blob: 279bd780d13e5e1955230935e4ce58d711dacac8 [file] [log] [blame]
// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
/**
* This library is capable of producing linked summaries from unlinked
* ones (or prelinked ones). It functions by building a miniature
* element model to represent the contents of the summaries, and then
* scanning the element model to gather linked information and adding
* it to the summary data structures.
*
* The reason we use a miniature element model to do the linking
* (rather than resynthesizing the full element model from the
* summaries) is that it is expected that we will only need to
* traverse a small subset of the element properties in order to link.
* Resynthesizing only those properties that we need should save
* substantial CPU time.
*
* The element model implements the same interfaces as the full
* element model, so we can re-use code elsewhere in the analysis
* engine to do the linking. However, only a small subset of the
* methods and getters defined in the full element model are
* implemented here. To avoid static warnings, each element model
* class contains an implementation of `noSuchMethod`.
*
* The miniature element model follows the following design
* principles:
*
* - With few exceptions, resynthesis is done incrementally on demand,
* so that we don't pay the cost of resynthesizing elements (or
* properties of elements) that aren't referenced from a part of the
* element model that is relevant to linking.
*
* - Computation of values in the miniature element model is similar
* to the task model, but much lighter weight. Instead of declaring
* tasks and their relationships using classes, each task is simply
* a method (frequently a getter) that computes a value. Instead of
* using a general purpose cache, values are cached by the methods
* themselves in private fields (with `null` typically representing
* "not yet cached").
*
* - No attempt is made to detect cyclic dependencies due to bugs in
* the analyzer. This saves time because dependency evaluation
* doesn't have to be a separate step from evaluating a value; we
* can simply call the getter.
*
* - However, for cases where cyclic dependencies may occur in the
* absence of analyzer bugs (e.g. because of errors in the code
* being analyzed, or cycles between top level and static variables
* undergoing type inference), we do precompute dependencies, and we
* use Tarjan's strongly connected components algorithm to detect
* cycles.
*
* - As much as possible, bookkeeping data is pointed to directly by
* the element objects, rather than being stored in maps.
*
* - Where possible, we favor method dispatch instead of "is" and "as"
* checks. E.g. see [ReferenceableElementForLink.asConstructor].
*/
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/src/dart/element/type.dart';
import 'package:analyzer/src/generated/utilities_dart.dart';
import 'package:analyzer/src/summary/format.dart';
import 'package:analyzer/src/summary/idl.dart';
import 'package:analyzer/src/summary/prelink.dart';
/**
* Link together the build unit consisting of [libraryUris], using
* [getDependency] to fetch the [LinkedLibrary] objects from other
* build units, and [getUnit] to fetch the [UnlinkedUnit] objects from
* both this build unit and other build units.
*
* A map is returned whose keys are the URIs of the libraries in this
* build unit, and whose values are the corresponding
* [LinkedLibraryBuilder]s.
*/
Map<String, LinkedLibraryBuilder> link(Set<String> libraryUris,
GetDependencyCallback getDependency, GetUnitCallback getUnit) {
Map<String, LinkedLibraryBuilder> linkedLibraries =
<String, LinkedLibraryBuilder>{};
for (String absoluteUri in libraryUris) {
Uri uri = Uri.parse(absoluteUri);
UnlinkedUnit getRelativeUnit(String relativeUri) =>
getUnit(resolveRelativeUri(uri, Uri.parse(relativeUri)).toString());
linkedLibraries[absoluteUri] = prelink(
getUnit(absoluteUri),
getRelativeUnit,
(String relativeUri) => getRelativeUnit(relativeUri)?.publicNamespace);
}
relink(linkedLibraries, getDependency, getUnit);
return linkedLibraries;
}
/**
* Given [libraries] (a map from URI to [LinkedLibraryBuilder]
* containing correct prelinked information), rebuild linked
* information, using [getDependency] to fetch the [LinkedLibrary]
* objects from other build units, and [getUnit] to fetch the
* [UnlinkedUnit] objects from both this build unit and other build
* units.
*/
void relink(Map<String, LinkedLibraryBuilder> libraries,
GetDependencyCallback getDependency, GetUnitCallback getUnit) {
new _Linker(libraries, getDependency, getUnit).link();
}
/**
* Type of the callback used by [link] and [relink] to request
* [LinkedLibrary] objects from other build units.
*/
typedef LinkedLibrary GetDependencyCallback(String absoluteUri);
/**
* Type of the callback used by [link] and [relink] to request
* [UnlinkedUnit] objects.
*/
typedef UnlinkedUnit GetUnitCallback(String absoluteUri);
/**
* Element representing a class or enum resynthesized from a summary
* during linking.
*/
abstract class ClassElementForLink
implements ClassElement, ReferenceableElementForLink {
Map<String, ReferenceableElementForLink> _containedNames;
@override
ConstructorElementForLink get asConstructor => unnamedConstructor;
@override
ConstVariableNode get asConstVariable {
// When a class name is used as a constant variable, it doesn't depend on
// anything, so it is not necessary to include it in the constant
// dependency graph.
return null;
}
@override
List<ConstructorElementForLink> get constructors;
@override
List<FieldElementForLink> get fields;
/**
* Indicates whether this is the core class `Object`.
*/
bool get isObject;
@override
String get name;
@override
ConstructorElementForLink get unnamedConstructor;
@override
ReferenceableElementForLink getContainedName(String name) {
if (_containedNames == null) {
_containedNames = <String, ReferenceableElementForLink>{};
// TODO(paulberry): what's the correct way to handle name conflicts?
for (ConstructorElementForLink constructor in constructors) {
_containedNames[constructor.name] = constructor;
}
for (FieldElementForLink field in fields) {
// TODO(paulberry): do we need to handle nonstatic fields for
// consistent behavior with erroneous code?
if (field.isStatic) {
_containedNames[field.name] = field;
}
}
// TODO(paulberry): add methods.
