|  | // Copyright (c) 2013, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  |  | 
|  | #include "platform/globals.h" | 
|  | #include "vm/globals.h"  // Needed here to get TARGET_ARCH_X64. | 
|  | #if defined(TARGET_ARCH_X64) | 
|  |  | 
|  | #include "vm/compiler/backend/il.h" | 
|  |  | 
|  | #include "platform/assert.h" | 
|  | #include "platform/memory_sanitizer.h" | 
|  | #include "vm/class_id.h" | 
|  | #include "vm/compiler/assembler/assembler.h" | 
|  | #include "vm/compiler/backend/flow_graph.h" | 
|  | #include "vm/compiler/backend/flow_graph_compiler.h" | 
|  | #include "vm/compiler/backend/locations.h" | 
|  | #include "vm/compiler/backend/locations_helpers.h" | 
|  | #include "vm/compiler/backend/range_analysis.h" | 
|  | #include "vm/compiler/ffi/native_calling_convention.h" | 
|  | #include "vm/compiler/jit/compiler.h" | 
|  | #include "vm/compiler/runtime_api.h" | 
|  | #include "vm/dart_entry.h" | 
|  | #include "vm/instructions.h" | 
|  | #include "vm/object_store.h" | 
|  | #include "vm/parser.h" | 
|  | #include "vm/stack_frame.h" | 
|  | #include "vm/stub_code.h" | 
|  | #include "vm/symbols.h" | 
|  | #include "vm/type_testing_stubs.h" | 
|  |  | 
|  | #define __ compiler->assembler()-> | 
|  | #define Z (compiler->zone()) | 
|  |  | 
|  | namespace dart { | 
|  |  | 
|  | // Generic summary for call instructions that have all arguments pushed | 
|  | // on the stack and return the result in a fixed register RAX (or XMM0 if | 
|  | // the return type is double). | 
|  | LocationSummary* Instruction::MakeCallSummary(Zone* zone, | 
|  | const Instruction* instr, | 
|  | LocationSummary* locs) { | 
|  | ASSERT(locs == nullptr || locs->always_calls()); | 
|  | LocationSummary* result = | 
|  | ((locs == nullptr) | 
|  | ? (new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall)) | 
|  | : locs); | 
|  | const auto representation = instr->representation(); | 
|  | switch (representation) { | 
|  | case kTagged: | 
|  | case kUntagged: | 
|  | case kUnboxedInt64: | 
|  | result->set_out( | 
|  | 0, Location::RegisterLocation(CallingConventions::kReturnReg)); | 
|  | break; | 
|  | case kPairOfTagged: | 
|  | result->set_out( | 
|  | 0, Location::Pair( | 
|  | Location::RegisterLocation(CallingConventions::kReturnReg), | 
|  | Location::RegisterLocation( | 
|  | CallingConventions::kSecondReturnReg))); | 
|  | break; | 
|  | case kUnboxedDouble: | 
|  | result->set_out( | 
|  | 0, Location::FpuRegisterLocation(CallingConventions::kReturnFpuReg)); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | LocationSummary* LoadIndexedUnsafeInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  |  | 
|  | locs->set_in(0, Location::RequiresRegister()); | 
|  | switch (representation()) { | 
|  | case kTagged: | 
|  | case kUnboxedInt64: | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | break; | 
|  | case kUnboxedDouble: | 
|  | locs->set_out(0, Location::RequiresFpuRegister()); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void LoadIndexedUnsafeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(RequiredInputRepresentation(0) == kTagged);  // It is a Smi. | 
|  | ASSERT(kSmiTag == 0); | 
|  | ASSERT(kSmiTagSize == 1); | 
|  |  | 
|  | const Register index = locs()->in(0).reg(); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | // No addressing mode will ignore the upper bits. Cannot use the shorter `orl` | 
|  | // to clear the upper bits as this instructions uses negative indices as part | 
|  | // of FP-relative loads. | 
|  | // TODO(compressed-pointers): Can we guarantee the index is already | 
|  | // sign-extended if always comes for an args-descriptor load? | 
|  | __ movsxd(index, index); | 
|  | #endif | 
|  |  | 
|  | switch (representation()) { | 
|  | case kTagged: | 
|  | case kUnboxedInt64: { | 
|  | const auto out = locs()->out(0).reg(); | 
|  | __ movq(out, compiler::Address(base_reg(), index, TIMES_4, offset())); | 
|  | break; | 
|  | } | 
|  | case kUnboxedDouble: { | 
|  | const auto out = locs()->out(0).fpu_reg(); | 
|  | __ movsd(out, compiler::Address(base_reg(), index, TIMES_4, offset())); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEFINE_BACKEND(StoreIndexedUnsafe, | 
|  | (NoLocation, Register index, Register value)) { | 
|  | ASSERT(instr->RequiredInputRepresentation( | 
|  | StoreIndexedUnsafeInstr::kIndexPos) == kTagged);  // It is a Smi. | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | // No addressing mode will ignore the upper bits. Cannot use the shorter `orl` | 
|  | // to clear the upper bits as this instructions uses negative indices as part | 
|  | // of FP-relative stores. | 
|  | // TODO(compressed-pointers): Can we guarantee the index is already | 
|  | // sign-extended if always comes for an args-descriptor load? | 
|  | __ movsxd(index, index); | 
|  | #endif | 
|  | __ movq(compiler::Address(instr->base_reg(), index, TIMES_4, instr->offset()), | 
|  | value); | 
|  |  | 
|  | ASSERT(kSmiTag == 0); | 
|  | ASSERT(kSmiTagSize == 1); | 
|  | } | 
|  |  | 
|  | DEFINE_BACKEND(TailCall, (NoLocation, Fixed<Register, ARGS_DESC_REG>)) { | 
|  | compiler->EmitTailCallToStub(instr->code()); | 
|  |  | 
|  | // Even though the TailCallInstr will be the last instruction in a basic | 
|  | // block, the flow graph compiler will emit native code for other blocks after | 
|  | // the one containing this instruction and needs to be able to use the pool. | 
|  | // (The `LeaveDartFrame` above disables usages of the pool.) | 
|  | __ set_constant_pool_allowed(true); | 
|  | } | 
|  |  | 
|  | LocationSummary* MemoryCopyInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | // The compiler must optimize any function that includes a MemoryCopy | 
|  | // instruction that uses typed data cids, since extracting the payload address | 
|  | // from views is done in a compiler pass after all code motion has happened. | 
|  | ASSERT((!IsTypedDataBaseClassId(src_cid_) && | 
|  | !IsTypedDataBaseClassId(dest_cid_)) || | 
|  | opt); | 
|  | const intptr_t kNumInputs = 5; | 
|  | const intptr_t kNumTemps = 2; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(kSrcPos, Location::RequiresRegister()); | 
|  | locs->set_in(kDestPos, Location::RequiresRegister()); | 
|  | const bool needs_writable_inputs = | 
|  | (((element_size_ == 1) && !unboxed_inputs_) || | 
|  | ((element_size_ == 16) && unboxed_inputs_)); | 
|  | locs->set_in(kSrcStartPos, | 
|  | needs_writable_inputs | 
|  | ? LocationWritableRegisterOrConstant(src_start()) | 
|  | : LocationRegisterOrConstant(src_start())); | 
|  | locs->set_in(kDestStartPos, | 
|  | needs_writable_inputs | 
|  | ? LocationWritableRegisterOrConstant(dest_start()) | 
|  | : LocationRegisterOrConstant(dest_start())); | 
|  | if (length()->BindsToSmiConstant() && length()->BoundSmiConstant() <= 4) { | 
|  | locs->set_in( | 
|  | kLengthPos, | 
|  | Location::Constant( | 
|  | length()->definition()->OriginalDefinition()->AsConstant())); | 
|  | } else { | 
|  | locs->set_in(kLengthPos, Location::RegisterLocation(RCX)); | 
|  | } | 
|  | // Used for the actual iteration. | 
|  | locs->set_temp(0, Location::RegisterLocation(RSI)); | 
|  | locs->set_temp(1, Location::RegisterLocation(RDI)); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | static inline intptr_t SizeOfMemoryCopyElements(intptr_t element_size) { | 
|  | return Utils::Minimum<intptr_t>(element_size, compiler::target::kWordSize); | 
|  | } | 
|  |  | 
|  | void MemoryCopyInstr::PrepareLengthRegForLoop(FlowGraphCompiler* compiler, | 
|  | Register length_reg, | 
|  | compiler::Label* done) { | 
|  | const intptr_t mov_size = SizeOfMemoryCopyElements(element_size_); | 
|  |  | 
|  | // We want to convert the value in length_reg to an unboxed length in | 
|  | // terms of mov_size-sized elements. | 
|  | const intptr_t shift = Utils::ShiftForPowerOfTwo(element_size_) - | 
|  | Utils::ShiftForPowerOfTwo(mov_size) - | 
|  | (unboxed_inputs() ? 0 : kSmiTagShift); | 
|  | if (shift < 0) { | 
|  | ASSERT_EQUAL(shift, -kSmiTagShift); | 
|  | __ SmiUntag(length_reg); | 
|  | } else if (shift > 0) { | 
|  | __ OBJ(shl)(length_reg, compiler::Immediate(shift)); | 
|  | } else { | 
|  | __ ExtendNonNegativeSmi(length_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void MemoryCopyInstr::EmitLoopCopy(FlowGraphCompiler* compiler, | 
|  | Register dest_reg, | 
|  | Register src_reg, | 
|  | Register length_reg, | 
|  | compiler::Label* done, | 
|  | compiler::Label* copy_forwards) { | 
|  | const intptr_t mov_size = SizeOfMemoryCopyElements(element_size_); | 
|  | const bool reversed = copy_forwards != nullptr; | 
|  | if (reversed) { | 
|  | // Avoid doing the extra work to prepare for the rep mov instructions | 
|  | // if the length to copy is zero. | 
|  | __ BranchIfZero(length_reg, done); | 
|  | // Verify that the overlap actually exists by checking to see if | 
|  | // the first element in dest <= the last element in src. | 
|  | const ScaleFactor scale = ToScaleFactor(mov_size, /*index_unboxed=*/true); | 
|  | __ leaq(TMP, compiler::Address(src_reg, length_reg, scale, -mov_size)); | 
|  | __ CompareRegisters(dest_reg, TMP); | 
|  | const auto jump_distance = FLAG_target_memory_sanitizer | 
|  | ? compiler::Assembler::kFarJump | 
|  | : compiler::Assembler::kNearJump; | 
|  | __ BranchIf(UNSIGNED_GREATER, copy_forwards, jump_distance); | 
|  | // The backwards move must be performed, so move TMP -> src_reg and do the | 
|  | // same adjustment for dest_reg. | 
|  | __ movq(src_reg, TMP); | 
|  | __ leaq(dest_reg, | 
|  | compiler::Address(dest_reg, length_reg, scale, -mov_size)); | 
|  | __ std(); | 
|  | } | 
|  | if (FLAG_target_memory_sanitizer) { | 
|  | // For reversed, do the `rep` first. It sets `dest_reg` to the start again. | 
|  | // For forward, do the unpoisining first, before `dest_reg` is modified. | 
|  | __ movq(TMP, length_reg); | 
|  | if (mov_size != 1) { | 
|  | // Unpoison takes the length in bytes. | 
|  | __ MulImmediate(TMP, mov_size); | 
|  | } | 
|  | if (!reversed) { | 
|  | __ MsanUnpoison(dest_reg, TMP); | 
|  | } | 
|  | } | 
|  | switch (mov_size) { | 
|  | case 1: | 
|  | __ rep_movsb(); | 
|  | break; | 
|  | case 2: | 
|  | __ rep_movsw(); | 
|  | break; | 
|  | case 4: | 
|  | __ rep_movsd(); | 
|  | break; | 
|  | case 8: | 
|  | __ rep_movsq(); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | if (reversed) { | 
|  | __ cld(); | 
|  | } | 
|  |  | 
|  | if (FLAG_target_memory_sanitizer) { | 
|  | if (reversed) { | 
|  | __ MsanUnpoison(dest_reg, TMP); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void MemoryCopyInstr::EmitComputeStartPointer(FlowGraphCompiler* compiler, | 
|  | classid_t array_cid, | 
|  | Register array_reg, | 
|  | Register payload_reg, | 
|  | Representation array_rep, | 
|  | Location start_loc) { | 
|  | intptr_t offset = 0; | 
|  | if (array_rep != kTagged) { | 
|  | // Do nothing, array_reg already contains the payload address. | 
|  | } else if (IsTypedDataBaseClassId(array_cid)) { | 
|  | // The incoming array must have been proven to be an internal typed data | 
|  | // object, where the payload is in the object and we can just offset. | 
|  | ASSERT_EQUAL(array_rep, kTagged); | 
|  | offset = compiler::target::TypedData::payload_offset() - kHeapObjectTag; | 
|  | } else { | 
|  | ASSERT_EQUAL(array_rep, kTagged); | 
|  | ASSERT(!IsExternalPayloadClassId(array_cid)); | 
|  | switch (array_cid) { | 
|  | case kOneByteStringCid: | 
|  | offset = | 
|  | compiler::target::OneByteString::data_offset() - kHeapObjectTag; | 
|  | break; | 
|  | case kTwoByteStringCid: | 
|  | offset = | 
|  | compiler::target::TwoByteString::data_offset() - kHeapObjectTag; | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | ASSERT(start_loc.IsRegister() || start_loc.IsConstant()); | 
|  | if (start_loc.IsConstant()) { | 
|  | const auto& constant = start_loc.constant(); | 
|  | ASSERT(constant.IsInteger()); | 
|  | const int64_t start_value = Integer::Cast(constant).AsInt64Value(); | 
|  | const intptr_t add_value = Utils::AddWithWrapAround( | 
|  | Utils::MulWithWrapAround<intptr_t>(start_value, element_size_), offset); | 
|  | __ leaq(payload_reg, compiler::Address(array_reg, add_value)); | 
|  | return; | 
|  | } | 
|  | // Note that start_reg must be writable in the special cases below. | 
|  | const Register start_reg = start_loc.reg(); | 
|  | bool index_unboxed = unboxed_inputs_; | 
|  | // Both special cases below assume that Smis are only shifted one bit. | 
|  | COMPILE_ASSERT(kSmiTagShift == 1); | 
|  | if (element_size_ == 1 && !index_unboxed) { | 
|  | // Shift the value to the right by tagging it as a Smi. | 
|  | __ SmiUntag(start_reg); | 
|  | index_unboxed = true; | 
|  | } else if (element_size_ == 16 && index_unboxed) { | 
|  | // Can't use TIMES_16 on X86, so instead pre-shift the value to reduce the | 
|  | // scaling needed in the leaq instruction. | 
|  | __ SmiTag(start_reg); | 
|  | index_unboxed = false; | 
|  | } else if (!index_unboxed) { | 
|  | __ ExtendNonNegativeSmi(start_reg); | 
|  | } | 
|  | auto const scale = ToScaleFactor(element_size_, index_unboxed); | 
|  | __ leaq(payload_reg, compiler::Address(array_reg, start_reg, scale, offset)); | 
|  | } | 
|  |  | 
|  | LocationSummary* MoveArgumentInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | if (representation() == kUnboxedDouble) { | 
|  | locs->set_in(0, Location::RequiresFpuRegister()); | 
|  | } else if (representation() == kUnboxedInt64) { | 
|  | locs->set_in(0, Location::RequiresRegister()); | 
|  | } else { | 
|  | locs->set_in(0, LocationAnyOrConstant(value())); | 
|  | } | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void MoveArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(compiler->is_optimizing()); | 
|  |  | 
|  | const Location value = locs()->in(0); | 
|  | const auto dst = LocationToStackSlotAddress(location()); | 
|  | if (value.IsRegister()) { | 
|  | __ movq(dst, value.reg()); | 
|  | } else if (value.IsConstant()) { | 
|  | __ StoreObject(dst, value.constant()); | 
|  | } else if (value.IsFpuRegister()) { | 
|  | __ movsd(dst, value.fpu_reg()); | 
|  | } else { | 
|  | ASSERT(value.IsStackSlot()); | 
|  | __ MoveMemoryToMemory(dst, LocationToStackSlotAddress(value)); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* DartReturnInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | switch (representation()) { | 
|  | case kTagged: | 
|  | case kUnboxedInt64: | 
|  | locs->set_in(0, | 
|  | Location::RegisterLocation(CallingConventions::kReturnReg)); | 
|  | break; | 
|  | case kPairOfTagged: | 
|  | locs->set_in( | 
|  | 0, Location::Pair( | 
|  | Location::RegisterLocation(CallingConventions::kReturnReg), | 
|  | Location::RegisterLocation( | 
|  | CallingConventions::kSecondReturnReg))); | 
|  | break; | 
|  | case kUnboxedDouble: | 
|  | locs->set_in( | 
|  | 0, Location::FpuRegisterLocation(CallingConventions::kReturnFpuReg)); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | // Attempt optimized compilation at return instruction instead of at the entry. | 
|  | // The entry needs to be patchable, no inlined objects are allowed in the area | 
|  | // that will be overwritten by the patch instruction: a jump). | 
|  | void DartReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | if (locs()->in(0).IsRegister()) { | 
|  | const Register result = locs()->in(0).reg(); | 
|  | ASSERT(result == CallingConventions::kReturnReg); | 
|  | } else if (locs()->in(0).IsPairLocation()) { | 
|  | const Register result_lo = locs()->in(0).AsPairLocation()->At(0).reg(); | 
|  | const Register result_hi = locs()->in(0).AsPairLocation()->At(1).reg(); | 
|  | ASSERT(result_lo == CallingConventions::kReturnReg); | 
|  | ASSERT(result_hi == CallingConventions::kSecondReturnReg); | 
|  | } else { | 
|  | ASSERT(locs()->in(0).IsFpuRegister()); | 
|  | const FpuRegister result = locs()->in(0).fpu_reg(); | 
|  | ASSERT(result == CallingConventions::kReturnFpuReg); | 
|  | } | 
|  |  | 
|  | if (compiler->parsed_function().function().IsAsyncFunction() || | 
|  | compiler->parsed_function().function().IsAsyncGenerator()) { | 
|  | ASSERT(compiler->flow_graph().graph_entry()->NeedsFrame()); | 
|  | const Code& stub = GetReturnStub(compiler); | 
|  | compiler->EmitJumpToStub(stub); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!compiler->flow_graph().graph_entry()->NeedsFrame()) { | 
|  | __ ret(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if defined(DEBUG) | 
|  | __ Comment("Stack Check"); | 
|  | compiler::Label done; | 
|  | const intptr_t fp_sp_dist = | 
|  | (compiler::target::frame_layout.first_local_from_fp + 1 - | 
|  | compiler->StackSize()) * | 
|  | kWordSize; | 
|  | ASSERT(fp_sp_dist <= 0); | 
|  | __ movq(RDI, RSP); | 
|  | __ subq(RDI, RBP); | 
|  | __ CompareImmediate(RDI, compiler::Immediate(fp_sp_dist)); | 
|  | __ j(EQUAL, &done, compiler::Assembler::kNearJump); | 
|  | __ int3(); | 
|  | __ Bind(&done); | 
|  | #endif | 
|  | ASSERT(__ constant_pool_allowed()); | 
|  | __ LeaveDartFrame();  // Disallows constant pool use. | 
|  | __ ret(); | 
|  | // This DartReturnInstr may be emitted out of order by the optimizer. The next | 
|  | // block may be a target expecting a properly set constant pool pointer. | 
|  | __ set_constant_pool_allowed(true); | 
|  | } | 
|  |  | 
|  | static const RegisterSet kCalleeSaveRegistersSet( | 
|  | CallingConventions::kCalleeSaveCpuRegisters, | 
|  | CallingConventions::kCalleeSaveXmmRegisters); | 
|  |  | 
|  | // Keep in sync with NativeEntryInstr::EmitNativeCode. | 
|  | void NativeReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | EmitReturnMoves(compiler); | 
|  |  | 
|  | // Restore tag before the profiler's stack walker will no longer see the | 
|  | // InvokeDartCode return address. | 
|  | __ movq(TMP, compiler::Address(RBP, NativeEntryInstr::kVMTagOffsetFromFp)); | 
|  | __ movq(compiler::Assembler::VMTagAddress(), TMP); | 
|  |  | 
|  | __ LeaveDartFrame(); | 
|  |  | 
|  | // Pop dummy return address. | 
|  | __ popq(TMP); | 
|  |  | 
|  | // Anything besides the return register. | 
|  | const Register vm_tag_reg = RBX; | 
|  | const Register old_exit_frame_reg = RCX; | 
|  | const Register old_exit_through_ffi_reg = RDI; | 
|  |  | 
|  | __ popq(old_exit_frame_reg); | 
|  |  | 
|  | __ popq(old_exit_through_ffi_reg); | 
|  |  | 
|  | // Restore top_resource. | 
|  | __ popq(TMP); | 
|  | __ movq( | 
|  | compiler::Address(THR, compiler::target::Thread::top_resource_offset()), | 
|  | TMP); | 
|  |  | 
|  | __ popq(vm_tag_reg); | 
|  |  | 
|  | // The trampoline that called us will enter the safepoint on our behalf. | 
|  | __ TransitionGeneratedToNative(vm_tag_reg, old_exit_frame_reg, | 
|  | old_exit_through_ffi_reg, | 
|  | /*enter_safepoint=*/false); | 
|  |  | 
|  | // Restore C++ ABI callee-saved registers. | 
|  | __ PopRegisters(kCalleeSaveRegistersSet); | 
|  |  | 
|  | #if defined(DART_TARGET_OS_FUCHSIA) && defined(USING_SHADOW_CALL_STACK) | 
|  | #error Unimplemented | 
|  | #endif | 
|  |  | 
|  | // Leave the entry frame. | 
|  | __ LeaveFrame(); | 
|  |  | 
|  | // Leave the dummy frame holding the pushed arguments. | 
|  | __ LeaveFrame(); | 
|  |  | 
|  | __ ret(); | 
|  |  | 
|  | // For following blocks. | 
|  | __ set_constant_pool_allowed(true); | 
|  | } | 
|  |  | 
|  | // Detect pattern when one value is zero and another is a power of 2. | 
|  | static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) { | 
|  | return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) || | 
|  | (Utils::IsPowerOfTwo(v2) && (v1 == 0)); | 
|  | } | 
|  |  | 
|  | LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | comparison()->InitializeLocationSummary(zone, opt); | 
|  | // TODO(dartbug.com/30952) support conversion of Register to corresponding | 
|  | // least significant byte register (e.g. RAX -> AL, RSI -> SIL, r15 -> r15b). | 
|  | comparison()->locs()->set_out(0, Location::RegisterLocation(RDX)); | 
|  | return comparison()->locs(); | 
|  | } | 
|  |  | 
|  | void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(locs()->out(0).reg() == RDX); | 
|  |  | 
|  | // Clear upper part of the out register. We are going to use setcc on it | 
|  | // which is a byte move. | 
|  | __ xorq(RDX, RDX); | 
|  |  | 
|  | // Emit comparison code. This must not overwrite the result register. | 
|  | // IfThenElseInstr::Supports() should prevent EmitComparisonCode from using | 
|  | // the labels or returning an invalid condition. | 
|  | BranchLabels labels = {nullptr, nullptr, nullptr}; | 
|  | Condition true_condition = comparison()->EmitComparisonCode(compiler, labels); | 
|  | ASSERT(true_condition != kInvalidCondition); | 
|  |  | 
|  | const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_); | 
|  |  | 
|  | intptr_t true_value = if_true_; | 
|  | intptr_t false_value = if_false_; | 
|  |  | 
|  | if (is_power_of_two_kind) { | 
|  | if (true_value == 0) { | 
|  | // We need to have zero in RDX on true_condition. | 
|  | true_condition = InvertCondition(true_condition); | 
|  | } | 
|  | } else { | 
|  | if (true_value == 0) { | 
|  | // Swap values so that false_value is zero. | 
|  | intptr_t temp = true_value; | 
|  | true_value = false_value; | 
|  | false_value = temp; | 
|  | } else { | 
|  | true_condition = InvertCondition(true_condition); | 
|  | } | 
|  | } | 
|  |  | 
|  | __ setcc(true_condition, DL); | 
|  |  | 
|  | if (is_power_of_two_kind) { | 
|  | const intptr_t shift = | 
|  | Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value)); | 
|  | __ shlq(RDX, compiler::Immediate(shift + kSmiTagSize)); | 
|  | } else { | 
|  | __ decq(RDX); | 
|  | __ AndImmediate(RDX, compiler::Immediate(Smi::RawValue(true_value) - | 
|  | Smi::RawValue(false_value))); | 
|  | if (false_value != 0) { | 
|  | __ AddImmediate(RDX, compiler::Immediate(Smi::RawValue(false_value))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 0; | 
|  | const intptr_t stack_index = | 
|  | compiler::target::frame_layout.FrameSlotForVariable(&local()); | 
|  | return LocationSummary::Make(zone, kNumInputs, | 
|  | Location::StackSlot(stack_index, FPREG), | 
|  | LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(!compiler->is_optimizing()); | 
|  | // Nothing to do. | 
|  | } | 
|  |  | 
|  | LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(), | 
|  | LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register value = locs()->in(0).reg(); | 
|  | Register result = locs()->out(0).reg(); | 
|  | ASSERT(result == value);  // Assert that register assignment is correct. | 
|  | __ movq(compiler::Address( | 
|  | RBP, compiler::target::FrameOffsetInBytesForVariable(&local())), | 
|  | value); | 
|  | } | 
|  |  | 
|  | LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 0; | 
|  | return LocationSummary::Make(zone, kNumInputs, | 
|  | compiler::Assembler::IsSafe(value()) | 
|  | ? Location::Constant(this) | 
|  | : Location::RequiresRegister(), | 
|  | LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | // The register allocator drops constant definitions that have no uses. | 
|  | Location out = locs()->out(0); | 
|  | ASSERT(out.IsRegister() || out.IsConstant() || out.IsInvalid()); | 
|  | if (out.IsRegister()) { | 
|  | Register result = out.reg(); | 
|  | __ LoadObject(result, value()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ConstantInstr::EmitMoveToLocation(FlowGraphCompiler* compiler, | 
|  | const Location& destination, | 
|  | Register tmp, | 
|  | intptr_t pair_index) { | 
|  | ASSERT(pair_index == 0);  // No pair representation needed on 64-bit. | 
|  | if (destination.IsRegister()) { | 
|  | if (RepresentationUtils::IsUnboxedInteger(representation())) { | 
|  | const int64_t value = Integer::Cast(value_).AsInt64Value(); | 
|  | if (value == 0) { | 
|  | __ xorl(destination.reg(), destination.reg()); | 
|  | } else { | 
|  | __ movq(destination.reg(), compiler::Immediate(value)); | 
|  | } | 
|  | } else { | 
|  | ASSERT(representation() == kTagged); | 
|  | __ LoadObject(destination.reg(), value_); | 
|  | } | 
|  | } else if (destination.IsFpuRegister()) { | 
|  | switch (representation()) { | 
|  | case kUnboxedFloat: | 
|  | __ LoadSImmediate(destination.fpu_reg(), Double::Cast(value_).value()); | 
|  | break; | 
|  | case kUnboxedDouble: | 
|  | __ LoadDImmediate(destination.fpu_reg(), Double::Cast(value_).value()); | 
|  | break; | 
|  | case kUnboxedFloat64x2: | 
|  | __ LoadQImmediate(destination.fpu_reg(), | 
|  | Float64x2::Cast(value_).value()); | 
|  | break; | 
|  | case kUnboxedFloat32x4: | 
|  | __ LoadQImmediate(destination.fpu_reg(), | 
|  | Float32x4::Cast(value_).value()); | 
|  | break; | 
|  | case kUnboxedInt32x4: | 
|  | __ LoadQImmediate(destination.fpu_reg(), Int32x4::Cast(value_).value()); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else if (destination.IsDoubleStackSlot()) { | 
|  | ASSERT(representation() == kUnboxedDouble); | 
|  | __ LoadDImmediate(FpuTMP, Double::Cast(value_).value()); | 
|  | __ movsd(LocationToStackSlotAddress(destination), FpuTMP); | 
|  | } else if (destination.IsQuadStackSlot()) { | 
|  | switch (representation()) { | 
|  | case kUnboxedFloat64x2: | 
|  | __ LoadQImmediate(FpuTMP, Float64x2::Cast(value_).value()); | 
|  | break; | 
|  | case kUnboxedFloat32x4: | 
|  | __ LoadQImmediate(FpuTMP, Float32x4::Cast(value_).value()); | 
|  | break; | 
|  | case kUnboxedInt32x4: | 
|  | __ LoadQImmediate(FpuTMP, Int32x4::Cast(value_).value()); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | __ movups(LocationToStackSlotAddress(destination), FpuTMP); | 
|  | } else { | 
|  | ASSERT(destination.IsStackSlot()); | 
|  | if (RepresentationUtils::IsUnboxedInteger(representation())) { | 
|  | const int64_t value = Integer::Cast(value_).AsInt64Value(); | 
|  | __ movq(LocationToStackSlotAddress(destination), | 
|  | compiler::Immediate(value)); | 
|  | } else if (representation() == kUnboxedFloat) { | 
|  | int32_t float_bits = | 
|  | bit_cast<int32_t, float>(Double::Cast(value_).value()); | 
|  | __ movl(LocationToStackSlotAddress(destination), | 
|  | compiler::Immediate(float_bits)); | 
|  | } else { | 
|  | ASSERT(representation() == kTagged); | 
|  | __ StoreObject(LocationToStackSlotAddress(destination), value_); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const bool is_unboxed_int = | 
|  | RepresentationUtils::IsUnboxedInteger(representation()); | 
|  | ASSERT(!is_unboxed_int || RepresentationUtils::ValueSize(representation()) <= | 
|  | compiler::target::kWordSize); | 
|  | const intptr_t kNumInputs = 0; | 
|  | const intptr_t kNumTemps = is_unboxed_int ? 0 : 1; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | if (is_unboxed_int) { | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | } else { | 
|  | switch (representation()) { | 
|  | case kUnboxedDouble: | 
|  | locs->set_out(0, Location::RequiresFpuRegister()); | 
|  | locs->set_temp(0, Location::RequiresRegister()); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | // The register allocator drops constant definitions that have no uses. | 
|  | if (!locs()->out(0).IsInvalid()) { | 
|  | const Register scratch = | 
|  | RepresentationUtils::IsUnboxedInteger(representation()) | 
|  | ? kNoRegister | 
|  | : locs()->temp(0).reg(); | 
|  | EmitMoveToLocation(compiler, locs()->out(0), scratch); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | auto const dst_type_loc = | 
|  | LocationFixedRegisterOrConstant(dst_type(), TypeTestABI::kDstTypeReg); | 
|  |  | 
|  | // We want to prevent spilling of the inputs (e.g. function/instantiator tav), | 
|  | // since TTS preserves them. So we make this a `kNoCall` summary, | 
|  | // even though most other registers can be modified by the stub. To tell the | 
|  | // register allocator about it, we reserve all the other registers as | 
|  | // temporary registers. | 
|  | // TODO(http://dartbug.com/32788): Simplify this. | 
|  |  | 
|  | const intptr_t kNonChangeableInputRegs = | 
|  | (1 << TypeTestABI::kInstanceReg) | | 
|  | ((dst_type_loc.IsRegister() ? 1 : 0) << TypeTestABI::kDstTypeReg) | | 
|  | (1 << TypeTestABI::kInstantiatorTypeArgumentsReg) | | 
|  | (1 << TypeTestABI::kFunctionTypeArgumentsReg); | 
|  |  | 
|  | const intptr_t kNumInputs = 4; | 
|  |  | 
|  | // We invoke a stub that can potentially clobber any CPU register | 
