|  | // Copyright (c) 2019, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  |  | 
|  | #include "vm/compiler/relocation.h" | 
|  |  | 
|  | #include "vm/code_patcher.h" | 
|  | #include "vm/heap/pages.h" | 
|  | #include "vm/instructions.h" | 
|  | #include "vm/object_store.h" | 
|  | #include "vm/stub_code.h" | 
|  |  | 
|  | namespace dart { | 
|  |  | 
|  | #if defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) | 
|  |  | 
|  | // Only for testing. | 
|  | DEFINE_FLAG(bool, | 
|  | always_generate_trampolines_for_testing, | 
|  | false, | 
|  | "Generate always trampolines (for testing purposes)."); | 
|  |  | 
|  | DEFINE_FLAG(int, | 
|  | lower_tail_pc_relative_call_distance, | 
|  | -1, | 
|  | "Lower tail call distance."); | 
|  | DEFINE_FLAG(int, | 
|  | upper_tail_pc_relative_call_distance, | 
|  | -1, | 
|  | "Upper tail call distance."); | 
|  | DEFINE_FLAG(int, lower_pc_relative_call_distance, -1, "Lower call distance."); | 
|  | DEFINE_FLAG(int, upper_pc_relative_call_distance, -1, "Upper call distance."); | 
|  |  | 
|  | struct TailCallDistanceLimits { | 
|  | static intptr_t Lower() { | 
|  | if (FLAG_lower_tail_pc_relative_call_distance != -1) { | 
|  | return FLAG_lower_tail_pc_relative_call_distance; | 
|  | } | 
|  | return PcRelativeTailCallPattern::kLowerCallingRange; | 
|  | } | 
|  | static intptr_t Upper() { | 
|  | if (FLAG_upper_tail_pc_relative_call_distance != -1) { | 
|  | return FLAG_upper_tail_pc_relative_call_distance; | 
|  | } | 
|  | return PcRelativeTailCallPattern::kUpperCallingRange; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct CallDistanceLimits { | 
|  | static intptr_t Lower() { | 
|  | if (FLAG_lower_pc_relative_call_distance != -1) { | 
|  | return FLAG_lower_pc_relative_call_distance; | 
|  | } | 
|  | return PcRelativeCallPattern::kLowerCallingRange; | 
|  | } | 
|  | static intptr_t Upper() { | 
|  | if (FLAG_upper_pc_relative_call_distance != -1) { | 
|  | return FLAG_upper_pc_relative_call_distance; | 
|  | } | 
|  | return PcRelativeCallPattern::kUpperCallingRange; | 
|  | } | 
|  | }; | 
|  |  | 
|  | const intptr_t kTrampolineSize = | 
|  | Utils::RoundUp(PcRelativeTrampolineJumpPattern::kLengthInBytes, | 
|  | compiler::target::Instructions::kBarePayloadAlignment); | 
|  |  | 
|  | CodeRelocator::CodeRelocator(Thread* thread, | 
|  | GrowableArray<CodePtr>* code_objects, | 
|  | GrowableArray<ImageWriterCommand>* commands) | 
|  | : StackResource(thread), | 
|  | thread_(thread), | 
|  | code_objects_(code_objects), | 
|  | commands_(commands), | 
|  | kind_type_and_offset_(Smi::Handle(thread->zone())), | 
|  | target_(Object::Handle(thread->zone())), | 
|  | destination_(Code::Handle(thread->zone())) {} | 
|  |  | 
|  | void CodeRelocator::Relocate(bool is_vm_isolate) { | 
|  | Zone* zone = Thread::Current()->zone(); | 
|  | auto& current_caller = Code::Handle(zone); | 
|  | auto& call_targets = Array::Handle(zone); | 
|  |  | 
|  | auto& next_caller = Code::Handle(zone); | 
|  | auto& next_caller_targets = Array::Handle(zone); | 
|  |  | 
|  | // Emit all instructions and do relocations on the way. | 
|  | for (intptr_t i = 0; i < code_objects_->length(); ++i) { | 
|  | current_caller = (*code_objects_)[i]; | 
|  |  | 
|  | const intptr_t code_text_offset = next_text_offset_; | 