}
return _containedNames.putIfAbsent(
name, () => UndefinedElementForLink.instance);
}
/**
* Perform type inference and cycle detection on this class and
* store the resulting information in the enclosing elements.
*/
void link(LinkedUnitBuilder linkedUnit);
@override
noSuchMethod(Invocation invocation) => super.noSuchMethod(invocation);
}
/**
* Element representing a class resynthesized from a summary during
* linking.
*/
class ClassElementForLink_Class extends ClassElementForLink
implements TypeParameterContext {
/**
* The unlinked representation of the class in the summary.
*/
final UnlinkedClass _unlinkedClass;
@override
final CompilationUnitElementForLink enclosingElement;
List<ConstructorElementForLink> _constructors;
ConstructorElementForLink _unnamedConstructor;
bool _unnamedConstructorComputed = false;
List<FieldElementForLink_ClassField> _fields;
InterfaceType _supertype;
InterfaceType _type;
List<TypeParameterType> _typeParameterTypes;
ClassElementForLink_Class(this.enclosingElement, this._unlinkedClass);
@override
List<ConstructorElementForLink> get constructors {
if (_constructors == null) {
_constructors = <ConstructorElementForLink>[];
for (UnlinkedExecutable unlinkedExecutable
in _unlinkedClass.executables) {
if (unlinkedExecutable.kind == UnlinkedExecutableKind.constructor) {
_constructors
.add(new ConstructorElementForLink(this, unlinkedExecutable));
}
}
}
return _constructors;
}
@override
String get displayName => _unlinkedClass.name;
@override
List<FieldElementForLink_ClassField> get fields {
if (_fields == null) {
_fields = <FieldElementForLink_ClassField>[];
for (UnlinkedVariable field in _unlinkedClass.fields) {
_fields.add(new FieldElementForLink_ClassField(this, field));
}
}
return _fields;
}
@override
bool get isObject => _unlinkedClass.hasNoSupertype;
@override
String get name => _unlinkedClass.name;
@override
InterfaceType get supertype {
if (isObject) {
return null;
}
return _supertype ??= _computeSupertype();
}
/**
* Get a list of [TypeParameterType] objects corresponding to the
* class's type parameters.
*/
List<TypeParameterType> get typeParameterTypes {
if (_typeParameterTypes == null) {
_typeParameterTypes = _unlinkedClass.typeParameters
.map((UnlinkedTypeParam p) =>
new TypeParameterTypeImpl(new TypeParameterElementForLink(p)))
.toList();
}
return _typeParameterTypes;
}
@override
ConstructorElementForLink get unnamedConstructor {
if (!_unnamedConstructorComputed) {
for (ConstructorElementForLink constructor in constructors) {
if (constructor.name.isEmpty) {
_unnamedConstructor = constructor;
break;
}
}
_unnamedConstructorComputed = true;
}
return _unnamedConstructor;
}
@override
DartType buildType(
DartType getTypeArgument(int i), List<int> implicitFunctionTypeIndices) {
int numTypeParameters = _unlinkedClass.typeParameters.length;
if (numTypeParameters != 0) {
return new InterfaceTypeImpl(this);
} else {
if (_type == null) {
List<DartType> typeArguments = new List<DartType>(numTypeParameters);
for (int i = 0; i < numTypeParameters; i++) {
typeArguments[i] = getTypeArgument(i);
}
_type = new InterfaceTypeImpl.elementWithNameAndArgs(
this, name, typeArguments);
}
return _type;
}
}
@override
TypeParameterType getTypeParameterType(int index) {
List<TypeParameterType> types = typeParameterTypes;
return types[types.length - index];
}
@override
void link(LinkedUnitBuilder linkedUnit) {
for (ConstructorElementForLink constructorElement in constructors) {
constructorElement.link(linkedUnit);
}
}
InterfaceType _computeSupertype() {
if (_unlinkedClass.supertype != null) {
DartType supertype =
enclosingElement._resolveTypeRef(_unlinkedClass.supertype, this);
if (supertype is InterfaceType) {
return supertype;
}
// In the event that the supertype isn't an interface type (which may
// happen in the event of erroneous code) just fall through and pretend
// the supertype is `Object`.
}
return enclosingElement.enclosingElement._linker.objectType;
}
}
/**
* Element representing an enum resynthesized from a summary during
* linking.
*/
class ClassElementForLink_Enum extends ClassElementForLink {
/**
* The unlinked representation of the enum in the summary.
*/
final UnlinkedEnum _unlinkedEnum;
InterfaceType _type;
List<FieldElementForLink_EnumField> _fields;
ClassElementForLink_Enum(this._unlinkedEnum);
@override
List<ConstructorElementForLink> get constructors => const [];
@override
String get displayName => _unlinkedEnum.name;
@override
List<FieldElementForLink_EnumField> get fields {
if (_fields == null) {
_fields = <FieldElementForLink_EnumField>[];
_fields.add(new FieldElementForLink_EnumField(null));
for (UnlinkedEnumValue value in _unlinkedEnum.values) {
_fields.add(new FieldElementForLink_EnumField(value));
}
}
return _fields;
}
@override
bool get isObject => false;
@override
String get name => _unlinkedEnum.name;
@override
ConstructorElementForLink get unnamedConstructor => null;
@override
DartType buildType(DartType getTypeArgument(int i),
List<int> implicitFunctionTypeIndices) =>
_type ??= new InterfaceTypeImpl(this);
@override
void link(LinkedUnitBuilder linkedUnit) {}
}
/**
* Element representing a compilation unit resynthesized from a
* summary during linking.
*/
abstract class CompilationUnitElementForLink implements CompilationUnitElement {
/**
* The unlinked representation of the compilation unit in the
* summary.