|  | // but can only clobber FPU registers on the slow path when | 
|  | // entering runtime. Preserve all FPU registers that are | 
|  | // not guaranteed to be preserved by the ABI. | 
|  | const intptr_t kCpuRegistersToPreserve = | 
|  | kDartAvailableCpuRegs & ~kNonChangeableInputRegs; | 
|  | const intptr_t kFpuRegistersToPreserve = | 
|  | CallingConventions::kVolatileXmmRegisters & ~(1 << FpuTMP); | 
|  |  | 
|  | const intptr_t kNumTemps = (Utils::CountOneBits64(kCpuRegistersToPreserve) + | 
|  | Utils::CountOneBits64(kFpuRegistersToPreserve)); | 
|  |  | 
|  | LocationSummary* summary = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, LocationSummary::kCallCalleeSafe); | 
|  | summary->set_in(kInstancePos, | 
|  | Location::RegisterLocation(TypeTestABI::kInstanceReg)); | 
|  | summary->set_in(kDstTypePos, dst_type_loc); | 
|  | summary->set_in( | 
|  | kInstantiatorTAVPos, | 
|  | Location::RegisterLocation(TypeTestABI::kInstantiatorTypeArgumentsReg)); | 
|  | summary->set_in(kFunctionTAVPos, Location::RegisterLocation( | 
|  | TypeTestABI::kFunctionTypeArgumentsReg)); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  |  | 
|  | // Let's reserve all registers except for the input ones. | 
|  | intptr_t next_temp = 0; | 
|  | for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { | 
|  | const bool should_preserve = ((1 << i) & kCpuRegistersToPreserve) != 0; | 
|  | if (should_preserve) { | 
|  | summary->set_temp(next_temp++, | 
|  | Location::RegisterLocation(static_cast<Register>(i))); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) { | 
|  | const bool should_preserve = ((1 << i) & kFpuRegistersToPreserve) != 0; | 
|  | if (should_preserve) { | 
|  | summary->set_temp(next_temp++, Location::FpuRegisterLocation( | 
|  | static_cast<FpuRegister>(i))); | 
|  | } | 
|  | } | 
|  |  | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(locs()->always_calls()); | 
|  |  | 
|  | auto object_store = compiler->isolate_group()->object_store(); | 
|  | const auto& assert_boolean_stub = | 
|  | Code::ZoneHandle(compiler->zone(), object_store->assert_boolean_stub()); | 
|  |  | 
|  | compiler::Label done; | 
|  | __ testq( | 
|  | AssertBooleanABI::kObjectReg, | 
|  | compiler::Immediate(compiler::target::ObjectAlignment::kBoolVsNullMask)); | 
|  | __ j(NOT_ZERO, &done, compiler::Assembler::kNearJump); | 
|  | compiler->GenerateStubCall(source(), assert_boolean_stub, | 
|  | /*kind=*/UntaggedPcDescriptors::kOther, locs(), | 
|  | deopt_id(), env()); | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | static Condition TokenKindToIntCondition(Token::Kind kind) { | 
|  | switch (kind) { | 
|  | case Token::kEQ: | 
|  | return EQUAL; | 
|  | case Token::kNE: | 
|  | return NOT_EQUAL; | 
|  | case Token::kLT: | 
|  | return LESS; | 
|  | case Token::kGT: | 
|  | return GREATER; | 
|  | case Token::kLTE: | 
|  | return LESS_EQUAL; | 
|  | case Token::kGTE: | 
|  | return GREATER_EQUAL; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | return OVERFLOW; | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | if (operation_cid() == kDoubleCid) { | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(0, Location::RequiresFpuRegister()); | 
|  | locs->set_in(1, Location::RequiresFpuRegister()); | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | return locs; | 
|  | } | 
|  | if (operation_cid() == kSmiCid || operation_cid() == kMintCid || | 
|  | operation_cid() == kIntegerCid) { | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | if (is_null_aware()) { | 
|  | locs->set_in(0, Location::RequiresRegister()); | 
|  | locs->set_in(1, Location::RequiresRegister()); | 
|  | } else { | 
|  | locs->set_in(0, LocationRegisterOrConstant(left())); | 
|  | // Only one input can be a constant operand. The case of two constant | 
|  | // operands should be handled by constant propagation. | 
|  | // Only right can be a stack slot. | 
|  | locs->set_in(1, locs->in(0).IsConstant() | 
|  | ? Location::RequiresRegister() | 
|  | : LocationRegisterOrConstant(right())); | 
|  | } | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | return locs; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static void LoadValueCid(FlowGraphCompiler* compiler, | 
|  | Register value_cid_reg, | 
|  | Register value_reg, | 
|  | compiler::Label* value_is_smi = nullptr) { | 
|  | compiler::Label done; | 
|  | if (value_is_smi == nullptr) { | 
|  | __ LoadImmediate(value_cid_reg, compiler::Immediate(kSmiCid)); | 
|  | } | 
|  | __ testq(value_reg, compiler::Immediate(kSmiTagMask)); | 
|  | if (value_is_smi == nullptr) { | 
|  | __ j(ZERO, &done, compiler::Assembler::kNearJump); | 
|  | } else { | 
|  | __ j(ZERO, value_is_smi); | 
|  | } | 
|  | __ LoadClassId(value_cid_reg, value_reg); | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | static Condition FlipCondition(Condition condition) { | 
|  | switch (condition) { | 
|  | case EQUAL: | 
|  | return EQUAL; | 
|  | case NOT_EQUAL: | 
|  | return NOT_EQUAL; | 
|  | case LESS: | 
|  | return GREATER; | 
|  | case LESS_EQUAL: | 
|  | return GREATER_EQUAL; | 
|  | case GREATER: | 
|  | return LESS; | 
|  | case GREATER_EQUAL: | 
|  | return LESS_EQUAL; | 
|  | case BELOW: | 
|  | return ABOVE; | 
|  | case BELOW_EQUAL: | 
|  | return ABOVE_EQUAL; | 
|  | case ABOVE: | 
|  | return BELOW; | 
|  | case ABOVE_EQUAL: | 
|  | return BELOW_EQUAL; | 
|  | default: | 
|  | UNIMPLEMENTED(); | 
|  | return EQUAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void EmitBranchOnCondition( | 
|  | FlowGraphCompiler* compiler, | 
|  | Condition true_condition, | 
|  | BranchLabels labels, | 
|  | compiler::Assembler::JumpDistance jump_distance = | 
|  | compiler::Assembler::kFarJump) { | 
|  | if (labels.fall_through == labels.false_label) { | 
|  | // If the next block is the false successor, fall through to it. | 
|  | __ j(true_condition, labels.true_label, jump_distance); | 
|  | } else { | 
|  | // If the next block is not the false successor, branch to it. | 
|  | Condition false_condition = InvertCondition(true_condition); | 
|  | __ j(false_condition, labels.false_label, jump_distance); | 
|  |  | 
|  | // Fall through or jump to the true successor. | 
|  | if (labels.fall_through != labels.true_label) { | 
|  | __ jmp(labels.true_label, jump_distance); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static Condition EmitSmiComparisonOp(FlowGraphCompiler* compiler, | 
|  | const LocationSummary& locs, | 
|  | Token::Kind kind) { | 
|  | Location left = locs.in(0); | 
|  | Location right = locs.in(1); | 
|  | ASSERT(!left.IsConstant() || !right.IsConstant()); | 
|  |  | 
|  | Condition true_condition = TokenKindToIntCondition(kind); | 
|  | if (left.IsConstant() || right.IsConstant()) { | 
|  | // Ensure constant is on the right. | 
|  | ConstantInstr* constant = nullptr; | 
|  | if (left.IsConstant()) { | 
|  | constant = left.constant_instruction(); | 
|  | Location tmp = right; | 
|  | right = left; | 
|  | left = tmp; | 
|  | true_condition = FlipCondition(true_condition); | 
|  | } else { | 
|  | constant = right.constant_instruction(); | 
|  | } | 
|  |  | 
|  | if (RepresentationUtils::IsUnboxedInteger(constant->representation())) { | 
|  | int64_t value; | 
|  | const bool ok = compiler::HasIntegerValue(constant->value(), &value); | 
|  | RELEASE_ASSERT(ok); | 
|  | __ OBJ(cmp)(left.reg(), compiler::Immediate(value)); | 
|  | } else { | 
|  | ASSERT(constant->representation() == kTagged); | 
|  | __ CompareObject(left.reg(), right.constant()); | 
|  | } | 
|  | } else if (right.IsStackSlot()) { | 
|  | __ OBJ(cmp)(left.reg(), LocationToStackSlotAddress(right)); | 
|  | } else { | 
|  | __ OBJ(cmp)(left.reg(), right.reg()); | 
|  | } | 
|  | return true_condition; | 
|  | } | 
|  |  | 
|  | static Condition EmitInt64ComparisonOp(FlowGraphCompiler* compiler, | 
|  | const LocationSummary& locs, | 
|  | Token::Kind kind) { | 
|  | Location left = locs.in(0); | 
|  | Location right = locs.in(1); | 
|  | ASSERT(!left.IsConstant() || !right.IsConstant()); | 
|  |  | 
|  | Condition true_condition = TokenKindToIntCondition(kind); | 
|  | if (left.IsConstant() || right.IsConstant()) { | 
|  | // Ensure constant is on the right. | 
|  | ConstantInstr* constant = nullptr; | 
|  | if (left.IsConstant()) { | 
|  | constant = left.constant_instruction(); | 
|  | Location tmp = right; | 
|  | right = left; | 
|  | left = tmp; | 
|  | true_condition = FlipCondition(true_condition); | 
|  | } else { | 
|  | constant = right.constant_instruction(); | 
|  | } | 
|  |  | 
|  | if (RepresentationUtils::IsUnboxedInteger(constant->representation())) { | 
|  | int64_t value; | 
|  | const bool ok = compiler::HasIntegerValue(constant->value(), &value); | 
|  | RELEASE_ASSERT(ok); | 
|  | __ cmpq(left.reg(), compiler::Immediate(value)); | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } else if (right.IsStackSlot()) { | 
|  | __ cmpq(left.reg(), LocationToStackSlotAddress(right)); | 
|  | } else { | 
|  | __ cmpq(left.reg(), right.reg()); | 
|  | } | 
|  | return true_condition; | 
|  | } | 
|  |  | 
|  | static Condition EmitNullAwareInt64ComparisonOp(FlowGraphCompiler* compiler, | 
|  | const LocationSummary& locs, | 
|  | Token::Kind kind, | 
|  | BranchLabels labels) { | 
|  | ASSERT((kind == Token::kEQ) || (kind == Token::kNE)); | 
|  | const Register left = locs.in(0).reg(); | 
|  | const Register right = locs.in(1).reg(); | 
|  | const Condition true_condition = TokenKindToIntCondition(kind); | 
|  | compiler::Label* equal_result = | 
|  | (true_condition == EQUAL) ? labels.true_label : labels.false_label; | 
|  | compiler::Label* not_equal_result = | 
|  | (true_condition == EQUAL) ? labels.false_label : labels.true_label; | 
|  |  | 
|  | // Check if operands have the same value. If they don't, then they could | 
|  | // be equal only if both of them are Mints with the same value. | 
|  | __ OBJ(cmp)(left, right); | 
|  | __ j(EQUAL, equal_result); | 
|  | __ OBJ(mov)(TMP, left); | 
|  | __ OBJ (and)(TMP, right); | 
|  | __ BranchIfSmi(TMP, not_equal_result); | 
|  | __ CompareClassId(left, kMintCid); | 
|  | __ j(NOT_EQUAL, not_equal_result); | 
|  | __ CompareClassId(right, kMintCid); | 
|  | __ j(NOT_EQUAL, not_equal_result); | 
|  | __ movq(TMP, compiler::FieldAddress(left, Mint::value_offset())); | 
|  | __ cmpq(TMP, compiler::FieldAddress(right, Mint::value_offset())); | 
|  | return true_condition; | 
|  | } | 
|  |  | 
|  | static Condition TokenKindToDoubleCondition(Token::Kind kind) { | 
|  | switch (kind) { | 
|  | case Token::kEQ: | 
|  | return EQUAL; | 
|  | case Token::kNE: | 
|  | return NOT_EQUAL; | 
|  | case Token::kLT: | 
|  | return BELOW; | 
|  | case Token::kGT: | 
|  | return ABOVE; | 
|  | case Token::kLTE: | 
|  | return BELOW_EQUAL; | 
|  | case Token::kGTE: | 
|  | return ABOVE_EQUAL; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | return OVERFLOW; | 
|  | } | 
|  | } | 
|  |  | 
|  | static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler, | 
|  | const LocationSummary& locs, | 
|  | Token::Kind kind, | 
|  | BranchLabels labels) { | 
|  | XmmRegister left = locs.in(0).fpu_reg(); | 
|  | XmmRegister right = locs.in(1).fpu_reg(); | 
|  |  | 
|  | __ comisd(left, right); | 
|  |  | 
|  | Condition true_condition = TokenKindToDoubleCondition(kind); | 
|  | compiler::Label* nan_result = | 
|  | (true_condition == NOT_EQUAL) ? labels.true_label : labels.false_label; | 
|  | __ j(PARITY_EVEN, nan_result); | 
|  | return true_condition; | 
|  | } | 
|  |  | 
|  | Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler, | 
|  | BranchLabels labels) { | 
|  | if (is_null_aware()) { | 
|  | ASSERT(operation_cid() == kMintCid); | 
|  | return EmitNullAwareInt64ComparisonOp(compiler, *locs(), kind(), labels); | 
|  | } | 
|  | if (operation_cid() == kSmiCid) { | 
|  | return EmitSmiComparisonOp(compiler, *locs(), kind()); | 
|  | } else if (operation_cid() == kMintCid || operation_cid() == kIntegerCid) { | 
|  | return EmitInt64ComparisonOp(compiler, *locs(), kind()); | 
|  | } else { | 
|  | ASSERT(operation_cid() == kDoubleCid); | 
|  | return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | compiler::Label is_true, is_false; | 
|  | BranchLabels labels = {&is_true, &is_false, &is_false}; | 
|  | Condition true_condition = EmitComparisonCode(compiler, labels); | 
|  |  | 
|  | Register result = locs()->out(0).reg(); | 
|  | if (true_condition != kInvalidCondition) { | 
|  | EmitBranchOnCondition(compiler, true_condition, labels, | 
|  | compiler::Assembler::kNearJump); | 
|  | } | 
|  | // Note: We use branches instead of setcc or cmov even when the branch labels | 
|  | // are otherwise unused, as this runs faster for the x86 processors tested on | 
|  | // our benchmarking server. | 
|  | compiler::Label done; | 
|  | __ Bind(&is_false); | 
|  | __ LoadObject(result, Bool::False()); | 
|  | __ jmp(&done, compiler::Assembler::kNearJump); | 
|  | __ Bind(&is_true); | 
|  | __ LoadObject(result, Bool::True()); | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | void ComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler, | 
|  | BranchInstr* branch) { | 
|  | BranchLabels labels = compiler->CreateBranchLabels(branch); | 
|  | Condition true_condition = EmitComparisonCode(compiler, labels); | 
|  | if (true_condition != kInvalidCondition) { | 
|  | EmitBranchOnCondition(compiler, true_condition, labels); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* TestIntInstr::MakeLocationSummary(Zone* zone, bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(0, Location::RequiresRegister()); | 
|  | // Only one input can be a constant operand. The case of two constant | 
|  | // operands should be handled by constant propagation. | 
|  | locs->set_in(1, LocationRegisterOrConstant(right())); | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | Condition TestIntInstr::EmitComparisonCode(FlowGraphCompiler* compiler, | 
|  | BranchLabels labels) { | 
|  | Register left_reg = locs()->in(0).reg(); | 
|  | Location right = locs()->in(1); | 
|  | if (right.IsConstant()) { | 
|  | const auto operand_size = representation_ == kTagged | 
|  | ? compiler::kObjectBytes | 
|  | : compiler::kEightBytes; | 
|  | __ TestImmediate(left_reg, compiler::Immediate(ComputeImmediateMask()), | 
|  | operand_size); | 
|  | } else { | 
|  | if (representation_ == kTagged) { | 
|  | __ OBJ(test)(left_reg, right.reg()); | 
|  | } else { | 
|  | __ testq(left_reg, right.reg()); | 
|  | } | 
|  | } | 
|  | Condition true_condition = (kind() == Token::kNE) ? NOT_ZERO : ZERO; | 
|  | return true_condition; | 
|  | } | 
|  |  | 
|  | LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(0, Location::RequiresRegister()); | 
|  | locs->set_temp(0, Location::RequiresRegister()); | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler, | 
|  | BranchLabels labels) { | 
|  | ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT)); | 
|  | Register val_reg = locs()->in(0).reg(); | 
|  | Register cid_reg = locs()->temp(0).reg(); | 
|  |  | 
|  | compiler::Label* deopt = | 
|  | CanDeoptimize() | 
|  | ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptTestCids) | 
|  | : nullptr; | 
|  |  | 
|  | const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0; | 
|  | const ZoneGrowableArray<intptr_t>& data = cid_results(); | 
|  | ASSERT(data[0] == kSmiCid); | 
|  | bool result = data[1] == true_result; | 
|  | __ testq(val_reg, compiler::Immediate(kSmiTagMask)); | 
|  | __ j(ZERO, result ? labels.true_label : labels.false_label); | 
|  | __ LoadClassId(cid_reg, val_reg); | 
|  | for (intptr_t i = 2; i < data.length(); i += 2) { | 
|  | const intptr_t test_cid = data[i]; | 
|  | ASSERT(test_cid != kSmiCid); | 
|  | result = data[i + 1] == true_result; | 
|  | __ cmpq(cid_reg, compiler::Immediate(test_cid)); | 
|  | __ j(EQUAL, result ? labels.true_label : labels.false_label); | 
|  | } | 
|  | // No match found, deoptimize or default action. | 
|  | if (deopt == nullptr) { | 
|  | // If the cid is not in the list, jump to the opposite label from the cids | 
|  | // that are in the list.  These must be all the same (see asserts in the | 
|  | // constructor). | 
|  | compiler::Label* target = result ? labels.false_label : labels.true_label; | 
|  | if (target != labels.fall_through) { | 
|  | __ jmp(target); | 
|  | } | 
|  | } else { | 
|  | __ jmp(deopt); | 
|  | } | 
|  | // Dummy result as this method already did the jump, there's no need | 
|  | // for the caller to branch on a condition. | 
|  | return kInvalidCondition; | 
|  | } | 
|  |  | 
|  | LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | if (operation_cid() == kDoubleCid) { | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresFpuRegister()); | 
|  | summary->set_in(1, Location::RequiresFpuRegister()); | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  | if (operation_cid() == kSmiCid || operation_cid() == kMintCid) { | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, LocationRegisterOrConstant(left())); | 
|  | // Only one input can be a constant operand. The case of two constant | 
|  | // operands should be handled by constant propagation. | 
|  | summary->set_in(1, summary->in(0).IsConstant() | 
|  | ? Location::RequiresRegister() | 
|  | : LocationRegisterOrConstant(right())); | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler, | 
|  | BranchLabels labels) { | 
|  | if (operation_cid() == kSmiCid) { | 
|  | return EmitSmiComparisonOp(compiler, *locs(), kind()); | 
|  | } else if (operation_cid() == kMintCid) { | 
|  | return EmitInt64ComparisonOp(compiler, *locs(), kind()); | 
|  | } else { | 
|  | ASSERT(operation_cid() == kDoubleCid); | 
|  | return EmitDoubleComparisonOp(compiler, *locs(), kind(), labels); | 
|  | } | 
|  | } | 
|  |  | 
|  | void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | SetupNative(); | 
|  | Register result = locs()->out(0).reg(); | 
|  | const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function()); | 
|  |  | 
|  | // Pass a pointer to the first argument in R13 (we avoid using RAX here to | 
|  | // simplify the stub code that will call native code). | 
|  | __ leaq(R13, compiler::Address(RSP, (ArgumentCount() - 1) * kWordSize)); | 
|  |  | 
|  | __ LoadImmediate(R10, compiler::Immediate(argc_tag)); | 
|  | const Code* stub; | 
|  | if (link_lazily()) { | 
|  | stub = &StubCode::CallBootstrapNative(); | 
|  | compiler::ExternalLabel label(NativeEntry::LinkNativeCallEntry()); | 
|  | __ LoadNativeEntry(RBX, &label, | 
|  | compiler::ObjectPoolBuilderEntry::kPatchable); | 
|  | compiler->GeneratePatchableCall( | 
|  | source(), *stub, UntaggedPcDescriptors::kOther, locs(), | 
|  | compiler::ObjectPoolBuilderEntry::kResetToBootstrapNative); | 
|  | } else { | 
|  | if (is_bootstrap_native()) { | 
|  | stub = &StubCode::CallBootstrapNative(); | 
|  | } else if (is_auto_scope()) { | 
|  | stub = &StubCode::CallAutoScopeNative(); | 
|  | } else { | 
|  | stub = &StubCode::CallNoScopeNative(); | 
|  | } | 
|  | const compiler::ExternalLabel label( | 
|  | reinterpret_cast<uword>(native_c_function())); | 
|  | __ LoadNativeEntry(RBX, &label, | 
|  | compiler::ObjectPoolBuilderEntry::kNotPatchable); | 
|  | // We can never lazy-deopt here because natives are never optimized. | 
|  | ASSERT(!compiler->is_optimizing()); | 
|  | compiler->GenerateNonLazyDeoptableStubCall( | 
|  | source(), *stub, UntaggedPcDescriptors::kOther, locs(), | 
|  | compiler::ObjectPoolBuilderEntry::kNotSnapshotable); | 
|  | } | 
|  | __ LoadFromOffset(result, RSP, 0); | 
|  | compiler->EmitDropArguments(ArgumentCount());  // Drop the arguments. | 
|  | } | 
|  |  | 
|  | #define R(r) (1 << r) | 
|  |  | 
|  | LocationSummary* FfiCallInstr::MakeLocationSummary(Zone* zone, | 
|  | bool is_optimizing) const { | 
|  | // Use R10 as a temp. register. We can't use RDI, RSI, RDX, R8, R9 as they are | 
|  | // argument registers, and R11 is TMP. | 
|  | return MakeLocationSummaryInternal( | 
|  | zone, is_optimizing, | 
|  | (R(CallingConventions::kSecondNonArgumentRegister) | R(R10) | | 
|  | R(CallingConventions::kFfiAnyNonAbiRegister))); | 
|  | } | 
|  |  | 
|  | #undef R | 
|  |  | 
|  | void FfiCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register target_address = locs()->in(TargetAddressIndex()).reg(); | 
|  |  | 
|  | // The temps are indexed according to their register number. | 
|  | // For regular calls, this holds the FP for rebasing the original locations | 
|  | // during EmitParamMoves. | 
|  | const Register saved_fp = locs()->temp(0).reg(); | 
|  | const Register temp = locs()->temp(1).reg(); | 
|  | // For leaf calls, this holds the SP used to restore the pre-aligned SP after | 
|  | // the call. | 
|  | // Note: R12 doubles as CODE_REG, which gets clobbered during frame setup in | 
|  | // regular calls. | 
|  | const Register saved_sp = locs()->temp(2).reg(); | 
|  |  | 
|  | // Ensure these are callee-saved register and are preserved across the call. | 
|  | ASSERT(IsCalleeSavedRegister(saved_sp)); | 
|  | ASSERT(IsCalleeSavedRegister(saved_fp)); | 
|  | // Other temps don't need to be preserved. | 
|  |  | 
|  | if (is_leaf_) { | 
|  | __ movq(saved_sp, SPREG); | 
|  | } else { | 
|  | __ movq(saved_fp, FPREG); | 
|  | // Make a space to put the return address. | 
|  | __ pushq(compiler::Immediate(0)); | 
|  |  | 
|  | // We need to create a dummy "exit frame". It will share the same pool | 
|  | // pointer but have a null code object. | 
|  | __ LoadObject(CODE_REG, Code::null_object()); | 
|  | __ set_constant_pool_allowed(false); | 
|  | __ EnterDartFrame(0, PP); | 
|  | } | 
|  |  | 
|  | // Reserve space for the arguments that go on the stack (if any), then align. | 
|  | intptr_t stack_space = marshaller_.RequiredStackSpaceInBytes(); | 
|  | __ ReserveAlignedFrameSpace(stack_space); | 
|  | if (FLAG_target_memory_sanitizer) { | 
|  | RegisterSet kVolatileRegisterSet(CallingConventions::kVolatileCpuRegisters, | 
|  | CallingConventions::kVolatileXmmRegisters); | 
|  | __ movq(temp, RSP); | 
|  | __ PushRegisters(kVolatileRegisterSet); | 
|  |  | 
|  | // Unpoison everything from SP to FP: this covers both space we have | 
|  | // reserved for outgoing arguments and the spills which might have | 
|  | // been generated by the register allocator. Some of these spill slots | 
|  | // can be used as handles passed down to the runtime. | 
|  | __ movq(RAX, is_leaf_ ? FPREG : saved_fp); | 
|  | __ subq(RAX, temp); | 
|  | __ MsanUnpoison(temp, RAX); | 
|  |  | 
|  | // Incoming Dart arguments to this trampoline are potentially used as local | 
|  | // handles. | 
|  | __ MsanUnpoison(is_leaf_ ? FPREG : saved_fp, | 
|  | (kParamEndSlotFromFp + InputCount()) * kWordSize); | 
|  |  | 
|  | // Outgoing arguments passed by register to the foreign function. | 
|  | __ LoadImmediate(CallingConventions::kArg1Reg, InputCount()); | 
|  | __ CallCFunction(compiler::Address( | 
|  | THR, kMsanUnpoisonParamRuntimeEntry.OffsetFromThread())); | 
|  |  | 
|  | __ PopRegisters(kVolatileRegisterSet); | 
|  | } | 
|  |  | 
|  | if (is_leaf_) { | 
|  | EmitParamMoves(compiler, FPREG, saved_fp, TMP); | 
|  | } else { | 
|  | EmitParamMoves(compiler, saved_fp, saved_sp, TMP); | 
|  | } | 
|  |  | 
|  | if (compiler::Assembler::EmittingComments()) { | 
|  | __ Comment(is_leaf_ ? "Leaf Call" : "Call"); | 
|  | } | 
|  |  | 
|  | if (is_leaf_) { | 
|  | #if !defined(PRODUCT) | 
|  | // Set the thread object's top_exit_frame_info and VMTag to enable the | 
|  | // profiler to determine that thread is no longer executing Dart code. | 
|  | __ movq(compiler::Address( | 
|  | THR, compiler::target::Thread::top_exit_frame_info_offset()), | 
|  | FPREG); | 
|  | __ movq(compiler::Assembler::VMTagAddress(), target_address); | 
|  | #endif | 
|  |  | 
|  | if (marshaller_.contains_varargs() && | 
|  | CallingConventions::kVarArgFpuRegisterCount != kNoRegister) { | 
|  | // TODO(http://dartbug.com/38578): Use the number of used FPU registers. | 
|  | __ LoadImmediate(CallingConventions::kVarArgFpuRegisterCount, | 
|  | CallingConventions::kFpuArgumentRegisters); | 
|  | } | 
|  | __ CallCFunction(target_address, /*restore_rsp=*/true); | 
|  |  | 
|  | #if !defined(PRODUCT) | 
|  | __ movq(compiler::Assembler::VMTagAddress(), | 
|  | compiler::Immediate(compiler::target::Thread::vm_tag_dart_id())); | 
|  | __ movq(compiler::Address( | 
|  | THR, compiler::target::Thread::top_exit_frame_info_offset()), | 
|  | compiler::Immediate(0)); | 
|  | #endif | 
|  | } else { | 
|  | // We need to copy a dummy return address up into the dummy stack frame so | 
|  | // the stack walker will know which safepoint to use. RIP points to the | 
|  | // *next* instruction, so 'AddressRIPRelative' loads the address of the | 
|  | // following 'movq'. | 
|  | __ leaq(temp, compiler::Address::AddressRIPRelative(0)); | 
|  | compiler->EmitCallsiteMetadata(InstructionSource(), deopt_id(), | 
|  | UntaggedPcDescriptors::Kind::kOther, locs(), | 
|  | env()); | 
|  | __ movq(compiler::Address(FPREG, kSavedCallerPcSlotFromFp * kWordSize), | 
|  | temp); | 
|  |  | 
|  | if (CanExecuteGeneratedCodeInSafepoint()) { | 
|  | // Update information in the thread object and enter a safepoint. | 
|  | __ movq(temp, compiler::Immediate( | 
|  | compiler::target::Thread::exit_through_ffi())); | 
|  |  | 
|  | __ TransitionGeneratedToNative(target_address, FPREG, temp, | 
|  | /*enter_safepoint=*/true); | 
|  |  | 
|  | if (marshaller_.contains_varargs() && | 
|  | CallingConventions::kVarArgFpuRegisterCount != kNoRegister) { | 
|  | __ LoadImmediate(CallingConventions::kVarArgFpuRegisterCount, 8); | 
|  | } | 
|  | __ CallCFunction(target_address, /*restore_rsp=*/true); | 
|  |  | 
|  | // Update information in the thread object and leave the safepoint. | 
|  | __ TransitionNativeToGenerated(/*leave_safepoint=*/true); | 
|  | } else { | 
|  | // We cannot trust that this code will be executable within a safepoint. | 
|  | // Therefore we delegate the responsibility of entering/exiting the | 
|  | // safepoint to a stub which is in the VM isolate's heap, which will never | 
|  | // lose execute permission. | 
|  | __ movq(temp, | 
|  | compiler::Address( | 
|  | THR, compiler::target::Thread:: | 
|  | call_native_through_safepoint_entry_point_offset())); | 
|  |  | 
|  | // Calls RBX within a safepoint. RBX and R12 are clobbered. | 
|  | __ movq(RBX, target_address); | 
|  | if (marshaller_.contains_varargs() && | 
|  | CallingConventions::kVarArgFpuRegisterCount != kNoRegister) { | 
|  | __ LoadImmediate(CallingConventions::kVarArgFpuRegisterCount, 8); | 
|  | } | 
|  | __ call(temp); | 
|  | } | 
|  |  | 
|  | if (marshaller_.IsHandleCType(compiler::ffi::kResultIndex)) { | 
|  | __ Comment("Check Dart_Handle for Error."); | 
|  | compiler::Label not_error; | 
|  | __ movq(temp, | 
|  | compiler::Address(CallingConventions::kReturnReg, | 
|  | compiler::target::LocalHandle::ptr_offset())); | 
|  | __ BranchIfSmi(temp, ¬_error); | 
|  | __ LoadClassId(temp, temp); | 
|  | __ RangeCheck(temp, kNoRegister, kFirstErrorCid, kLastErrorCid, | 
|  | compiler::AssemblerBase::kIfNotInRange, ¬_error); | 
|  |  | 
|  | // Slow path, use the stub to propagate error, to save on code-size. | 
|  | __ Comment("Slow path: call Dart_PropagateError through stub."); | 
|  | __ movq(temp, | 
|  | compiler::Address( | 
|  | THR, compiler::target::Thread:: | 
|  | call_native_through_safepoint_entry_point_offset())); | 
|  | __ movq(RBX, compiler::Address( | 
|  | THR, kPropagateErrorRuntimeEntry.OffsetFromThread())); | 
|  | __ movq(CallingConventions::kArg1Reg, CallingConventions::kReturnReg); | 
|  | __ call(temp); | 
|  | #if defined(DEBUG) | 
|  | // We should never return with normal controlflow from this. | 
|  | __ int3(); | 
|  | #endif | 
|  |  | 
|  | __ Bind(¬_error); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pass the `saved_fp` reg. as a temp to clobber since we're done with it. | 
|  | EmitReturnMoves(compiler, temp, saved_fp); | 
|  |  | 
|  | if (is_leaf_) { | 
|  | // Restore the pre-aligned SP. | 
|  | __ movq(SPREG, saved_sp); | 
|  | } else { | 
|  | __ LeaveDartFrame(); | 
|  | // Restore the global object pool after returning from runtime (old space is | 
|  | // moving, so the GOP could have been relocated). | 
