blob: e969994834ac33aefdd7f55322dfae3341edb30f [file] [log] [blame]
// Copyright (c) 2022, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
import 'dart:collection';
import 'dart:math' show max;
import 'package:kernel/ast.dart';
import 'package:kernel/core_types.dart';
import 'package:kernel/type_environment.dart' as type_env;
import 'package:wasm_builder/wasm_builder.dart' as w;
import 'class_info.dart';
import 'code_generator.dart';
import 'translator.dart';
/// Values for the `_kind` field in `_TopType`. Must match the definitions in
/// `_TopType`.
class TopTypeKind {
static const int objectKind = 0;
static const int dynamicKind = 1;
static const int voidKind = 2;
}
class InterfaceTypeEnvironment {
final Map<TypeParameter, int> _typeOffsets = {};
void _add(InterfaceType type) {
Class cls = type.classNode;
int i = 0;
for (TypeParameter typeParameter in cls.typeParameters) {
_typeOffsets[typeParameter] = i++;
}
}
int lookup(TypeParameter typeParameter) => _typeOffsets[typeParameter]!;
}
/// Helper class for building runtime types.
class Types {
final Translator translator;
/// Class info for `_Type`
late final ClassInfo typeClassInfo =
translator.classInfo[translator.typeClass]!;
/// Wasm value type of `List<_Type>`
late final w.ValueType typeListExpectedType =
translator.classInfo[translator.listBaseClass]!.nonNullableType;
/// Wasm array type of `WasmArray<_Type>`
late final w.ArrayType typeArrayArrayType =
translator.arrayTypeForDartType(typeType);
/// Wasm value type of `WasmArray<_Type>`
late final w.ValueType typeArrayExpectedType =
w.RefType.def(typeArrayArrayType, nullable: false);
/// Wasm value type of `WasmArray<_NamedParameter>`
late final w.ValueType namedParametersExpectedType = classAndFieldToType(
translator.functionTypeClass, FieldIndex.functionTypeNamedParameters);
/// Wasm value type of `_RecordType.names` field.
late final w.ValueType recordTypeNamesFieldExpectedType = classAndFieldToType(
translator.recordTypeClass, FieldIndex.recordTypeNames);
late final RuntimeTypeInformation rtt = RuntimeTypeInformation(translator);
/// We will build the [interfaceTypeEnvironment] when building the
/// [typeRules].
final InterfaceTypeEnvironment interfaceTypeEnvironment =
InterfaceTypeEnvironment();
/// Type parameter offset for function types, specifying the lower end of
/// their index range for type parameter types.
Map<FunctionType, int> functionTypeParameterOffset = Map.identity();
/// Index value for function type parameter types, indexing into the type
/// parameter index range of their corresponding function type.
Map<StructuralParameter, int> functionTypeParameterIndex = Map.identity();
Types(this.translator);
w.ValueType classAndFieldToType(Class cls, int fieldIndex) =>
translator.classInfo[cls]!.struct.fields[fieldIndex].type.unpacked;
/// Wasm value type for non-nullable `_Type` values
w.ValueType get nonNullableTypeType => typeClassInfo.nonNullableType;
InterfaceType get namedParameterType =>
InterfaceType(translator.namedParameterClass, Nullability.nonNullable);
InterfaceType get typeType =>
InterfaceType(translator.typeClass, Nullability.nonNullable);
CoreTypes get coreTypes => translator.coreTypes;
bool isTypeConstant(DartType type) {
return type is DynamicType ||
type is VoidType ||
type is NeverType ||
type is NullType ||
type is FutureOrType && isTypeConstant(type.typeArgument) ||
(type is FunctionType &&
type.typeParameters.every((p) => isTypeConstant(p.bound)) &&
isTypeConstant(type.returnType) &&
type.positionalParameters.every(isTypeConstant) &&
type.namedParameters.every((n) => isTypeConstant(n.type))) ||
type is InterfaceType && type.typeArguments.every(isTypeConstant) ||
(type is RecordType &&
type.positional.every(isTypeConstant) &&