|  | if (!AddInstructionsToText(current_caller.ptr())) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | call_targets = current_caller.static_calls_target_table(); | 
|  | ScanCallTargets(current_caller, call_targets, code_text_offset); | 
|  |  | 
|  | // Any unresolved calls to this instruction can be fixed now. | 
|  | ResolveUnresolvedCallsTargeting(current_caller.instructions()); | 
|  |  | 
|  | // If we have forward/backwards calls which are almost out-of-range, we'll | 
|  | // create trampolines now. | 
|  | if (i < (code_objects_->length() - 1)) { | 
|  | next_caller = (*code_objects_)[i + 1]; | 
|  | next_caller_targets = next_caller.static_calls_target_table(); | 
|  | } else { | 
|  | next_caller = Code::null(); | 
|  | next_caller_targets = Array::null(); | 
|  | } | 
|  | BuildTrampolinesForAlmostOutOfRangeCalls(next_caller, next_caller_targets); | 
|  | } | 
|  |  | 
|  | // We're guaranteed to have all calls resolved, since | 
|  | //   * backwards calls are resolved eagerly | 
|  | //   * forward calls are resolved once the target is written | 
|  | if (!all_unresolved_calls_.IsEmpty()) { | 
|  | for (auto call : all_unresolved_calls_) { | 
|  | OS::PrintErr("Unresolved call to %s from %s\n", | 
|  | Object::Handle(call->callee).ToCString(), | 
|  | Object::Handle(call->caller).ToCString()); | 
|  | } | 
|  | } | 
|  | RELEASE_ASSERT(all_unresolved_calls_.IsEmpty()); | 
|  | RELEASE_ASSERT(unresolved_calls_by_destination_.IsEmpty()); | 
|  |  | 
|  | // Any trampolines we created must be patched with the right offsets. | 
|  | auto it = trampolines_by_destination_.GetIterator(); | 
|  | while (true) { | 
|  | auto entry = it.Next(); | 
|  | if (entry == nullptr) break; | 
|  |  | 
|  | UnresolvedTrampolineList* trampoline_list = entry->value; | 
|  | while (!trampoline_list->IsEmpty()) { | 
|  | auto unresolved_trampoline = trampoline_list->RemoveFirst(); | 
|  | ResolveTrampoline(unresolved_trampoline); | 
|  | delete unresolved_trampoline; | 
|  | } | 
|  | delete trampoline_list; | 
|  | } | 
|  | trampolines_by_destination_.Clear(); | 
|  |  | 
|  | // Don't drop static call targets table yet. Snapshotter will skip it anyway | 
|  | // however we might need it to write information into V8 snapshot profile. | 
|  | } | 
|  |  | 
|  | bool CodeRelocator::AddInstructionsToText(CodePtr code) { | 
|  | InstructionsPtr instructions = Code::InstructionsOf(code); | 
|  |  | 
|  | // If two [Code] objects point to the same [Instructions] object, we'll just | 
|  | // use the first one (they are equivalent for all practical purposes). | 
|  | if (text_offsets_.HasKey(instructions)) { | 
|  | return false; | 
|  | } | 
|  | text_offsets_.Insert({instructions, next_text_offset_}); | 
|  | commands_->Add(ImageWriterCommand(next_text_offset_, code)); | 
|  | next_text_offset_ += ImageWriter::SizeInSnapshot(instructions); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | UnresolvedTrampoline* CodeRelocator::FindTrampolineFor( | 
|  | UnresolvedCall* unresolved_call) { | 
|  | auto destination = Code::InstructionsOf(unresolved_call->callee); | 
|  | auto entry = trampolines_by_destination_.Lookup(destination); | 
|  | if (entry != nullptr) { | 
|  | UnresolvedTrampolineList* trampolines = entry->value; | 