*/
final UnlinkedUnit _unlinkedUnit;
/**
* For each entry in [UnlinkedUnit.references], the element referred
* to by the reference, or `null` if it hasn't been located yet.
*/
final List<ReferenceableElementForLink> _references;
List<ClassElementForLink_Class> _types;
Map<String, ReferenceableElementForLink> _containedNames;
List<TopLevelVariableElementForLink> _topLevelVariables;
List<ClassElementForLink_Enum> _enums;
@override
final LibraryElementForLink enclosingElement;
CompilationUnitElementForLink(
this.enclosingElement, UnlinkedUnit unlinkedUnit)
: _references = new List<ReferenceableElementForLink>(
unlinkedUnit.references.length),
_unlinkedUnit = unlinkedUnit;
@override
List<ClassElementForLink_Enum> get enums {
if (_enums == null) {
_enums = <ClassElementForLink_Enum>[];
for (UnlinkedEnum unlinkedEnum in _unlinkedUnit.enums) {
_enums.add(new ClassElementForLink_Enum(unlinkedEnum));
}
}
return _enums;
}
/**
* Indicates whether this compilation element is part of the build unit
* currently being linked.
*/
bool get isInBuildUnit;
@override
List<TopLevelVariableElementForLink> get topLevelVariables {
if (_topLevelVariables == null) {
_topLevelVariables = <TopLevelVariableElementForLink>[];
for (UnlinkedVariable unlinkedVariable in _unlinkedUnit.variables) {
_topLevelVariables
.add(new TopLevelVariableElementForLink(this, unlinkedVariable));
}
}
return _topLevelVariables;
}
@override
List<ClassElementForLink_Class> get types {
if (_types == null) {
_types = <ClassElementForLink_Class>[];
for (UnlinkedClass unlinkedClass in _unlinkedUnit.classes) {
_types.add(new ClassElementForLink_Class(this, unlinkedClass));
}
}
return _types;
}
/**
* The linked representation of the compilation unit in the summary.
*/
LinkedUnit get _linkedUnit;
/**
* Search the unit for a top level element with the given [name].
* If no name is found, return the singleton instance of
* [UndefinedElementForLink].
*/
ReferenceableElementForLink getContainedName(name) {
if (_containedNames == null) {
_containedNames = <String, ReferenceableElementForLink>{};
// TODO(paulberry): what's the correct way to handle name conflicts?
for (ClassElementForLink_Class type in types) {
_containedNames[type.name] = type;
}
for (ClassElementForLink_Enum enm in enums) {
_containedNames[enm.name] = enm;
}
for (TopLevelVariableElementForLink variable in topLevelVariables) {
_containedNames[variable.name] = variable;
}
// TODO(paulberry): fill in other top level entities (typedefs
// and executables).
}
return _containedNames.putIfAbsent(
name, () => UndefinedElementForLink.instance);
}
@override
noSuchMethod(Invocation invocation) => super.noSuchMethod(invocation);
/**
* Return the element referred to by the given [index] in
* [UnlinkedUnit.references]. If the reference is unresolved,
* return [UndefinedElementForLink.instance].
*/
ReferenceableElementForLink _resolveRef(int index) {
if (_references[index] == null) {
UnlinkedReference unlinkedReference = _unlinkedUnit.references[index];
LinkedReference linkedReference = _linkedUnit.references[index];
String name = unlinkedReference.name;
int containingReference = unlinkedReference.prefixReference;
if (containingReference != 0 &&
_linkedUnit.references[containingReference].kind !=
ReferenceKind.prefix) {
_references[index] =
_resolveRef(containingReference).getContainedName(name);
} else if (linkedReference.dependency == 0) {
_references[index] = enclosingElement.getContainedName(name);
} else {
LibraryElementForLink dependency =
enclosingElement._getDependency(linkedReference.dependency);
_references[index] = dependency.getContainedName(name);
}
}
return _references[index];
}
/**
* Resolve an [EntityRef] into a type. If the reference is
* unresolved, return [DynamicTypeImpl.instance].
*
* TODO(paulberry): or should we have a class representing an
* unresolved type, for consistency with the full element model?
*/
DartType _resolveTypeRef(
EntityRef type, TypeParameterContext typeParameterContext,
{bool defaultVoid: false}) {
if (type == null) {
if (defaultVoid) {
return VoidTypeImpl.instance;
} else {
return DynamicTypeImpl.instance;
}
}
if (type.paramReference != 0) {
return typeParameterContext.getTypeParameterType(type.paramReference);
} else if (type.syntheticReturnType != null) {
// TODO(paulberry): implement.
throw new UnimplementedError();
} else {
DartType getTypeArgument(int i) {
if (i < type.typeArguments.length) {
return _resolveTypeRef(type.typeArguments[i], typeParameterContext);
} else {
return DynamicTypeImpl.instance;
}
}
ReferenceableElementForLink element = _resolveRef(type.reference);
return element.buildType(
getTypeArgument, type.implicitFunctionTypeIndices);
}
}
}
/**
* Element representing a compilation unit which is part of the build
* unit being linked.
*/
class CompilationUnitElementInBuildUnit extends CompilationUnitElementForLink {
@override
final LinkedUnitBuilder _linkedUnit;
CompilationUnitElementInBuildUnit(LibraryElementInBuildUnit libraryElement,
UnlinkedUnit unlinkedUnit, this._linkedUnit)
: super(libraryElement, unlinkedUnit);
@override
bool get isInBuildUnit => true;
/**
* Perform type inference and const cycle detection on this
* compilation unit.
*/
void link() {
for (ClassElementForLink classElement in types) {
classElement.link(_linkedUnit);
}
}
/**
* Throw away any information produced by a previous call to [link].