|  | if (FLAG_precompiled_mode) { | 
|  | __ movq(PP, compiler::Address(THR, Thread::global_object_pool_offset())); | 
|  | } | 
|  | __ set_constant_pool_allowed(true); | 
|  |  | 
|  | // Instead of returning to the "fake" return address, we just pop it. | 
|  | __ popq(temp); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep in sync with NativeReturnInstr::EmitNativeCode. | 
|  | void NativeEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | __ Bind(compiler->GetJumpLabel(this)); | 
|  |  | 
|  | // Create a dummy frame holding the pushed arguments. This simplifies | 
|  | // NativeReturnInstr::EmitNativeCode. | 
|  | __ EnterFrame(0); | 
|  |  | 
|  | #if defined(DART_TARGET_OS_FUCHSIA) && defined(USING_SHADOW_CALL_STACK) | 
|  | #error Unimplemented | 
|  | #endif | 
|  |  | 
|  | // Save the argument registers, in reverse order. | 
|  | SaveArguments(compiler); | 
|  |  | 
|  | // Enter the entry frame. Push a dummy return address for consistency with | 
|  | // EnterFrame on ARM(64). NativeParameterInstr expects this frame has size | 
|  | // -exit_link_slot_from_entry_fp, verified below. | 
|  | __ PushImmediate(compiler::Immediate(0)); | 
|  | __ EnterFrame(0); | 
|  |  | 
|  | // Save a space for the code object. | 
|  | __ PushImmediate(compiler::Immediate(0)); | 
|  |  | 
|  | // InvokeDartCodeStub saves the arguments descriptor here. We don't have one, | 
|  | // but we need to follow the same frame layout for the stack walker. | 
|  | __ PushImmediate(compiler::Immediate(0)); | 
|  |  | 
|  | // Save ABI callee-saved registers. | 
|  | __ PushRegisters(kCalleeSaveRegistersSet); | 
|  |  | 
|  | // Save the current VMTag on the stack. | 
|  | __ movq(RAX, compiler::Assembler::VMTagAddress()); | 
|  | __ pushq(RAX); | 
|  | ASSERT(kVMTagOffsetFromFp == 5 * compiler::target::kWordSize); | 
|  |  | 
|  | // Save top resource. | 
|  | __ pushq( | 
|  | compiler::Address(THR, compiler::target::Thread::top_resource_offset())); | 
|  | __ movq( | 
|  | compiler::Address(THR, compiler::target::Thread::top_resource_offset()), | 
|  | compiler::Immediate(0)); | 
|  |  | 
|  | __ pushq(compiler::Address( | 
|  | THR, compiler::target::Thread::exit_through_ffi_offset())); | 
|  |  | 
|  | // Save top exit frame info. Stack walker expects it to be here. | 
|  | __ pushq(compiler::Address( | 
|  | THR, compiler::target::Thread::top_exit_frame_info_offset())); | 
|  |  | 
|  | // In debug mode, verify that we've pushed the top exit frame info at the | 
|  | // correct offset from FP. | 
|  | __ EmitEntryFrameVerification(); | 
|  |  | 
|  | // The callback trampoline (caller) has already left the safepoint for us. | 
|  | __ TransitionNativeToGenerated(/*exit_safepoint=*/false, | 
|  | /*ignore_unwind_in_progress=*/false, | 
|  | /*set_tag=*/false); | 
|  |  | 
|  | // Load the code object. | 
|  | const Function& target_function = marshaller_.dart_signature(); | 
|  | const intptr_t callback_id = target_function.FfiCallbackId(); | 
|  | __ movq(RAX, compiler::Address( | 
|  | THR, compiler::target::Thread::isolate_group_offset())); | 
|  | __ movq(RAX, compiler::Address( | 
|  | RAX, compiler::target::IsolateGroup::object_store_offset())); | 
|  | __ movq(RAX, | 
|  | compiler::Address( | 
|  | RAX, compiler::target::ObjectStore::ffi_callback_code_offset())); | 
|  | __ LoadCompressed( | 
|  | RAX, compiler::FieldAddress( | 
|  | RAX, compiler::target::GrowableObjectArray::data_offset())); | 
|  | __ LoadCompressed( | 
|  | CODE_REG, | 
|  | compiler::FieldAddress( | 
|  | RAX, compiler::target::Array::data_offset() + | 
|  | callback_id * compiler::target::kCompressedWordSize)); | 
|  |  | 
|  | // Put the code object in the reserved slot. | 
|  | __ movq(compiler::Address(FPREG, | 
|  | kPcMarkerSlotFromFp * compiler::target::kWordSize), | 
|  | CODE_REG); | 
|  |  | 
|  | if (FLAG_precompiled_mode) { | 
|  | __ movq(PP, | 
|  | compiler::Address( | 
|  | THR, compiler::target::Thread::global_object_pool_offset())); | 
|  | } else { | 
|  | __ xorq(PP, PP);  // GC-safe value into PP. | 
|  | } | 
|  |  | 
|  | // Load a GC-safe value for arguments descriptor (unused but tagged). | 
|  | __ xorq(ARGS_DESC_REG, ARGS_DESC_REG); | 
|  |  | 
|  | // Push a dummy return address which suggests that we are inside of | 
|  | // InvokeDartCodeStub. This is how the stack walker detects an entry frame. | 
|  | __ movq(RAX, | 
|  | compiler::Address( | 
|  | THR, compiler::target::Thread::invoke_dart_code_stub_offset())); | 
|  | __ pushq(compiler::FieldAddress( | 
|  | RAX, compiler::target::Code::entry_point_offset())); | 
|  |  | 
|  | // Continue with Dart frame setup. | 
|  | FunctionEntryInstr::EmitNativeCode(compiler); | 
|  |  | 
|  | // Delay setting the tag until the profiler's stack walker will see the | 
|  | // InvokeDartCode return address. | 
|  | __ movq(compiler::Assembler::VMTagAddress(), | 
|  | compiler::Immediate(compiler::target::Thread::vm_tag_dart_id())); | 
|  | } | 
|  |  | 
|  | #define R(r) (1 << r) | 
|  |  | 
|  | LocationSummary* LeafRuntimeCallInstr::MakeLocationSummary( | 
|  | Zone* zone, | 
|  | bool is_optimizing) const { | 
|  | constexpr Register saved_fp = CallingConventions::kSecondNonArgumentRegister; | 
|  | return MakeLocationSummaryInternal(zone, (R(saved_fp))); | 
|  | } | 
|  |  | 
|  | #undef R | 
|  |  | 
|  | void LeafRuntimeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register saved_fp = locs()->temp(0).reg(); | 
|  | const Register temp0 = TMP; | 
|  |  | 
|  | // TODO(http://dartbug.com/47778): If we knew whether the stack was aligned | 
|  | // at this point, we could omit having a frame. | 
|  | __ MoveRegister(saved_fp, FPREG); | 
|  |  | 
|  | const intptr_t frame_space = native_calling_convention_.StackTopInBytes(); | 
|  | __ EnterCFrame(frame_space); | 
|  |  | 
|  | EmitParamMoves(compiler, saved_fp, temp0); | 
|  | const Register target_address = locs()->in(TargetAddressIndex()).reg(); | 
|  | __ movq(compiler::Assembler::VMTagAddress(), target_address); | 
|  | __ CallCFunction(target_address); | 
|  | __ movq(compiler::Assembler::VMTagAddress(), | 
|  | compiler::Immediate(VMTag::kDartTagId)); | 
|  |  | 
|  | __ LeaveCFrame(); | 
|  | } | 
|  |  | 
|  | LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary( | 
|  | Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | // TODO(fschneider): Allow immediate operands for the char code. | 
|  | return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), | 
|  | LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void OneByteStringFromCharCodeInstr::EmitNativeCode( | 
|  | FlowGraphCompiler* compiler) { | 
|  | ASSERT(compiler->is_optimizing()); | 
|  | Register char_code = locs()->in(0).reg(); | 
|  | Register result = locs()->out(0).reg(); | 
|  |  | 
|  | // Note: we don't bother to ensure char_code is a writable input because any | 
|  | // other instructions using it must also not rely on the upper bits when | 
|  | // compressed. | 
|  | __ ExtendNonNegativeSmi(char_code); | 
|  | __ movq(result, | 
|  | compiler::Address(THR, Thread::predefined_symbols_address_offset())); | 
|  | __ movq(result, | 
|  | compiler::Address(result, char_code, | 
|  | TIMES_HALF_WORD_SIZE,  // Char code is a smi. | 
|  | Symbols::kNullCharCodeSymbolOffset * kWordSize)); | 
|  | } | 
|  |  | 
|  | LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(), | 
|  | LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(cid_ == kOneByteStringCid); | 
|  | Register str = locs()->in(0).reg(); | 
|  | Register result = locs()->out(0).reg(); | 
|  | compiler::Label is_one, done; | 
|  | __ LoadCompressedSmi(result, | 
|  | compiler::FieldAddress(str, String::length_offset())); | 
|  | __ cmpq(result, compiler::Immediate(Smi::RawValue(1))); | 
|  | __ j(EQUAL, &is_one, compiler::Assembler::kNearJump); | 
|  | __ movq(result, compiler::Immediate(Smi::RawValue(-1))); | 
|  | __ jmp(&done); | 
|  | __ Bind(&is_one); | 
|  | __ movzxb(result, compiler::FieldAddress(str, OneByteString::data_offset())); | 
|  | __ SmiTag(result); | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | LocationSummary* Utf8ScanInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 5; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::Any());               // decoder | 
|  | summary->set_in(1, Location::WritableRegister());  // bytes | 
|  | summary->set_in(2, Location::WritableRegister());  // start | 
|  | summary->set_in(3, Location::WritableRegister());  // end | 
|  | summary->set_in(4, Location::RequiresRegister());  // table | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void Utf8ScanInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register bytes_reg = locs()->in(1).reg(); | 
|  | const Register start_reg = locs()->in(2).reg(); | 
|  | const Register end_reg = locs()->in(3).reg(); | 
|  | const Register table_reg = locs()->in(4).reg(); | 
|  | const Register size_reg = locs()->out(0).reg(); | 
|  |  | 
|  | const Register bytes_ptr_reg = start_reg; | 
|  | const Register bytes_end_reg = end_reg; | 
|  | const Register bytes_end_minus_16_reg = bytes_reg; | 
|  | const Register flags_reg = locs()->temp(0).reg(); | 
|  | const Register temp_reg = TMP; | 
|  | const XmmRegister vector_reg = FpuTMP; | 
|  |  | 
|  | const intptr_t kSizeMask = 0x03; | 
|  | const intptr_t kFlagsMask = 0x3C; | 
|  |  | 
|  | compiler::Label scan_ascii, ascii_loop, ascii_loop_in, nonascii_loop; | 
|  | compiler::Label rest, rest_loop, rest_loop_in, done; | 
|  |  | 
|  | // Address of input bytes. | 
|  | __ LoadFromSlot(bytes_reg, bytes_reg, Slot::PointerBase_data()); | 
|  |  | 
|  | // Pointers to start, end and end-16. | 
|  | __ leaq(bytes_ptr_reg, compiler::Address(bytes_reg, start_reg, TIMES_1, 0)); | 
|  | __ leaq(bytes_end_reg, compiler::Address(bytes_reg, end_reg, TIMES_1, 0)); | 
|  | __ leaq(bytes_end_minus_16_reg, compiler::Address(bytes_end_reg, -16)); | 
|  |  | 
|  | // Initialize size and flags. | 
|  | __ xorq(size_reg, size_reg); | 
|  | __ xorq(flags_reg, flags_reg); | 
|  |  | 
|  | __ jmp(&scan_ascii, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // Loop scanning through ASCII bytes one 16-byte vector at a time. | 
|  | // While scanning, the size register contains the size as it was at the start | 
|  | // of the current block of ASCII bytes, minus the address of the start of the | 
|  | // block. After the block, the end address of the block is added to update the | 
|  | // size to include the bytes in the block. | 
|  | __ Bind(&ascii_loop); | 
|  | __ addq(bytes_ptr_reg, compiler::Immediate(16)); | 
|  | __ Bind(&ascii_loop_in); | 
|  |  | 
|  | // Exit vectorized loop when there are less than 16 bytes left. | 
|  | __ cmpq(bytes_ptr_reg, bytes_end_minus_16_reg); | 
|  | __ j(UNSIGNED_GREATER, &rest, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // Find next non-ASCII byte within the next 16 bytes. | 
|  | // Note: In principle, we should use MOVDQU here, since the loaded value is | 
|  | // used as input to an integer instruction. In practice, according to Agner | 
|  | // Fog, there is no penalty for using the wrong kind of load. | 
|  | __ movups(vector_reg, compiler::Address(bytes_ptr_reg, 0)); | 
|  | __ pmovmskb(temp_reg, vector_reg); | 
|  | __ bsfq(temp_reg, temp_reg); | 
|  | __ j(EQUAL, &ascii_loop, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // Point to non-ASCII byte and update size. | 
|  | __ addq(bytes_ptr_reg, temp_reg); | 
|  | __ addq(size_reg, bytes_ptr_reg); | 
|  |  | 
|  | // Read first non-ASCII byte. | 
|  | __ movzxb(temp_reg, compiler::Address(bytes_ptr_reg, 0)); | 
|  |  | 
|  | // Loop over block of non-ASCII bytes. | 
|  | __ Bind(&nonascii_loop); | 
|  | __ addq(bytes_ptr_reg, compiler::Immediate(1)); | 
|  |  | 
|  | // Update size and flags based on byte value. | 
|  | __ movzxb(temp_reg, compiler::FieldAddress( | 
|  | table_reg, temp_reg, TIMES_1, | 
|  | compiler::target::OneByteString::data_offset())); | 
|  | __ orq(flags_reg, temp_reg); | 
|  | __ andq(temp_reg, compiler::Immediate(kSizeMask)); | 
|  | __ addq(size_reg, temp_reg); | 
|  |  | 
|  | // Stop if end is reached. | 
|  | __ cmpq(bytes_ptr_reg, bytes_end_reg); | 
|  | __ j(UNSIGNED_GREATER_EQUAL, &done, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // Go to ASCII scan if next byte is ASCII, otherwise loop. | 
|  | __ movzxb(temp_reg, compiler::Address(bytes_ptr_reg, 0)); | 
|  | __ testq(temp_reg, compiler::Immediate(0x80)); | 
|  | __ j(NOT_EQUAL, &nonascii_loop, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // Enter the ASCII scanning loop. | 
|  | __ Bind(&scan_ascii); | 
|  | __ subq(size_reg, bytes_ptr_reg); | 
|  | __ jmp(&ascii_loop_in); | 
|  |  | 
|  | // Less than 16 bytes left. Process the remaining bytes individually. | 
|  | __ Bind(&rest); | 
|  |  | 
|  | // Update size after ASCII scanning loop. | 
|  | __ addq(size_reg, bytes_ptr_reg); | 
|  | __ jmp(&rest_loop_in, compiler::Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&rest_loop); | 
|  |  | 
|  | // Read byte and increment pointer. | 
|  | __ movzxb(temp_reg, compiler::Address(bytes_ptr_reg, 0)); | 
|  | __ addq(bytes_ptr_reg, compiler::Immediate(1)); | 
|  |  | 
|  | // Update size and flags based on byte value. | 
|  | __ movzxb(temp_reg, compiler::FieldAddress( | 
|  | table_reg, temp_reg, TIMES_1, | 
|  | compiler::target::OneByteString::data_offset())); | 
|  | __ orq(flags_reg, temp_reg); | 
|  | __ andq(temp_reg, compiler::Immediate(kSizeMask)); | 
|  | __ addq(size_reg, temp_reg); | 
|  |  | 
|  | // Stop if end is reached. | 
|  | __ Bind(&rest_loop_in); | 
|  | __ cmpq(bytes_ptr_reg, bytes_end_reg); | 
|  | __ j(UNSIGNED_LESS, &rest_loop, compiler::Assembler::kNearJump); | 
|  | __ Bind(&done); | 
|  |  | 
|  | // Write flags to field. | 
|  | __ andq(flags_reg, compiler::Immediate(kFlagsMask)); | 
|  | if (!IsScanFlagsUnboxed()) { | 
|  | __ SmiTag(flags_reg); | 
|  | } | 
|  | Register decoder_reg; | 
|  | const Location decoder_location = locs()->in(0); | 
|  | if (decoder_location.IsStackSlot()) { | 
|  | __ movq(temp_reg, LocationToStackSlotAddress(decoder_location)); | 
|  | decoder_reg = temp_reg; | 
|  | } else { | 
|  | decoder_reg = decoder_location.reg(); | 
|  | } | 
|  | const auto scan_flags_field_offset = scan_flags_field_.offset_in_bytes(); | 
|  | if (scan_flags_field_.is_compressed() && !IsScanFlagsUnboxed()) { | 
|  | __ OBJ(or)(compiler::FieldAddress(decoder_reg, scan_flags_field_offset), | 
|  | flags_reg); | 
|  | } else { | 
|  | __ orq(compiler::FieldAddress(decoder_reg, scan_flags_field_offset), | 
|  | flags_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | // The compiler must optimize any function that includes a LoadIndexed | 
|  | // instruction that uses typed data cids, since extracting the payload address | 
|  | // from views is done in a compiler pass after all code motion has happened. | 
|  | ASSERT(!IsTypedDataBaseClassId(class_id()) || opt); | 
|  |  | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(kArrayPos, Location::RequiresRegister()); | 
|  | // For tagged index with index_scale=1 as well as untagged index with | 
|  | // index_scale=16 we need a writable register due to addressing mode | 
|  | // restrictions on X64. | 
|  | const bool need_writable_index_register = | 
|  | (index_scale() == 1 && !index_unboxed_) || | 
|  | (index_scale() == 16 && index_unboxed_); | 
|  | const bool can_be_constant = | 
|  | index()->BindsToConstant() && | 
|  | compiler::Assembler::AddressCanHoldConstantIndex( | 
|  | index()->BoundConstant(), IsUntagged(), class_id(), index_scale()); | 
|  | locs->set_in( | 
|  | kIndexPos, | 
|  | can_be_constant | 
|  | ? Location::Constant(index()->definition()->AsConstant()) | 
|  | : (need_writable_index_register ? Location::WritableRegister() | 
|  | : Location::RequiresRegister())); | 
|  | auto const rep = | 
|  | RepresentationUtils::RepresentationOfArrayElement(class_id()); | 
|  | if (RepresentationUtils::IsUnboxedInteger(rep)) { | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | } else if (RepresentationUtils::IsUnboxed(rep)) { | 
|  | locs->set_out(0, Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | } | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | // The array register points to the backing store for external arrays. | 
|  | const Register array = locs()->in(kArrayPos).reg(); | 
|  | const Location index = locs()->in(kIndexPos); | 
|  |  | 
|  | bool index_unboxed = index_unboxed_; | 
|  | if (index.IsRegister()) { | 
|  | if (index_scale_ == 1 && !index_unboxed) { | 
|  | __ SmiUntag(index.reg()); | 
|  | index_unboxed = true; | 
|  | } else if (index_scale_ == 16 && index_unboxed) { | 
|  | // X64 does not support addressing mode using TIMES_16. | 
|  | __ SmiTag(index.reg()); | 
|  | index_unboxed = false; | 
|  | } else if (!index_unboxed) { | 
|  | // Note: we don't bother to ensure index is a writable input because any | 
|  | // other instructions using it must also not rely on the upper bits | 
|  | // when compressed. | 
|  | __ ExtendNonNegativeSmi(index.reg()); | 
|  | } | 
|  | } else { | 
|  | ASSERT(index.IsConstant()); | 
|  | } | 
|  |  | 
|  | compiler::Address element_address = | 
|  | index.IsRegister() ? compiler::Assembler::ElementAddressForRegIndex( | 
|  | IsUntagged(), class_id(), index_scale_, | 
|  | index_unboxed, array, index.reg()) | 
|  | : compiler::Assembler::ElementAddressForIntIndex( | 
|  | IsUntagged(), class_id(), index_scale_, array, | 
|  | Smi::Cast(index.constant()).Value()); | 
|  |  | 
|  | auto const rep = | 
|  | RepresentationUtils::RepresentationOfArrayElement(class_id()); | 
|  | ASSERT(representation() == Boxing::NativeRepresentation(rep)); | 
|  | if (RepresentationUtils::IsUnboxedInteger(rep)) { | 
|  | Register result = locs()->out(0).reg(); | 
|  | __ Load(result, element_address, RepresentationUtils::OperandSize(rep)); | 
|  | } else if (RepresentationUtils::IsUnboxed(rep)) { | 
|  | XmmRegister result = locs()->out(0).fpu_reg(); | 
|  | if (rep == kUnboxedFloat) { | 
|  | // Load single precision float. | 
|  | __ movss(result, element_address); | 
|  | } else if (rep == kUnboxedDouble) { | 
|  | __ movsd(result, element_address); | 
|  | } else { | 
|  | ASSERT(rep == kUnboxedInt32x4 || rep == kUnboxedFloat32x4 || | 
|  | rep == kUnboxedFloat64x2); | 
|  | __ movups(result, element_address); | 
|  | } | 
|  | } else { | 
|  | ASSERT(rep == kTagged); | 
|  | ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid) || | 
|  | (class_id() == kTypeArgumentsCid) || (class_id() == kRecordCid)); | 
|  | Register result = locs()->out(0).reg(); | 
|  | __ LoadCompressed(result, element_address); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | // The smi index is either untagged (element size == 1), or it is left smi | 
|  | // tagged (for all element sizes > 1). | 
|  | summary->set_in(1, index_scale() == 1 ? Location::WritableRegister() | 
|  | : Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | // The string register points to the backing store for external strings. | 
|  | const Register str = locs()->in(0).reg(); | 
|  | const Register index = locs()->in(1).reg(); | 
|  |  | 
|  | bool index_unboxed = false; | 
|  | if ((index_scale() == 1)) { | 
|  | __ SmiUntag(index); | 
|  | index_unboxed = true; | 
|  | } else { | 
|  | __ ExtendNonNegativeSmi(index); | 
|  | } | 
|  | compiler::Address element_address = | 
|  | compiler::Assembler::ElementAddressForRegIndex( | 
|  | IsExternal(), class_id(), index_scale(), index_unboxed, str, index); | 
|  |  | 
|  | Register result = locs()->out(0).reg(); | 
|  | switch (class_id()) { | 
|  | case kOneByteStringCid: | 
|  | switch (element_count()) { | 
|  | case 1: | 
|  | __ movzxb(result, element_address); | 
|  | break; | 
|  | case 2: | 
|  | __ movzxw(result, element_address); | 
|  | break; | 
|  | case 4: | 
|  | __ movl(result, element_address); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | ASSERT(can_pack_into_smi()); | 
|  | __ SmiTag(result); | 
|  | break; | 
|  | case kTwoByteStringCid: | 
|  | switch (element_count()) { | 
|  | case 1: | 
|  | __ movzxw(result, element_address); | 
|  | break; | 
|  | case 2: | 
|  | __ movl(result, element_address); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | ASSERT(can_pack_into_smi()); | 
|  | __ SmiTag(result); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | // The compiler must optimize any function that includes a StoreIndexed | 
|  | // instruction that uses typed data cids, since extracting the payload address | 
|  | // from views is done in a compiler pass after all code motion has happened. | 
|  | ASSERT(!IsTypedDataBaseClassId(class_id()) || opt); | 
|  |  | 
|  | const intptr_t kNumInputs = 3; | 
|  | const intptr_t kNumTemps = | 
|  | class_id() == kArrayCid && ShouldEmitStoreBarrier() ? 1 : 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(0, Location::RequiresRegister()); | 
|  | // For tagged index with index_scale=1 as well as untagged index with | 
|  | // index_scale=16 we need a writable register due to addressing mode | 
|  | // restrictions on X64. | 
|  | const bool need_writable_index_register = | 
|  | (index_scale() == 1 && !index_unboxed_) || | 
|  | (index_scale() == 16 && index_unboxed_); | 
|  | const bool can_be_constant = | 
|  | index()->BindsToConstant() && | 
|  | compiler::Assembler::AddressCanHoldConstantIndex( | 
|  | index()->BoundConstant(), IsUntagged(), class_id(), index_scale()); | 
|  | locs->set_in( | 
|  | 1, can_be_constant | 
|  | ? Location::Constant(index()->definition()->AsConstant()) | 
|  | : (need_writable_index_register ? Location::WritableRegister() | 
|  | : Location::RequiresRegister())); | 
|  | auto const rep = | 
|  | RepresentationUtils::RepresentationOfArrayElement(class_id()); | 
|  | if (RepresentationUtils::IsUnboxedInteger(rep)) { | 
|  | if (rep == kUnboxedUint8 || rep == kUnboxedInt8) { | 
|  | // TODO(fschneider): Add location constraint for byte registers (RAX, | 
|  | // RBX, RCX, RDX) instead of using a fixed register. | 
|  | locs->set_in(2, LocationFixedRegisterOrSmiConstant(value(), RAX)); | 
|  | } else { | 
|  | locs->set_in(2, Location::RequiresRegister()); | 
|  | } | 
|  | } else if (RepresentationUtils::IsUnboxed(rep)) { | 
|  | // TODO(srdjan): Support Float64 constants. | 
|  | locs->set_in(2, Location::RequiresFpuRegister()); | 
|  | } else if (class_id() == kArrayCid) { | 
|  | locs->set_in(2, ShouldEmitStoreBarrier() | 
|  | ? Location::RegisterLocation(kWriteBarrierValueReg) | 
|  | : LocationRegisterOrConstant(value())); | 
|  | if (ShouldEmitStoreBarrier()) { | 
|  | locs->set_in(0, Location::RegisterLocation(kWriteBarrierObjectReg)); | 
|  | locs->set_temp(0, Location::RegisterLocation(kWriteBarrierSlotReg)); | 
|  | } | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | // The array register points to the backing store for external arrays. | 
|  | const Register array = locs()->in(0).reg(); | 
|  | const Location index = locs()->in(1); | 
|  |  | 
|  | bool index_unboxed = index_unboxed_; | 
|  | if (index.IsRegister()) { | 
|  | if (index_scale_ == 1 && !index_unboxed) { | 
|  | __ SmiUntag(index.reg()); | 
|  | index_unboxed = true; | 
|  | } else if (index_scale_ == 16 && index_unboxed) { | 
|  | // X64 does not support addressing mode using TIMES_16. | 
|  | __ SmiTag(index.reg()); | 
|  | index_unboxed = false; | 
|  | } else if (!index_unboxed) { | 
|  | // Note: we don't bother to ensure index is a writable input because any | 
|  | // other instructions using it must also not rely on the upper bits | 
|  | // when compressed. | 
|  | __ ExtendNonNegativeSmi(index.reg()); | 
|  | } | 
|  | } else { | 
|  | ASSERT(index.IsConstant()); | 
|  | } | 
|  |  | 
|  | compiler::Address element_address = | 
|  | index.IsRegister() ? compiler::Assembler::ElementAddressForRegIndex( | 
|  | IsUntagged(), class_id(), index_scale_, | 
|  | index_unboxed, array, index.reg()) | 
|  | : compiler::Assembler::ElementAddressForIntIndex( | 
|  | IsUntagged(), class_id(), index_scale_, array, | 
|  | Smi::Cast(index.constant()).Value()); | 
|  |  | 
|  | auto const rep = | 
|  | RepresentationUtils::RepresentationOfArrayElement(class_id()); | 
|  | ASSERT(RequiredInputRepresentation(2) == Boxing::NativeRepresentation(rep)); | 
|  | if (IsClampedTypedDataBaseClassId(class_id())) { | 
|  | ASSERT(rep == kUnboxedUint8); | 
|  | if (locs()->in(2).IsConstant()) { | 
|  | const Smi& constant = Smi::Cast(locs()->in(2).constant()); | 
|  | intptr_t value = constant.Value(); | 
|  | // Clamp to 0x0 or 0xFF respectively. | 
|  | if (value > 0xFF) { | 
|  | value = 0xFF; | 
|  | } else if (value < 0) { | 
|  | value = 0; | 
|  | } | 
|  | __ movb(element_address, compiler::Immediate(static_cast<int8_t>(value))); | 
|  | } else { | 
|  | const Register storedValueReg = locs()->in(2).reg(); | 
|  | compiler::Label store_value, store_0xff; | 
|  | __ CompareImmediate(storedValueReg, compiler::Immediate(0xFF)); | 
|  | __ j(BELOW_EQUAL, &store_value, compiler::Assembler::kNearJump); | 
|  | // Clamp to 0x0 or 0xFF respectively. | 
|  | __ j(GREATER, &store_0xff); | 
|  | __ xorq(storedValueReg, storedValueReg); | 
|  | __ jmp(&store_value, compiler::Assembler::kNearJump); | 
|  | __ Bind(&store_0xff); | 
|  | __ LoadImmediate(storedValueReg, compiler::Immediate(0xFF)); | 
|  | __ Bind(&store_value); | 
|  | __ movb(element_address, ByteRegisterOf(storedValueReg)); | 
|  | } | 
|  | } else if (RepresentationUtils::IsUnboxedInteger(rep)) { | 
|  | if (rep == kUnboxedUint8 || rep == kUnboxedInt8) { | 
|  | if (locs()->in(2).IsConstant()) { | 
|  | const Smi& constant = Smi::Cast(locs()->in(2).constant()); | 
|  | __ movb(element_address, | 
|  | compiler::Immediate(static_cast<int8_t>(constant.Value()))); | 
|  | } else { | 
|  | __ movb(element_address, ByteRegisterOf(locs()->in(2).reg())); | 
|  | } | 
|  | } else { | 
|  | Register value = locs()->in(2).reg(); | 
|  | __ Store(value, element_address, RepresentationUtils::OperandSize(rep)); | 
|  | } | 
|  | } else if (RepresentationUtils::IsUnboxed(rep)) { | 
|  | if (rep == kUnboxedFloat) { | 
|  | __ movss(element_address, locs()->in(2).fpu_reg()); | 
|  | } else if (rep == kUnboxedDouble) { | 
|  | __ movsd(element_address, locs()->in(2).fpu_reg()); | 
|  | } else { | 
|  | ASSERT(rep == kUnboxedInt32x4 || rep == kUnboxedFloat32x4 || | 
|  | rep == kUnboxedFloat64x2); | 
|  | __ movups(element_address, locs()->in(2).fpu_reg()); | 
|  | } | 
|  | } else if (class_id() == kArrayCid) { | 
|  | ASSERT(rep == kTagged); | 
|  | if (ShouldEmitStoreBarrier()) { | 
|  | Register value = locs()->in(2).reg(); | 
|  | Register slot = locs()->temp(0).reg(); | 
|  | __ leaq(slot, element_address); | 
|  | __ StoreCompressedIntoArray(array, slot, value, CanValueBeSmi()); | 
|  | } else if (locs()->in(2).IsConstant()) { | 
|  | const Object& constant = locs()->in(2).constant(); | 
|  | __ StoreCompressedObjectIntoObjectNoBarrier(array, element_address, | 
|  | constant); | 
|  | } else { | 
|  | Register value = locs()->in(2).reg(); | 
|  | __ StoreCompressedIntoObjectNoBarrier(array, element_address, value); | 
|  | } | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | if (FLAG_target_memory_sanitizer) { | 
|  | __ leaq(TMP, element_address); | 
|  | const intptr_t length_in_bytes = RepresentationUtils::ValueSize( | 
|  | RepresentationUtils::RepresentationOfArrayElement(class_id())); | 
|  | __ MsanUnpoison(TMP, length_in_bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  |  | 
|  | const intptr_t value_cid = value()->Type()->ToCid(); | 
|  | const intptr_t field_cid = field().guarded_cid(); | 
|  |  | 
|  | const bool emit_full_guard = !opt || (field_cid == kIllegalCid); | 
|  | const bool needs_value_cid_temp_reg = | 
|  | (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); | 
|  | const bool needs_field_temp_reg = emit_full_guard; | 
|  |  | 
|  | intptr_t num_temps = 0; | 
|  | if (needs_value_cid_temp_reg) { | 
|  | num_temps++; | 
|  | } | 
|  | if (needs_field_temp_reg) { | 
|  | num_temps++; | 
|  | } | 
|  |  | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  |  | 
|  | for (intptr_t i = 0; i < num_temps; i++) { | 
|  | summary->set_temp(i, Location::RequiresRegister()); | 
|  | } | 