type.named.every((n) => isTypeConstant(n.type))) ||
type is StructuralParameterType ||
type is ExtensionType && isTypeConstant(type.extensionTypeErasure);
}
Class classForType(DartType type) {
if (type is DynamicType) {
return translator.topTypeClass;
} else if (type is VoidType) {
return translator.topTypeClass;
} else if (type is NeverType) {
return translator.bottomTypeClass;
} else if (type is NullType) {
return translator.bottomTypeClass;
} else if (type is FutureOrType) {
return translator.futureOrTypeClass;
} else if (type is InterfaceType) {
if (type.classNode == coreTypes.objectClass) {
return translator.topTypeClass;
}
if (type.classNode == coreTypes.functionClass) {
return translator.abstractFunctionTypeClass;
}
if (type.classNode == coreTypes.recordClass) {
return translator.abstractRecordTypeClass;
}
return translator.interfaceTypeClass;
} else if (type is FunctionType) {
return translator.functionTypeClass;
} else if (type is TypeParameterType) {
return translator.interfaceTypeParameterTypeClass;
} else if (type is StructuralParameterType) {
return translator.functionTypeParameterTypeClass;
} else if (type is ExtensionType) {
return classForType(type.extensionTypeErasure);
} else if (type is RecordType) {
return translator.recordTypeClass;
}
throw "Unexpected DartType: $type";
}
bool isSpecializedClass(Class cls) {
return cls == coreTypes.objectClass ||
cls == coreTypes.functionClass ||
cls == coreTypes.recordClass;
}
int topTypeKind(DartType type) {
return type is VoidType
? TopTypeKind.voidKind
: type is DynamicType
? TopTypeKind.dynamicKind
: TopTypeKind.objectKind;
}
/// Allocates a `WasmArray<_Type>` from [types] and pushes it to the
/// stack.
void _makeTypeArray(CodeGenerator codeGen, Iterable<DartType> types) {
if (types.every(isTypeConstant)) {
translator.constants.instantiateConstant(codeGen.function, codeGen.b,
translator.constants.makeTypeArray(types), typeArrayExpectedType);
} else {
for (DartType type in types) {
makeType(codeGen, type);
}
codeGen.b.array_new_fixed(typeArrayArrayType, types.length);
}
}
void _makeInterfaceType(CodeGenerator codeGen, InterfaceType type) {
final b = codeGen.b;
ClassInfo typeInfo = translator.classInfo[type.classNode]!;
b.i32_const(encodedNullability(type));
b.i64_const(typeInfo.classId);
_makeTypeArray(codeGen, type.typeArguments);
}
void _makeRecordType(CodeGenerator codeGen, RecordType type) {
codeGen.b.i32_const(encodedNullability(type));
final names = translator.constants.makeArrayOf(
translator.coreTypes.stringNonNullableRawType,
type.named.map((t) => StringConstant(t.name)).toList());
translator.constants.instantiateConstant(
codeGen.function, codeGen.b, names, recordTypeNamesFieldExpectedType);
_makeTypeArray(
codeGen, type.positional.followedBy(type.named.map((t) => t.type)));
}
/// Normalizes a Dart type. Many rules are already applied for us, but we
/// still have to manually turn `Never?` into `Null` and normalize `FutureOr`.
DartType normalize(DartType type) {
if (type is NeverType && type.declaredNullability == Nullability.nullable) {
return const NullType();
}
if (type is! FutureOrType) return type;
final s = normalize(type.typeArgument);
// `coreTypes.isTop` and `coreTypes.isObject` take into account the
// normalization rules of `FutureOr`.
if (coreTypes.isTop(type) || coreTypes.isObject(type)) {
return type.declaredNullability == Nullability.nullable
? s.withDeclaredNullability(Nullability.nullable)
: s;
} else if (s is NeverType) {
return InterfaceType(coreTypes.futureClass, Nullability.nonNullable,
const [NeverType.nonNullable()]);
} else if (s is NullType) {
return InterfaceType(
coreTypes.futureClass, Nullability.nullable, const [NullType()]);
}
// The type is normalized, and remains a `FutureOr` so now we normalize its
// nullability.