*/
void unlink() {
_linkedUnit.constCycles.clear();
_linkedUnit.references.length = _unlinkedUnit.references.length;
_linkedUnit.types.clear();
}
}
/**
* Element representing a compilation unit which is depended upon
* (either directly or indirectly) by the build unit being linked.
*/
class CompilationUnitElementInDependency extends CompilationUnitElementForLink {
@override
final LinkedUnit _linkedUnit;
CompilationUnitElementInDependency(LibraryElementInDependency libraryElement,
UnlinkedUnit unlinkedUnit, this._linkedUnit)
: super(libraryElement, unlinkedUnit);
@override
bool get isInBuildUnit => false;
}
/**
* Instance of [ConstNode] representing a constant constructor.
*/
class ConstConstructorNode extends ConstNode {
/**
* The [ConstructorElement] to which this node refers.
*/
final ConstructorElementForLink constructorElement;
/**
* Once this node has been evaluated, indicates whether the
* constructor is free of constant evaluation cycles.
*/
bool isCycleFree = false;
ConstConstructorNode(this.constructorElement);
@override
List<ConstNode> computeDependencies() {
List<ConstNode> dependencies = <ConstNode>[];
void safeAddDependency(ConstNode target) {
if (target != null) {
dependencies.add(target);
}
}
UnlinkedExecutable unlinkedExecutable =
constructorElement._unlinkedExecutable;
ClassElementForLink_Class enclosingClass =
constructorElement.enclosingElement;
ConstructorElementForLink redirectedConstructor =
_getFactoryRedirectedConstructor();
if (redirectedConstructor != null) {
if (redirectedConstructor._constNode != null) {
safeAddDependency(redirectedConstructor._constNode);
}
} else if (unlinkedExecutable.isFactory) {
// Factory constructor, but getConstRedirectedConstructor returned
// null. This can happen if we're visiting one of the special external
// const factory constructors in the SDK, or if the code contains
// errors (such as delegating to a non-const constructor, or delegating
// to a constructor that can't be resolved). In any of these cases,
// we'll evaluate calls to this constructor without having to refer to
// any other constants. So we don't need to report any dependencies.
} else {
ClassElementForLink superClass = enclosingClass.supertype?.element;
bool defaultSuperInvocationNeeded = true;
for (UnlinkedConstructorInitializer constructorInitializer
in constructorElement._unlinkedExecutable.constantInitializers) {
if (constructorInitializer.kind ==
UnlinkedConstructorInitializerKind.superInvocation) {
defaultSuperInvocationNeeded = false;
if (superClass != null && !superClass.isObject) {
ConstructorElementForLink constructor = superClass
.getContainedName(constructorInitializer.name)
.asConstructor;
safeAddDependency(constructor?._constNode);
}
} else if (constructorInitializer.kind ==
UnlinkedConstructorInitializerKind.thisInvocation) {
defaultSuperInvocationNeeded = false;
ConstructorElementForLink constructor = constructorElement
.enclosingElement
.getContainedName(constructorInitializer.name)
.asConstructor;
safeAddDependency(constructor?._constNode);
}
CompilationUnitElementForLink compilationUnit =
constructorElement.enclosingElement.enclosingElement;
collectDependencies(
dependencies, constructorInitializer.expression, compilationUnit);
for (UnlinkedConst unlinkedConst in constructorInitializer.arguments) {
collectDependencies(dependencies, unlinkedConst, compilationUnit);
}
}
if (defaultSuperInvocationNeeded) {
// No explicit superconstructor invocation found, so we need to
// manually insert a reference to the implicit superconstructor.
if (superClass != null && !superClass.isObject) {
ConstructorElementForLink unnamedConstructor =
superClass.unnamedConstructor;
safeAddDependency(unnamedConstructor?._constNode);
}
}
for (FieldElementForLink field in enclosingClass.fields) {
// Note: non-static const isn't allowed but we handle it anyway so
// that we won't be confused by incorrect code.
if ((field.isFinal || field.isConst) && !field.isStatic) {
safeAddDependency(field.asConstVariable);
}
}
for (ParameterElementForLink parameterElement
in constructorElement.parameters) {
safeAddDependency(parameterElement._constNode);
}
}
return dependencies;
}
/**
* If [constructorElement] redirects to another constructor via a factory
* redirect, return the constructor it redirects to.
*/
ConstructorElementForLink _getFactoryRedirectedConstructor() {
EntityRef redirectedConstructor =
constructorElement._unlinkedExecutable.redirectedConstructor;
if (redirectedConstructor != null) {
return constructorElement.enclosingElement.enclosingElement
._resolveRef(redirectedConstructor.reference)
.asConstructor;
} else {
return null;
}
}
}
/**
* Specialization of [DependencyWalker] for detecting constant
* evaluation cycles.
*/
class ConstDependencyWalker extends DependencyWalker<ConstNode> {
@override
void evaluate(ConstNode v) {
if (v is ConstConstructorNode) {
v.isCycleFree = true;
}
v.isEvaluated = true;
}
@override
void evaluateScc(List<ConstNode> scc) {
for (ConstNode v in scc) {
if (v is ConstConstructorNode) {
v.isCycleFree = false;
}
v.isEvaluated = true;
}
}
}
/**
* Specialization of [Node] used to construct the constant evaluation
* dependency graph.
*/
abstract class ConstNode extends Node<ConstNode> {
@override
bool isEvaluated = false;
/**
* Collect the dependencies in [unlinkedConst] (which should be
* interpreted relative to [compilationUnit]) and store them in
* [dependencies].