|  |  | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(compiler::target::UntaggedObject::kClassIdTagSize == 20); | 
|  | ASSERT(sizeof(UntaggedField::guarded_cid_) == 4); | 
|  | ASSERT(sizeof(UntaggedField::is_nullable_) == 4); | 
|  |  | 
|  | const intptr_t value_cid = value()->Type()->ToCid(); | 
|  | const intptr_t field_cid = field().guarded_cid(); | 
|  | const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid; | 
|  |  | 
|  | if (field_cid == kDynamicCid) { | 
|  | return;  // Nothing to emit. | 
|  | } | 
|  |  | 
|  | const bool emit_full_guard = | 
|  | !compiler->is_optimizing() || (field_cid == kIllegalCid); | 
|  |  | 
|  | const bool needs_value_cid_temp_reg = | 
|  | (value_cid == kDynamicCid) && (emit_full_guard || (field_cid != kSmiCid)); | 
|  |  | 
|  | const bool needs_field_temp_reg = emit_full_guard; | 
|  |  | 
|  | const Register value_reg = locs()->in(0).reg(); | 
|  |  | 
|  | const Register value_cid_reg = | 
|  | needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister; | 
|  |  | 
|  | const Register field_reg = needs_field_temp_reg | 
|  | ? locs()->temp(locs()->temp_count() - 1).reg() | 
|  | : kNoRegister; | 
|  |  | 
|  | compiler::Label ok, fail_label; | 
|  |  | 
|  | compiler::Label* deopt = nullptr; | 
|  | if (compiler->is_optimizing()) { | 
|  | deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField); | 
|  | } | 
|  |  | 
|  | compiler::Label* fail = (deopt != nullptr) ? deopt : &fail_label; | 
|  |  | 
|  | if (emit_full_guard) { | 
|  | __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); | 
|  |  | 
|  | compiler::FieldAddress field_cid_operand(field_reg, | 
|  | Field::guarded_cid_offset()); | 
|  | compiler::FieldAddress field_nullability_operand( | 
|  | field_reg, Field::is_nullable_offset()); | 
|  |  | 
|  | if (value_cid == kDynamicCid) { | 
|  | LoadValueCid(compiler, value_cid_reg, value_reg); | 
|  |  | 
|  | __ cmpl(value_cid_reg, field_cid_operand); | 
|  | __ j(EQUAL, &ok); | 
|  | __ cmpl(value_cid_reg, field_nullability_operand); | 
|  | } else if (value_cid == kNullCid) { | 
|  | __ cmpl(field_nullability_operand, compiler::Immediate(value_cid)); | 
|  | } else { | 
|  | __ cmpl(field_cid_operand, compiler::Immediate(value_cid)); | 
|  | } | 
|  | __ j(EQUAL, &ok); | 
|  |  | 
|  | // Check if the tracked state of the guarded field can be initialized | 
|  | // inline. If the field needs length check or requires type arguments and | 
|  | // class hierarchy processing for exactness tracking then we fall through | 
|  | // into runtime which is responsible for computing offset of the length | 
|  | // field based on the class id. | 
|  | const bool is_complicated_field = | 
|  | field().needs_length_check() || | 
|  | field().static_type_exactness_state().IsUninitialized(); | 
|  | if (!is_complicated_field) { | 
|  | // Uninitialized field can be handled inline. Check if the | 
|  | // field is still unitialized. | 
|  | __ cmpl(field_cid_operand, compiler::Immediate(kIllegalCid)); | 
|  | __ j(NOT_EQUAL, fail); | 
|  |  | 
|  | if (value_cid == kDynamicCid) { | 
|  | __ movl(field_cid_operand, value_cid_reg); | 
|  | __ movl(field_nullability_operand, value_cid_reg); | 
|  | } else { | 
|  | ASSERT(field_reg != kNoRegister); | 
|  | __ movl(field_cid_operand, compiler::Immediate(value_cid)); | 
|  | __ movl(field_nullability_operand, compiler::Immediate(value_cid)); | 
|  | } | 
|  |  | 
|  | __ jmp(&ok); | 
|  | } | 
|  |  | 
|  | if (deopt == nullptr) { | 
|  | __ Bind(fail); | 
|  |  | 
|  | __ cmpl(compiler::FieldAddress(field_reg, Field::guarded_cid_offset()), | 
|  | compiler::Immediate(kDynamicCid)); | 
|  | __ j(EQUAL, &ok); | 
|  |  | 
|  | __ pushq(field_reg); | 
|  | __ pushq(value_reg); | 
|  | ASSERT(!compiler->is_optimizing());  // No deopt info needed. | 
|  | __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); | 
|  | __ Drop(2);  // Drop the field and the value. | 
|  | } else { | 
|  | __ jmp(fail); | 
|  | } | 
|  | } else { | 
|  | ASSERT(compiler->is_optimizing()); | 
|  | ASSERT(deopt != nullptr); | 
|  |  | 
|  | // Field guard class has been initialized and is known. | 
|  | if (value_cid == kDynamicCid) { | 
|  | // Value's class id is not known. | 
|  | __ testq(value_reg, compiler::Immediate(kSmiTagMask)); | 
|  |  | 
|  | if (field_cid != kSmiCid) { | 
|  | __ j(ZERO, fail); | 
|  | __ LoadClassId(value_cid_reg, value_reg); | 
|  | __ CompareImmediate(value_cid_reg, compiler::Immediate(field_cid)); | 
|  | } | 
|  |  | 
|  | if (field().is_nullable() && (field_cid != kNullCid)) { | 
|  | __ j(EQUAL, &ok); | 
|  | __ CompareObject(value_reg, Object::null_object()); | 
|  | } | 
|  |  | 
|  | __ j(NOT_EQUAL, fail); | 
|  | } else if (value_cid == field_cid) { | 
|  | // This would normally be caught by Canonicalize, but RemoveRedefinitions | 
|  | // may sometimes produce the situation after the last Canonicalize pass. | 
|  | } else { | 
|  | // Both value's and field's class id is known. | 
|  | ASSERT(value_cid != nullability); | 
|  | __ jmp(fail); | 
|  | } | 
|  | } | 
|  | __ Bind(&ok); | 
|  | } | 
|  |  | 
|  | LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) { | 
|  | const intptr_t kNumTemps = 3; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | // We need temporaries for field object, length offset and expected length. | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | summary->set_temp(1, Location::RequiresRegister()); | 
|  | summary->set_temp(2, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } else { | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | if (field().guarded_list_length() == Field::kNoFixedLength) { | 
|  | return;  // Nothing to emit. | 
|  | } | 
|  |  | 
|  | compiler::Label* deopt = | 
|  | compiler->is_optimizing() | 
|  | ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) | 
|  | : nullptr; | 
|  |  | 
|  | const Register value_reg = locs()->in(0).reg(); | 
|  |  | 
|  | if (!compiler->is_optimizing() || | 
|  | (field().guarded_list_length() == Field::kUnknownFixedLength)) { | 
|  | const Register field_reg = locs()->temp(0).reg(); | 
|  | const Register offset_reg = locs()->temp(1).reg(); | 
|  | const Register length_reg = locs()->temp(2).reg(); | 
|  |  | 
|  | compiler::Label ok; | 
|  |  | 
|  | __ LoadObject(field_reg, Field::ZoneHandle(field().Original())); | 
|  |  | 
|  | __ movsxb( | 
|  | offset_reg, | 
|  | compiler::FieldAddress( | 
|  | field_reg, Field::guarded_list_length_in_object_offset_offset())); | 
|  | __ LoadCompressedSmi( | 
|  | length_reg, | 
|  | compiler::FieldAddress(field_reg, Field::guarded_list_length_offset())); | 
|  |  | 
|  | __ cmpq(offset_reg, compiler::Immediate(0)); | 
|  | __ j(NEGATIVE, &ok); | 
|  |  | 
|  | // Load the length from the value. GuardFieldClass already verified that | 
|  | // value's class matches guarded class id of the field. | 
|  | // offset_reg contains offset already corrected by -kHeapObjectTag that is | 
|  | // why we use Address instead of FieldAddress. | 
|  | __ OBJ(cmp)(length_reg, | 
|  | compiler::Address(value_reg, offset_reg, TIMES_1, 0)); | 
|  |  | 
|  | if (deopt == nullptr) { | 
|  | __ j(EQUAL, &ok); | 
|  |  | 
|  | __ pushq(field_reg); | 
|  | __ pushq(value_reg); | 
|  | ASSERT(!compiler->is_optimizing());  // No deopt info needed. | 
|  | __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); | 
|  | __ Drop(2);  // Drop the field and the value. | 
|  | } else { | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | } | 
|  |  | 
|  | __ Bind(&ok); | 
|  | } else { | 
|  | ASSERT(compiler->is_optimizing()); | 
|  | ASSERT(field().guarded_list_length() >= 0); | 
|  | ASSERT(field().guarded_list_length_in_object_offset() != | 
|  | Field::kUnknownLengthOffset); | 
|  |  | 
|  | __ CompareImmediate( | 
|  | compiler::FieldAddress(value_reg, | 
|  | field().guarded_list_length_in_object_offset()), | 
|  | compiler::Immediate(Smi::RawValue(field().guarded_list_length()))); | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* GuardFieldTypeInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void GuardFieldTypeInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | // Should never emit GuardFieldType for fields that are marked as NotTracking. | 
|  | ASSERT(field().static_type_exactness_state().IsTracking()); | 
|  | if (!field().static_type_exactness_state().NeedsFieldGuard()) { | 
|  | // Nothing to do: we only need to perform checks for trivially invariant | 
|  | // fields. If optimizing Canonicalize pass should have removed | 
|  | // this instruction. | 
|  | return; | 
|  | } | 
|  |  | 
|  | compiler::Label* deopt = | 
|  | compiler->is_optimizing() | 
|  | ? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField) | 
|  | : nullptr; | 
|  |  | 
|  | compiler::Label ok; | 
|  |  | 
|  | const Register value_reg = locs()->in(0).reg(); | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  |  | 
|  | // Skip null values for nullable fields. | 
|  | if (!compiler->is_optimizing() || field().is_nullable()) { | 
|  | __ CompareObject(value_reg, Object::Handle()); | 
|  | __ j(EQUAL, &ok); | 
|  | } | 
|  |  | 
|  | // Get the state. | 
|  | const Field& original = | 
|  | Field::ZoneHandle(compiler->zone(), field().Original()); | 
|  | __ LoadObject(temp, original); | 
|  | __ movsxb(temp, compiler::FieldAddress( | 
|  | temp, Field::static_type_exactness_state_offset())); | 
|  |  | 
|  | if (!compiler->is_optimizing()) { | 
|  | // Check if field requires checking (it is in unitialized or trivially | 
|  | // exact state). | 
|  | __ cmpq(temp, | 
|  | compiler::Immediate(StaticTypeExactnessState::kUninitialized)); | 
|  | __ j(LESS, &ok); | 
|  | } | 
|  |  | 
|  | compiler::Label call_runtime; | 
|  | if (field().static_type_exactness_state().IsUninitialized()) { | 
|  | // Can't initialize the field state inline in optimized code. | 
|  | __ cmpq(temp, | 
|  | compiler::Immediate(StaticTypeExactnessState::kUninitialized)); | 
|  | __ j(EQUAL, compiler->is_optimizing() ? deopt : &call_runtime); | 
|  | } | 
|  |  | 
|  | // At this point temp is known to be type arguments offset in words. | 
|  | __ movq(temp, compiler::FieldAddress(value_reg, temp, | 
|  | TIMES_COMPRESSED_WORD_SIZE, 0)); | 
|  | __ CompareObject( | 
|  | temp, | 
|  | TypeArguments::ZoneHandle( | 
|  | compiler->zone(), Type::Cast(AbstractType::Handle(field().type())) | 
|  | .GetInstanceTypeArguments(compiler->thread()))); | 
|  | if (deopt != nullptr) { | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | } else { | 
|  | __ j(EQUAL, &ok); | 
|  |  | 
|  | __ Bind(&call_runtime); | 
|  | __ PushObject(original); | 
|  | __ pushq(value_reg); | 
|  | ASSERT(!compiler->is_optimizing());  // No deopt info needed. | 
|  | __ CallRuntime(kUpdateFieldCidRuntimeEntry, 2); | 
|  | __ Drop(2); | 
|  | } | 
|  |  | 
|  | __ Bind(&ok); | 
|  | } | 
|  |  | 
|  | LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(0, Location::RegisterLocation(kWriteBarrierValueReg)); | 
|  | locs->set_temp(0, Location::RequiresRegister()); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register value = locs()->in(0).reg(); | 
|  | Register temp = locs()->temp(0).reg(); | 
|  |  | 
|  | compiler->used_static_fields().Add(&field()); | 
|  |  | 
|  | __ movq(temp, | 
|  | compiler::Address( | 
|  | THR, | 
|  | field().is_shared() | 
|  | ? compiler::target::Thread::shared_field_table_values_offset() | 
|  | : compiler::target::Thread::field_table_values_offset())); | 
|  | // Note: static fields ids won't be changed by hot-reload. | 
|  | __ movq( | 
|  | compiler::Address(temp, compiler::target::FieldTable::OffsetOf(field())), | 
|  | value); | 
|  | } | 
|  |  | 
|  | LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 3; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); | 
|  | summary->set_in(0, Location::RegisterLocation(TypeTestABI::kInstanceReg)); | 
|  | summary->set_in(1, Location::RegisterLocation( | 
|  | TypeTestABI::kInstantiatorTypeArgumentsReg)); | 
|  | summary->set_in( | 
|  | 2, Location::RegisterLocation(TypeTestABI::kFunctionTypeArgumentsReg)); | 
|  | summary->set_out(0, Location::RegisterLocation(RAX)); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(locs()->in(0).reg() == TypeTestABI::kInstanceReg); | 
|  | ASSERT(locs()->in(1).reg() == TypeTestABI::kInstantiatorTypeArgumentsReg); | 
|  | ASSERT(locs()->in(2).reg() == TypeTestABI::kFunctionTypeArgumentsReg); | 
|  |  | 
|  | compiler->GenerateInstanceOf(source(), deopt_id(), env(), type(), locs()); | 
|  | ASSERT(locs()->out(0).reg() == RAX); | 
|  | } | 
|  |  | 
|  | // TODO(srdjan): In case of constant inputs make CreateArray kNoCall and | 
|  | // use slow path stub. | 
|  | LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); | 
|  | locs->set_in(kTypeArgumentsPos, | 
|  | Location::RegisterLocation(AllocateArrayABI::kTypeArgumentsReg)); | 
|  | locs->set_in(kLengthPos, | 
|  | Location::RegisterLocation(AllocateArrayABI::kLengthReg)); | 
|  | locs->set_out(0, Location::RegisterLocation(AllocateArrayABI::kResultReg)); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | // Inlines array allocation for known constant values. | 
|  | static void InlineArrayAllocation(FlowGraphCompiler* compiler, | 
|  | intptr_t num_elements, | 
|  | compiler::Label* slow_path, | 
|  | compiler::Label* done) { | 
|  | const int kInlineArraySize = 12;  // Same as kInlineInstanceSize. | 
|  | const intptr_t instance_size = Array::InstanceSize(num_elements); | 
|  |  | 
|  | __ TryAllocateArray(kArrayCid, instance_size, slow_path, | 
|  | compiler::Assembler::kFarJump, | 
|  | AllocateArrayABI::kResultReg,  // instance | 
|  | RCX,                           // end address | 
|  | R13);                          // temp | 
|  |  | 
|  | // RAX: new object start as a tagged pointer. | 
|  | // Store the type argument field. | 
|  | __ StoreCompressedIntoObjectNoBarrier( | 
|  | AllocateArrayABI::kResultReg, | 
|  | compiler::FieldAddress(AllocateArrayABI::kResultReg, | 
|  | Array::type_arguments_offset()), | 
|  | AllocateArrayABI::kTypeArgumentsReg); | 
|  |  | 
|  | // Set the length field. | 
|  | __ StoreCompressedIntoObjectNoBarrier( | 
|  | AllocateArrayABI::kResultReg, | 
|  | compiler::FieldAddress(AllocateArrayABI::kResultReg, | 
|  | Array::length_offset()), | 
|  | AllocateArrayABI::kLengthReg); | 
|  |  | 
|  | // Initialize all array elements to raw_null. | 
|  | // AllocateArrayABI::kResultReg: new object start as a tagged pointer. | 
|  | // RCX: new object end address. | 
|  | // RDI: iterator which initially points to the start of the variable | 
|  | // data area to be initialized. | 
|  | if (num_elements > 0) { | 
|  | const intptr_t array_size = instance_size - sizeof(UntaggedArray); | 
|  | __ LoadObject(R12, Object::null_object()); | 
|  | __ leaq(RDI, compiler::FieldAddress(AllocateArrayABI::kResultReg, | 
|  | sizeof(UntaggedArray))); | 
|  | if (array_size < (kInlineArraySize * kCompressedWordSize)) { | 
|  | intptr_t current_offset = 0; | 
|  | while (current_offset < array_size) { | 
|  | __ StoreCompressedIntoObjectNoBarrier( | 
|  | AllocateArrayABI::kResultReg, | 
|  | compiler::Address(RDI, current_offset), R12); | 
|  | current_offset += kCompressedWordSize; | 
|  | } | 
|  | } else { | 
|  | compiler::Label init_loop; | 
|  | __ Bind(&init_loop); | 
|  | __ StoreCompressedIntoObjectNoBarrier(AllocateArrayABI::kResultReg, | 
|  | compiler::Address(RDI, 0), R12); | 
|  | __ addq(RDI, compiler::Immediate(kCompressedWordSize)); | 
|  | __ cmpq(RDI, RCX); | 
|  | __ j(BELOW, &init_loop, compiler::Assembler::kNearJump); | 
|  | } | 
|  | } | 
|  | __ jmp(done, compiler::Assembler::kNearJump); | 
|  | } | 
|  |  | 
|  | void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info(); | 
|  | if (type_usage_info != nullptr) { | 
|  | const Class& list_class = | 
|  | Class::Handle(compiler->isolate_group()->class_table()->At(kArrayCid)); | 
|  | RegisterTypeArgumentsUse(compiler->function(), type_usage_info, list_class, | 
|  | type_arguments()->definition()); | 
|  | } | 
|  |  | 
|  | compiler::Label slow_path, done; | 
|  | if (!FLAG_use_slow_path && FLAG_inline_alloc) { | 
|  | if (compiler->is_optimizing() && !FLAG_precompiled_mode && | 
|  | num_elements()->BindsToConstant() && | 
|  | num_elements()->BoundConstant().IsSmi()) { | 
|  | const intptr_t length = | 
|  | Smi::Cast(num_elements()->BoundConstant()).Value(); | 
|  | if (Array::IsValidLength(length)) { | 
|  | InlineArrayAllocation(compiler, length, &slow_path, &done); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | __ Bind(&slow_path); | 
|  | auto object_store = compiler->isolate_group()->object_store(); | 
|  | const auto& allocate_array_stub = | 
|  | Code::ZoneHandle(compiler->zone(), object_store->allocate_array_stub()); | 
|  | compiler->GenerateStubCall(source(), allocate_array_stub, | 
|  | UntaggedPcDescriptors::kOther, locs(), deopt_id(), | 
|  | env()); | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | LocationSummary* AllocateUninitializedContextInstr::MakeLocationSummary( | 
|  | Zone* zone, | 
|  | bool opt) const { | 
|  | ASSERT(opt); | 
|  | const intptr_t kNumInputs = 0; | 
|  | const intptr_t kNumTemps = 2; | 
|  | LocationSummary* locs = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); | 
|  | locs->set_temp(0, Location::RegisterLocation(R10)); | 
|  | locs->set_temp(1, Location::RegisterLocation(R13)); | 
|  | locs->set_out(0, Location::RegisterLocation(RAX)); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | class AllocateContextSlowPath | 
|  | : public TemplateSlowPathCode<AllocateUninitializedContextInstr> { | 
|  | public: | 
|  | explicit AllocateContextSlowPath( | 
|  | AllocateUninitializedContextInstr* instruction) | 
|  | : TemplateSlowPathCode(instruction) {} | 
|  |  | 
|  | virtual void EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | __ Comment("AllocateContextSlowPath"); | 
|  | __ Bind(entry_label()); | 
|  |  | 
|  | LocationSummary* locs = instruction()->locs(); | 
|  | locs->live_registers()->Remove(locs->out(0)); | 
|  |  | 
|  | compiler->SaveLiveRegisters(locs); | 
|  |  | 
|  | auto slow_path_env = compiler->SlowPathEnvironmentFor( | 
|  | instruction(), /*num_slow_path_args=*/0); | 
|  | ASSERT(slow_path_env != nullptr); | 
|  |  | 
|  | auto object_store = compiler->isolate_group()->object_store(); | 
|  | const auto& allocate_context_stub = Code::ZoneHandle( | 
|  | compiler->zone(), object_store->allocate_context_stub()); | 
|  |  | 
|  | __ LoadImmediate( | 
|  | R10, compiler::Immediate(instruction()->num_context_variables())); | 
|  | compiler->GenerateStubCall(instruction()->source(), allocate_context_stub, | 
|  | UntaggedPcDescriptors::kOther, locs, | 
|  | instruction()->deopt_id(), slow_path_env); | 
|  | ASSERT(instruction()->locs()->out(0).reg() == RAX); | 
|  |  | 
|  | compiler->RestoreLiveRegisters(instruction()->locs()); | 
|  | __ jmp(exit_label()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | void AllocateUninitializedContextInstr::EmitNativeCode( | 
|  | FlowGraphCompiler* compiler) { | 
|  | ASSERT(compiler->is_optimizing()); | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | Register result = locs()->out(0).reg(); | 
|  | // Try allocate the object. | 
|  | AllocateContextSlowPath* slow_path = new AllocateContextSlowPath(this); | 
|  | compiler->AddSlowPathCode(slow_path); | 
|  | intptr_t instance_size = Context::InstanceSize(num_context_variables()); | 
|  |  | 
|  | if (!FLAG_use_slow_path && FLAG_inline_alloc) { | 
|  | __ TryAllocateArray(kContextCid, instance_size, slow_path->entry_label(), | 
|  | compiler::Assembler::kFarJump, | 
|  | result,  // instance | 
|  | temp,    // end address | 
|  | locs()->temp(1).reg()); | 
|  |  | 
|  | // Setup up number of context variables field. | 
|  | __ movq(compiler::FieldAddress(result, Context::num_variables_offset()), | 
|  | compiler::Immediate(num_context_variables())); | 
|  | } else { | 
|  | __ Jump(slow_path->entry_label()); | 
|  | } | 
|  |  | 
|  | __ Bind(slow_path->exit_label()); | 
|  | } | 
|  |  | 
|  | LocationSummary* AllocateContextInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 0; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); | 
|  | locs->set_temp(0, Location::RegisterLocation(R10)); | 
|  | locs->set_out(0, Location::RegisterLocation(RAX)); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(locs()->temp(0).reg() == R10); | 
|  | ASSERT(locs()->out(0).reg() == RAX); | 
|  |  | 
|  | auto object_store = compiler->isolate_group()->object_store(); | 
|  | const auto& allocate_context_stub = | 
|  | Code::ZoneHandle(compiler->zone(), object_store->allocate_context_stub()); | 
|  |  | 
|  | __ LoadImmediate(R10, compiler::Immediate(num_context_variables())); | 
|  | compiler->GenerateStubCall(source(), allocate_context_stub, | 
|  | UntaggedPcDescriptors::kOther, locs(), deopt_id(), | 
|  | env()); | 
|  | } | 
|  |  | 
|  | LocationSummary* CloneContextInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); | 
|  | locs->set_in(0, Location::RegisterLocation(R9)); | 
|  | locs->set_out(0, Location::RegisterLocation(RAX)); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(locs()->in(0).reg() == R9); | 
|  | ASSERT(locs()->out(0).reg() == RAX); | 
|  |  | 
|  | auto object_store = compiler->isolate_group()->object_store(); | 
|  | const auto& clone_context_stub = | 
|  | Code::ZoneHandle(compiler->zone(), object_store->clone_context_stub()); | 
|  | compiler->GenerateStubCall(source(), clone_context_stub, | 
|  | /*kind=*/UntaggedPcDescriptors::kOther, locs(), | 
|  | deopt_id(), env()); | 
|  | } | 
|  |  | 
|  | LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall); | 
|  | } | 
|  |  | 
|  | void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | __ Bind(compiler->GetJumpLabel(this)); | 
|  | compiler->AddExceptionHandler(this); | 
|  | if (HasParallelMove()) { | 
|  | parallel_move()->EmitNativeCode(compiler); | 
|  | } | 
|  |  | 
|  | // Restore RSP from RBP as we are coming from a throw and the code for | 
|  | // popping arguments has not been run. | 
|  | const intptr_t fp_sp_dist = | 
|  | (compiler::target::frame_layout.first_local_from_fp + 1 - | 
|  | compiler->StackSize()) * | 
|  | kWordSize; | 
|  | ASSERT(fp_sp_dist <= 0); | 
|  | __ leaq(RSP, compiler::Address(RBP, fp_sp_dist)); | 
|  |  | 
|  | if (!compiler->is_optimizing()) { | 
|  | if (raw_exception_var_ != nullptr) { | 
|  | __ movq(compiler::Address(RBP, | 
|  | compiler::target::FrameOffsetInBytesForVariable( | 
|  | raw_exception_var_)), | 
|  | kExceptionObjectReg); | 
|  | } | 
|  | if (raw_stacktrace_var_ != nullptr) { | 
|  | __ movq(compiler::Address(RBP, | 
|  | compiler::target::FrameOffsetInBytesForVariable( | 
|  | raw_stacktrace_var_)), | 
|  | kStackTraceObjectReg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 0; | 
|  | const intptr_t kNumTemps = 1; | 
|  | const bool using_shared_stub = UseSharedSlowPathStub(opt); | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, | 
|  | using_shared_stub ? LocationSummary::kCallOnSharedSlowPath | 
|  | : LocationSummary::kCallOnSlowPath); | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | class CheckStackOverflowSlowPath | 
|  | : public TemplateSlowPathCode<CheckStackOverflowInstr> { | 
|  | public: | 
|  | static constexpr intptr_t kNumSlowPathArgs = 0; | 
|  |  | 
|  | explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction) | 
|  | : TemplateSlowPathCode(instruction) {} | 
|  |  | 
|  | virtual void EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | if (compiler->isolate_group()->use_osr() && osr_entry_label()->IsLinked()) { | 
|  | __ Comment("CheckStackOverflowSlowPathOsr"); | 
|  | __ Bind(osr_entry_label()); | 
|  | __ movq(compiler::Address(THR, Thread::stack_overflow_flags_offset()), | 
|  | compiler::Immediate(Thread::kOsrRequest)); | 
|  | } | 
|  | __ Comment("CheckStackOverflowSlowPath"); | 
|  | __ Bind(entry_label()); | 
|  | const bool using_shared_stub = | 
|  | instruction()->locs()->call_on_shared_slow_path(); | 
|  | if (!using_shared_stub) { | 
|  | compiler->SaveLiveRegisters(instruction()->locs()); | 
|  | } | 
|  | // pending_deoptimization_env_ is needed to generate a runtime call that | 
|  | // may throw an exception. | 
|  | ASSERT(compiler->pending_deoptimization_env_ == nullptr); | 
|  | Environment* env = | 
|  | compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs); | 
|  | compiler->pending_deoptimization_env_ = env; | 
|  |  | 
|  | const bool has_frame = compiler->flow_graph().graph_entry()->NeedsFrame(); | 
|  | if (using_shared_stub) { | 
|  | if (!has_frame) { | 
|  | ASSERT(__ constant_pool_allowed()); | 
|  | __ set_constant_pool_allowed(false); | 
|  | __ EnterDartFrame(0); | 
|  | } | 
|  | const uword entry_point_offset = | 
|  | Thread::stack_overflow_shared_stub_entry_point_offset( | 
|  | instruction()->locs()->live_registers()->FpuRegisterCount() > 0); | 
|  | __ call(compiler::Address(THR, entry_point_offset)); | 
|  | compiler->RecordSafepoint(instruction()->locs(), kNumSlowPathArgs); | 
|  | compiler->RecordCatchEntryMoves(env); | 
|  | compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kOther, | 
|  | instruction()->deopt_id(), | 
|  | instruction()->source()); | 
|  | if (!has_frame) { | 
|  | __ LeaveDartFrame(); | 
|  | __ set_constant_pool_allowed(true); | 
|  | } | 
|  | } else { | 
|  | ASSERT(has_frame); | 
|  | __ CallRuntime(kInterruptOrStackOverflowRuntimeEntry, kNumSlowPathArgs); | 
|  | compiler->EmitCallsiteMetadata( | 
|  | instruction()->source(), instruction()->deopt_id(), | 
|  | UntaggedPcDescriptors::kOther, instruction()->locs(), env); | 
|  | } | 
|  |  | 
|  | if (compiler->isolate_group()->use_osr() && !compiler->is_optimizing() && | 
|  | instruction()->in_loop()) { | 
|  | // In unoptimized code, record loop stack checks as possible OSR entries. | 
|  | compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kOsrEntry, | 
|  | instruction()->deopt_id(), | 
|  | InstructionSource()); | 
|  | } | 
|  | compiler->pending_deoptimization_env_ = nullptr; | 
|  | if (!using_shared_stub) { | 
|  | compiler->RestoreLiveRegisters(instruction()->locs()); | 
|  | } | 
|  | __ jmp(exit_label()); | 
|  | } | 
|  |  | 
|  | compiler::Label* osr_entry_label() { | 
|  | ASSERT(IsolateGroup::Current()->use_osr()); | 
|  | return &osr_entry_label_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | compiler::Label osr_entry_label_; | 
|  | }; | 
|  |  | 
|  | void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this); | 
|  | compiler->AddSlowPathCode(slow_path); | 
|  |  | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | // Generate stack overflow check. | 
|  | __ cmpq(RSP, compiler::Address(THR, Thread::stack_limit_offset())); | 
|  | __ j(BELOW_EQUAL, slow_path->entry_label()); | 
|  | if (compiler->CanOSRFunction() && in_loop()) { | 
|  | // In unoptimized code check the usage counter to trigger OSR at loop | 
|  | // stack checks.  Use progressively higher thresholds for more deeply | 
|  | // nested loops to attempt to hit outer loops with OSR when possible. | 
|  | __ LoadObject(temp, compiler->parsed_function().function()); | 
|  | const intptr_t configured_optimization_counter_threshold = | 
|  | compiler->thread()->isolate_group()->optimization_counter_threshold(); | 
|  | const int32_t threshold = | 
|  | configured_optimization_counter_threshold * (loop_depth() + 1); | 
|  | __ incl(compiler::FieldAddress(temp, Function::usage_counter_offset())); | 
|  | __ cmpl(compiler::FieldAddress(temp, Function::usage_counter_offset()), | 
|  | compiler::Immediate(threshold)); | 
|  | __ j(GREATER_EQUAL, slow_path->osr_entry_label()); | 
|  | } | 
|  | if (compiler->ForceSlowPathForStackOverflow()) { | 
|  | __ jmp(slow_path->entry_label()); | 
|  | } | 
|  | __ Bind(slow_path->exit_label()); | 
|  | } | 
|  |  | 
|  | static void EmitSmiShiftLeft(FlowGraphCompiler* compiler, | 
|  | BinarySmiOpInstr* shift_left) { | 
|  | const LocationSummary& locs = *shift_left->locs(); | 
|  | Register left = locs.in(0).reg(); | 
|  | Register result = locs.out(0).reg(); | 
|  | ASSERT(left == result); | 
|  | compiler::Label* deopt = | 
|  | shift_left->CanDeoptimize() | 
|  | ? compiler->AddDeoptStub(shift_left->deopt_id(), | 
|  | ICData::kDeoptBinarySmiOp) | 