|  | ASSERT(!trampolines->IsEmpty()); | 
|  |  | 
|  | // For the destination of [unresolved_call] we might have multiple | 
|  | // trampolines.  The trampolines are sorted according to insertion order, | 
|  | // which guarantees increasing text_offset's.  So we go from the back of the | 
|  | // list as long as we have trampolines that are in-range and then check | 
|  | // whether the target offset matches. | 
|  | auto it = trampolines->End(); | 
|  | --it; | 
|  | do { | 
|  | UnresolvedTrampoline* trampoline = *it; | 
|  | if (!IsTargetInRangeFor(unresolved_call, trampoline->text_offset)) { | 
|  | break; | 
|  | } | 
|  | if (trampoline->offset_into_target == | 
|  | unresolved_call->offset_into_target) { | 
|  | return trampoline; | 
|  | } | 
|  | --it; | 
|  | } while (it != trampolines->Begin()); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void CodeRelocator::AddTrampolineToText(InstructionsPtr destination, | 
|  | uint8_t* trampoline_bytes, | 
|  | intptr_t trampoline_length) { | 
|  | commands_->Add(ImageWriterCommand(next_text_offset_, trampoline_bytes, | 
|  | trampoline_length)); | 
|  | next_text_offset_ += trampoline_length; | 
|  | } | 
|  |  | 
|  | void CodeRelocator::ScanCallTargets(const Code& code, | 
|  | const Array& call_targets, | 
|  | intptr_t code_text_offset) { | 
|  | if (call_targets.IsNull()) { | 
|  | return; | 
|  | } | 
|  | StaticCallsTable calls(call_targets); | 
|  | for (auto call : calls) { | 
|  | kind_type_and_offset_ = call.Get<Code::kSCallTableKindAndOffset>(); | 
|  | const auto kind = Code::KindField::decode(kind_type_and_offset_.Value()); | 
|  | const auto return_pc_offset = | 
|  | Code::OffsetField::decode(kind_type_and_offset_.Value()); | 
|  | const auto call_entry_point = | 
|  | Code::EntryPointField::decode(kind_type_and_offset_.Value()); | 
|  |  | 
|  | if (kind == Code::kCallViaCode) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | destination_ = GetTarget(call); | 
|  |  | 
|  | // A call site can decide to jump not to the beginning of a function but | 
|  | // rather jump into it at a certain offset. | 
|  | int32_t offset_into_target = 0; | 
|  | bool is_tail_call; | 
|  | intptr_t call_instruction_offset; | 
|  | if (kind == Code::kPcRelativeCall || kind == Code::kPcRelativeTTSCall) { | 
|  | call_instruction_offset = | 
|  | return_pc_offset - PcRelativeCallPattern::kLengthInBytes; | 
|  | PcRelativeCallPattern call(code.PayloadStart() + call_instruction_offset); | 
|  | ASSERT(call.IsValid()); | 
|  | offset_into_target = call.distance(); | 
|  | is_tail_call = false; | 
|  | } else { | 
|  | ASSERT(kind == Code::kPcRelativeTailCall); | 
|  | call_instruction_offset = | 
|  | return_pc_offset - PcRelativeTailCallPattern::kLengthInBytes; | 
|  | PcRelativeTailCallPattern call(code.PayloadStart() + | 
|  | call_instruction_offset); | 
|  | ASSERT(call.IsValid()); | 
|  | offset_into_target = call.distance(); | 
|  | is_tail_call = true; | 
|  | } | 
|  |  | 
|  | const uword destination_payload = destination_.PayloadStart(); | 
|  | const uword entry_point = call_entry_point == Code::kUncheckedEntry | 
|  | ? destination_.UncheckedEntryPoint() | 
|  | : destination_.EntryPoint(); | 
|  |  | 
|  | offset_into_target += (entry_point - destination_payload); | 
|  |  | 
|  | const intptr_t text_offset = | 