// Note: We diverge from the spec here and normalize the type to nullable if
// its type argument is nullable, since this simplifies subtype checking.
// We compensate for this difference when converting the type to a string,
// making the discrepancy invisible to the user.
final declaredNullability = s.nullability == Nullability.nullable
? Nullability.nullable
: type.declaredNullability;
return FutureOrType(s, declaredNullability);
}
void _makeFutureOrType(CodeGenerator codeGen, FutureOrType type) {
final b = codeGen.b;
b.i32_const(encodedNullability(type));
makeType(codeGen, type.typeArgument);
codeGen.call(translator.createNormalizedFutureOrType.reference);
}
void _makeFunctionType(CodeGenerator codeGen, FunctionType type) {
int typeParameterOffset = computeFunctionTypeParameterOffset(type);
final b = codeGen.b;
b.i32_const(encodedNullability(type));
b.i64_const(typeParameterOffset);
// WasmArray<_Type> typeParameterBounds
_makeTypeArray(codeGen, type.typeParameters.map((p) => p.bound));
// WasmArray<_Type> typeParameterDefaults
_makeTypeArray(codeGen, type.typeParameters.map((p) => p.defaultType));
// _Type returnType
makeType(codeGen, type.returnType);
// WasmArray<_Type> positionalParameters
_makeTypeArray(codeGen, type.positionalParameters);
// int requiredParameterCount
b.i64_const(type.requiredParameterCount);
// WasmArray<_NamedParameter> namedParameters
if (type.namedParameters.every((n) => isTypeConstant(n.type))) {
translator.constants.instantiateConstant(
codeGen.function,
b,
translator.constants.makeNamedParametersArray(type),
namedParametersExpectedType);
} else {
Class namedParameterClass = translator.namedParameterClass;
Constructor namedParameterConstructor =
namedParameterClass.constructors.single;
List<Expression> expressions = [];
for (NamedType n in type.namedParameters) {
expressions.add(isTypeConstant(n.type)
? ConstantExpression(
translator.constants.makeNamedParameterConstant(n),
namedParameterType)
: ConstructorInvocation(
namedParameterConstructor,
Arguments([
StringLiteral(n.name),
TypeLiteral(n.type),
BoolLiteral(n.isRequired)
])));
}
w.ValueType namedParametersListType =
codeGen.makeArrayFromExpressions(expressions, namedParameterType);
translator.convertType(codeGen.function, namedParametersListType,
namedParametersExpectedType);
}
}
/// Makes a `_Type` object on the stack.
/// TODO(joshualitt): Refactor this logic to remove the dependency on
/// CodeGenerator.
w.ValueType makeType(CodeGenerator codeGen, DartType type) {
// Always ensure type is normalized before making a type.
type = normalize(type);
final b = codeGen.b;
if (isTypeConstant(type)) {
translator.constants.instantiateConstant(
codeGen.function, b, TypeLiteralConstant(type), nonNullableTypeType);
return nonNullableTypeType;
}
// All of the singleton types represented by canonical objects should be
// created const.
assert(type is TypeParameterType ||
type is ExtensionType ||
type is InterfaceType ||
type is FutureOrType ||
type is FunctionType ||
type is RecordType);
if (type is TypeParameterType) {
codeGen.instantiateTypeParameter(type.parameter);
if (type.declaredNullability == Nullability.nullable) {
codeGen.call(translator.typeAsNullable.reference);
}
return nonNullableTypeType;
}
if (type is ExtensionType) {
return makeType(codeGen, type.extensionTypeErasure);
}
ClassInfo info = translator.classInfo[classForType(type)]!;
if (type is FutureOrType) {
_makeFutureOrType(codeGen, type);
return info.nonNullableType;
}
translator.functions.recordClassAllocation(info.classId);
b.i32_const(info.classId);
b.i32_const(initialIdentityHash);
if (type is InterfaceType) {
_makeInterfaceType(codeGen, type);
} else if (type is FunctionType) {
_makeFunctionType(codeGen, type);
} else if (type is RecordType) {
_makeRecordType(codeGen, type);
} else {
throw '`$type` should have already been handled.';
}
b.struct_new(info.struct);
return info.nonNullableType;
}
/// Compute the lower end of the type parameter index range for this function
/// type. This is computed such that it avoids overlap between the index range
/// of this function type and the index ranges of all generic function types
/// nested within it that contain references to the type parameters of this
/// function type.