|  | : nullptr; | 
|  | if (locs.in(1).IsConstant()) { | 
|  | const Object& constant = locs.in(1).constant(); | 
|  | ASSERT(constant.IsSmi()); | 
|  | // shlq operation masks the count to 6 bits. | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | const intptr_t kCountLimit = 0x3F; | 
|  | #else | 
|  | const intptr_t kCountLimit = 0x1F; | 
|  | #endif | 
|  | const intptr_t value = Smi::Cast(constant).Value(); | 
|  | ASSERT((0 < value) && (value < kCountLimit)); | 
|  | if (shift_left->can_overflow()) { | 
|  | if (value == 1) { | 
|  | // Use overflow flag. | 
|  | __ OBJ(shl)(left, compiler::Immediate(1)); | 
|  | __ j(OVERFLOW, deopt); | 
|  | return; | 
|  | } | 
|  | // Check for overflow. | 
|  | Register temp = locs.temp(0).reg(); | 
|  | __ OBJ(mov)(temp, left); | 
|  | __ OBJ(shl)(left, compiler::Immediate(value)); | 
|  | __ OBJ(sar)(left, compiler::Immediate(value)); | 
|  | __ OBJ(cmp)(left, temp); | 
|  | __ j(NOT_EQUAL, deopt);  // Overflow. | 
|  | } | 
|  | // Shift for result now we know there is no overflow. | 
|  | __ OBJ(shl)(left, compiler::Immediate(value)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Right (locs.in(1)) is not constant. | 
|  | Register right = locs.in(1).reg(); | 
|  | Range* right_range = shift_left->right_range(); | 
|  | if (shift_left->left()->BindsToConstant() && shift_left->can_overflow()) { | 
|  | // TODO(srdjan): Implement code below for is_truncating(). | 
|  | // If left is constant, we know the maximal allowed size for right. | 
|  | const Object& obj = shift_left->left()->BoundConstant(); | 
|  | if (obj.IsSmi()) { | 
|  | const intptr_t left_int = Smi::Cast(obj).Value(); | 
|  | if (left_int == 0) { | 
|  | __ CompareImmediate(right, compiler::Immediate(0), | 
|  | compiler::kObjectBytes); | 
|  | __ j(NEGATIVE, deopt); | 
|  | return; | 
|  | } | 
|  | const intptr_t max_right = kSmiBits - Utils::HighestBit(left_int); | 
|  | const bool right_needs_check = | 
|  | !RangeUtils::IsWithin(right_range, 0, max_right - 1); | 
|  | if (right_needs_check) { | 
|  | __ CompareObject(right, Smi::ZoneHandle(Smi::New(max_right))); | 
|  | __ j(ABOVE_EQUAL, deopt); | 
|  | } | 
|  | __ SmiUntag(right); | 
|  | __ OBJ(shl)(left, right); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | const bool right_needs_check = | 
|  | !RangeUtils::IsWithin(right_range, 0, (Smi::kBits - 1)); | 
|  | ASSERT(right == RCX);  // Count must be in RCX | 
|  | if (!shift_left->can_overflow()) { | 
|  | if (right_needs_check) { | 
|  | const bool right_may_be_negative = | 
|  | (right_range == nullptr) || !right_range->IsPositive(); | 
|  | if (right_may_be_negative) { | 
|  | ASSERT(shift_left->CanDeoptimize()); | 
|  | __ CompareImmediate(right, compiler::Immediate(0), | 
|  | compiler::kObjectBytes); | 
|  | __ j(NEGATIVE, deopt); | 
|  | } | 
|  | compiler::Label done, is_not_zero; | 
|  | __ CompareObject(right, Smi::ZoneHandle(Smi::New(Smi::kBits))); | 
|  | __ j(BELOW, &is_not_zero, compiler::Assembler::kNearJump); | 
|  | __ xorq(left, left); | 
|  | __ jmp(&done, compiler::Assembler::kNearJump); | 
|  | __ Bind(&is_not_zero); | 
|  | __ SmiUntag(right); | 
|  | __ OBJ(shl)(left, right); | 
|  | __ Bind(&done); | 
|  | } else { | 
|  | __ SmiUntag(right); | 
|  | __ OBJ(shl)(left, right); | 
|  | } | 
|  | } else { | 
|  | if (right_needs_check) { | 
|  | ASSERT(shift_left->CanDeoptimize()); | 
|  | __ CompareObject(right, Smi::ZoneHandle(Smi::New(Smi::kBits))); | 
|  | __ j(ABOVE_EQUAL, deopt); | 
|  | } | 
|  | // Left is not a constant. | 
|  | Register temp = locs.temp(0).reg(); | 
|  | // Check if count too large for handling it inlined. | 
|  | __ OBJ(mov)(temp, left); | 
|  | __ SmiUntag(right); | 
|  | // Overflow test (preserve temp and right); | 
|  | __ OBJ(shl)(left, right); | 
|  | __ OBJ(sar)(left, right); | 
|  | __ OBJ(cmp)(left, temp); | 
|  | __ j(NOT_EQUAL, deopt);  // Overflow. | 
|  | // Shift for result now we know there is no overflow. | 
|  | __ OBJ(shl)(left, right); | 
|  | ASSERT(!shift_left->is_truncating()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool CanBeImmediate(const Object& constant) { | 
|  | return constant.IsSmi() && | 
|  | compiler::Immediate(Smi::RawValue(Smi::Cast(constant).Value())) | 
|  | .is_int32(); | 
|  | } | 
|  |  | 
|  | static bool IsSmiValue(const Object& constant, intptr_t value) { | 
|  | return constant.IsSmi() && (Smi::Cast(constant).Value() == value); | 
|  | } | 
|  |  | 
|  | LocationSummary* BinarySmiOpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  |  | 
|  | ConstantInstr* right_constant = right()->definition()->AsConstant(); | 
|  | if ((right_constant != nullptr) && (op_kind() != Token::kTRUNCDIV) && | 
|  | (op_kind() != Token::kSHL) && | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | (op_kind() != Token::kUSHR) && | 
|  | #endif | 
|  | (op_kind() != Token::kMUL) && (op_kind() != Token::kMOD) && | 
|  | CanBeImmediate(right_constant->value())) { | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, Location::Constant(right_constant)); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | if (op_kind() == Token::kTRUNCDIV) { | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | if (RightIsPowerOfTwoConstant()) { | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | ConstantInstr* right_constant = right()->definition()->AsConstant(); | 
|  | summary->set_in(1, Location::Constant(right_constant)); | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | } else { | 
|  | // Both inputs must be writable because they will be untagged. | 
|  | summary->set_in(0, Location::RegisterLocation(RAX)); | 
|  | summary->set_in(1, Location::WritableRegister()); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | // Will be used for sign extension and division. | 
|  | summary->set_temp(0, Location::RegisterLocation(RDX)); | 
|  | } | 
|  | return summary; | 
|  | } else if (op_kind() == Token::kMOD) { | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | // Both inputs must be writable because they will be untagged. | 
|  | summary->set_in(0, Location::RegisterLocation(RDX)); | 
|  | summary->set_in(1, Location::WritableRegister()); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | // Will be used for sign extension and division. | 
|  | summary->set_temp(0, Location::RegisterLocation(RAX)); | 
|  | return summary; | 
|  | } else if ((op_kind() == Token::kSHR) | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | || (op_kind() == Token::kUSHR) | 
|  | #endif  // !defined(DART_COMPRESSED_POINTERS) | 
|  | ) { | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | } else if (op_kind() == Token::kUSHR) { | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | if ((right_constant != nullptr) && | 
|  | CanBeImmediate(right_constant->value())) { | 
|  | summary->set_in(1, Location::Constant(right_constant)); | 
|  | } else { | 
|  | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); | 
|  | } | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | #endif  // defined(DART_COMPRESSED_POINTERS) | 
|  | } else if (op_kind() == Token::kSHL) { | 
|  | // Shift-by-1 overflow checking can use flags, otherwise we need a temp. | 
|  | const bool shiftBy1 = | 
|  | (right_constant != nullptr) && IsSmiValue(right_constant->value(), 1); | 
|  | const intptr_t kNumTemps = (can_overflow() && !shiftBy1) ? 1 : 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); | 
|  | if (kNumTemps == 1) { | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | } | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } else { | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | ConstantInstr* constant = right()->definition()->AsConstant(); | 
|  | if (constant != nullptr) { | 
|  | summary->set_in(1, LocationRegisterOrSmiConstant(right())); | 
|  | } else { | 
|  | summary->set_in(1, Location::PrefersRegister()); | 
|  | } | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  | } | 
|  |  | 
|  | void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | if (op_kind() == Token::kSHL) { | 
|  | EmitSmiShiftLeft(compiler, this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Register left = locs()->in(0).reg(); | 
|  | Register result = locs()->out(0).reg(); | 
|  | ASSERT(left == result); | 
|  | compiler::Label* deopt = nullptr; | 
|  | if (CanDeoptimize()) { | 
|  | deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp); | 
|  | } | 
|  |  | 
|  | if (locs()->in(1).IsConstant()) { | 
|  | const Object& constant = locs()->in(1).constant(); | 
|  | ASSERT(constant.IsSmi()); | 
|  | const int64_t imm = Smi::RawValue(Smi::Cast(constant).Value()); | 
|  | switch (op_kind()) { | 
|  | case Token::kADD: { | 
|  | __ AddImmediate(left, compiler::Immediate(imm), compiler::kObjectBytes); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kSUB: { | 
|  | __ SubImmediate(left, compiler::Immediate(imm), compiler::kObjectBytes); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kMUL: { | 
|  | // Keep left value tagged and untag right value. | 
|  | const intptr_t value = Smi::Cast(constant).Value(); | 
|  | __ MulImmediate(left, compiler::Immediate(value), | 
|  | compiler::kObjectBytes); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kTRUNCDIV: { | 
|  | const intptr_t value = Smi::Cast(constant).Value(); | 
|  | ASSERT(value != kIntptrMin); | 
|  | ASSERT(Utils::IsPowerOfTwo(Utils::Abs(value))); | 
|  | const intptr_t shift_count = | 
|  | Utils::ShiftForPowerOfTwo(Utils::Abs(value)) + kSmiTagSize; | 
|  | ASSERT(kSmiTagSize == 1); | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | __ movq(temp, left); | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ sarq(temp, compiler::Immediate(63)); | 
|  | #else | 
|  | __ sarl(temp, compiler::Immediate(31)); | 
|  | #endif | 
|  | ASSERT(shift_count > 1);  // 1, -1 case handled above. | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ shrq(temp, compiler::Immediate(64 - shift_count)); | 
|  | #else | 
|  | __ shrl(temp, compiler::Immediate(32 - shift_count)); | 
|  | #endif | 
|  | __ OBJ(add)(left, temp); | 
|  | ASSERT(shift_count > 0); | 
|  | __ OBJ(sar)(left, compiler::Immediate(shift_count)); | 
|  | if (value < 0) { | 
|  | __ OBJ(neg)(left); | 
|  | } | 
|  | __ SmiTag(left); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_AND: { | 
|  | // No overflow check. | 
|  | __ AndImmediate(left, compiler::Immediate(imm)); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_OR: { | 
|  | // No overflow check. | 
|  | __ OrImmediate(left, compiler::Immediate(imm)); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_XOR: { | 
|  | // No overflow check. | 
|  | __ XorImmediate(left, compiler::Immediate(imm)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Token::kSHR: { | 
|  | // sarq/l operation masks the count to 6/5 bits. | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | const intptr_t kCountLimit = 0x3F; | 
|  | #else | 
|  | const intptr_t kCountLimit = 0x1F; | 
|  | #endif | 
|  | const intptr_t value = Smi::Cast(constant).Value(); | 
|  | __ OBJ(sar)(left, compiler::Immediate(Utils::Minimum( | 
|  | value + kSmiTagSize, kCountLimit))); | 
|  | __ SmiTag(left); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Token::kUSHR: { | 
|  | // shrq operation masks the count to 6 bits, but | 
|  | // unsigned shifts by >= kBitsPerInt64 are eliminated by | 
|  | // BinaryIntegerOpInstr::Canonicalize. | 
|  | const intptr_t kCountLimit = 0x3F; | 
|  | const intptr_t value = Smi::Cast(constant).Value(); | 
|  | ASSERT((value >= 0) && (value <= kCountLimit)); | 
|  | __ SmiUntagAndSignExtend(left); | 
|  | __ shrq(left, compiler::Immediate(value)); | 
|  | __ shlq(left, compiler::Immediate(1));  // SmiTag, keep hi bits. | 
|  | if (deopt != nullptr) { | 
|  | __ j(OVERFLOW, deopt); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  | __ movsxd(temp, left); | 
|  | __ cmpq(temp, left); | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | #endif  // defined(DART_COMPRESSED_POINTERS) | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | return; | 
|  | }  // locs()->in(1).IsConstant(). | 
|  |  | 
|  | if (locs()->in(1).IsStackSlot()) { | 
|  | const compiler::Address& right = LocationToStackSlotAddress(locs()->in(1)); | 
|  | switch (op_kind()) { | 
|  | case Token::kADD: { | 
|  | __ OBJ(add)(left, right); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kSUB: { | 
|  | __ OBJ(sub)(left, right); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kMUL: { | 
|  | __ SmiUntag(left); | 
|  | __ OBJ(imul)(left, right); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_AND: { | 
|  | // No overflow check. | 
|  | __ andq(left, right); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_OR: { | 
|  | // No overflow check. | 
|  | __ orq(left, right); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_XOR: { | 
|  | // No overflow check. | 
|  | __ xorq(left, right); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | return; | 
|  | }  // locs()->in(1).IsStackSlot(). | 
|  |  | 
|  | // if locs()->in(1).IsRegister. | 
|  | Register right = locs()->in(1).reg(); | 
|  | switch (op_kind()) { | 
|  | case Token::kADD: { | 
|  | __ OBJ(add)(left, right); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kSUB: { | 
|  | __ OBJ(sub)(left, right); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kMUL: { | 
|  | __ SmiUntag(left); | 
|  | __ OBJ(imul)(left, right); | 
|  | if (deopt != nullptr) __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_AND: { | 
|  | // No overflow check. | 
|  | __ andq(left, right); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_OR: { | 
|  | // No overflow check. | 
|  | __ orq(left, right); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_XOR: { | 
|  | // No overflow check. | 
|  | __ xorq(left, right); | 
|  | break; | 
|  | } | 
|  | case Token::kTRUNCDIV: { | 
|  | compiler::Label not_32bit, done; | 
|  |  | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | ASSERT(left == RAX); | 
|  | ASSERT((right != RDX) && (right != RAX)); | 
|  | ASSERT(temp == RDX); | 
|  | ASSERT(result == RAX); | 
|  | if (RangeUtils::CanBeZero(right_range())) { | 
|  | // Handle divide by zero in runtime. | 
|  | __ OBJ(test)(right, right); | 
|  | __ j(ZERO, deopt); | 
|  | } | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | // Check if both operands fit into 32bits as idiv with 64bit operands | 
|  | // requires twice as many cycles and has much higher latency. | 
|  | // We are checking this before untagging them to avoid corner case | 
|  | // dividing INT_MAX by -1 that raises exception because quotient is | 
|  | // too large for 32bit register. | 
|  | __ movsxd(temp, left); | 
|  | __ cmpq(temp, left); | 
|  | __ j(NOT_EQUAL, ¬_32bit); | 
|  | __ movsxd(temp, right); | 
|  | __ cmpq(temp, right); | 
|  | __ j(NOT_EQUAL, ¬_32bit); | 
|  |  | 
|  | // Both operands are 31bit smis. Divide using 32bit idiv. | 
|  | __ SmiUntag(left); | 
|  | __ SmiUntag(right); | 
|  | __ cdq(); | 
|  | __ idivl(right); | 
|  | __ movsxd(result, result); | 
|  | __ jmp(&done); | 
|  |  | 
|  | // Divide using 64bit idiv. | 
|  | __ Bind(¬_32bit); | 
|  | __ SmiUntag(left); | 
|  | __ SmiUntag(right); | 
|  | __ cqo();         // Sign extend RAX -> RDX:RAX. | 
|  | __ idivq(right);  //  RAX: quotient, RDX: remainder. | 
|  | if (RangeUtils::Overlaps(right_range(), -1, -1)) { | 
|  | // Check the corner case of dividing the 'MIN_SMI' with -1, in which | 
|  | // case we cannot tag the result. | 
|  | __ CompareImmediate(result, compiler::Immediate(0x4000000000000000)); | 
|  | __ j(EQUAL, deopt); | 
|  | } | 
|  | #else | 
|  | // Both operands are 31bit smis. Divide using 32bit idiv. | 
|  | __ SmiUntag(left); | 
|  | __ SmiUntag(right); | 
|  | __ cdq(); | 
|  | __ idivl(right); | 
|  |  | 
|  | if (RangeUtils::Overlaps(right_range(), -1, -1)) { | 
|  | // Check the corner case of dividing the 'MIN_SMI' with -1, in which | 
|  | // case we cannot tag the result. | 
|  | __ cmpl(result, compiler::Immediate(0x40000000)); | 
|  | __ j(EQUAL, deopt); | 
|  | } | 
|  | __ movsxd(result, result); | 
|  | #endif | 
|  | __ Bind(&done); | 
|  | __ SmiTag(result); | 
|  | break; | 
|  | } | 
|  | case Token::kMOD: { | 
|  | compiler::Label not_32bit, div_done; | 
|  |  | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | ASSERT(left == RDX); | 
|  | ASSERT((right != RDX) && (right != RAX)); | 
|  | ASSERT(temp == RAX); | 
|  | ASSERT(result == RDX); | 
|  | if (RangeUtils::CanBeZero(right_range())) { | 
|  | // Handle divide by zero in runtime. | 
|  | __ OBJ(test)(right, right); | 
|  | __ j(ZERO, deopt); | 
|  | } | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | // Check if both operands fit into 32bits as idiv with 64bit operands | 
|  | // requires twice as many cycles and has much higher latency. | 
|  | // We are checking this before untagging them to avoid corner case | 
|  | // dividing INT_MAX by -1 that raises exception because quotient is | 
|  | // too large for 32bit register. | 
|  | __ movsxd(temp, left); | 
|  | __ cmpq(temp, left); | 
|  | __ j(NOT_EQUAL, ¬_32bit); | 
|  | __ movsxd(temp, right); | 
|  | __ cmpq(temp, right); | 
|  | __ j(NOT_EQUAL, ¬_32bit); | 
|  | #endif | 
|  | // Both operands are 31bit smis. Divide using 32bit idiv. | 
|  | __ SmiUntag(left); | 
|  | __ SmiUntag(right); | 
|  | __ movq(RAX, RDX); | 
|  | __ cdq(); | 
|  | __ idivl(right); | 
|  | __ movsxd(result, result); | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ jmp(&div_done); | 
|  |  | 
|  | // Divide using 64bit idiv. | 
|  | __ Bind(¬_32bit); | 
|  | __ SmiUntag(left); | 
|  | __ SmiUntag(right); | 
|  | __ movq(RAX, RDX); | 
|  | __ cqo();         // Sign extend RAX -> RDX:RAX. | 
|  | __ idivq(right);  //  RAX: quotient, RDX: remainder. | 
|  | __ Bind(&div_done); | 
|  | #endif | 
|  | //  res = left % right; | 
|  | //  if (res < 0) { | 
|  | //    if (right < 0) { | 
|  | //      res = res - right; | 
|  | //    } else { | 
|  | //      res = res + right; | 
|  | //    } | 
|  | //  } | 
|  | compiler::Label all_done; | 
|  | __ OBJ(cmp)(result, compiler::Immediate(0)); | 
|  | __ j(GREATER_EQUAL, &all_done, compiler::Assembler::kNearJump); | 
|  | // Result is negative, adjust it. | 
|  | if (RangeUtils::Overlaps(right_range(), -1, 1)) { | 
|  | compiler::Label subtract; | 
|  | __ OBJ(cmp)(right, compiler::Immediate(0)); | 
|  | __ j(LESS, &subtract, compiler::Assembler::kNearJump); | 
|  | __ OBJ(add)(result, right); | 
|  | __ jmp(&all_done, compiler::Assembler::kNearJump); | 
|  | __ Bind(&subtract); | 
|  | __ OBJ(sub)(result, right); | 
|  | } else if (right_range()->IsPositive()) { | 
|  | // Right is positive. | 
|  | __ OBJ(add)(result, right); | 
|  | } else { | 
|  | // Right is negative. | 
|  | __ OBJ(sub)(result, right); | 
|  | } | 
|  | __ Bind(&all_done); | 
|  | __ SmiTag(result); | 
|  | break; | 
|  | } | 
|  | case Token::kSHR: { | 
|  | if (CanDeoptimize()) { | 
|  | __ CompareImmediate(right, compiler::Immediate(0), | 
|  | compiler::kObjectBytes); | 
|  | __ j(LESS, deopt); | 
|  | } | 
|  | __ SmiUntag(right); | 
|  | // sarq/l operation masks the count to 6/5 bits. | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | const intptr_t kCountLimit = 0x3F; | 
|  | #else | 
|  | const intptr_t kCountLimit = 0x1F; | 
|  | #endif | 
|  | if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(), kCountLimit)) { | 
|  | __ CompareImmediate(right, compiler::Immediate(kCountLimit)); | 
|  | compiler::Label count_ok; | 
|  | __ j(LESS, &count_ok, compiler::Assembler::kNearJump); | 
|  | __ LoadImmediate(right, compiler::Immediate(kCountLimit)); | 
|  | __ Bind(&count_ok); | 
|  | } | 
|  | ASSERT(right == RCX);  // Count must be in RCX | 
|  | __ SmiUntag(left); | 
|  | __ OBJ(sar)(left, right); | 
|  | __ SmiTag(left); | 
|  | break; | 
|  | } | 
|  | case Token::kUSHR: { | 
|  | if (deopt != nullptr) { | 
|  | __ CompareImmediate(right, compiler::Immediate(0), | 
|  | compiler::kObjectBytes); | 
|  | __ j(LESS, deopt); | 
|  | } | 
|  | __ SmiUntag(right); | 
|  | // shrq operation masks the count to 6 bits. | 
|  | const intptr_t kCountLimit = 0x3F; | 
|  | COMPILE_ASSERT(kCountLimit + 1 == kBitsPerInt64); | 
|  | compiler::Label done; | 
|  | if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(), kCountLimit)) { | 
|  | __ CompareImmediate(right, compiler::Immediate(kCountLimit), | 
|  | compiler::kObjectBytes); | 
|  | compiler::Label count_ok; | 
|  | __ j(LESS_EQUAL, &count_ok, compiler::Assembler::kNearJump); | 
|  | __ xorq(left, left); | 
|  | __ jmp(&done, compiler::Assembler::kNearJump); | 
|  | __ Bind(&count_ok); | 
|  | } | 
|  | ASSERT(right == RCX);  // Count must be in RCX | 
|  | __ SmiUntagAndSignExtend(left); | 
|  | __ shrq(left, right); | 
|  | __ shlq(left, compiler::Immediate(1));  // SmiTag, keep hi bits. | 
|  | if (deopt != nullptr) { | 
|  | __ j(OVERFLOW, deopt); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  | __ movsxd(temp, left); | 
|  | __ cmpq(temp, left); | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | #endif  // defined(DART_COMPRESSED_POINTERS) | 
|  | } | 
|  | __ Bind(&done); | 
|  | break; | 
|  | } | 
|  | case Token::kDIV: { | 
|  | // Dispatches to 'Double./'. | 
|  | // TODO(srdjan): Implement as conversion to double and double division. | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | case Token::kOR: | 
|  | case Token::kAND: { | 
|  | // Flow graph builder has dissected this operation to guarantee correct | 
|  | // behavior (short-circuit evaluation). | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | intptr_t left_cid = left()->Type()->ToCid(); | 
|  | intptr_t right_cid = right()->Type()->ToCid(); | 
|  | ASSERT((left_cid != kDoubleCid) && (right_cid != kDoubleCid)); | 
|  | const intptr_t kNumInputs = 2; | 
|  | const bool need_temp = (left()->definition() != right()->definition()) && | 
|  | (left_cid != kSmiCid) && (right_cid != kSmiCid); | 
|  | const intptr_t kNumTemps = need_temp ? 1 : 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, Location::RequiresRegister()); | 
|  | if (need_temp) summary->set_temp(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryDoubleOp); | 
|  | intptr_t left_cid = left()->Type()->ToCid(); | 
|  | intptr_t right_cid = right()->Type()->ToCid(); | 
|  | Register left = locs()->in(0).reg(); | 
|  | Register right = locs()->in(1).reg(); | 
|  | if (this->left()->definition() == this->right()->definition()) { | 
|  | __ testq(left, compiler::Immediate(kSmiTagMask)); | 
|  | } else if (left_cid == kSmiCid) { | 
|  | __ testq(right, compiler::Immediate(kSmiTagMask)); | 
|  | } else if (right_cid == kSmiCid) { | 
|  | __ testq(left, compiler::Immediate(kSmiTagMask)); | 
|  | } else { | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | __ movq(temp, left); | 
|  | __ orq(temp, right); | 
|  | __ testq(temp, compiler::Immediate(kSmiTagMask)); | 
|  | } | 
|  | __ j(ZERO, deopt); | 
|  | } | 
|  |  | 
|  | LocationSummary* BoxInstr::MakeLocationSummary(Zone* zone, bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); | 
|  | summary->set_in(0, Location::RequiresFpuRegister()); | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void BoxInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register out_reg = locs()->out(0).reg(); | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | XmmRegister value = locs()->in(0).fpu_reg(); | 
|  |  | 
|  | BoxAllocationSlowPath::Allocate(compiler, this, | 
|  | compiler->BoxClassFor(from_representation()), | 
|  | out_reg, temp); | 
|  |  | 
|  | switch (from_representation()) { | 
|  | case kUnboxedDouble: | 
|  | __ movsd(compiler::FieldAddress(out_reg, ValueOffset()), value); | 
|  | break; | 
|  | case kUnboxedFloat: { | 
|  | __ cvtss2sd(FpuTMP, value); | 
|  | __ movsd(compiler::FieldAddress(out_reg, ValueOffset()), FpuTMP); | 
|  | break; | 
|  | } | 
|  | case kUnboxedFloat32x4: | 
|  | case kUnboxedFloat64x2: | 
|  | case kUnboxedInt32x4: | 
|  | __ movups(compiler::FieldAddress(out_reg, ValueOffset()), value); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* UnboxInstr::MakeLocationSummary(Zone* zone, bool opt) const { | 
|  | ASSERT(!RepresentationUtils::IsUnsignedInteger(representation())); | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | const bool needs_writable_input = | 
|  | (representation() != kUnboxedInt64) && | 
|  | (value()->Type()->ToNullableCid() != BoxCid()); | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, needs_writable_input ? Location::WritableRegister() | 
|  | : Location::RequiresRegister()); | 
|  | if (RepresentationUtils::IsUnboxedInteger(representation())) { | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | #else | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | #endif | 
|  | } else { | 
|  | summary->set_out(0, Location::RequiresFpuRegister()); | 
|  | } | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void UnboxInstr::EmitLoadFromBox(FlowGraphCompiler* compiler) { | 
|  | const Register box = locs()->in(0).reg(); | 
|  |  | 
|  | switch (representation()) { | 
|  | case kUnboxedInt64: { | 
|  | const Register result = locs()->out(0).reg(); | 
|  | __ movq(result, compiler::FieldAddress(box, ValueOffset())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case kUnboxedDouble: { | 
|  | const FpuRegister result = locs()->out(0).fpu_reg(); | 
|  | __ movsd(result, compiler::FieldAddress(box, ValueOffset())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case kUnboxedFloat: { | 
|  | const FpuRegister result = locs()->out(0).fpu_reg(); | 
|  | __ movsd(result, compiler::FieldAddress(box, ValueOffset())); | 
|  | __ cvtsd2ss(result, result); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case kUnboxedFloat32x4: | 
|  | case kUnboxedFloat64x2: | 
|  | case kUnboxedInt32x4: { | 
|  | const FpuRegister result = locs()->out(0).fpu_reg(); | 
|  | __ movups(result, compiler::FieldAddress(box, ValueOffset())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void UnboxInstr::EmitSmiConversion(FlowGraphCompiler* compiler) { | 
|  | const Register box = locs()->in(0).reg(); | 
|  |  | 
|  | switch (representation()) { | 
|  | case kUnboxedInt32: { | 
|  | const Register result = locs()->out(0).reg(); | 
|  | __ SmiUntag(result, box); | 
|  | break; | 
|  | } | 
|  | case kUnboxedInt64: { | 
|  | const Register result = locs()->out(0).reg(); | 
|  | __ SmiUntagAndSignExtend(result, box); | 
|  | break; | 
|  | } | 
|  | case kUnboxedDouble: { | 
|  | const FpuRegister result = locs()->out(0).fpu_reg(); | 
|  | __ SmiUntag(box); | 
|  | __ OBJ(cvtsi2sd)(result, box); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void UnboxInstr::EmitLoadInt32FromBoxOrSmi(FlowGraphCompiler* compiler) { | 
|  | const Register value = locs()->in(0).reg(); | 
|  | const Register result = locs()->out(0).reg(); | 
|  | __ LoadInt32FromBoxOrSmi(result, value); | 
|  | } | 
|  |  | 
|  | void UnboxInstr::EmitLoadInt64FromBoxOrSmi(FlowGraphCompiler* compiler) { | 
|  | const Register value = locs()->in(0).reg(); | 
|  | const Register result = locs()->out(0).reg(); | 
|  | __ LoadInt64FromBoxOrSmi(result, value); | 
|  | } | 
|  |  | 
|  | LocationSummary* UnboxInteger32Instr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = (!is_truncating() && CanDeoptimize()) ? 1 : 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | if (kNumTemps > 0) { | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | } | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void UnboxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const intptr_t value_cid = value()->Type()->ToCid(); | 
|  | const Register value = locs()->in(0).reg(); | 
|  | compiler::Label* deopt = | 
|  | CanDeoptimize() | 
|  | ? compiler->AddDeoptStub(GetDeoptId(), ICData::kDeoptUnboxInteger) | 
|  | : nullptr; | 
|  | ASSERT(value == locs()->out(0).reg()); | 
|  |  | 
|  | if (value_cid == kSmiCid) { | 
|  | __ SmiUntag(value); | 
|  | } else if (value_cid == kMintCid) { | 
|  | __ movq(value, compiler::FieldAddress(value, Mint::value_offset())); | 
|  | } else if (!CanDeoptimize()) { | 
|  | // Type information is not conclusive, but range analysis found | 
|  | // the value to be in int64 range. Therefore it must be a smi | 
|  | // or mint value. | 
|  | ASSERT(is_truncating()); | 