|  | code_text_offset + AdjustPayloadOffset(call_instruction_offset); | 
|  |  | 
|  | UnresolvedCall unresolved_call(code.ptr(), call_instruction_offset, | 
|  | text_offset, destination_.ptr(), | 
|  | offset_into_target, is_tail_call); | 
|  | if (!TryResolveBackwardsCall(&unresolved_call)) { | 
|  | EnqueueUnresolvedCall(new UnresolvedCall(unresolved_call)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeRelocator::EnqueueUnresolvedCall(UnresolvedCall* unresolved_call) { | 
|  | // Add it to the min-heap by .text offset. | 
|  | all_unresolved_calls_.Append(unresolved_call); | 
|  |  | 
|  | // Add it to callers of destination. | 
|  | InstructionsPtr destination = Code::InstructionsOf(unresolved_call->callee); | 
|  | if (!unresolved_calls_by_destination_.HasKey(destination)) { | 
|  | unresolved_calls_by_destination_.Insert( | 
|  | {destination, new SameDestinationUnresolvedCallsList()}); | 
|  | } | 
|  | unresolved_calls_by_destination_.LookupValue(destination) | 
|  | ->Append(unresolved_call); | 
|  | } | 
|  |  | 
|  | void CodeRelocator::EnqueueUnresolvedTrampoline( | 
|  | UnresolvedTrampoline* unresolved_trampoline) { | 
|  | auto destination = Code::InstructionsOf(unresolved_trampoline->callee); | 
|  | auto entry = trampolines_by_destination_.Lookup(destination); | 
|  |  | 
|  | UnresolvedTrampolineList* trampolines = nullptr; | 
|  | if (entry == nullptr) { | 
|  | trampolines = new UnresolvedTrampolineList(); | 
|  | trampolines_by_destination_.Insert({destination, trampolines}); | 
|  | } else { | 
|  | trampolines = entry->value; | 
|  | } | 
|  | trampolines->Append(unresolved_trampoline); | 
|  | } | 
|  |  | 
|  | bool CodeRelocator::TryResolveBackwardsCall(UnresolvedCall* unresolved_call) { | 
|  | auto callee = Code::InstructionsOf(unresolved_call->callee); | 
|  | auto map_entry = text_offsets_.Lookup(callee); | 
|  | if (map_entry == nullptr) return false; | 
|  |  | 
|  | if (IsTargetInRangeFor(unresolved_call, map_entry->value)) { | 
|  | ResolveCall(unresolved_call); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void CodeRelocator::ResolveUnresolvedCallsTargeting( | 
|  | const InstructionsPtr instructions) { | 
|  | if (unresolved_calls_by_destination_.HasKey(instructions)) { | 
|  | SameDestinationUnresolvedCallsList* calls = | 
|  | unresolved_calls_by_destination_.LookupValue(instructions); | 
|  | auto it = calls->Begin(); | 
|  | while (it != calls->End()) { | 
|  | UnresolvedCall* unresolved_call = *it; | 
|  | ++it; | 
|  | ASSERT(Code::InstructionsOf(unresolved_call->callee) == instructions); | 
|  | ResolveCall(unresolved_call); | 
|  |  | 
|  | // Remove the call from both lists. | 
|  | calls->Remove(unresolved_call); | 
|  | all_unresolved_calls_.Remove(unresolved_call); | 
|  |  | 
|  | delete unresolved_call; | 
|  | } | 
|  | ASSERT(calls->IsEmpty()); | 
|  | delete calls; | 
|  | bool ok = unresolved_calls_by_destination_.Remove(instructions); | 
|  | ASSERT(ok); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeRelocator::ResolveCall(UnresolvedCall* unresolved_call) { | 
|  | const intptr_t destination_text = | 
|  | FindDestinationInText(Code::InstructionsOf(unresolved_call->callee), | 
|  | unresolved_call->offset_into_target); | 
|  |  | 