///
/// This will also compute the index values for all of the function's type
/// parameters, which can subsequently be queried using
/// [getFunctionTypeParameterIndex].
int computeFunctionTypeParameterOffset(FunctionType type) {
if (type.typeParameters.isEmpty) return 0;
int? offset = functionTypeParameterOffset[type];
if (offset != null) return offset;
_FunctionTypeParameterOffsetCollector(this).visitFunctionType(type);
return functionTypeParameterOffset[type]!;
}
/// Get the index value for a function type parameter, indexing into the
/// type parameter index range of its corresponding function type.
int getFunctionTypeParameterIndex(StructuralParameter type) {
assert(functionTypeParameterIndex.containsKey(type),
"Type parameter offset has not been computed for function type");
return functionTypeParameterIndex[type]!;
}
/// Emit code for testing a value against a Dart type. Expects the value on
/// the stack as a (ref null #Top) and leaves the result on the stack as an
/// i32.
void emitIsTest(
CodeGenerator codeGen, DartType testedAgainstType, DartType operandType,
[Location? location]) {
final b = codeGen.b;
b.comment("type check against $testedAgainstType");
w.Local? operandTemp;
if (translator.options.verifyTypeChecks) {
operandTemp =
b.addLocal(translator.topInfo.nullableType, isParameter: false);
b.local_tee(operandTemp);
}
final typeToCheck = _canUseTypeCheckHelper(testedAgainstType, operandType);
if (typeToCheck != null) {
b.call(
_generateIsChecker(typeToCheck, operandType.isPotentiallyNullable));
} else {
makeType(codeGen, testedAgainstType);
codeGen.call(translator.isSubtype.reference);
}
if (translator.options.verifyTypeChecks) {
b.local_get(operandTemp!);
makeType(codeGen, testedAgainstType);
if (location != null) {
w.FunctionType verifyFunctionType = translator.functions
.getFunctionType(translator.verifyOptimizedTypeCheck.reference);
translator.constants.instantiateConstant(codeGen.function, b,
StringConstant('$location'), verifyFunctionType.inputs.last);
} else {
b.ref_null(w.HeapType.none);
}
codeGen.call(translator.verifyOptimizedTypeCheck.reference);
}
}
w.ValueType emitAsCheck(CodeGenerator codeGen, DartType testedAgainstType,
DartType operandType, w.RefType boxedOperandType,
[Location? location]) {
final b = codeGen.b;
final typeToCheck = _canUseTypeCheckHelper(testedAgainstType, operandType);
if (typeToCheck != null) {
b.call(
_generateAsChecker(typeToCheck, operandType.isPotentiallyNullable));
return translator.translateType(testedAgainstType);
}
w.Local operand = b.addLocal(boxedOperandType, isParameter: false);
b.local_tee(operand);
makeType(codeGen, testedAgainstType);
final outputs = codeGen.call(translator.asSubtype.reference);
for (final _ in outputs) {
b.drop();
}
b.local_get(operand);
return operand.type;
}
// Returns the type to check against if a helper can be used, otherwise `null`
InterfaceType? _canUseTypeCheckHelper(
DartType testedAgainstType, DartType operandType) {
// The is/as check helpers are for cid-range checks of interface types.
