNotZeroTypeArgs:
case KernelBytecode::kJumpIfEqStrict:
case KernelBytecode::kJumpIfNeStrict:
case KernelBytecode::kJumpIfTrue:
case KernelBytecode::kJumpIfFalse:
case KernelBytecode::kJumpIfNull:
case KernelBytecode::kJumpIfNotNull:
return true;
default:
return false;
}
}
DART_FORCE_INLINE static bool IsCallOpcode(KBCInstr instr) {
switch (DecodeOpcode(instr)) {
case KernelBytecode::kIndirectStaticCall:
case KernelBytecode::kInterfaceCall:
case KernelBytecode::kDynamicCall:
return true;
default:
return false;
}
}
static const uint8_t kNativeCallToGrowableListArgc = 2;
DART_FORCE_INLINE static uint8_t DecodeArgc(KBCInstr call) {
if (DecodeOpcode(call) == KernelBytecode::kNativeCall) {
// The only NativeCall redirecting to a bytecode function is the call
// to new _GrowableList<E>(0).
return kNativeCallToGrowableListArgc;
}
ASSERT(IsCallOpcode(call));
return (call >> 8) & 0xFF;
}
static KBCInstr At(uword pc) { return *reinterpret_cast<KBCInstr*>(pc); }
// Converts bytecode PC into an offset.
// For return addresses used in PcDescriptors, PC is also advanced to the
// next instruction.
static intptr_t BytecodePcToOffset(uint32_t pc, bool is_return_address) {
return sizeof(KBCInstr) * (pc + (is_return_address ? 1 : 0));
}
static uint32_t OffsetToBytecodePc(intptr_t offset, bool is_return_address) {
return (offset / sizeof(KBCInstr)) - (is_return_address ? 1 : 0);
}
private:
DISALLOW_ALLOCATION();
DISALLOW_IMPLICIT_CONSTRUCTORS(KernelBytecode);
};
} // namespace dart
#endif // RUNTIME_VM_CONSTANTS_KBC_H_