|  | ResolveCallToDestination(unresolved_call, destination_text); | 
|  | } | 
|  |  | 
|  | void CodeRelocator::ResolveCallToDestination(UnresolvedCall* unresolved_call, | 
|  | intptr_t destination_text) { | 
|  | const intptr_t call_text_offset = unresolved_call->text_offset; | 
|  | const intptr_t call_offset = unresolved_call->call_offset; | 
|  |  | 
|  | const int32_t distance = destination_text - call_text_offset; | 
|  | { | 
|  | auto const caller = unresolved_call->caller; | 
|  | uword addr = Code::PayloadStartOf(caller) + call_offset; | 
|  | if (FLAG_write_protect_code) { | 
|  | addr -= OldPage::Of(Code::InstructionsOf(caller))->AliasOffset(); | 
|  | } | 
|  | if (unresolved_call->is_tail_call) { | 
|  | PcRelativeTailCallPattern call(addr); | 
|  | ASSERT(call.IsValid()); | 
|  | call.set_distance(static_cast<int32_t>(distance)); | 
|  | ASSERT(call.distance() == distance); | 
|  | } else { | 
|  | PcRelativeCallPattern call(addr); | 
|  | ASSERT(call.IsValid()); | 
|  | call.set_distance(static_cast<int32_t>(distance)); | 
|  | ASSERT(call.distance() == distance); | 
|  | } | 
|  | } | 
|  |  | 
|  | unresolved_call->caller = nullptr; | 
|  | unresolved_call->callee = nullptr; | 
|  | } | 
|  |  | 
|  | void CodeRelocator::ResolveTrampoline( | 
|  | UnresolvedTrampoline* unresolved_trampoline) { | 
|  | const intptr_t trampoline_text_offset = unresolved_trampoline->text_offset; | 
|  | const uword trampoline_start = | 
|  | reinterpret_cast<uword>(unresolved_trampoline->trampoline_bytes); | 
|  |  | 
|  | auto callee = Code::InstructionsOf(unresolved_trampoline->callee); | 
|  | auto destination_text = | 
|  | FindDestinationInText(callee, unresolved_trampoline->offset_into_target); | 
|  | const int32_t distance = destination_text - trampoline_text_offset; | 
|  |  | 
|  | PcRelativeTrampolineJumpPattern pattern(trampoline_start); | 
|  | pattern.Initialize(); | 
|  | pattern.set_distance(distance); | 
|  | ASSERT(pattern.distance() == distance); | 
|  | } | 
|  |  | 
|  | bool CodeRelocator::IsTargetInRangeFor(UnresolvedCall* unresolved_call, | 
|  | intptr_t target_text_offset) { | 
|  | const auto forward_distance = | 
|  | target_text_offset - unresolved_call->text_offset; | 
|  | if (unresolved_call->is_tail_call) { | 
|  | return TailCallDistanceLimits::Lower() <= forward_distance && | 
|  | forward_distance <= TailCallDistanceLimits::Upper(); | 
|  | } else { | 
|  | return CallDistanceLimits::Lower() <= forward_distance && | 
|  | forward_distance <= CallDistanceLimits::Upper(); | 
|  | } | 
|  | } | 
|  |  | 
|  | CodePtr CodeRelocator::GetTarget(const StaticCallsTableEntry& call) { | 
|  | // The precompiler should have already replaced all function entries | 
|  | // with code entries. | 
|  | ASSERT(call.Get<Code::kSCallTableFunctionTarget>() == Function::null()); | 
|  |  | 
|  | target_ = call.Get<Code::kSCallTableCodeOrTypeTarget>(); | 
|  | if (target_.IsAbstractType()) { | 
|  | target_ = AbstractType::Cast(target_).type_test_stub(); | 
|  | destination_ = Code::Cast(target_).ptr(); | 
|  |  | 
|  | // The AssertAssignableInstr will emit pc-relative calls to the TTS iff | 
|  | // dst_type is instantiated. If we happened to not install an optimized | 
|  | // TTS but rather a default one, it will live in the vm-isolate (to | 