if (testedAgainstType is! InterfaceType || operandType is! InterfaceType) {
return null;
}
if (_hasOnlyDefaultTypeArguments(testedAgainstType)) {
return testedAgainstType;
}
if (_staticTypesEnsureTypeArgumentsMatch(testedAgainstType, operandType)) {
// We only need to check whether the nullability and the class itself fits
// (the [testedAgainstType] arguments are guaranteed to fit statically)
final parameters = testedAgainstType.classNode.typeParameters;
final args = [
for (int i = 0; i < parameters.length; ++i) parameters[i].defaultType,
];
return InterfaceType(
testedAgainstType.classNode, testedAgainstType.nullability, args);
}
return null;
}
bool _staticTypesEnsureTypeArgumentsMatch(
InterfaceType testedAgainstType, InterfaceType operandType) {
assert(testedAgainstType.typeArguments.isNotEmpty);
// If the operand type doesn't have any type arguments it will not be able
// to tell us anything about the type arguments of testedAgainstType.
if (operandType.typeArguments.isEmpty) return false;
final sufficiency = translator.typeEnvironment
.computeTypeShapeCheckSufficiency(
expressionStaticType: operandType,
checkTargetType:
testedAgainstType.withDeclaredNullability(Nullability.nullable),
subtypeCheckMode: type_env.SubtypeCheckMode.withNullabilities);
// If `true` the caller only needs to check nullabillity and the actual
// concrete class, no need to check [testedAgainstType] arguments.
return sufficiency == type_env.TypeShapeCheckSufficiency.interfaceShape;
}
bool _hasOnlyDefaultTypeArguments(InterfaceType testedAgainstType) {
if (testedAgainstType.typeArguments.isEmpty) return true;
final parameters = testedAgainstType.classNode.typeParameters;
final arguments = testedAgainstType.typeArguments;
assert(parameters.length == arguments.length);
for (int i = 0; i < arguments.length; ++i) {
if (arguments[i] != parameters[i].defaultType) return false;
}
return true;
}
final Map<DartType, w.BaseFunction> _nullableIsCheckers = {};
final Map<DartType, w.BaseFunction> _isCheckers = {};
// Currently the is-checker helper functions only check nullability and the
// concrete class (the arguments do not have to be checked).
w.BaseFunction _generateIsChecker(
InterfaceType testedAgainstType, bool operandIsNullable) {
assert(_hasOnlyDefaultTypeArguments(testedAgainstType));
final interfaceClass = testedAgainstType.classNode;
final cachedIsCheckers =
operandIsNullable ? _nullableIsCheckers : _isCheckers;
return cachedIsCheckers.putIfAbsent(testedAgainstType, () {
final argumentType = operandIsNullable
? translator.topInfo.nullableType
: translator.topInfo.nonNullableType;
final function = translator.m.functions.define(
translator.m.types.defineFunction(
[argumentType],
[w.NumType.i32],
),
'<obj> is ${testedAgainstType.classNode}');
final b = function.body;
b.local_get(b.locals[0]);
w.Label? resultLabel;
if (operandIsNullable) {
// Store operand in a temporary variable, since Binaryen does not support
// block inputs.
w.Local operand = function.addLocal(translator.topInfo.nullableType);
b.local_set(operand);
resultLabel = b.block(const [], const [w.NumType.i32]);
w.Label nullLabel = b.block(const [], const []);
b.local_get(operand);
b.br_on_null(nullLabel);
}
if (interfaceClass == coreTypes.objectClass) {
b.drop();
b.i32_const(1);
} else if (interfaceClass == coreTypes.functionClass) {
b.ref_test(translator.closureInfo.nonNullableType);
} else {
final ranges = translator.classIdNumbering
.getConcreteClassIdRanges(interfaceClass);
b.struct_get(translator.topInfo.struct, FieldIndex.classId);
b.emitClassIdRangeCheck(ranges);
}
if (operandIsNullable) {
b.br(resultLabel!);
b.end(); // nullLabel
b.i32_const(encodedNullability(testedAgainstType));
b.end(); // resultLabel
}
b.return_();
b.end();
return function;
});
}
final Map<DartType, w.BaseFunction> _nullableAsCheckers = {};
final Map<DartType, w.BaseFunction> _asCheckers = {};
// Currently the as-checker helper functions only check nullability and the
// concrete class (the arguments do not have to be checked).