|  | compiler::Label done; | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | // Optimistically untag value. | 
|  | __ SmiUntag(value); | 
|  | __ j(NOT_CARRY, &done, compiler::Assembler::kNearJump); | 
|  | // Undo untagging by multiplying value by 2. | 
|  | // [reg + reg + disp8] has a shorter encoding than [reg*2 + disp32] | 
|  | __ movq(value, | 
|  | compiler::Address(value, value, TIMES_1, Mint::value_offset())); | 
|  | #else | 
|  | // Cannot speculatively untag because it erases the upper bits needed to | 
|  | // dereference when it is a Mint. | 
|  | compiler::Label not_smi; | 
|  | __ BranchIfNotSmi(value, ¬_smi, compiler::Assembler::kNearJump); | 
|  | __ SmiUntagAndSignExtend(value); | 
|  | __ jmp(&done, compiler::Assembler::kNearJump); | 
|  | __ Bind(¬_smi); | 
|  | __ movq(value, compiler::FieldAddress(value, Mint::value_offset())); | 
|  | #endif | 
|  | __ Bind(&done); | 
|  | return; | 
|  | } else { | 
|  | compiler::Label done; | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | // Optimistically untag value. | 
|  | __ SmiUntagOrCheckClass(value, kMintCid, &done); | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | // Undo untagging by multiplying value by 2. | 
|  | // [reg + reg + disp8] has a shorter encoding than [reg*2 + disp32] | 
|  | __ movq(value, | 
|  | compiler::Address(value, value, TIMES_1, Mint::value_offset())); | 
|  | #else | 
|  | // Cannot speculatively untag because it erases the upper bits needed to | 
|  | // dereference when it is a Mint. | 
|  | compiler::Label not_smi; | 
|  | __ BranchIfNotSmi(value, ¬_smi, compiler::Assembler::kNearJump); | 
|  | __ SmiUntagAndSignExtend(value); | 
|  | __ jmp(&done, compiler::Assembler::kNearJump); | 
|  | __ Bind(¬_smi); | 
|  | __ CompareClassId(value, kMintCid); | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | __ movq(value, compiler::FieldAddress(value, Mint::value_offset())); | 
|  | #endif | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | // TODO(vegorov): as it is implemented right now truncating unboxing would | 
|  | // leave "garbage" in the higher word. | 
|  | if (!is_truncating() && (deopt != nullptr)) { | 
|  | ASSERT(representation() == kUnboxedInt32); | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | __ movsxd(temp, value); | 
|  | __ cmpq(temp, value); | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* BoxInteger32Instr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | ASSERT((from_representation() == kUnboxedInt32) || | 
|  | (from_representation() == kUnboxedUint32)); | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | // ValueFitsSmi() may be overly conservative and false because we only | 
|  | // perform range analysis during optimized compilation. | 
|  | const bool kMayAllocateMint = false; | 
|  | #else | 
|  | const bool kMayAllocateMint = !ValueFitsSmi(); | 
|  | #endif | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = kMayAllocateMint ? 1 : 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, | 
|  | kMayAllocateMint ? LocationSummary::kCallOnSlowPath | 
|  | : LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | if (kMayAllocateMint) { | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | } | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void BoxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register value = locs()->in(0).reg(); | 
|  | const Register out = locs()->out(0).reg(); | 
|  | ASSERT(value != out); | 
|  |  | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | ASSERT(kSmiTagSize == 1); | 
|  | if (from_representation() == kUnboxedInt32) { | 
|  | __ movsxd(out, value); | 
|  | } else { | 
|  | ASSERT(from_representation() == kUnboxedUint32); | 
|  | __ movl(out, value); | 
|  | } | 
|  | __ SmiTag(out); | 
|  | #else | 
|  | compiler::Label done; | 
|  | if (from_representation() == kUnboxedInt32) { | 
|  | __ MoveRegister(out, value); | 
|  | __ addl(out, out); | 
|  | __ movsxd(out, out);  // Does not affect flags. | 
|  | if (ValueFitsSmi()) { | 
|  | return; | 
|  | } | 
|  | __ j(NO_OVERFLOW, &done); | 
|  | } else { | 
|  | __ movl(out, value); | 
|  | __ SmiTag(out); | 
|  | if (ValueFitsSmi()) { | 
|  | return; | 
|  | } | 
|  | __ TestImmediate(value, compiler::Immediate(0xC0000000LL)); | 
|  | __ j(ZERO, &done); | 
|  | } | 
|  | // Allocate a mint. | 
|  | // Value input is a writable register and we have to inform the compiler of | 
|  | // the type so it can be preserved untagged on the slow path | 
|  | locs()->live_registers()->Add(locs()->in(0), from_representation()); | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  | BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(), out, | 
|  | temp); | 
|  | if (from_representation() == kUnboxedInt32) { | 
|  | __ movsxd(temp, value);  // Sign-extend. | 
|  | } else { | 
|  | __ movl(temp, value);  // Zero-extend. | 
|  | } | 
|  | __ movq(compiler::FieldAddress(out, Mint::value_offset()), temp); | 
|  | __ Bind(&done); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | LocationSummary* BoxInt64Instr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = ValueFitsSmi() ? 0 : 1; | 
|  | // Shared slow path is used in BoxInt64Instr::EmitNativeCode in | 
|  | // precompiled mode and only after VM isolate stubs where | 
|  | // replaced with isolate-specific stubs. | 
|  | auto object_store = IsolateGroup::Current()->object_store(); | 
|  | const bool stubs_in_vm_isolate = | 
|  | object_store->allocate_mint_with_fpu_regs_stub() | 
|  | ->untag() | 
|  | ->InVMIsolateHeap() || | 
|  | object_store->allocate_mint_without_fpu_regs_stub() | 
|  | ->untag() | 
|  | ->InVMIsolateHeap(); | 
|  | const bool shared_slow_path_call = | 
|  | SlowPathSharingSupported(opt) && !stubs_in_vm_isolate; | 
|  | LocationSummary* summary = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, | 
|  | ValueFitsSmi() | 
|  | ? LocationSummary::kNoCall | 
|  | : ((shared_slow_path_call ? LocationSummary::kCallOnSharedSlowPath | 
|  | : LocationSummary::kCallOnSlowPath))); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | if (ValueFitsSmi()) { | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | } else if (shared_slow_path_call) { | 
|  | summary->set_out(0, | 
|  | Location::RegisterLocation(AllocateMintABI::kResultReg)); | 
|  | summary->set_temp(0, Location::RegisterLocation(AllocateMintABI::kTempReg)); | 
|  | } else { | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | } | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void BoxInt64Instr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register out = locs()->out(0).reg(); | 
|  | const Register value = locs()->in(0).reg(); | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ MoveRegister(out, value); | 
|  | __ SmiTag(out); | 
|  | if (ValueFitsSmi()) { | 
|  | return; | 
|  | } | 
|  | // If the value doesn't fit in a smi, the tagging changes the sign, | 
|  | // which causes the overflow flag to be set. | 
|  | compiler::Label done; | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  | __ j(NO_OVERFLOW, &done); | 
|  | #else | 
|  | __ leaq(out, compiler::Address(value, value, TIMES_1, 0)); | 
|  | if (ValueFitsSmi()) { | 
|  | return; | 
|  | } | 
|  | compiler::Label done; | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  | __ movq(temp, value); | 
|  | __ sarq(temp, compiler::Immediate(30)); | 
|  | __ addq(temp, compiler::Immediate(1)); | 
|  | __ cmpq(temp, compiler::Immediate(2)); | 
|  | __ j(BELOW, &done); | 
|  | #endif | 
|  |  | 
|  | if (compiler->intrinsic_mode()) { | 
|  | __ TryAllocate(compiler->mint_class(), | 
|  | compiler->intrinsic_slow_path_label(), | 
|  | compiler::Assembler::kNearJump, out, temp); | 
|  | } else if (locs()->call_on_shared_slow_path()) { | 
|  | const bool has_frame = compiler->flow_graph().graph_entry()->NeedsFrame(); | 
|  | if (!has_frame) { | 
|  | ASSERT(__ constant_pool_allowed()); | 
|  | __ set_constant_pool_allowed(false); | 
|  | __ EnterDartFrame(0); | 
|  | } | 
|  | auto object_store = compiler->isolate_group()->object_store(); | 
|  | const bool live_fpu_regs = locs()->live_registers()->FpuRegisterCount() > 0; | 
|  | const auto& stub = Code::ZoneHandle( | 
|  | compiler->zone(), | 
|  | live_fpu_regs ? object_store->allocate_mint_with_fpu_regs_stub() | 
|  | : object_store->allocate_mint_without_fpu_regs_stub()); | 
|  |  | 
|  | ASSERT(!locs()->live_registers()->ContainsRegister( | 
|  | AllocateMintABI::kResultReg)); | 
|  | auto extended_env = compiler->SlowPathEnvironmentFor(this, 0); | 
|  | compiler->GenerateStubCall(source(), stub, UntaggedPcDescriptors::kOther, | 
|  | locs(), DeoptId::kNone, extended_env); | 
|  | if (!has_frame) { | 
|  | __ LeaveDartFrame(); | 
|  | __ set_constant_pool_allowed(true); | 
|  | } | 
|  | } else { | 
|  | BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(), out, | 
|  | temp); | 
|  | } | 
|  |  | 
|  | __ movq(compiler::FieldAddress(out, Mint::value_offset()), value); | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresFpuRegister()); | 
|  | summary->set_in(1, Location::RequiresFpuRegister()); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | XmmRegister left = locs()->in(0).fpu_reg(); | 
|  | XmmRegister right = locs()->in(1).fpu_reg(); | 
|  |  | 
|  | ASSERT(locs()->out(0).fpu_reg() == left); | 
|  |  | 
|  | switch (op_kind()) { | 
|  | case Token::kADD: | 
|  | __ addsd(left, right); | 
|  | break; | 
|  | case Token::kSUB: | 
|  | __ subsd(left, right); | 
|  | break; | 
|  | case Token::kMUL: | 
|  | __ mulsd(left, right); | 
|  | break; | 
|  | case Token::kDIV: | 
|  | __ divsd(left, right); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* DoubleTestOpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = | 
|  | op_kind() == MethodRecognizer::kDouble_getIsNegative | 
|  | ? 2 | 
|  | : (op_kind() == MethodRecognizer::kDouble_getIsInfinite ? 1 : 0); | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresFpuRegister()); | 
|  | if (kNumTemps > 0) { | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | if (op_kind() == MethodRecognizer::kDouble_getIsNegative) { | 
|  | summary->set_temp(1, Location::RequiresFpuRegister()); | 
|  | } | 
|  | } | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | Condition DoubleTestOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler, | 
|  | BranchLabels labels) { | 
|  | ASSERT(compiler->is_optimizing()); | 
|  | const XmmRegister value = locs()->in(0).fpu_reg(); | 
|  | const bool is_negated = kind() != Token::kEQ; | 
|  |  | 
|  | switch (op_kind()) { | 
|  | case MethodRecognizer::kDouble_getIsNaN: { | 
|  | __ comisd(value, value); | 
|  | return is_negated ? PARITY_ODD : PARITY_EVEN; | 
|  | } | 
|  | case MethodRecognizer::kDouble_getIsInfinite: { | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  | __ AddImmediate(RSP, compiler::Immediate(-kDoubleSize)); | 
|  | __ movsd(compiler::Address(RSP, 0), value); | 
|  | __ movq(temp, compiler::Address(RSP, 0)); | 
|  | __ AddImmediate(RSP, compiler::Immediate(kDoubleSize)); | 
|  | // Mask off the sign. | 
|  | __ AndImmediate(temp, compiler::Immediate(0x7FFFFFFFFFFFFFFFLL)); | 
|  | // Compare with +infinity. | 
|  | __ CompareImmediate(temp, compiler::Immediate(0x7FF0000000000000LL)); | 
|  | return is_negated ? NOT_EQUAL : EQUAL; | 
|  | } | 
|  | case MethodRecognizer::kDouble_getIsNegative: { | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  | const FpuRegister temp_fpu = locs()->temp(1).fpu_reg(); | 
|  | compiler::Label not_zero; | 
|  | __ xorpd(temp_fpu, temp_fpu); | 
|  | __ comisd(value, temp_fpu); | 
|  | // If it's NaN, it's not negative. | 
|  | __ j(PARITY_EVEN, is_negated ? labels.true_label : labels.false_label); | 
|  | // Looking at the sign bit also takes care of signed zero. | 
|  | __ movmskpd(temp, value); | 
|  | __ TestImmediate(temp, compiler::Immediate(1)); | 
|  | return is_negated ? EQUAL : NOT_EQUAL; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // SIMD | 
|  |  | 
|  | #define DEFINE_EMIT(Name, Args)                                                \ | 
|  | static void Emit##Name(FlowGraphCompiler* compiler, SimdOpInstr* instr,      \ | 
|  | PP_APPLY(PP_UNPACK, Args)) | 
|  |  | 
|  | #define SIMD_OP_FLOAT_ARITH(V, Name, op)                                       \ | 
|  | V(Float32x4##Name, op##ps)                                                   \ | 
|  | V(Float64x2##Name, op##pd) | 
|  |  | 
|  | #define SIMD_OP_SIMPLE_BINARY(V)                                               \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Add, add)                                             \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Sub, sub)                                             \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Mul, mul)                                             \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Div, div)                                             \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Min, min)                                             \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Max, max)                                             \ | 
|  | V(Int32x4Add, addpl)                                                         \ | 
|  | V(Int32x4Sub, subpl)                                                         \ | 
|  | V(Int32x4BitAnd, andps)                                                      \ | 
|  | V(Int32x4BitOr, orps)                                                        \ | 
|  | V(Int32x4BitXor, xorps)                                                      \ | 
|  | V(Float32x4Equal, cmppseq)                                                   \ | 
|  | V(Float32x4NotEqual, cmppsneq)                                               \ | 
|  | V(Float32x4LessThan, cmppslt)                                                \ | 
|  | V(Float32x4LessThanOrEqual, cmppsle) | 
|  |  | 
|  | DEFINE_EMIT(SimdBinaryOp, | 
|  | (SameAsFirstInput, XmmRegister left, XmmRegister right)) { | 
|  | switch (instr->kind()) { | 
|  | #define EMIT(Name, op)                                                         \ | 
|  | case SimdOpInstr::k##Name:                                                   \ | 
|  | __ op(left, right);                                                        \ | 
|  | break; | 
|  | SIMD_OP_SIMPLE_BINARY(EMIT) | 
|  | #undef EMIT | 
|  | case SimdOpInstr::kFloat32x4Scale: | 
|  | __ cvtsd2ss(left, left); | 
|  | __ shufps(left, left, compiler::Immediate(0x00)); | 
|  | __ mulps(left, right); | 
|  | break; | 
|  | case SimdOpInstr::kFloat32x4ShuffleMix: | 
|  | case SimdOpInstr::kInt32x4ShuffleMix: | 
|  | __ shufps(left, right, compiler::Immediate(instr->mask())); | 
|  | break; | 
|  | case SimdOpInstr::kFloat64x2FromDoubles: | 
|  | // shufpd mask 0x0 results in: | 
|  | // Lower 64-bits of left = Lower 64-bits of left. | 
|  | // Upper 64-bits of left = Lower 64-bits of right. | 
|  | __ shufpd(left, right, compiler::Immediate(0x0)); | 
|  | break; | 
|  | case SimdOpInstr::kFloat64x2Scale: | 
|  | __ shufpd(right, right, compiler::Immediate(0x00)); | 
|  | __ mulpd(left, right); | 
|  | break; | 
|  | case SimdOpInstr::kFloat64x2WithX: | 
|  | case SimdOpInstr::kFloat64x2WithY: { | 
|  | // TODO(dartbug.com/30949) avoid transfer through memory. | 
|  | COMPILE_ASSERT(SimdOpInstr::kFloat64x2WithY == | 
|  | (SimdOpInstr::kFloat64x2WithX + 1)); | 
|  | const intptr_t lane_index = instr->kind() - SimdOpInstr::kFloat64x2WithX; | 
|  | ASSERT(0 <= lane_index && lane_index < 2); | 
|  |  | 
|  | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | __ movups(compiler::Address(RSP, 0), left); | 
|  | __ movsd(compiler::Address(RSP, lane_index * kDoubleSize), right); | 
|  | __ movups(left, compiler::Address(RSP, 0)); | 
|  | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | break; | 
|  | } | 
|  | case SimdOpInstr::kFloat32x4WithX: | 
|  | case SimdOpInstr::kFloat32x4WithY: | 
|  | case SimdOpInstr::kFloat32x4WithZ: | 
|  | case SimdOpInstr::kFloat32x4WithW: { | 
|  | // TODO(dartbug.com/30949) avoid transfer through memory. SSE4.1 has | 
|  | // insertps. SSE2 these instructions can be implemented via a combination | 
|  | // of shufps/movss/movlhps. | 
|  | COMPILE_ASSERT( | 
|  | SimdOpInstr::kFloat32x4WithY == (SimdOpInstr::kFloat32x4WithX + 1) && | 
|  | SimdOpInstr::kFloat32x4WithZ == (SimdOpInstr::kFloat32x4WithX + 2) && | 
|  | SimdOpInstr::kFloat32x4WithW == (SimdOpInstr::kFloat32x4WithX + 3)); | 
|  | const intptr_t lane_index = instr->kind() - SimdOpInstr::kFloat32x4WithX; | 
|  | ASSERT(0 <= lane_index && lane_index < 4); | 
|  | __ cvtsd2ss(left, left); | 
|  | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | __ movups(compiler::Address(RSP, 0), right); | 
|  | __ movss(compiler::Address(RSP, lane_index * kFloatSize), left); | 
|  | __ movups(left, compiler::Address(RSP, 0)); | 
|  | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define SIMD_OP_SIMPLE_UNARY(V)                                                \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Sqrt, sqrt)                                           \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Negate, negate)                                       \ | 
|  | SIMD_OP_FLOAT_ARITH(V, Abs, abs)                                             \ | 
|  | V(Float32x4Reciprocal, rcpps)                                                \ | 
|  | V(Float32x4ReciprocalSqrt, rsqrtps) | 
|  |  | 
|  | DEFINE_EMIT(SimdUnaryOp, (SameAsFirstInput, XmmRegister value)) { | 
|  | // TODO(dartbug.com/30949) select better register constraints to avoid | 
|  | // redundant move of input into a different register. | 
|  | switch (instr->kind()) { | 
|  | #define EMIT(Name, op)                                                         \ | 
|  | case SimdOpInstr::k##Name:                                                   \ | 
|  | __ op(value, value);                                                       \ | 
|  | break; | 
|  | SIMD_OP_SIMPLE_UNARY(EMIT) | 
|  | #undef EMIT | 
|  | case SimdOpInstr::kFloat32x4GetX: | 
|  | // Shuffle not necessary. | 
|  | __ cvtss2sd(value, value); | 
|  | break; | 
|  | case SimdOpInstr::kFloat32x4GetY: | 
|  | __ shufps(value, value, compiler::Immediate(0x55)); | 
|  | __ cvtss2sd(value, value); | 
|  | break; | 
|  | case SimdOpInstr::kFloat32x4GetZ: | 
|  | __ shufps(value, value, compiler::Immediate(0xAA)); | 
|  | __ cvtss2sd(value, value); | 
|  | break; | 
|  | case SimdOpInstr::kFloat32x4GetW: | 
|  | __ shufps(value, value, compiler::Immediate(0xFF)); | 
|  | __ cvtss2sd(value, value); | 
|  | break; | 
|  | case SimdOpInstr::kFloat32x4Shuffle: | 
|  | case SimdOpInstr::kInt32x4Shuffle: | 
|  | __ shufps(value, value, compiler::Immediate(instr->mask())); | 
|  | break; | 
|  | case SimdOpInstr::kFloat32x4Splat: | 
|  | // Convert to Float32. | 
|  | __ cvtsd2ss(value, value); | 
|  | // Splat across all lanes. | 
|  | __ shufps(value, value, compiler::Immediate(0x00)); | 
|  | break; | 
|  | case SimdOpInstr::kFloat32x4ToFloat64x2: | 
|  | __ cvtps2pd(value, value); | 
|  | break; | 
|  | case SimdOpInstr::kFloat64x2ToFloat32x4: | 
|  | __ cvtpd2ps(value, value); | 
|  | break; | 
|  | case SimdOpInstr::kInt32x4ToFloat32x4: | 
|  | case SimdOpInstr::kFloat32x4ToInt32x4: | 
|  | // TODO(dartbug.com/30949) these operations are essentially nop and should | 
|  | // not generate any code. They should be removed from the graph before | 
|  | // code generation. | 
|  | break; | 
|  | case SimdOpInstr::kFloat64x2GetX: | 
|  | // NOP. | 
|  | break; | 
|  | case SimdOpInstr::kFloat64x2GetY: | 
|  | __ shufpd(value, value, compiler::Immediate(0x33)); | 
|  | break; | 
|  | case SimdOpInstr::kFloat64x2Splat: | 
|  | __ shufpd(value, value, compiler::Immediate(0x0)); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(SimdGetSignMask, (Register out, XmmRegister value)) { | 
|  | switch (instr->kind()) { | 
|  | case SimdOpInstr::kFloat32x4GetSignMask: | 
|  | case SimdOpInstr::kInt32x4GetSignMask: | 
|  | __ movmskps(out, value); | 
|  | break; | 
|  | case SimdOpInstr::kFloat64x2GetSignMask: | 
|  | __ movmskpd(out, value); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT( | 
|  | Float32x4FromDoubles, | 
|  | (SameAsFirstInput, XmmRegister v0, XmmRegister, XmmRegister, XmmRegister)) { | 
|  | // TODO(dartbug.com/30949) avoid transfer through memory. SSE4.1 has | 
|  | // insertps, with SSE2 this instruction can be implemented through unpcklps. | 
|  | const XmmRegister out = v0; | 
|  | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | for (intptr_t i = 0; i < 4; i++) { | 
|  | __ cvtsd2ss(out, instr->locs()->in(i).fpu_reg()); | 
|  | __ movss(compiler::Address(RSP, i * kFloatSize), out); | 
|  | } | 
|  | __ movups(out, compiler::Address(RSP, 0)); | 
|  | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Float32x4Zero, (XmmRegister value)) { | 
|  | __ xorps(value, value); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Float64x2Zero, (XmmRegister value)) { | 
|  | __ xorpd(value, value); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Float32x4Clamp, | 
|  | (SameAsFirstInput, | 
|  | XmmRegister value, | 
|  | XmmRegister lower, | 
|  | XmmRegister upper)) { | 
|  | __ minps(value, upper); | 
|  | __ maxps(value, lower); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Float64x2Clamp, | 
|  | (SameAsFirstInput, | 
|  | XmmRegister value, | 
|  | XmmRegister lower, | 
|  | XmmRegister upper)) { | 
|  | __ minpd(value, upper); | 
|  | __ maxpd(value, lower); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Int32x4FromInts, | 
|  | (XmmRegister result, Register, Register, Register, Register)) { | 
|  | // TODO(dartbug.com/30949) avoid transfer through memory. | 
|  | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | for (intptr_t i = 0; i < 4; i++) { | 
|  | __ movl(compiler::Address(RSP, i * kInt32Size), instr->locs()->in(i).reg()); | 
|  | } | 
|  | __ movups(result, compiler::Address(RSP, 0)); | 
|  | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Int32x4FromBools, | 
|  | (XmmRegister result, | 
|  | Register, | 
|  | Register, | 
|  | Register, | 
|  | Register, | 
|  | Temp<Register> temp)) { | 
|  | // TODO(dartbug.com/30949) avoid transfer through memory. | 
|  | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | for (intptr_t i = 0; i < 4; i++) { | 
|  | compiler::Label done, load_false; | 
|  | __ xorq(temp, temp); | 
|  | __ CompareObject(instr->locs()->in(i).reg(), Bool::True()); | 
|  | __ setcc(EQUAL, ByteRegisterOf(temp)); | 
|  | __ negl(temp);  // temp = input ? -1 : 0 | 
|  | __ movl(compiler::Address(RSP, kInt32Size * i), temp); | 
|  | } | 
|  | __ movups(result, compiler::Address(RSP, 0)); | 
|  | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | } | 
|  |  | 
|  | static void EmitToBoolean(FlowGraphCompiler* compiler, Register out) { | 
|  | ASSERT_BOOL_FALSE_FOLLOWS_BOOL_TRUE(); | 
|  | __ testl(out, out); | 
|  | __ setcc(ZERO, ByteRegisterOf(out)); | 
|  | __ movzxb(out, out); | 
|  | __ movq(out, | 
|  | compiler::Address(THR, out, TIMES_8, Thread::bool_true_offset())); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Int32x4GetFlagZorW, | 
|  | (Register out, XmmRegister value, Temp<XmmRegister> temp)) { | 
|  | __ movhlps(temp, value);  // extract upper half. | 
|  | __ movq(out, temp); | 
|  | if (instr->kind() == SimdOpInstr::kInt32x4GetFlagW) { | 
|  | __ shrq(out, compiler::Immediate(32));  // extract upper 32bits. | 
|  | } | 
|  | EmitToBoolean(compiler, out); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Int32x4GetFlagXorY, (Register out, XmmRegister value)) { | 
|  | __ movq(out, value); | 
|  | if (instr->kind() == SimdOpInstr::kInt32x4GetFlagY) { | 
|  | __ shrq(out, compiler::Immediate(32));  // extract upper 32bits. | 
|  | } | 
|  | EmitToBoolean(compiler, out); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT( | 
|  | Int32x4WithFlag, | 
|  | (SameAsFirstInput, XmmRegister mask, Register flag, Temp<Register> temp)) { | 
|  | // TODO(dartbug.com/30949) avoid transfer through memory. | 
|  | COMPILE_ASSERT( | 
|  | SimdOpInstr::kInt32x4WithFlagY == (SimdOpInstr::kInt32x4WithFlagX + 1) && | 
|  | SimdOpInstr::kInt32x4WithFlagZ == (SimdOpInstr::kInt32x4WithFlagX + 2) && | 
|  | SimdOpInstr::kInt32x4WithFlagW == (SimdOpInstr::kInt32x4WithFlagX + 3)); | 
|  | const intptr_t lane_index = instr->kind() - SimdOpInstr::kInt32x4WithFlagX; | 
|  | ASSERT(0 <= lane_index && lane_index < 4); | 
|  | __ SubImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | __ movups(compiler::Address(RSP, 0), mask); | 
|  |  | 
|  | // temp = flag == true ? -1 : 0 | 
|  | __ xorq(temp, temp); | 
|  | __ CompareObject(flag, Bool::True()); | 
|  | __ setcc(EQUAL, ByteRegisterOf(temp)); | 
|  | __ negl(temp); | 
|  |  | 
|  | __ movl(compiler::Address(RSP, lane_index * kInt32Size), temp); | 
|  | __ movups(mask, compiler::Address(RSP, 0)); | 
|  | __ AddImmediate(RSP, compiler::Immediate(kSimd128Size)); | 
|  | } | 
|  |  | 
|  | DEFINE_EMIT(Int32x4Select, | 
|  | (SameAsFirstInput, | 
|  | XmmRegister mask, | 
|  | XmmRegister trueValue, | 
|  | XmmRegister falseValue, | 
|  | Temp<XmmRegister> temp)) { | 
|  | // Copy mask. | 
|  | __ movaps(temp, mask); | 
|  | // Invert it. | 
|  | __ notps(temp, temp); | 
|  | // mask = mask & trueValue. | 
|  | __ andps(mask, trueValue); | 
|  | // temp = temp & falseValue. | 
|  | __ andps(temp, falseValue); | 
|  | // out = mask | temp. | 
|  | __ orps(mask, temp); | 
|  | } | 
|  |  | 
|  | // Map SimdOpInstr::Kind-s to corresponding emit functions. Uses the following | 
|  | // format: | 
|  | // | 
|  | //     CASE(OpA) CASE(OpB) ____(Emitter) - Emitter is used to emit OpA and OpB. | 
|  | //     SIMPLE(OpA) - Emitter with name OpA is used to emit OpA. | 
|  | // | 
|  | #define SIMD_OP_VARIANTS(CASE, ____, SIMPLE)                                   \ | 
|  | SIMD_OP_SIMPLE_BINARY(CASE)                                                  \ | 
|  | CASE(Float32x4Scale)                                                         \ | 
|  | CASE(Float32x4ShuffleMix)                                                    \ | 
|  | CASE(Int32x4ShuffleMix)                                                      \ | 
|  | CASE(Float64x2FromDoubles)                                                   \ | 
|  | CASE(Float64x2Scale)                                                         \ | 
|  | CASE(Float64x2WithX)                                                         \ | 
|  | CASE(Float64x2WithY)                                                         \ | 
|  | CASE(Float32x4WithX)                                                         \ | 
|  | CASE(Float32x4WithY)                                                         \ | 
|  | CASE(Float32x4WithZ)                                                         \ | 
|  | CASE(Float32x4WithW)                                                         \ | 
|  | ____(SimdBinaryOp)                                                           \ | 
|  | SIMD_OP_SIMPLE_UNARY(CASE)                                                   \ | 
|  | CASE(Float32x4GetX)                                                          \ | 
|  | CASE(Float32x4GetY)                                                          \ | 
|  | CASE(Float32x4GetZ)                                                          \ | 
|  | CASE(Float32x4GetW)                                                          \ | 
|  | CASE(Float32x4Shuffle)                                                       \ | 
|  | CASE(Int32x4Shuffle)                                                         \ | 
|  | CASE(Float32x4Splat)                                                         \ | 
|  | CASE(Float32x4ToFloat64x2)                                                   \ | 
|  | CASE(Float64x2ToFloat32x4)                                                   \ | 
|  | CASE(Int32x4ToFloat32x4)                                                     \ | 
|  | CASE(Float32x4ToInt32x4)                                                     \ | 
|  | CASE(Float64x2GetX)                                                          \ | 
|  | CASE(Float64x2GetY)                                                          \ | 
|  | CASE(Float64x2Splat)                                                         \ | 
|  | ____(SimdUnaryOp)                                                            \ | 