*/
void collectDependencies(
List<ConstNode> dependencies,
UnlinkedConst unlinkedConst,
CompilationUnitElementForLink compilationUnit) {
if (unlinkedConst == null) {
return;
}
int refPtr = 0;
for (UnlinkedConstOperation operation in unlinkedConst.operations) {
switch (operation) {
case UnlinkedConstOperation.pushReference:
EntityRef ref = unlinkedConst.references[refPtr++];
ConstVariableNode variable =
compilationUnit._resolveRef(ref.reference).asConstVariable;
if (variable != null) {
dependencies.add(variable);
}
break;
case UnlinkedConstOperation.makeTypedList:
refPtr++;
break;
case UnlinkedConstOperation.makeTypedMap:
refPtr += 2;
break;
case UnlinkedConstOperation.invokeConstructor:
EntityRef ref = unlinkedConst.references[refPtr++];
ConstructorElementForLink element =
compilationUnit._resolveRef(ref.reference).asConstructor;
if (element?._constNode != null) {
dependencies.add(element._constNode);
}
break;
default:
break;
}
}
assert(refPtr == unlinkedConst.references.length);
}
}
/**
* Instance of [ConstNode] representing a parameter with a default
* value.
*/
class ConstParameterNode extends ConstNode {
/**
* The [ParameterElement] to which this node refers.
*/
final ParameterElementForLink parameterElement;
ConstParameterNode(this.parameterElement);
@override
List<ConstNode> computeDependencies() {
List<ConstNode> dependencies = <ConstNode>[];
collectDependencies(
dependencies,
parameterElement._unlinkedParam.defaultValue,
parameterElement.compilationUnit);
return dependencies;
}
}
/**
* Element representing a constructor resynthesized from a summary
* during linking.
*/
class ConstructorElementForLink
implements ConstructorElement, ReferenceableElementForLink {
/**
* The unlinked representation of the constructor in the summary.
*/
final UnlinkedExecutable _unlinkedExecutable;
/**
* If this is a `const` constructor and the enclosing library is
* part of the build unit being linked, the constructor's node in
* the constant evaluation dependency graph. Otherwise `null`.
*/
ConstConstructorNode _constNode;
@override
final ClassElementForLink_Class enclosingElement;
List<ParameterElementForLink> _parameters;
ConstructorElementForLink(this.enclosingElement, this._unlinkedExecutable) {
if (enclosingElement.enclosingElement.isInBuildUnit &&
_unlinkedExecutable.constCycleSlot != 0) {
_constNode = new ConstConstructorNode(this);
}
}
@override
ConstructorElementForLink get asConstructor => this;
@override
ConstVariableNode get asConstVariable => null;
@override
bool get isCycleFree {
if (!_constNode.isEvaluated) {
new ConstDependencyWalker().walk(_constNode);
}
return _constNode.isCycleFree;
}
@override
String get name => _unlinkedExecutable.name;
@override
List<ParameterElementForLink> get parameters {
if (_parameters == null) {
_parameters = <ParameterElementForLink>[];
for (UnlinkedParam unlinkedParam in _unlinkedExecutable.parameters) {
_parameters.add(new ParameterElementForLink(
unlinkedParam, enclosingElement.enclosingElement));
}
}
return _parameters;
}
@override
DartType buildType(DartType getTypeArgument(int i),
List<int> implicitFunctionTypeIndices) =>
DynamicTypeImpl.instance;
@override
ReferenceableElementForLink getContainedName(String name) =>
UndefinedElementForLink.instance;
/**
* Perform const cycle detection on this constructor.
*/
void link(LinkedUnitBuilder linkedUnit) {
if (_constNode != null && !isCycleFree) {
linkedUnit.constCycles.add(_unlinkedExecutable.constCycleSlot);
}
}
@override
noSuchMethod(Invocation invocation) => super.noSuchMethod(invocation);
}
/**
* Instance of [ConstNode] representing a constant field or constant
* top level variable.
*/
class ConstVariableNode extends ConstNode {
/**
* The [FieldElement] or [TopLevelVariableElement] to which this
* node refers.
*/
final VariableElementForLink variableElement;
ConstVariableNode(this.variableElement);
@override
List<ConstNode> computeDependencies() {
List<ConstNode> dependencies = <ConstNode>[];
collectDependencies(
dependencies,
variableElement.unlinkedVariable.constExpr,
variableElement.compilationUnit);
return dependencies;
}
}
/**
* An instance of [DependencyWalker] contains the core algorithms for
* walking a dependency graph and evaluating nodes in a safe order.
*/
abstract class DependencyWalker<NodeType extends Node<NodeType>> {
/**
* Called by [walk] to evaluate a single non-cyclical node, after
* all that node's dependencies have been evaluated.
*/
void evaluate(NodeType v);
/**
* Called by [walk] to evaluate a strongly connected component
* containing one or more nodes. All dependencies of the strongly
* connected component have been evaluated.
*/
void evaluateScc(List<NodeType> scc);
/**
* Walk the dependency graph starting at [startingPoint], finding
* strongly connected components and evaluating them in a safe order
* by calling [evaluate] and [evaluateScc].
*
* This is an implementation of Tarjan's strongly connected
* components algorithm
* (https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm).
*/
void walk(NodeType startingPoint) {
// TODO(paulberry): consider rewriting in a non-recursive way so
// that long dependency chains don't cause stack overflow.
// TODO(paulberry): in the event that an exception occurs during
// the walk, restore the state of the [Node] data structures so
// that further evaluation will be safe.
// The index which will be assigned to the next node that is
// freshly visited.
int index = 1;
// Stack of nodes which have been seen so far and whose strongly
// connected component is still being determined. Nodes are only
// popped off the stack when they are evaluated, so sometimes the
// stack contains nodes that were visited after the current node.