|  | // which we cannot make pc-relative calls). | 
|  | // Though we have "equivalent" isolate-specific stubs we can use as | 
|  | // targets instead. | 
|  | // | 
|  | // (We could make the AOT compiler install isolate-specific stubs | 
|  | // into the types directly, but that does not work for types which | 
|  | // live in the "vm-isolate" - such as `Type::dynamic_type()`). | 
|  | if (destination_.InVMIsolateHeap()) { | 
|  | auto object_store = thread_->isolate_group()->object_store(); | 
|  |  | 
|  | if (destination_.ptr() == StubCode::DefaultTypeTest().ptr()) { | 
|  | destination_ = object_store->default_tts_stub(); | 
|  | } else if (destination_.ptr() == | 
|  | StubCode::DefaultNullableTypeTest().ptr()) { | 
|  | destination_ = object_store->default_nullable_tts_stub(); | 
|  | } else if (destination_.ptr() == StubCode::TopTypeTypeTest().ptr()) { | 
|  | destination_ = object_store->top_type_tts_stub(); | 
|  | } else if (destination_.ptr() == StubCode::UnreachableTypeTest().ptr()) { | 
|  | destination_ = object_store->unreachable_tts_stub(); | 
|  | } else if (destination_.ptr() == StubCode::SlowTypeTest().ptr()) { | 
|  | destination_ = object_store->slow_tts_stub(); | 
|  | } else if (destination_.ptr() == | 
|  | StubCode::NullableTypeParameterTypeTest().ptr()) { | 
|  | destination_ = object_store->nullable_type_parameter_tts_stub(); | 
|  | } else if (destination_.ptr() == | 
|  | StubCode::TypeParameterTypeTest().ptr()) { | 
|  | destination_ = object_store->type_parameter_tts_stub(); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ASSERT(target_.IsCode()); | 
|  | destination_ = Code::Cast(target_).ptr(); | 
|  | } | 
|  | ASSERT(!destination_.InVMIsolateHeap()); | 
|  | return destination_.ptr(); | 
|  | } | 
|  |  | 
|  | void CodeRelocator::BuildTrampolinesForAlmostOutOfRangeCalls( | 
|  | const Code& next_caller, | 
|  | const Array& next_caller_targets) { | 
|  | const bool all_functions_emitted = next_caller.IsNull(); | 
|  |  | 
|  | uword next_size = 0; | 
|  | uword next_call_count = 0; | 
|  | if (!all_functions_emitted) { | 
|  | next_size = ImageWriter::SizeInSnapshot(next_caller.instructions()); | 
|  | if (!next_caller_targets.IsNull()) { | 
|  | StaticCallsTable calls(next_caller_targets); | 
|  | next_call_count = calls.Length(); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (!all_unresolved_calls_.IsEmpty()) { | 
|  | UnresolvedCall* unresolved_call = all_unresolved_calls_.First(); | 
|  |  | 
|  | if (!all_functions_emitted) { | 
|  | // If we can emit another instructions object without causing the | 
|  | // unresolved forward calls to become out-of-range, we'll not resolve it | 
|  | // yet (maybe the target function will come very soon and we don't need | 
|  | // a trampoline at all). | 
|  | const intptr_t future_boundary = | 
|  | next_text_offset_ + next_size + | 
|  | kTrampolineSize * | 
|  | (unresolved_calls_by_destination_.Length() + next_call_count - 1); | 
|  | if (IsTargetInRangeFor(unresolved_call, future_boundary) && | 
|  | !FLAG_always_generate_trampolines_for_testing) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We have a "critical" [unresolved_call] we have to resolve.  If an | 
|  | // existing trampoline is in range, we use that otherwise we create a new | 
|  | // trampoline. | 