w.BaseFunction _generateAsChecker(
InterfaceType testedAgainstType, bool operandIsNullable) {
assert(_hasOnlyDefaultTypeArguments(testedAgainstType));
final cachedAsCheckers =
operandIsNullable ? _nullableAsCheckers : _asCheckers;
final returnType = translator.translateType(testedAgainstType);
return cachedAsCheckers.putIfAbsent(testedAgainstType, () {
final argumentType = operandIsNullable
? translator.topInfo.nullableType
: translator.topInfo.nonNullableType;
final function = translator.m.functions.define(
translator.m.types.defineFunction(
[argumentType],
[returnType],
),
'<obj> as ${testedAgainstType.classNode}');
final b = function.body;
w.Label asCheckBlock = b.block();
b.local_get(b.locals[0]);
b.call(_generateIsChecker(testedAgainstType, operandIsNullable));
b.br_if(asCheckBlock);
b.local_get(b.locals[0]);
translator.constants.instantiateConstant(function, b,
TypeLiteralConstant(testedAgainstType), nonNullableTypeType);
b.call(translator.functions
.getFunction(translator.throwAsCheckError.reference));
b.unreachable();
b.end();
b.local_get(b.locals[0]);
translator.convertType(function, argumentType, returnType);
b.return_();
b.end();
return function;
});
}
int encodedNullability(DartType type) =>
type.declaredNullability == Nullability.nullable ? 1 : 0;
}
/// Builds up data structures that the Runtime Type System implementation uses.
///
/// There are 3 data structures:
///
/// * The name of all classes represented as an wasm array of strings.
///
/// * A canonical substitution table where each entry represents
/// (potentially uninstantiated) type arguments to a superclass.
///
/// => This is used for translating type arguments between related classes
/// in a hierarchy.
///
/// * A table mapping each class id to its transitive super classes (i.e.
/// transitive implements/extends) and an index into the canonical
/// substitution table on how to translate type arguments between the two
/// related clases.
///
/// See sdk/lib/_internal/wasm/lib/type.dart for more information.
class RuntimeTypeInformation {
final Translator translator;
/// Canonical substitution table of type `const WasmArray<WasmArray<_Type>>`.
///
/// Stores a canonical table of substitution arrays. Each substitution array
/// describes (possibly uninstantiated) type arguments that can be
/// instantiated with actual object type arguments.
/// => This allows translating an objects type arguments to the type arguments
/// of a related super class.
///
/// See sdk/lib/_internal/wasm/lib/type.dart:_canonicalSubstitutionTable for
/// what this contains and how it's used for substitution.
late final InstanceConstant substitutionTableConstant;
/// The Dart type of the [substitutionTableConstant] constant.
late final DartType substitutionTableConstantType;
/// This index in the substitution canonicalization table indicates that we do
/// not have to substitute anything.
static const int noSubstitutionIndex = 0;
/// Type rules supers table of type `const WasmArray<WasmArray<_WasmI32>>`.
///
/// Has an array for every class id in the system. For a particular class id
/// it has (super-classId, canonical-substitutionIndex) tuples used by the RTT
/// system to determine whether two classes are related and how to translate
/// type arguments from one class to type arguments of a related other class.
///
/// See sdk/lib/_internal/wasm/lib/type.dart:_typeRulesSupers for
/// what this contains and how it's used for substitution.
late final InstanceConstant typeRulesSupers;
late final DartType typeRulesSupersType;
/// Table of type names indexed by class id.
late final InstanceConstant typeNames;
late final DartType typeNamesType;
CoreTypes get coreTypes => translator.coreTypes;
Types get types => translator.types;
RuntimeTypeInformation(this.translator) {
final (
Map<int, Map<int, int>> typeRules,
LinkedHashMap<InstanceConstant, int> substitutionTable
) = _buildTypeRules();
// The canonical substitution table of type WasmArray<WasmArray<_Type>>
_initSubstitutionTableConstant(substitutionTable);
// The super type substitution rules for each class of type
// WasmArray<WasmArray<WasmI32>>.