List<NodeType> stack = <NodeType>[];
void strongConnect(NodeType node) {
bool hasTrivialCycle = false;
// Assign the current node an index and add it to the stack. We
// haven't seen any of its dependencies yet, so set its lowLink
// to its index, indicating that so far it is the only node in
// its strongly connected component.
node.index = node.lowLink = index++;
stack.add(node);
// Consider the node's dependencies one at a time.
for (NodeType dependency in node.dependencies) {
// If the dependency has already been evaluated, it can't be
// part of this node's strongly connected component, so we can
// skip it.
if (dependency.isEvaluated) {
continue;
}
if (identical(node, dependency)) {
// If a node includes itself as a dependency, there is no need to
// explore the dependency further.
hasTrivialCycle = true;
} else if (dependency.index == 0) {
// The dependency hasn't been seen yet, so recurse on it.
strongConnect(dependency);
// If the dependency's lowLink refers to a node that was
// visited before the current node, that means that the
// current node, the dependency, and the node referred to by
// the dependency's lowLink are all part of the same
// strongly connected component, so we need to update the
// current node's lowLink accordingly.
if (dependency.lowLink < node.lowLink) {
node.lowLink = dependency.lowLink;
}
} else {
// The dependency has already been seen, so it is part of
// the current node's strongly connected component. If it
// was visited earlier than the current node's lowLink, then
// it is a new addition to the current node's strongly
// connected component, so we need to update the current
// node's lowLink accordingly.
if (dependency.index < node.lowLink) {
node.lowLink = dependency.index;
}
}
}
// If the current node's lowLink is the same as its index, then
// we have finished visiting a strongly connected component, so
// pop the stack and evaluate it before moving on.
if (node.lowLink == node.index) {
// The strongly connected component has only one node. If there is a
// cycle, it's a trivial one.
if (identical(stack.last, node)) {
stack.removeLast();
if (hasTrivialCycle) {
evaluateScc(<NodeType>[node]);
} else {
evaluate(node);
}
} else {
// There are multiple nodes in the strongly connected
// component.
List<NodeType> scc = <NodeType>[];
while (true) {
NodeType otherNode = stack.removeLast();
scc.add(otherNode);
if (identical(otherNode, node)) {
break;
}
}
evaluateScc(scc);
}
}
}
// Kick off the algorithm starting with the starting point.
strongConnect(startingPoint);
}
}
/**
* Element representing a field resynthesized from a summary during
* linking.
*/
abstract class FieldElementForLink
implements FieldElement, ReferenceableElementForLink {}
/**
* Specialization of [FieldElementForLink] for class fields.
*/
class FieldElementForLink_ClassField extends VariableElementForLink
implements FieldElementForLink {
@override
final ClassElementForLink_Class enclosingElement;
FieldElementForLink_ClassField(ClassElementForLink_Class enclosingElement,
UnlinkedVariable unlinkedVariable)
: enclosingElement = enclosingElement,
super(unlinkedVariable, enclosingElement.enclosingElement);
@override
bool get isStatic => unlinkedVariable.isStatic;
}
/**
* Specialization of [FieldElementForLink] for enum fields.
*/
class FieldElementForLink_EnumField extends FieldElementForLink
implements FieldElement {
/**
* The unlinked representation of the field in the summary, or `null` if this
* is an enum's `values` field.
*/
final UnlinkedEnumValue unlinkedEnumValue;
FieldElementForLink_EnumField(this.unlinkedEnumValue);
@override
ConstructorElementForLink get asConstructor => null;
@override
ConstVariableNode get asConstVariable {
// Even though enum fields are constants, there is no need to include them
// in the const dependency graph because they can't participate in a
// circularity.
return null;
}
@override
bool get isStatic => true;
@override
String get name =>
unlinkedEnumValue == null ? 'values' : unlinkedEnumValue.name;
@override
DartType buildType(DartType getTypeArgument(int i),
List<int> implicitFunctionTypeIndices) =>
DynamicTypeImpl.instance;
@override
ReferenceableElementForLink getContainedName(String name) =>
UndefinedElementForLink.instance;
@override
noSuchMethod(Invocation invocation) => super.noSuchMethod(invocation);
}
/**
* Element representing a library resynthesied from a summary during
* linking. The type parameter, [UnitElement], represents the type
* that will be used for the compilation unit elements.
*/
abstract class LibraryElementForLink<
UnitElement extends CompilationUnitElementForLink>
implements LibraryElement {
/**
* Pointer back to the linker.
*/
final _Linker _linker;
/**
* The absolute URI of this library.
*/
final Uri _absoluteUri;
List<UnitElement> _units;
final Map<String, ReferenceableElementForLink> _containedNames =
<String, ReferenceableElementForLink>{};
final List<LibraryElementForLink> _dependencies = <LibraryElementForLink>[];
LibraryElementForLink(this._linker, this._absoluteUri) {
_dependencies.length = _linkedLibrary.dependencies.length;
}
@override
List<UnitElement> get units {
if (_units == null) {
UnlinkedUnit definingUnit = _linker.getUnit(_absoluteUri.toString());
_units = <UnitElement>[_makeUnitElement(definingUnit, 0)];
int numParts = definingUnit.parts.length;
for (int i = 0; i < numParts; i++) {
// TODO(paulberry): make sure we handle the case where Uri.parse fails.
// TODO(paulberry): make sure we handle the case where
// resolveRelativeUri fails.
UnlinkedUnit partUnit = _linker.getUnit(resolveRelativeUri(
_absoluteUri, Uri.parse(definingUnit.publicNamespace.parts[i]))
.toString());
_units.add(
_makeUnitElement(partUnit ?? new UnlinkedUnitBuilder(), i + 1));
}
}
return _units;
}
/**
* The linked representation of the library in the summary.
*/
LinkedLibrary get _linkedLibrary;
/**
* Search all the units for a top level element with the given
* [name]. If no name is found, return the singleton instance of
* [UndefinedElementForLink].