|  |  | 
|  | // In the worst case we'll make a new trampoline here, in which case the | 
|  | // current text offset must be in range for the "critical" | 
|  | // [unresolved_call]. | 
|  | ASSERT(IsTargetInRangeFor(unresolved_call, next_text_offset_)); | 
|  |  | 
|  | // See if there is already a trampoline we could use. | 
|  | intptr_t trampoline_text_offset = -1; | 
|  | auto callee = Code::InstructionsOf(unresolved_call->callee); | 
|  |  | 
|  | if (!FLAG_always_generate_trampolines_for_testing) { | 
|  | auto old_trampoline_entry = FindTrampolineFor(unresolved_call); | 
|  | if (old_trampoline_entry != nullptr) { | 
|  | trampoline_text_offset = old_trampoline_entry->text_offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is no trampoline yet, we'll create a new one. | 
|  | if (trampoline_text_offset == -1) { | 
|  | // The ownership of the trampoline bytes will be transferred to the | 
|  | // [ImageWriter], which will eventually write out the bytes and delete the | 
|  | // buffer. | 
|  | auto trampoline_bytes = new uint8_t[kTrampolineSize]; | 
|  | ASSERT((kTrampolineSize % compiler::target::kWordSize) == 0); | 
|  | for (uint8_t* cur = trampoline_bytes; | 
|  | cur < trampoline_bytes + kTrampolineSize; | 
|  | cur += compiler::target::kWordSize) { | 
|  | *reinterpret_cast<compiler::target::uword*>(cur) = | 
|  | kBreakInstructionFiller; | 
|  | } | 
|  | auto unresolved_trampoline = new UnresolvedTrampoline{ | 
|  | unresolved_call->callee, | 
|  | unresolved_call->offset_into_target, | 
|  | trampoline_bytes, | 
|  | next_text_offset_, | 
|  | }; | 
|  | AddTrampolineToText(callee, trampoline_bytes, kTrampolineSize); | 
|  | EnqueueUnresolvedTrampoline(unresolved_trampoline); | 
|  | trampoline_text_offset = unresolved_trampoline->text_offset; | 
|  | } | 
|  |  | 
|  | // Let the unresolved call to [destination] jump to the trampoline | 
|  | // instead. | 
|  | auto destination = Code::InstructionsOf(unresolved_call->callee); | 
|  | ResolveCallToDestination(unresolved_call, trampoline_text_offset); | 
|  |  | 
|  | // Remove this unresolved call from the global list and the per-destination | 
|  | // list. | 
|  | auto calls = unresolved_calls_by_destination_.LookupValue(destination); | 
|  | calls->Remove(unresolved_call); | 
|  | all_unresolved_calls_.Remove(unresolved_call); | 
|  | delete unresolved_call; | 
|  |  | 
|  | // If this destination has no longer any unresolved calls, remove it. | 
|  | if (calls->IsEmpty()) { | 
|  | unresolved_calls_by_destination_.Remove(destination); | 
|  | delete calls; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | intptr_t CodeRelocator::FindDestinationInText(const InstructionsPtr destination, | 
|  | intptr_t offset_into_target) { | 
|  | auto const destination_offset = text_offsets_.LookupValue(destination); | 
|  | return destination_offset + AdjustPayloadOffset(offset_into_target); | 
|  | } | 
|  |  | 
|  | intptr_t CodeRelocator::AdjustPayloadOffset(intptr_t payload_offset) { | 
|  | if (FLAG_precompiled_mode) { | 
|  | return payload_offset; | 
|  | } | 
|  | return compiler::target::Instructions::HeaderSize() + payload_offset; | 
|  | } | 
|  |  | 
|  | #endif  // defined(DART_PRECOMPILER) && !defined(TARGET_ARCH_IA32) | 
|  |  | 
|  | }  // namespace dart |