|  | CASE(Float32x4GetSignMask)                                                   \ | 
|  | CASE(Int32x4GetSignMask)                                                     \ | 
|  | CASE(Float64x2GetSignMask)                                                   \ | 
|  | ____(SimdGetSignMask)                                                        \ | 
|  | SIMPLE(Float32x4FromDoubles)                                                 \ | 
|  | SIMPLE(Int32x4FromInts)                                                      \ | 
|  | SIMPLE(Int32x4FromBools)                                                     \ | 
|  | SIMPLE(Float32x4Zero)                                                        \ | 
|  | SIMPLE(Float64x2Zero)                                                        \ | 
|  | SIMPLE(Float32x4Clamp)                                                       \ | 
|  | SIMPLE(Float64x2Clamp)                                                       \ | 
|  | CASE(Int32x4GetFlagX)                                                        \ | 
|  | CASE(Int32x4GetFlagY)                                                        \ | 
|  | ____(Int32x4GetFlagXorY)                                                     \ | 
|  | CASE(Int32x4GetFlagZ)                                                        \ | 
|  | CASE(Int32x4GetFlagW)                                                        \ | 
|  | ____(Int32x4GetFlagZorW)                                                     \ | 
|  | CASE(Int32x4WithFlagX)                                                       \ | 
|  | CASE(Int32x4WithFlagY)                                                       \ | 
|  | CASE(Int32x4WithFlagZ)                                                       \ | 
|  | CASE(Int32x4WithFlagW)                                                       \ | 
|  | ____(Int32x4WithFlag)                                                        \ | 
|  | SIMPLE(Int32x4Select) | 
|  |  | 
|  | LocationSummary* SimdOpInstr::MakeLocationSummary(Zone* zone, bool opt) const { | 
|  | switch (kind()) { | 
|  | #define CASE(Name, ...) case k##Name: | 
|  | #define EMIT(Name)                                                             \ | 
|  | return MakeLocationSummaryFromEmitter(zone, this, &Emit##Name); | 
|  | #define SIMPLE(Name) CASE(Name) EMIT(Name) | 
|  | SIMD_OP_VARIANTS(CASE, EMIT, SIMPLE) | 
|  | #undef CASE | 
|  | #undef EMIT | 
|  | #undef SIMPLE | 
|  | case SimdOpInstr::kFloat32x4GreaterThan: | 
|  | case SimdOpInstr::kFloat32x4GreaterThanOrEqual: | 
|  | case kIllegalSimdOp: | 
|  | break; | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void SimdOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | switch (kind()) { | 
|  | #define CASE(Name, ...) case k##Name: | 
|  | #define EMIT(Name)                                                             \ | 
|  | InvokeEmitter(compiler, this, &Emit##Name);                                  \ | 
|  | break; | 
|  | #define SIMPLE(Name) CASE(Name) EMIT(Name) | 
|  | SIMD_OP_VARIANTS(CASE, EMIT, SIMPLE) | 
|  | #undef CASE | 
|  | #undef EMIT | 
|  | #undef SIMPLE | 
|  | case SimdOpInstr::kFloat32x4GreaterThan: | 
|  | case SimdOpInstr::kFloat32x4GreaterThanOrEqual: | 
|  | case kIllegalSimdOp: | 
|  | UNREACHABLE(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef DEFINE_EMIT | 
|  |  | 
|  | LocationSummary* CaseInsensitiveCompareInstr::MakeLocationSummary( | 
|  | Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall); | 
|  | summary->set_in(0, Location::RegisterLocation(CallingConventions::kArg1Reg)); | 
|  | summary->set_in(1, Location::RegisterLocation(CallingConventions::kArg2Reg)); | 
|  | summary->set_in(2, Location::RegisterLocation(CallingConventions::kArg3Reg)); | 
|  | summary->set_in(3, Location::RegisterLocation(CallingConventions::kArg4Reg)); | 
|  | summary->set_out(0, Location::RegisterLocation(RAX)); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void CaseInsensitiveCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | compiler::LeafRuntimeScope rt(compiler->assembler(), | 
|  | /*frame_size=*/0, | 
|  | /*preserve_registers=*/false); | 
|  | // Call the function. Parameters are already in their correct spots. | 
|  | rt.Call(TargetFunction(), TargetFunction().argument_count()); | 
|  | } | 
|  |  | 
|  | LocationSummary* UnarySmiOpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | return LocationSummary::Make(zone, kNumInputs, Location::SameAsFirstInput(), | 
|  | LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register value = locs()->in(0).reg(); | 
|  | ASSERT(value == locs()->out(0).reg()); | 
|  | switch (op_kind()) { | 
|  | case Token::kNEGATE: { | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnaryOp); | 
|  | __ OBJ(neg)(value); | 
|  | __ j(OVERFLOW, deopt); | 
|  | break; | 
|  | } | 
|  | case Token::kBIT_NOT: | 
|  | __ notq(value); | 
|  | // Remove inverted smi-tag. | 
|  | __ AndImmediate(value, compiler::Immediate(~kSmiTagMask)); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* UnaryDoubleOpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresFpuRegister()); | 
|  | if (op_kind() == Token::kSQUARE) { | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | } else { | 
|  | summary->set_out(0, Location::RequiresFpuRegister()); | 
|  | } | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void UnaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(representation() == kUnboxedDouble); | 
|  | XmmRegister result = locs()->out(0).fpu_reg(); | 
|  | XmmRegister value = locs()->in(0).fpu_reg(); | 
|  | switch (op_kind()) { | 
|  | case Token::kNEGATE: | 
|  | __ DoubleNegate(result, value); | 
|  | break; | 
|  | case Token::kSQRT: | 
|  | __ sqrtsd(result, value); | 
|  | break; | 
|  | case Token::kSQUARE: | 
|  | ASSERT(result == value); | 
|  | __ mulsd(result, value); | 
|  | break; | 
|  | case Token::kTRUNCATE: | 
|  | __ roundsd(result, value, compiler::Assembler::kRoundToZero); | 
|  | break; | 
|  | case Token::kFLOOR: | 
|  | __ roundsd(result, value, compiler::Assembler::kRoundDown); | 
|  | break; | 
|  | case Token::kCEILING: | 
|  | __ roundsd(result, value, compiler::Assembler::kRoundUp); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* MathMinMaxInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | if (result_cid() == kDoubleCid) { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresFpuRegister()); | 
|  | summary->set_in(1, Location::RequiresFpuRegister()); | 
|  | // Reuse the left register so that code can be made shorter. | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  | ASSERT(result_cid() == kSmiCid); | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, Location::RequiresRegister()); | 
|  | // Reuse the left register so that code can be made shorter. | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void MathMinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT((op_kind() == MethodRecognizer::kMathMin) || | 
|  | (op_kind() == MethodRecognizer::kMathMax)); | 
|  | const bool is_min = op_kind() == MethodRecognizer::kMathMin; | 
|  | if (result_cid() == kDoubleCid) { | 
|  | compiler::Label done, returns_nan, are_equal; | 
|  | XmmRegister left = locs()->in(0).fpu_reg(); | 
|  | XmmRegister right = locs()->in(1).fpu_reg(); | 
|  | XmmRegister result = locs()->out(0).fpu_reg(); | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | __ comisd(left, right); | 
|  | __ j(PARITY_EVEN, &returns_nan, compiler::Assembler::kNearJump); | 
|  | __ j(EQUAL, &are_equal, compiler::Assembler::kNearJump); | 
|  | const Condition double_condition = | 
|  | is_min ? TokenKindToDoubleCondition(Token::kLT) | 
|  | : TokenKindToDoubleCondition(Token::kGT); | 
|  | ASSERT(left == result); | 
|  | __ j(double_condition, &done, compiler::Assembler::kNearJump); | 
|  | __ movsd(result, right); | 
|  | __ jmp(&done, compiler::Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&returns_nan); | 
|  | __ movq(temp, compiler::Address(THR, Thread::double_nan_address_offset())); | 
|  | __ movsd(result, compiler::Address(temp, 0)); | 
|  | __ jmp(&done, compiler::Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&are_equal); | 
|  | compiler::Label left_is_negative; | 
|  | // Check for negative zero: -0.0 is equal 0.0 but min or max must return | 
|  | // -0.0 or 0.0 respectively. | 
|  | // Check for negative left value (get the sign bit): | 
|  | // - min -> left is negative ? left : right. | 
|  | // - max -> left is negative ? right : left | 
|  | // Check the sign bit. | 
|  | __ movmskpd(temp, left); | 
|  | __ testq(temp, compiler::Immediate(1)); | 
|  | if (is_min) { | 
|  | ASSERT(left == result); | 
|  | __ j(NOT_ZERO, &done, | 
|  | compiler::Assembler::kNearJump);  // Negative -> return left. | 
|  | } else { | 
|  | ASSERT(left == result); | 
|  | __ j(ZERO, &done, | 
|  | compiler::Assembler::kNearJump);  // Positive -> return left. | 
|  | } | 
|  | __ movsd(result, right); | 
|  | __ Bind(&done); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ASSERT(result_cid() == kSmiCid); | 
|  | Register left = locs()->in(0).reg(); | 
|  | Register right = locs()->in(1).reg(); | 
|  | Register result = locs()->out(0).reg(); | 
|  | __ OBJ(cmp)(left, right); | 
|  | ASSERT(result == left); | 
|  | if (is_min) { | 
|  | __ cmovgeq(result, right); | 
|  | } else { | 
|  | __ cmovlq(result, right); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* Int32ToDoubleInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* result = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | result->set_in(0, Location::RequiresRegister()); | 
|  | result->set_out(0, Location::RequiresFpuRegister()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void Int32ToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register value = locs()->in(0).reg(); | 
|  | FpuRegister result = locs()->out(0).fpu_reg(); | 
|  | __ cvtsi2sdl(result, value); | 
|  | } | 
|  |  | 
|  | LocationSummary* SmiToDoubleInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* result = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | result->set_in(0, Location::WritableRegister()); | 
|  | result->set_out(0, Location::RequiresFpuRegister()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register value = locs()->in(0).reg(); | 
|  | FpuRegister result = locs()->out(0).fpu_reg(); | 
|  | __ SmiUntag(value); | 
|  | __ OBJ(cvtsi2sd)(result, value); | 
|  | } | 
|  |  | 
|  | DEFINE_BACKEND(Int64ToDouble, (FpuRegister result, Register value)) { | 
|  | __ cvtsi2sdq(result, value); | 
|  | } | 
|  |  | 
|  | LocationSummary* DoubleToIntegerInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* result = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); | 
|  | result->set_in(0, Location::RequiresFpuRegister()); | 
|  | result->set_out(0, Location::RequiresRegister()); | 
|  | result->set_temp(0, Location::RequiresRegister()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register result = locs()->out(0).reg(); | 
|  | const Register temp = locs()->temp(0).reg(); | 
|  | XmmRegister value_double = locs()->in(0).fpu_reg(); | 
|  | ASSERT(result != temp); | 
|  |  | 
|  | DoubleToIntegerSlowPath* slow_path = | 
|  | new DoubleToIntegerSlowPath(this, value_double); | 
|  | compiler->AddSlowPathCode(slow_path); | 
|  |  | 
|  | if (recognized_kind() != MethodRecognizer::kDoubleToInteger) { | 
|  | // In JIT mode without --target-unknown-cpu VM knows target CPU features | 
|  | // at compile time and can pick more optimal representation | 
|  | // for DoubleToDouble conversion. In AOT mode and with | 
|  | // --target-unknown-cpu we test if roundsd instruction is available | 
|  | // at run time and fall back to stub if it isn't. | 
|  | ASSERT(CompilerState::Current().is_aot() || FLAG_target_unknown_cpu); | 
|  | if (FLAG_use_slow_path) { | 
|  | __ jmp(slow_path->entry_label()); | 
|  | __ Bind(slow_path->exit_label()); | 
|  | return; | 
|  | } | 
|  | __ cmpb( | 
|  | compiler::Address( | 
|  | THR, | 
|  | compiler::target::Thread::double_truncate_round_supported_offset()), | 
|  | compiler::Immediate(0)); | 
|  | __ j(EQUAL, slow_path->entry_label()); | 
|  |  | 
|  | __ xorps(FpuTMP, FpuTMP); | 
|  | switch (recognized_kind()) { | 
|  | case MethodRecognizer::kDoubleFloorToInt: | 
|  | __ roundsd(FpuTMP, value_double, compiler::Assembler::kRoundDown); | 
|  | break; | 
|  | case MethodRecognizer::kDoubleCeilToInt: | 
|  | __ roundsd(FpuTMP, value_double, compiler::Assembler::kRoundUp); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | value_double = FpuTMP; | 
|  | } | 
|  |  | 
|  | __ OBJ(cvttsd2si)(result, value_double); | 
|  | // Overflow is signalled with minint. | 
|  | // Check for overflow and that it fits into Smi. | 
|  | __ movq(temp, result); | 
|  | __ OBJ(shl)(temp, compiler::Immediate(1)); | 
|  | __ j(OVERFLOW, slow_path->entry_label()); | 
|  | __ SmiTag(result); | 
|  | __ Bind(slow_path->exit_label()); | 
|  | } | 
|  |  | 
|  | LocationSummary* DoubleToSmiInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* result = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | result->set_in(0, Location::RequiresFpuRegister()); | 
|  | result->set_out(0, Location::RequiresRegister()); | 
|  | result->set_temp(0, Location::RequiresRegister()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void DoubleToSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptDoubleToSmi); | 
|  | Register result = locs()->out(0).reg(); | 
|  | XmmRegister value = locs()->in(0).fpu_reg(); | 
|  | Register temp = locs()->temp(0).reg(); | 
|  |  | 
|  | __ OBJ(cvttsd2si)(result, value); | 
|  | // Overflow is signalled with minint. | 
|  | compiler::Label do_call, done; | 
|  | // Check for overflow and that it fits into Smi. | 
|  | __ movq(temp, result); | 
|  | __ OBJ(shl)(temp, compiler::Immediate(1)); | 
|  | __ j(OVERFLOW, deopt); | 
|  | __ SmiTag(result); | 
|  | } | 
|  |  | 
|  | LocationSummary* DoubleToFloatInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* result = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | result->set_in(0, Location::RequiresFpuRegister()); | 
|  | result->set_out(0, Location::SameAsFirstInput()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void DoubleToFloatInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | __ cvtsd2ss(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg()); | 
|  | } | 
|  |  | 
|  | LocationSummary* FloatToDoubleInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* result = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | result->set_in(0, Location::RequiresFpuRegister()); | 
|  | result->set_out(0, Location::SameAsFirstInput()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void FloatToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | __ cvtss2sd(locs()->out(0).fpu_reg(), locs()->in(0).fpu_reg()); | 
|  | } | 
|  |  | 
|  | LocationSummary* FloatCompareInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void FloatCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | LocationSummary* InvokeMathCFunctionInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | // Calling convention on x64 uses XMM0 and XMM1 to pass the first two | 
|  | // double arguments and XMM0 to return the result. | 
|  | ASSERT(R13 != CALLEE_SAVED_TEMP); | 
|  | ASSERT(IsCalleeSavedRegister(R13)); | 
|  |  | 
|  | if (recognized_kind() == MethodRecognizer::kMathDoublePow) { | 
|  | ASSERT(InputCount() == 2); | 
|  | const intptr_t kNumTemps = 4; | 
|  | LocationSummary* result = new (zone) | 
|  | LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall); | 
|  | result->set_in(0, Location::FpuRegisterLocation(XMM2)); | 
|  | result->set_in(1, Location::FpuRegisterLocation(XMM1)); | 
|  | result->set_temp(0, Location::RegisterLocation(R13)); | 
|  | // Temp index 1. | 
|  | result->set_temp(1, Location::RegisterLocation(RAX)); | 
|  | // Temp index 2. | 
|  | result->set_temp(2, Location::FpuRegisterLocation(XMM4)); | 
|  | // Block XMM0 for the calling convention. | 
|  | result->set_temp(3, Location::FpuRegisterLocation(XMM0)); | 
|  | result->set_out(0, Location::FpuRegisterLocation(XMM3)); | 
|  | return result; | 
|  | } | 
|  | ASSERT((InputCount() == 1) || (InputCount() == 2)); | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* result = new (zone) | 
|  | LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall); | 
|  | result->set_temp(0, Location::RegisterLocation(R13)); | 
|  | result->set_in(0, Location::FpuRegisterLocation(XMM0)); | 
|  | if (InputCount() == 2) { | 
|  | result->set_in(1, Location::FpuRegisterLocation(XMM1)); | 
|  | } | 
|  | result->set_out(0, Location::FpuRegisterLocation(XMM0)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Pseudo code: | 
|  | // if (exponent == 0.0) return 1.0; | 
|  | // // Speed up simple cases. | 
|  | // if (exponent == 1.0) return base; | 
|  | // if (exponent == 2.0) return base * base; | 
|  | // if (exponent == 3.0) return base * base * base; | 
|  | // if (base == 1.0) return 1.0; | 
|  | // if (base.isNaN || exponent.isNaN) { | 
|  | //    return double.NAN; | 
|  | // } | 
|  | // if (base != -Infinity && exponent == 0.5) { | 
|  | //   if (base == 0.0) return 0.0; | 
|  | //   return sqrt(value); | 
|  | // } | 
|  | // TODO(srdjan): Move into a stub? | 
|  | static void InvokeDoublePow(FlowGraphCompiler* compiler, | 
|  | InvokeMathCFunctionInstr* instr) { | 
|  | ASSERT(instr->recognized_kind() == MethodRecognizer::kMathDoublePow); | 
|  | const intptr_t kInputCount = 2; | 
|  | ASSERT(instr->InputCount() == kInputCount); | 
|  | LocationSummary* locs = instr->locs(); | 
|  |  | 
|  | XmmRegister base = locs->in(0).fpu_reg(); | 
|  | XmmRegister exp = locs->in(1).fpu_reg(); | 
|  | XmmRegister result = locs->out(0).fpu_reg(); | 
|  | XmmRegister zero_temp = | 
|  | locs->temp(InvokeMathCFunctionInstr::kDoubleTempIndex).fpu_reg(); | 
|  |  | 
|  | __ xorps(zero_temp, zero_temp); | 
|  | __ LoadDImmediate(result, 1.0); | 
|  |  | 
|  | compiler::Label check_base, skip_call; | 
|  | // exponent == 0.0 -> return 1.0; | 
|  | __ comisd(exp, zero_temp); | 
|  | __ j(PARITY_EVEN, &check_base, compiler::Assembler::kNearJump); | 
|  | __ j(EQUAL, &skip_call);  // 'result' is 1.0. | 
|  |  | 
|  | // exponent == 1.0 ? | 
|  | __ comisd(exp, result); | 
|  | compiler::Label return_base; | 
|  | __ j(EQUAL, &return_base, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // exponent == 2.0 ? | 
|  | __ LoadDImmediate(XMM0, 2.0); | 
|  | __ comisd(exp, XMM0); | 
|  | compiler::Label return_base_times_2; | 
|  | __ j(EQUAL, &return_base_times_2, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // exponent == 3.0 ? | 
|  | __ LoadDImmediate(XMM0, 3.0); | 
|  | __ comisd(exp, XMM0); | 
|  | __ j(NOT_EQUAL, &check_base); | 
|  |  | 
|  | // Base times 3. | 
|  | __ movsd(result, base); | 
|  | __ mulsd(result, base); | 
|  | __ mulsd(result, base); | 
|  | __ jmp(&skip_call); | 
|  |  | 
|  | __ Bind(&return_base); | 
|  | __ movsd(result, base); | 
|  | __ jmp(&skip_call); | 
|  |  | 
|  | __ Bind(&return_base_times_2); | 
|  | __ movsd(result, base); | 
|  | __ mulsd(result, base); | 
|  | __ jmp(&skip_call); | 
|  |  | 
|  | __ Bind(&check_base); | 
|  | // Note: 'exp' could be NaN. | 
|  |  | 
|  | compiler::Label return_nan; | 
|  | // base == 1.0 -> return 1.0; | 
|  | __ comisd(base, result); | 
|  | __ j(PARITY_EVEN, &return_nan, compiler::Assembler::kNearJump); | 
|  | __ j(EQUAL, &skip_call, compiler::Assembler::kNearJump); | 
|  | // Note: 'base' could be NaN. | 
|  | __ comisd(exp, base); | 
|  | // Neither 'exp' nor 'base' is NaN. | 
|  | compiler::Label try_sqrt; | 
|  | __ j(PARITY_ODD, &try_sqrt, compiler::Assembler::kNearJump); | 
|  | // Return NaN. | 
|  | __ Bind(&return_nan); | 
|  | __ LoadDImmediate(result, NAN); | 
|  | __ jmp(&skip_call); | 
|  |  | 
|  | compiler::Label do_pow, return_zero; | 
|  | __ Bind(&try_sqrt); | 
|  | // Before calling pow, check if we could use sqrt instead of pow. | 
|  | __ LoadDImmediate(result, kNegInfinity); | 
|  | // base == -Infinity -> call pow; | 
|  | __ comisd(base, result); | 
|  | __ j(EQUAL, &do_pow, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // exponent == 0.5 ? | 
|  | __ LoadDImmediate(result, 0.5); | 
|  | __ comisd(exp, result); | 
|  | __ j(NOT_EQUAL, &do_pow, compiler::Assembler::kNearJump); | 
|  |  | 
|  | // base == 0 -> return 0; | 
|  | __ comisd(base, zero_temp); | 
|  | __ j(EQUAL, &return_zero, compiler::Assembler::kNearJump); | 
|  |  | 
|  | __ sqrtsd(result, base); | 
|  | __ jmp(&skip_call, compiler::Assembler::kNearJump); | 
|  |  | 
|  | __ Bind(&return_zero); | 
|  | __ movsd(result, zero_temp); | 
|  | __ jmp(&skip_call); | 
|  |  | 
|  | __ Bind(&do_pow); | 
|  | { | 
|  | compiler::LeafRuntimeScope rt(compiler->assembler(), | 
|  | /*frame_size=*/0, | 
|  | /*preserve_registers=*/false); | 
|  | __ movaps(XMM0, locs->in(0).fpu_reg()); | 
|  | ASSERT(locs->in(1).fpu_reg() == XMM1); | 
|  | rt.Call(instr->TargetFunction(), kInputCount); | 
|  | __ movaps(locs->out(0).fpu_reg(), XMM0); | 
|  | } | 
|  | __ Bind(&skip_call); | 
|  | } | 
|  |  | 
|  | void InvokeMathCFunctionInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | if (recognized_kind() == MethodRecognizer::kMathDoublePow) { | 
|  | InvokeDoublePow(compiler, this); | 
|  | return; | 
|  | } | 
|  |  | 
|  | compiler::LeafRuntimeScope rt(compiler->assembler(), | 
|  | /*frame_size=*/0, | 
|  | /*preserve_registers=*/false); | 
|  | ASSERT(locs()->in(0).fpu_reg() == XMM0); | 
|  | if (InputCount() == 2) { | 
|  | ASSERT(locs()->in(1).fpu_reg() == XMM1); | 
|  | } | 
|  | rt.Call(TargetFunction(), InputCount()); | 
|  | ASSERT(locs()->out(0).fpu_reg() == XMM0); | 
|  | } | 
|  |  | 
|  | LocationSummary* ExtractNthOutputInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | // Only use this instruction in optimized code. | 
|  | ASSERT(opt); | 
|  | const intptr_t kNumInputs = 1; | 
|  | LocationSummary* summary = | 
|  | new (zone) LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall); | 
|  | if (representation() == kUnboxedDouble) { | 
|  | if (index() == 0) { | 
|  | summary->set_in( | 
|  | 0, Location::Pair(Location::RequiresFpuRegister(), Location::Any())); | 
|  | } else { | 
|  | ASSERT(index() == 1); | 
|  | summary->set_in( | 
|  | 0, Location::Pair(Location::Any(), Location::RequiresFpuRegister())); | 
|  | } | 
|  | summary->set_out(0, Location::RequiresFpuRegister()); | 
|  | } else { | 
|  | ASSERT(representation() == kTagged); | 
|  | if (index() == 0) { | 
|  | summary->set_in( | 
|  | 0, Location::Pair(Location::RequiresRegister(), Location::Any())); | 
|  | } else { | 
|  | ASSERT(index() == 1); | 
|  | summary->set_in( | 
|  | 0, Location::Pair(Location::Any(), Location::RequiresRegister())); | 
|  | } | 
|  | summary->set_out(0, Location::RequiresRegister()); | 
|  | } | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void ExtractNthOutputInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(locs()->in(0).IsPairLocation()); | 
|  | PairLocation* pair = locs()->in(0).AsPairLocation(); | 
|  | Location in_loc = pair->At(index()); | 
|  | if (representation() == kUnboxedDouble) { | 
|  | XmmRegister out = locs()->out(0).fpu_reg(); | 
|  | XmmRegister in = in_loc.fpu_reg(); | 
|  | __ movaps(out, in); | 
|  | } else { | 
|  | ASSERT(representation() == kTagged); | 
|  | Register out = locs()->out(0).reg(); | 
|  | Register in = in_loc.reg(); | 
|  | __ movq(out, in); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* UnboxLaneInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void UnboxLaneInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | LocationSummary* BoxLanesInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void BoxLanesInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | LocationSummary* TruncDivModInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | // Both inputs must be writable because they will be untagged. | 
|  | summary->set_in(0, Location::RegisterLocation(RAX)); | 
|  | summary->set_in(1, Location::WritableRegister()); | 
|  | summary->set_out(0, Location::Pair(Location::RegisterLocation(RAX), | 
|  | Location::RegisterLocation(RDX))); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void TruncDivModInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ASSERT(CanDeoptimize()); | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp); | 
|  | Register left = locs()->in(0).reg(); | 
|  | Register right = locs()->in(1).reg(); | 
|  | ASSERT(locs()->out(0).IsPairLocation()); | 
|  | PairLocation* pair = locs()->out(0).AsPairLocation(); | 
|  | Register result1 = pair->At(0).reg(); | 
|  | Register result2 = pair->At(1).reg(); | 
|  | compiler::Label not_32bit, done; | 
|  | Register temp = RDX; | 
|  | ASSERT(left == RAX); | 
|  | ASSERT((right != RDX) && (right != RAX)); | 
|  | ASSERT(result1 == RAX); | 
|  | ASSERT(result2 == RDX); | 
|  | if (RangeUtils::CanBeZero(divisor_range())) { | 
|  | // Handle divide by zero in runtime. | 
|  | __ OBJ(test)(right, right); | 
|  | __ j(ZERO, deopt); | 
|  | } | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | // Check if both operands fit into 32bits as idiv with 64bit operands | 
|  | // requires twice as many cycles and has much higher latency. | 
|  | // We are checking this before untagging them to avoid corner case | 
|  | // dividing INT_MAX by -1 that raises exception because quotient is | 
|  | // too large for 32bit register. | 
|  | __ movsxd(temp, left); | 
|  | __ cmpq(temp, left); | 
|  | __ j(NOT_EQUAL, ¬_32bit); | 
|  | __ movsxd(temp, right); | 
|  | __ cmpq(temp, right); | 
|  | __ j(NOT_EQUAL, ¬_32bit); | 
|  |  | 
|  | // Both operands are 31bit smis. Divide using 32bit idiv. | 
|  | __ SmiUntag(left); | 
|  | __ SmiUntag(right); | 
|  | __ cdq(); | 
|  | __ idivl(right); | 
|  | __ movsxd(RAX, RAX); | 
|  | __ movsxd(RDX, RDX); | 
|  | __ jmp(&done); | 
|  |  | 
|  | // Divide using 64bit idiv. | 
|  | __ Bind(¬_32bit); | 
|  | __ SmiUntag(left); | 
|  | __ SmiUntag(right); | 
|  | __ cqo();         // Sign extend RAX -> RDX:RAX. | 
|  | __ idivq(right);  //  RAX: quotient, RDX: remainder. | 
|  | // Check the corner case of dividing the 'MIN_SMI' with -1, in which | 
|  | // case we cannot tag the result. | 
|  | __ CompareImmediate(RAX, compiler::Immediate(0x4000000000000000)); | 
|  | __ j(EQUAL, deopt); | 
|  | __ Bind(&done); | 
|  | #else | 
|  | USE(temp); | 
|  | // Both operands are 31bit smis. Divide using 32bit idiv. | 
|  | __ SmiUntag(left); | 
|  | __ SmiUntag(right); | 
|  | __ cdq(); | 
|  | __ idivl(right); | 
|  |  | 
|  | // Check the corner case of dividing the 'MIN_SMI' with -1, in which | 
|  | // case we cannot tag the result. | 
|  | __ cmpl(RAX, compiler::Immediate(0x40000000)); | 
|  | __ j(EQUAL, deopt); | 
|  | __ movsxd(RAX, RAX); | 
|  | __ movsxd(RDX, RDX); | 
|  | #endif | 
|  |  | 
|  | // Modulo correction (RDX). | 
|  | //  res = left % right; | 
|  | //  if (res < 0) { | 
|  | //    if (right < 0) { | 
|  | //      res = res - right; | 
|  | //    } else { | 
|  | //      res = res + right; | 
|  | //    } | 
|  | //  } | 
|  | compiler::Label all_done; | 
|  | __ cmpq(RDX, compiler::Immediate(0)); | 
|  | __ j(GREATER_EQUAL, &all_done, compiler::Assembler::kNearJump); | 
|  | // Result is negative, adjust it. | 
|  | if ((divisor_range() == nullptr) || divisor_range()->Overlaps(-1, 1)) { | 
|  | compiler::Label subtract; | 
|  | __ cmpq(right, compiler::Immediate(0)); | 
|  | __ j(LESS, &subtract, compiler::Assembler::kNearJump); | 
|  | __ addq(RDX, right); | 
|  | __ jmp(&all_done, compiler::Assembler::kNearJump); | 
|  | __ Bind(&subtract); | 
|  | __ subq(RDX, right); | 
|  | } else if (divisor_range()->IsPositive()) { | 
|  | // Right is positive. | 
|  | __ addq(RDX, right); | 
|  | } else { | 
|  | // Right is negative. | 
|  | __ subq(RDX, right); | 
|  | } | 
|  | __ Bind(&all_done); | 
|  |  | 
|  | __ SmiTag(RAX); | 
|  | __ SmiTag(RDX); | 
|  | // Note that the result of an integer division/modulo of two | 
|  | // in-range arguments, cannot create out-of-range result. | 
|  | } | 
|  |  | 
|  | // Should be kept in sync with integers.cc Multiply64Hash | 
|  | static void EmitHashIntegerCodeSequence(FlowGraphCompiler* compiler) { | 