*/
ReferenceableElementForLink getContainedName(name) =>
_containedNames.putIfAbsent(name, () {
for (UnitElement unit in units) {
ReferenceableElementForLink element = unit.getContainedName(name);
if (!identical(element, UndefinedElementForLink.instance)) {
return element;
}
}
return UndefinedElementForLink.instance;
});
@override
noSuchMethod(Invocation invocation) => super.noSuchMethod(invocation);
/**
* Return the [LibraryElement] corresponding to the given dependency [index].
*/
LibraryElementForLink _getDependency(int index) {
return _dependencies[index] ??= _linker.getLibrary(resolveRelativeUri(
_absoluteUri, Uri.parse(_linkedLibrary.dependencies[index].uri)));
}
/**
* Create a [UnitElement] for one of the library's compilation
* units.
*/
UnitElement _makeUnitElement(UnlinkedUnit unlinkedUnit, int i);
}
/**
* Element representing a library which is part of the build unit
* being linked.
*/
class LibraryElementInBuildUnit
extends LibraryElementForLink<CompilationUnitElementInBuildUnit> {
@override
final LinkedLibraryBuilder _linkedLibrary;
LibraryElementInBuildUnit(
_Linker linker, Uri absoluteUri, this._linkedLibrary)
: super(linker, absoluteUri);
/**
* Perform type inference and const cycle detection on this library.
*/
void link() {
for (CompilationUnitElementInBuildUnit unit in units) {
unit.link();
}
}
/**
* Throw away any information produced by a previous call to [link].
*/
void unlink() {
_linkedLibrary.dependencies.length =
_linkedLibrary.numPrelinkedDependencies;
for (CompilationUnitElementInBuildUnit unit in units) {
unit.link();
}
}
@override
CompilationUnitElementInBuildUnit _makeUnitElement(
UnlinkedUnit unlinkedUnit, int i) =>
new CompilationUnitElementInBuildUnit(
this, unlinkedUnit, _linkedLibrary.units[i]);
}
/**
* Element representing a library which is depended upon (either
* directly or indirectly) by the build unit being linked.
*/
class LibraryElementInDependency
extends LibraryElementForLink<CompilationUnitElementInDependency> {
@override
final LinkedLibrary _linkedLibrary;
LibraryElementInDependency(
_Linker linker, Uri absoluteUri, this._linkedLibrary)
: super(linker, absoluteUri);
@override
CompilationUnitElementInDependency _makeUnitElement(
UnlinkedUnit unlinkedUnit, int i) =>
new CompilationUnitElementInDependency(
this, unlinkedUnit, _linkedLibrary.units[i]);
}
/**
* Instances of [Node] represent nodes in a dependency graph. The
* type parameter, [NodeType], is the derived type (this affords some
* extra type safety by making it difficult to accidentally construct
* bridges between unrelated dependency graphs).
*/
abstract class Node<NodeType> {
/**
* Index used by Tarjan's strongly connected components algorithm.
* Zero means the node has not been visited yet; a nonzero value
* counts the order in which the node was visited.
*/
int index = 0;
/**
* Low link used by Tarjan's strongly connected components
* algorithm. This represents the smallest [index] of all the nodes
* in the strongly connected component to which this node belongs.
*/
int lowLink = 0;
List<NodeType> _dependencies;
/**
* Retrieve the dependencies of this node.
*/
List<NodeType> get dependencies => _dependencies ??= computeDependencies();
/**
* Indicates whether this node has been evaluated yet.
*/
bool get isEvaluated;
/**
* Compute the dependencies of this node.
*/
List<NodeType> computeDependencies();
}
/**
* Element used for references that result from trying to access a nonstatic
* member of an element that is not a container (e.g. accessing the "length"
* property of a constant).
*/
class NonstaticMemberElementForLink implements ReferenceableElementForLink {
/**
* If the thing from which a member was accessed is a constant, the
* associated [ConstNode]. Otherwise `null`.
*/
final ConstVariableNode _constNode;
NonstaticMemberElementForLink(this._constNode);
@override
ConstructorElementForLink get asConstructor => null;
@override
ConstVariableNode get asConstVariable => _constNode;
@override
DartType buildType(DartType getTypeArgument(int i),
List<int> implicitFunctionTypeIndices) =>
DynamicTypeImpl.instance;
@override
ReferenceableElementForLink getContainedName(String name) => this;
}
/**
* Element representing a function or method parameter resynthesized
* from a summary during linking.
*/
class ParameterElementForLink implements ParameterElement {
/**
* The unlinked representation of the parameter in the summary.
*/
final UnlinkedParam _unlinkedParam;
/**
* If this parameter has a default value and the enclosing library
* is part of the build unit being linked, the parameter's node in
* the constant evaluation dependency graph. Otherwise `null`.
*/
ConstNode _constNode;
/**
* The compilation unit in which this parameter appears.
*/
final CompilationUnitElementForLink compilationUnit;
ParameterElementForLink(this._unlinkedParam, this.compilationUnit) {
if (_unlinkedParam.defaultValue != null) {
_constNode = new ConstParameterNode(this);
}
}
@override
noSuchMethod(Invocation invocation) => super.noSuchMethod(invocation);
}
/**
* Abstract base class representing an element which can be the target
* of a reference.
*/
abstract class ReferenceableElementForLink {
/**
* If this element can be used in a constructor invocation context,
* return the associated constructor (which may be `this` or some
* other element). Otherwise return `null`.
*/
ConstructorElementForLink get asConstructor;
/**
* If this element can be used in a getter context to refer to a
* constant variable, return the [ConstVariableNode] for the
* constant value. Otherwise return `null`.
*/
ConstVariableNode get asConstVariable;
/**
* Return the type indicated by this element when it is used in a
* type instantiation context. If this element can't legally be
* instantiated as a type, return the dynamic type.
*/
DartType buildType(
DartType getTypeArgument(int i), List<int> implicitFunctionTypeIndices);
/**
* If this element contains other named elements, return the
* contained element having the given [name]. If this element can't
* contain other named elements, or it doesn't contain an element
* with the given name, return the singleton of
* [UndefinedElementForLink].