_initTypeRulesSupers(typeRules);
// The class name table of type WasmArray<String>
_initTypeNames();
}
(Map<int, Map<int, int>>, LinkedHashMap<InstanceConstant, int>)
_buildTypeRules() {
final subtypeMap = <int, Map<int, int>>{};
// ignore: prefer_collection_literals
final substitutionTable = LinkedHashMap<InstanceConstant, int>();
assert(noSubstitutionIndex == 0);
assert(substitutionTable.length == noSubstitutionIndex);
substitutionTable[translator.constants.makeTypeArray([])] =
noSubstitutionIndex;
for (ClassInfo classInfo in translator.classes) {
ClassInfo superclassInfo = classInfo;
// We don't need type rules for any class without a superclass, or for
// classes whose supertype is [Object]. The latter case will be handled
// directly in the subtype checking algorithm.
if (superclassInfo.cls == null ||
superclassInfo.cls == coreTypes.objectClass) {
continue;
}
Class superclass = superclassInfo.cls!;
// TODO(joshualitt): This includes abstract types that can't be
// instantiated, but might be needed for subtype checks. The majority of
// abstract classes are probably unnecessary though. We should filter
// these cases to reduce the size of the type rules.
Iterable<Class> subclasses = translator.subtypes
.getSubtypesOf(superclass)
.where((cls) => cls != superclass);
Iterable<InterfaceType> subtypes = subclasses.map(
(Class cls) => cls.getThisType(coreTypes, Nullability.nonNullable));
for (InterfaceType subtype in subtypes) {
types.interfaceTypeEnvironment._add(subtype);
final List<DartType>? typeArguments = translator.hierarchy
.getInterfaceTypeArgumentsAsInstanceOfClass(subtype, superclass)
?.map(types.normalize)
.toList();
int substitutionIndex;
if (_isIdentitySubstitution(typeArguments)) {
substitutionIndex = noSubstitutionIndex;
} else {
final substitution =
translator.constants.makeTypeArray(typeArguments!);
substitutionIndex = substitutionTable.putIfAbsent(
substitution, () => substitutionTable.length);
}
final subclassId = translator.classInfo[subtype.classNode]!.classId;
(subtypeMap[subclassId] ??= {})[superclassInfo.classId] =
substitutionIndex;
}
}
return (subtypeMap, substitutionTable);
}
/// Whether the substitution [typeArguments] would cause a NOP substitution.
///
/// We have a NOP substitution if one of the following conditions apply:
///
/// - the classes are unrelated
/// - the super class is not generic
/// - the type arguments from subclass are the same as for the super class
///
bool _isIdentitySubstitution(List<DartType>? typeArguments) {
// This happen if the classes are not related to each other.
if (typeArguments == null) return true;
for (int i = 0; i < typeArguments.length; ++i) {
final typeArgument = typeArguments[i];
if (typeArgument is! TypeParameterType) {
return false;
}
if (typeArgument.declaredNullability == Nullability.nullable) {
return false;
}
final int environmentIndex =
types.interfaceTypeEnvironment.lookup(typeArgument.parameter);
if (i != environmentIndex) {
return false;
}
}
return true;
}
void _initSubstitutionTableConstant(
LinkedHashMap<InstanceConstant, int> substitutionTable) {
final typeType =
InterfaceType(translator.typeClass, Nullability.nonNullable);
final arrayOfType = InterfaceType(
translator.wasmArrayClass, Nullability.nonNullable, [typeType]);
// We rely on the keys being in insertion order.
substitutionTableConstant = translator.constants
.makeArrayOf(arrayOfType, substitutionTable.keys.toList());
substitutionTableConstantType = InterfaceType(
translator.wasmArrayClass, Nullability.nonNullable, [arrayOfType]);
}
void _initTypeRulesSupers(Map<int, Map<int, int>> typeRules) {
final wasmI32 =
InterfaceType(translator.wasmI32Class, Nullability.nonNullable);
final arrayOfI32 = InterfaceType(
translator.wasmArrayClass, Nullability.nonNullable, [wasmI32]);
// Maps each class id to a list of
// (implementedClassId, substitutionTableIndex) tuples.