*/
ReferenceableElementForLink getContainedName(String name);
}
/**
* Element representing a top level variable resynthesized from a
* summary during linking.
*/
class TopLevelVariableElementForLink extends VariableElementForLink
implements TopLevelVariableElement {
TopLevelVariableElementForLink(CompilationUnitElement enclosingElement,
UnlinkedVariable unlinkedVariable)
: super(unlinkedVariable, enclosingElement);
@override
bool get isStatic => true;
}
/**
* Interface representing elements which can serve as the context within which
* type parameter indices are interpreted.
*/
abstract class TypeParameterContext {
/**
* Convert the given [index] into a type parameter type.
*/
TypeParameterType getTypeParameterType(int index);
}
/**
* Element representing a type parameter resynthesized from a summary during
* linking.
*/
class TypeParameterElementForLink implements TypeParameterElement {
/**
* The unlinked representation of the type parameter in the summary.
*/
final UnlinkedTypeParam _unlinkedTypeParam;
TypeParameterElementForLink(this._unlinkedTypeParam);
@override
String get name => _unlinkedTypeParam.name;
@override
noSuchMethod(Invocation invocation) => super.noSuchMethod(invocation);
}
/**
* Singleton element used for unresolved references.
*/
class UndefinedElementForLink implements ReferenceableElementForLink {
static const UndefinedElementForLink instance =
const UndefinedElementForLink._();
const UndefinedElementForLink._();
@override
ConstructorElementForLink get asConstructor => null;
@override
ConstVariableNode get asConstVariable => null;
@override
DartType buildType(DartType getTypeArgument(int i),
List<int> implicitFunctionTypeIndices) =>
DynamicTypeImpl.instance;
@override
ReferenceableElementForLink getContainedName(String name) => this;
}
/**
* Element representing a top level variable resynthesized from a
* summary during linking.
*/
class VariableElementForLink
implements VariableElement, ReferenceableElementForLink {
/**
* The unlinked representation of the variable in the summary.
*/
final UnlinkedVariable unlinkedVariable;
/**
* If this variable is declared `const` and the enclosing library is
* part of the build unit being linked, the variable's node in the
* constant evaluation dependency graph. Otherwise `null`.
*/
ConstNode _constNode;
/**
* The compilation unit in which this variable appears.
*/
final CompilationUnitElementForLink compilationUnit;
VariableElementForLink(this.unlinkedVariable, this.compilationUnit) {
if (compilationUnit.isInBuildUnit && unlinkedVariable.constExpr != null) {
_constNode = new ConstVariableNode(this);
}
}
@override
ConstructorElementForLink get asConstructor => null;
@override
ConstVariableNode get asConstVariable => _constNode;
@override
bool get isConst => unlinkedVariable.isConst;
@override
bool get isFinal => unlinkedVariable.isFinal;
@override
bool get isStatic;
@override
String get name => unlinkedVariable.name;
@override
DartType buildType(DartType getTypeArgument(int i),
List<int> implicitFunctionTypeIndices) =>
DynamicTypeImpl.instance;
ReferenceableElementForLink getContainedName(String name) {
return new NonstaticMemberElementForLink(_constNode);
}
@override
noSuchMethod(Invocation invocation) => super.noSuchMethod(invocation);
}
/**
* Instances of [_Linker] contain the necessary information to link
* together a single build unit.
*/
class _Linker {
/**
* Callback to ask the client for a [LinkedLibrary] for a
* dependency.
*/
final GetDependencyCallback getDependency;
/**
* Callback to ask the client for an [UnlinkedUnit].
*/
final GetUnitCallback getUnit;
/**
* Map containing all library elements accessed during linking,
* whether they are part of the build unit being linked or whether
* they are dependencies.
*/
final Map<Uri, LibraryElementForLink> _libraries =
<Uri, LibraryElementForLink>{};
/**
* List of library elements for the libraries in the build unit
* being linked.
*/
final List<LibraryElementInBuildUnit> _librariesInBuildUnit =
<LibraryElementInBuildUnit>[];
InterfaceType _objectType;
LibraryElementForLink _coreLibrary;
_Linker(Map<String, LinkedLibraryBuilder> linkedLibraries, this.getDependency,
this.getUnit) {
// Create elements for the libraries to be linked. The rest of
// the element model will be created on demand.
linkedLibraries
.forEach((String absoluteUri, LinkedLibraryBuilder linkedLibrary) {
Uri uri = Uri.parse(absoluteUri);
_librariesInBuildUnit.add(_libraries[uri] =
new LibraryElementInBuildUnit(this, uri, linkedLibrary));
});
}
/**
* Get the library element for `dart:core`.
*/
LibraryElementForLink get coreLibrary =>
_coreLibrary ??= getLibrary(Uri.parse('dart:core'));
/**
* Get the `InterfaceType` for the type `Object`.
*/
InterfaceType get objectType => _objectType ??= coreLibrary
.getContainedName('Object')
.buildType((int i) => DynamicTypeImpl.instance, const []);
/**
* Get the library element for the library having the given [uri].
*/
LibraryElementForLink getLibrary(Uri uri) => _libraries.putIfAbsent(
uri,
() => new LibraryElementInDependency(
this, uri, getDependency(uri.toString())));
/**
* Perform type inference and const cycle detection on all libraries
* in the build unit being linked.
*/
void link() {
for (LibraryElementInBuildUnit library in _librariesInBuildUnit) {
library.link();
}
// TODO(paulberry): set dependencies.
}
/**
* Throw away any information produced by a previous call to [link].
*/
void unlink() {
for (LibraryElementInBuildUnit library in _librariesInBuildUnit) {
library.unlink();
}
}
}