final typeRulesArray = <InstanceConstant>[];
for (int classId = 0; classId < translator.classes.length; classId++) {
final rules = typeRules[classId];
if (rules == null) {
typeRulesArray.add(
translator.constants.makeArrayOf(wasmI32, const <IntConstant>[]));
continue;
}
final List<int> superclassIds = rules.keys.toList();
superclassIds.sort();
final superClassSubstitutionTuples =
List<IntConstant>.filled(2 * superclassIds.length, IntConstant(0));
for (int i = 0; i < superclassIds.length; ++i) {
final superClassId = superclassIds[i];
final substitutionTableIndex = rules[superClassId]!;
superClassSubstitutionTuples[2 * i + 0] = IntConstant(superClassId);
superClassSubstitutionTuples[2 * i + 1] =
IntConstant(substitutionTableIndex);
}
typeRulesArray.add(translator.constants
.makeArrayOf(wasmI32, superClassSubstitutionTuples));
}
typeRulesSupers =
translator.constants.makeArrayOf(arrayOfI32, typeRulesArray);
typeRulesSupersType = InterfaceType(
translator.wasmArrayClass, Nullability.nonNullable, [arrayOfI32]);
}
void _initTypeNames() {
final stringType =
translator.coreTypes.stringRawType(Nullability.nonNullable);
final emptyString = StringConstant('');
List<StringConstant> nameConstants = [];
for (ClassInfo classInfo in translator.classes) {
Class? cls = classInfo.cls;
if (cls == null || cls.isAnonymousMixin) {
nameConstants.add(emptyString);
} else {
nameConstants.add(StringConstant(cls.name));
}
}
typeNames = translator.constants.makeArrayOf(stringType, nameConstants);
typeNamesType = InterfaceType(
translator.wasmArrayClass, Nullability.nonNullable, [stringType]);
}
}
/// For a function type F = `... Function<X0, ..., Xn-1>(...)` compute offset(F)
/// such that for any function type G = `... Function<Y0, ..., Ym-1>(...)`
/// nested inside F, if G contains a reference to any type parameters of F, then
/// offset(F) >= offset(G) + m.
///
/// Conceptually, the type parameters of F are indexed from offset(F) inclusive
/// to offset(F) + n exclusive.
///
/// Also assign to each type parameter Xi the index offset(F) + i such that it
/// indexes the correct type parameter in the conceptual type parameter index
/// range of F.
///
/// This ensures that for every reference to a type parameter, its corresponding
/// function type is the innermost function type enclosing it for which the
/// index falls within the type parameter index range of the function type.
class _FunctionTypeParameterOffsetCollector extends RecursiveVisitor {
final Types types;
final List<FunctionType> _functionStack = [];
final List<Set<FunctionType>> _functionsContainingParameters = [];
final Map<StructuralParameter, int> _functionForParameter = {};
_FunctionTypeParameterOffsetCollector(this.types);
@override
void visitFunctionType(FunctionType node) {
int slot = _functionStack.length;
_functionStack.add(node);
_functionsContainingParameters.add({});
for (int i = 0; i < node.typeParameters.length; i++) {
StructuralParameter parameter = node.typeParameters[i];
_functionForParameter[parameter] = slot;
}
super.visitFunctionType(node);
int offset = 0;
for (FunctionType inner in _functionsContainingParameters.last) {
offset = max(
offset,
types.functionTypeParameterOffset[inner]! +
inner.typeParameters.length);
}
types.functionTypeParameterOffset[node] = offset;
for (int i = 0; i < node.typeParameters.length; i++) {
StructuralParameter parameter = node.typeParameters[i];
types.functionTypeParameterIndex[parameter] = offset + i;
}
_functionsContainingParameters.removeLast();
_functionStack.removeLast();
}
@override
void visitStructuralParameterType(StructuralParameterType node) {
int slot = _functionForParameter[node.parameter]!;
for (int inner = slot + 1; inner < _functionStack.length; inner++) {
_functionsContainingParameters[slot].add(_functionStack[inner]);
}
}
}