|  | __ movq(RDX, compiler::Immediate(0x2d51)); | 
|  | __ mulq(RDX); | 
|  | __ xorq(RAX, RDX);  // RAX = xor(hi64, lo64) | 
|  | __ movq(RDX, RAX); | 
|  | __ shrq(RDX, compiler::Immediate(32)); | 
|  | __ xorq(RAX, RDX); | 
|  | __ andq(RAX, compiler::Immediate(0x3fffffff)); | 
|  | } | 
|  |  | 
|  | LocationSummary* HashDoubleOpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 2; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresFpuRegister()); | 
|  | summary->set_temp(0, Location::RegisterLocation(RDX)); | 
|  | summary->set_temp(1, Location::RequiresFpuRegister()); | 
|  | summary->set_out(0, Location::RegisterLocation(RAX)); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void HashDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const XmmRegister value = locs()->in(0).fpu_reg(); | 
|  | ASSERT(locs()->out(0).reg() == RAX); | 
|  | ASSERT(locs()->temp(0).reg() == RDX); | 
|  | const FpuRegister temp_fpu_reg = locs()->temp(1).fpu_reg(); | 
|  |  | 
|  | compiler::Label hash_double; | 
|  |  | 
|  | __ cvttsd2siq(RAX, value); | 
|  | __ cvtsi2sdq(temp_fpu_reg, RAX); | 
|  | __ comisd(value, temp_fpu_reg); | 
|  | __ j(PARITY_EVEN, &hash_double);  // one of the arguments is NaN | 
|  | __ j(NOT_EQUAL, &hash_double); | 
|  |  | 
|  | // RAX has int64 value | 
|  | EmitHashIntegerCodeSequence(compiler); | 
|  |  | 
|  | compiler::Label done; | 
|  | __ jmp(&done); | 
|  |  | 
|  | __ Bind(&hash_double); | 
|  | // Convert the double bits to a hash code that fits in a Smi. | 
|  | __ movq(RAX, value); | 
|  | __ movq(RDX, RAX); | 
|  | __ shrq(RDX, compiler::Immediate(32)); | 
|  | __ xorq(RAX, RDX); | 
|  | __ andq(RAX, compiler::Immediate(compiler::target::kSmiMax)); | 
|  |  | 
|  | __ Bind(&done); | 
|  | } | 
|  |  | 
|  | LocationSummary* HashIntegerOpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RegisterLocation(RAX)); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | summary->set_temp(0, Location::RegisterLocation(RDX)); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void HashIntegerOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register value = locs()->in(0).reg(); | 
|  | Register result = locs()->out(0).reg(); | 
|  | Register temp = locs()->temp(0).reg(); | 
|  | ASSERT(value == RAX); | 
|  | ASSERT(result == RAX); | 
|  | ASSERT(temp == RDX); | 
|  |  | 
|  | if (smi_) { | 
|  | __ SmiUntagAndSignExtend(RAX); | 
|  | } else { | 
|  | __ LoadFieldFromOffset(RAX, RAX, Mint::value_offset()); | 
|  | } | 
|  |  | 
|  | EmitHashIntegerCodeSequence(compiler); | 
|  | __ SmiTag(RAX); | 
|  | } | 
|  |  | 
|  | LocationSummary* BranchInstr::MakeLocationSummary(Zone* zone, bool opt) const { | 
|  | comparison()->InitializeLocationSummary(zone, opt); | 
|  | // Branches don't produce a result. | 
|  | comparison()->locs()->set_out(0, Location::NoLocation()); | 
|  | return comparison()->locs(); | 
|  | } | 
|  |  | 
|  | void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | comparison()->EmitBranchCode(compiler, this); | 
|  | } | 
|  |  | 
|  | LocationSummary* CheckClassInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const bool need_mask_temp = IsBitTest(); | 
|  | const intptr_t kNumTemps = !IsNullCheck() ? (need_mask_temp ? 2 : 1) : 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | if (!IsNullCheck()) { | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  | if (need_mask_temp) { | 
|  | summary->set_temp(1, Location::RequiresRegister()); | 
|  | } | 
|  | } | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void CheckClassInstr::EmitNullCheck(FlowGraphCompiler* compiler, | 
|  | compiler::Label* deopt) { | 
|  | __ CompareObject(locs()->in(0).reg(), Object::null_object()); | 
|  | Condition cond = IsDeoptIfNull() ? EQUAL : NOT_EQUAL; | 
|  | __ j(cond, deopt); | 
|  | } | 
|  |  | 
|  | void CheckClassInstr::EmitBitTest(FlowGraphCompiler* compiler, | 
|  | intptr_t min, | 
|  | intptr_t max, | 
|  | intptr_t mask, | 
|  | compiler::Label* deopt) { | 
|  | Register biased_cid = locs()->temp(0).reg(); | 
|  | __ subq(biased_cid, compiler::Immediate(min)); | 
|  | __ cmpq(biased_cid, compiler::Immediate(max - min)); | 
|  | __ j(ABOVE, deopt); | 
|  |  | 
|  | Register mask_reg = locs()->temp(1).reg(); | 
|  | __ movq(mask_reg, compiler::Immediate(mask)); | 
|  | __ btq(mask_reg, biased_cid); | 
|  | __ j(NOT_CARRY, deopt); | 
|  | } | 
|  |  | 
|  | int CheckClassInstr::EmitCheckCid(FlowGraphCompiler* compiler, | 
|  | int bias, | 
|  | intptr_t cid_start, | 
|  | intptr_t cid_end, | 
|  | bool is_last, | 
|  | compiler::Label* is_ok, | 
|  | compiler::Label* deopt, | 
|  | bool use_near_jump) { | 
|  | Register biased_cid = locs()->temp(0).reg(); | 
|  | Condition no_match, match; | 
|  | if (cid_start == cid_end) { | 
|  | __ cmpl(biased_cid, compiler::Immediate(cid_start - bias)); | 
|  | no_match = NOT_EQUAL; | 
|  | match = EQUAL; | 
|  | } else { | 
|  | // For class ID ranges use a subtract followed by an unsigned | 
|  | // comparison to check both ends of the ranges with one comparison. | 
|  | __ addl(biased_cid, compiler::Immediate(bias - cid_start)); | 
|  | bias = cid_start; | 
|  | __ cmpl(biased_cid, compiler::Immediate(cid_end - cid_start)); | 
|  | no_match = ABOVE; | 
|  | match = BELOW_EQUAL; | 
|  | } | 
|  |  | 
|  | if (is_last) { | 
|  | __ j(no_match, deopt); | 
|  | } else { | 
|  | if (use_near_jump) { | 
|  | __ j(match, is_ok, compiler::Assembler::kNearJump); | 
|  | } else { | 
|  | __ j(match, is_ok); | 
|  | } | 
|  | } | 
|  | return bias; | 
|  | } | 
|  |  | 
|  | LocationSummary* CheckSmiInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register value = locs()->in(0).reg(); | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckSmi); | 
|  | __ BranchIfNotSmi(value, deopt); | 
|  | } | 
|  |  | 
|  | void CheckNullInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | ThrowErrorSlowPathCode* slow_path = new NullErrorSlowPath(this); | 
|  | compiler->AddSlowPathCode(slow_path); | 
|  |  | 
|  | Register value_reg = locs()->in(0).reg(); | 
|  | // TODO(dartbug.com/30480): Consider passing `null` literal as an argument | 
|  | // in order to be able to allocate it on register. | 
|  | __ CompareObject(value_reg, Object::null_object()); | 
|  | __ BranchIf(EQUAL, slow_path->entry_label()); | 
|  | } | 
|  |  | 
|  | LocationSummary* CheckClassIdInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, cids_.IsSingleCid() ? Location::RequiresRegister() | 
|  | : Location::WritableRegister()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void CheckClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register value = locs()->in(0).reg(); | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckClass); | 
|  | if (cids_.IsSingleCid()) { | 
|  | __ CompareImmediate(value, | 
|  | compiler::Immediate(Smi::RawValue(cids_.cid_start))); | 
|  | __ j(NOT_ZERO, deopt); | 
|  | } else { | 
|  | __ AddImmediate(value, | 
|  | compiler::Immediate(-Smi::RawValue(cids_.cid_start))); | 
|  | __ cmpq(value, compiler::Immediate(Smi::RawValue(cids_.Extent()))); | 
|  | __ j(ABOVE, deopt); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* CheckArrayBoundInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(kLengthPos, LocationRegisterOrSmiConstant(length())); | 
|  | locs->set_in(kIndexPos, LocationRegisterOrSmiConstant(index())); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | uint32_t flags = generalized_ ? ICData::kGeneralized : 0; | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckArrayBound, flags); | 
|  |  | 
|  | Location length_loc = locs()->in(kLengthPos); | 
|  | Location index_loc = locs()->in(kIndexPos); | 
|  |  | 
|  | if (length_loc.IsConstant() && index_loc.IsConstant()) { | 
|  | ASSERT((Smi::Cast(length_loc.constant()).Value() <= | 
|  | Smi::Cast(index_loc.constant()).Value()) || | 
|  | (Smi::Cast(index_loc.constant()).Value() < 0)); | 
|  | // Unconditionally deoptimize for constant bounds checks because they | 
|  | // only occur only when index is out-of-bounds. | 
|  | __ jmp(deopt); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const intptr_t index_cid = index()->Type()->ToCid(); | 
|  | if (index_loc.IsConstant()) { | 
|  | Register length = length_loc.reg(); | 
|  | const Smi& index = Smi::Cast(index_loc.constant()); | 
|  | __ CompareObject(length, index); | 
|  | __ j(BELOW_EQUAL, deopt); | 
|  | } else if (length_loc.IsConstant()) { | 
|  | const Smi& length = Smi::Cast(length_loc.constant()); | 
|  | Register index = index_loc.reg(); | 
|  | if (index_cid != kSmiCid) { | 
|  | __ BranchIfNotSmi(index, deopt); | 
|  | } | 
|  | if (length.Value() == Smi::kMaxValue) { | 
|  | __ OBJ(test)(index, index); | 
|  | __ j(NEGATIVE, deopt); | 
|  | } else { | 
|  | __ CompareObject(index, length); | 
|  | __ j(ABOVE_EQUAL, deopt); | 
|  | } | 
|  | } else { | 
|  | Register length = length_loc.reg(); | 
|  | Register index = index_loc.reg(); | 
|  | if (index_cid != kSmiCid) { | 
|  | __ BranchIfNotSmi(index, deopt); | 
|  | } | 
|  | __ OBJ(cmp)(index, length); | 
|  | __ j(ABOVE_EQUAL, deopt); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* CheckWritableInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, | 
|  | UseSharedSlowPathStub(opt) ? LocationSummary::kCallOnSharedSlowPath | 
|  | : LocationSummary::kCallOnSlowPath); | 
|  | locs->set_in(kReceiver, Location::RequiresRegister()); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void CheckWritableInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | WriteErrorSlowPath* slow_path = new WriteErrorSlowPath(this); | 
|  | compiler->AddSlowPathCode(slow_path); | 
|  | __ movq(TMP, compiler::FieldAddress(locs()->in(0).reg(), | 
|  | compiler::target::Object::tags_offset())); | 
|  | __ testq(TMP, compiler::Immediate( | 
|  | 1 << compiler::target::UntaggedObject::kImmutableBit)); | 
|  | __ j(NOT_ZERO, slow_path->entry_label()); | 
|  | } | 
|  |  | 
|  | class Int64DivideSlowPath : public ThrowErrorSlowPathCode { | 
|  | public: | 
|  | Int64DivideSlowPath(BinaryInt64OpInstr* instruction, | 
|  | Register divisor, | 
|  | Range* divisor_range) | 
|  | : ThrowErrorSlowPathCode(instruction, | 
|  | kIntegerDivisionByZeroExceptionRuntimeEntry), | 
|  | is_mod_(instruction->op_kind() == Token::kMOD), | 
|  | divisor_(divisor), | 
|  | divisor_range_(divisor_range), | 
|  | div_by_minus_one_label_(), | 
|  | adjust_sign_label_() {} | 
|  |  | 
|  | void EmitNativeCode(FlowGraphCompiler* compiler) override { | 
|  | // Handle modulo/division by zero, if needed. Use superclass code. | 
|  | if (has_divide_by_zero()) { | 
|  | ThrowErrorSlowPathCode::EmitNativeCode(compiler); | 
|  | } else { | 
|  | __ Bind(entry_label());  // not used, but keeps destructor happy | 
|  | if (compiler::Assembler::EmittingComments()) { | 
|  | __ Comment("slow path %s operation (no throw)", name()); | 
|  | } | 
|  | } | 
|  | // Handle modulo/division by minus one, if needed. | 
|  | // Note: an exact -1 divisor is best optimized prior to codegen. | 
|  | if (has_divide_by_minus_one()) { | 
|  | __ Bind(div_by_minus_one_label()); | 
|  | if (is_mod_) { | 
|  | __ xorq(RDX, RDX);  // x % -1 =  0 | 
|  | } else { | 
|  | __ negq(RAX);  // x / -1 = -x | 
|  | } | 
|  | __ jmp(exit_label()); | 
|  | } | 
|  | // Adjust modulo for negative sign, optimized for known ranges. | 
|  | // if (divisor < 0) | 
|  | //   out -= divisor; | 
|  | // else | 
|  | //   out += divisor; | 
|  | if (has_adjust_sign()) { | 
|  | __ Bind(adjust_sign_label()); | 
|  | if (RangeUtils::Overlaps(divisor_range_, -1, 1)) { | 
|  | // General case. | 
|  | compiler::Label subtract; | 
|  | __ testq(divisor_, divisor_); | 
|  | __ j(LESS, &subtract, compiler::Assembler::kNearJump); | 
|  | __ addq(RDX, divisor_); | 
|  | __ jmp(exit_label()); | 
|  | __ Bind(&subtract); | 
|  | __ subq(RDX, divisor_); | 
|  | } else if (divisor_range_->IsPositive()) { | 
|  | // Always positive. | 
|  | __ addq(RDX, divisor_); | 
|  | } else { | 
|  | // Always negative. | 
|  | __ subq(RDX, divisor_); | 
|  | } | 
|  | __ jmp(exit_label()); | 
|  | } | 
|  | } | 
|  |  | 
|  | const char* name() override { return "int64 divide"; } | 
|  |  | 
|  | bool has_divide_by_zero() { return RangeUtils::CanBeZero(divisor_range_); } | 
|  |  | 
|  | bool has_divide_by_minus_one() { | 
|  | return RangeUtils::Overlaps(divisor_range_, -1, -1); | 
|  | } | 
|  |  | 
|  | bool has_adjust_sign() { return is_mod_; } | 
|  |  | 
|  | bool is_needed() { | 
|  | return has_divide_by_zero() || has_divide_by_minus_one() || | 
|  | has_adjust_sign(); | 
|  | } | 
|  |  | 
|  | compiler::Label* div_by_minus_one_label() { | 
|  | ASSERT(has_divide_by_minus_one()); | 
|  | return &div_by_minus_one_label_; | 
|  | } | 
|  |  | 
|  | compiler::Label* adjust_sign_label() { | 
|  | ASSERT(has_adjust_sign()); | 
|  | return &adjust_sign_label_; | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool is_mod_; | 
|  | Register divisor_; | 
|  | Range* divisor_range_; | 
|  | compiler::Label div_by_minus_one_label_; | 
|  | compiler::Label adjust_sign_label_; | 
|  | }; | 
|  |  | 
|  | static void EmitInt64ModTruncDiv(FlowGraphCompiler* compiler, | 
|  | BinaryInt64OpInstr* instruction, | 
|  | Token::Kind op_kind, | 
|  | Register left, | 
|  | Register right, | 
|  | Register tmp, | 
|  | Register out) { | 
|  | ASSERT(op_kind == Token::kMOD || op_kind == Token::kTRUNCDIV); | 
|  |  | 
|  | // Special case 64-bit div/mod by compile-time constant. Note that various | 
|  | // special constants (such as powers of two) should have been optimized | 
|  | // earlier in the pipeline. Div or mod by zero falls into general code | 
|  | // to implement the exception. | 
|  | if (auto c = instruction->right()->definition()->AsConstant()) { | 
|  | if (c->value().IsInteger()) { | 
|  | const int64_t divisor = Integer::Cast(c->value()).AsInt64Value(); | 
|  | if (divisor <= -2 || divisor >= 2) { | 
|  | // For x DIV c or x MOD c: use magic operations. | 
|  | compiler::Label pos; | 
|  | int64_t magic = 0; | 
|  | int64_t shift = 0; | 
|  | Utils::CalculateMagicAndShiftForDivRem(divisor, &magic, &shift); | 
|  | // RDX:RAX = magic * numerator. | 
|  | ASSERT(left == RAX); | 
|  | __ MoveRegister(TMP, RAX);  // save numerator | 
|  | __ LoadImmediate(RAX, compiler::Immediate(magic)); | 
|  | __ imulq(TMP); | 
|  | // RDX +/-= numerator. | 
|  | if (divisor > 0 && magic < 0) { | 
|  | __ addq(RDX, TMP); | 
|  | } else if (divisor < 0 && magic > 0) { | 
|  | __ subq(RDX, TMP); | 
|  | } | 
|  | // Shift if needed. | 
|  | if (shift != 0) { | 
|  | __ sarq(RDX, compiler::Immediate(shift)); | 
|  | } | 
|  | // RDX += 1 if RDX < 0. | 
|  | __ movq(RAX, RDX); | 
|  | __ shrq(RDX, compiler::Immediate(63)); | 
|  | __ addq(RDX, RAX); | 
|  | // Finalize DIV or MOD. | 
|  | if (op_kind == Token::kTRUNCDIV) { | 
|  | ASSERT(out == RAX && tmp == RDX); | 
|  | __ movq(RAX, RDX); | 
|  | } else { | 
|  | ASSERT(out == RDX && tmp == RAX); | 
|  | __ movq(RAX, TMP); | 
|  | __ LoadImmediate(TMP, compiler::Immediate(divisor)); | 
|  | __ imulq(RDX, TMP); | 
|  | __ subq(RAX, RDX); | 
|  | // Compensate for Dart's Euclidean view of MOD. | 
|  | __ testq(RAX, RAX); | 
|  | __ j(GREATER_EQUAL, &pos); | 
|  | if (divisor > 0) { | 
|  | __ addq(RAX, TMP); | 
|  | } else { | 
|  | __ subq(RAX, TMP); | 
|  | } | 
|  | __ Bind(&pos); | 
|  | __ movq(RDX, RAX); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Prepare a slow path. | 
|  | Range* right_range = instruction->right()->definition()->range(); | 
|  | Int64DivideSlowPath* slow_path = | 
|  | new (Z) Int64DivideSlowPath(instruction, right, right_range); | 
|  |  | 
|  | // Handle modulo/division by zero exception on slow path. | 
|  | if (slow_path->has_divide_by_zero()) { | 
|  | __ testq(right, right); | 
|  | __ j(EQUAL, slow_path->entry_label()); | 
|  | } | 
|  |  | 
|  | // Handle modulo/division by minus one explicitly on slow path | 
|  | // (to avoid arithmetic exception on 0x8000000000000000 / -1). | 
|  | if (slow_path->has_divide_by_minus_one()) { | 
|  | __ cmpq(right, compiler::Immediate(-1)); | 
|  | __ j(EQUAL, slow_path->div_by_minus_one_label()); | 
|  | } | 
|  |  | 
|  | // Perform actual operation | 
|  | //   out = left % right | 
|  | // or | 
|  | //   out = left / right. | 
|  | // | 
|  | // Note that since 64-bit division requires twice as many cycles | 
|  | // and has much higher latency compared to the 32-bit division, | 
|  | // even for this non-speculative 64-bit path we add a "fast path". | 
|  | // Integers are untagged at this stage, so testing if sign extending | 
|  | // the lower half of each operand equals the full operand, effectively | 
|  | // tests if the values fit in 32-bit operands (and the slightly | 
|  | // dangerous division by -1 has been handled above already). | 
|  | ASSERT(left == RAX); | 
|  | ASSERT(right != RDX);  // available at this stage | 
|  | compiler::Label div_64; | 
|  | compiler::Label div_merge; | 
|  | __ movsxd(RDX, left); | 
|  | __ cmpq(RDX, left); | 
|  | __ j(NOT_EQUAL, &div_64, compiler::Assembler::kNearJump); | 
|  | __ movsxd(RDX, right); | 
|  | __ cmpq(RDX, right); | 
|  | __ j(NOT_EQUAL, &div_64, compiler::Assembler::kNearJump); | 
|  | __ cdq();         // sign-ext eax into edx:eax | 
|  | __ idivl(right);  // quotient eax, remainder edx | 
|  | __ movsxd(out, out); | 
|  | __ jmp(&div_merge, compiler::Assembler::kNearJump); | 
|  | __ Bind(&div_64); | 
|  | __ cqo();         // sign-ext rax into rdx:rax | 
|  | __ idivq(right);  // quotient rax, remainder rdx | 
|  | __ Bind(&div_merge); | 
|  | if (op_kind == Token::kMOD) { | 
|  | ASSERT(out == RDX); | 
|  | ASSERT(tmp == RAX); | 
|  | // For the % operator, again the idiv instruction does | 
|  | // not quite do what we want. Adjust for sign on slow path. | 
|  | __ testq(out, out); | 
|  | __ j(LESS, slow_path->adjust_sign_label()); | 
|  | } else { | 
|  | ASSERT(out == RAX); | 
|  | ASSERT(tmp == RDX); | 
|  | } | 
|  |  | 
|  | if (slow_path->is_needed()) { | 
|  | __ Bind(slow_path->exit_label()); | 
|  | compiler->AddSlowPathCode(slow_path); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename OperandType> | 
|  | static void EmitInt64Arithmetic(FlowGraphCompiler* compiler, | 
|  | Token::Kind op_kind, | 
|  | Register left, | 
|  | const OperandType& right) { | 
|  | switch (op_kind) { | 
|  | case Token::kADD: | 
|  | __ addq(left, right); | 
|  | break; | 
|  | case Token::kSUB: | 
|  | __ subq(left, right); | 
|  | break; | 
|  | case Token::kBIT_AND: | 
|  | __ andq(left, right); | 
|  | break; | 
|  | case Token::kBIT_OR: | 
|  | __ orq(left, right); | 
|  | break; | 
|  | case Token::kBIT_XOR: | 
|  | __ xorq(left, right); | 
|  | break; | 
|  | case Token::kMUL: | 
|  | __ imulq(left, right); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* BinaryInt64OpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | switch (op_kind()) { | 
|  | case Token::kMOD: | 
|  | case Token::kTRUNCDIV: { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 1; | 
|  | LocationSummary* summary = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); | 
|  | summary->set_in(0, Location::RegisterLocation(RAX)); | 
|  | summary->set_in(1, Location::RequiresRegister()); | 
|  | // Intel uses rdx:rax with quotient rax and remainder rdx. Pick the | 
|  | // appropriate one for output and reserve the other as temp. | 
|  | summary->set_out( | 
|  | 0, Location::RegisterLocation(op_kind() == Token::kMOD ? RDX : RAX)); | 
|  | summary->set_temp( | 
|  | 0, Location::RegisterLocation(op_kind() == Token::kMOD ? RAX : RDX)); | 
|  | return summary; | 
|  | } | 
|  | default: { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, LocationRegisterOrConstant(right())); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void BinaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Location left = locs()->in(0); | 
|  | const Location right = locs()->in(1); | 
|  | const Location out = locs()->out(0); | 
|  | ASSERT(!can_overflow()); | 
|  | ASSERT(!CanDeoptimize()); | 
|  |  | 
|  | if (op_kind() == Token::kMOD || op_kind() == Token::kTRUNCDIV) { | 
|  | const Location temp = locs()->temp(0); | 
|  | EmitInt64ModTruncDiv(compiler, this, op_kind(), left.reg(), right.reg(), | 
|  | temp.reg(), out.reg()); | 
|  | } else if (right.IsConstant()) { | 
|  | ASSERT(out.reg() == left.reg()); | 
|  | int64_t value; | 
|  | const bool ok = compiler::HasIntegerValue(right.constant(), &value); | 
|  | RELEASE_ASSERT(ok); | 
|  | EmitInt64Arithmetic(compiler, op_kind(), left.reg(), | 
|  | compiler::Immediate(value)); | 
|  | } else { | 
|  | ASSERT(out.reg() == left.reg()); | 
|  | EmitInt64Arithmetic(compiler, op_kind(), left.reg(), right.reg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* UnaryInt64OpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void UnaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register left = locs()->in(0).reg(); | 
|  | const Register out = locs()->out(0).reg(); | 
|  | ASSERT(out == left); | 
|  | switch (op_kind()) { | 
|  | case Token::kBIT_NOT: | 
|  | __ notq(left); | 
|  | break; | 
|  | case Token::kNEGATE: | 
|  | __ negq(left); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void EmitShiftInt64ByConstant(FlowGraphCompiler* compiler, | 
|  | Token::Kind op_kind, | 
|  | Register left, | 
|  | const Object& right) { | 
|  | const int64_t shift = Integer::Cast(right).AsInt64Value(); | 
|  | ASSERT(shift >= 0); | 
|  | switch (op_kind) { | 
|  | case Token::kSHR: | 
|  | __ sarq(left, compiler::Immediate( | 
|  | Utils::Minimum<int64_t>(shift, kBitsPerWord - 1))); | 
|  | break; | 
|  | case Token::kUSHR: | 
|  | ASSERT(shift < 64); | 
|  | __ shrq(left, compiler::Immediate(shift)); | 
|  | break; | 
|  | case Token::kSHL: { | 
|  | ASSERT(shift < 64); | 
|  | __ shlq(left, compiler::Immediate(shift)); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void EmitShiftInt64ByRCX(FlowGraphCompiler* compiler, | 
|  | Token::Kind op_kind, | 
|  | Register left) { | 
|  | switch (op_kind) { | 
|  | case Token::kSHR: { | 
|  | __ sarq(left, RCX); | 
|  | break; | 
|  | } | 
|  | case Token::kUSHR: { | 
|  | __ shrq(left, RCX); | 
|  | break; | 
|  | } | 
|  | case Token::kSHL: { | 
|  | __ shlq(left, RCX); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void EmitShiftUint32ByConstant(FlowGraphCompiler* compiler, | 
|  | Token::Kind op_kind, | 
|  | Register left, | 
|  | const Object& right) { | 
|  | const int64_t shift = Integer::Cast(right).AsInt64Value(); | 
|  | ASSERT(shift >= 0); | 
|  | if (shift >= 32) { | 
|  | __ xorl(left, left); | 
|  | } else { | 
|  | switch (op_kind) { | 
|  | case Token::kSHR: | 
|  | case Token::kUSHR: { | 
|  | __ shrl(left, compiler::Immediate(shift)); | 
|  | break; | 
|  | } | 
|  | case Token::kSHL: { | 
|  | __ shll(left, compiler::Immediate(shift)); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void EmitShiftUint32ByRCX(FlowGraphCompiler* compiler, | 
|  | Token::Kind op_kind, | 
|  | Register left) { | 
|  | switch (op_kind) { | 
|  | case Token::kSHR: | 
|  | case Token::kUSHR: { | 
|  | __ shrl(left, RCX); | 
|  | break; | 
|  | } | 
|  | case Token::kSHL: { | 
|  | __ shll(left, RCX); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | class ShiftInt64OpSlowPath : public ThrowErrorSlowPathCode { | 
|  | public: | 
|  | explicit ShiftInt64OpSlowPath(ShiftInt64OpInstr* instruction) | 
|  | : ThrowErrorSlowPathCode(instruction, | 
|  | kArgumentErrorUnboxedInt64RuntimeEntry) {} | 
|  |  | 
|  | const char* name() override { return "int64 shift"; } | 
|  |  | 
|  | void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override { | 
|  | const Register out = instruction()->locs()->out(0).reg(); | 
|  | ASSERT(out == instruction()->locs()->in(0).reg()); | 
|  |  | 
|  | compiler::Label throw_error; | 
|  | __ testq(RCX, RCX); | 
|  | __ j(LESS, &throw_error); | 
|  |  | 
|  | switch (instruction()->AsShiftInt64Op()->op_kind()) { | 
|  | case Token::kSHR: | 
|  | __ sarq(out, compiler::Immediate(kBitsPerInt64 - 1)); | 
|  | break; | 
|  | case Token::kUSHR: | 
|  | case Token::kSHL: | 
|  | __ xorq(out, out); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | __ jmp(exit_label()); | 
|  |  | 
|  | __ Bind(&throw_error); | 
|  |  | 
|  | // Can't pass unboxed int64 value directly to runtime call, as all | 
|  | // arguments are expected to be tagged (boxed). | 
|  | // The unboxed int64 argument is passed through a dedicated slot in Thread. | 
|  | // TODO(dartbug.com/33549): Clean this up when unboxed values | 
|  | // could be passed as arguments. | 
|  | __ movq(compiler::Address( | 
|  | THR, compiler::target::Thread::unboxed_runtime_arg_offset()), | 
|  | RCX); | 
|  | } | 
|  | }; | 
|  |  | 
|  | LocationSummary* ShiftInt64OpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, RangeUtils::IsPositive(shift_range()) | 
|  | ? LocationFixedRegisterOrConstant(right(), RCX) | 
|  | : Location::RegisterLocation(RCX)); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void ShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register left = locs()->in(0).reg(); | 
|  | const Register out = locs()->out(0).reg(); | 
|  | ASSERT(left == out); | 
|  | ASSERT(!can_overflow()); | 
|  |  | 
|  | if (locs()->in(1).IsConstant()) { | 
|  | EmitShiftInt64ByConstant(compiler, op_kind(), left, | 
|  | locs()->in(1).constant()); | 
|  | } else { | 
|  | // Code for a variable shift amount (or constant that throws). | 
|  | ASSERT(locs()->in(1).reg() == RCX); | 
|  |  | 
|  | // Jump to a slow path if shift count is > 63 or negative. | 
|  | ShiftInt64OpSlowPath* slow_path = nullptr; | 
|  | if (!IsShiftCountInRange()) { | 
|  | slow_path = new (Z) ShiftInt64OpSlowPath(this); | 
|  | compiler->AddSlowPathCode(slow_path); | 
|  |  | 
|  | __ cmpq(RCX, compiler::Immediate(kShiftCountLimit)); | 
|  | __ j(ABOVE, slow_path->entry_label()); | 
|  | } | 
|  |  | 
|  | EmitShiftInt64ByRCX(compiler, op_kind(), left); | 
|  |  | 
|  | if (slow_path != nullptr) { | 
|  | __ Bind(slow_path->exit_label()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* SpeculativeShiftInt64OpInstr::MakeLocationSummary( | 
|  | Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void SpeculativeShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const Register left = locs()->in(0).reg(); | 
|  | const Register out = locs()->out(0).reg(); | 
|  | ASSERT(left == out); | 
|  | ASSERT(!can_overflow()); | 
|  |  | 
|  | if (locs()->in(1).IsConstant()) { | 
|  | EmitShiftInt64ByConstant(compiler, op_kind(), left, | 
|  | locs()->in(1).constant()); | 
|  | } else { | 
|  | ASSERT(locs()->in(1).reg() == RCX); | 
|  | __ SmiUntag(RCX); | 
|  |  | 
|  | // Deoptimize if shift count is > 63 or negative (or not a smi). | 
|  | if (!IsShiftCountInRange()) { | 
|  | ASSERT(CanDeoptimize()); | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op); | 
|  |  | 
|  | __ cmpq(RCX, compiler::Immediate(kShiftCountLimit)); | 
|  | __ j(ABOVE, deopt); | 
|  | } | 
|  |  | 
|  | EmitShiftInt64ByRCX(compiler, op_kind(), left); | 
|  | } | 
|  | } | 
|  |  | 
|  | class ShiftUint32OpSlowPath : public ThrowErrorSlowPathCode { | 
|  | public: | 
|  | explicit ShiftUint32OpSlowPath(ShiftUint32OpInstr* instruction) | 
|  | : ThrowErrorSlowPathCode(instruction, | 
|  | kArgumentErrorUnboxedInt64RuntimeEntry) {} | 
|  |  | 
|  | const char* name() override { return "uint32 shift"; } | 
|  |  | 
|  | void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override { | 
|  | const Register out = instruction()->locs()->out(0).reg(); | 
|  | ASSERT(out == instruction()->locs()->in(0).reg()); | 
|  |  | 
|  | compiler::Label throw_error; | 
|  | __ testq(RCX, RCX); | 
|  | __ j(LESS, &throw_error); | 
|  |  | 
|  | __ xorl(out, out); | 
|  | __ jmp(exit_label()); | 
|  |  | 
|  | __ Bind(&throw_error); | 
|  |  | 
|  | // Can't pass unboxed int64 value directly to runtime call, as all | 
|  | // arguments are expected to be tagged (boxed). | 
|  | // The unboxed int64 argument is passed through a dedicated slot in Thread. | 
|  | // TODO(dartbug.com/33549): Clean this up when unboxed values | 
|  | // could be passed as arguments. | 
|  | __ movq(compiler::Address( | 
|  | THR, compiler::target::Thread::unboxed_runtime_arg_offset()), | 
|  | RCX); | 
|  | } | 
|  | }; | 
|  |  | 
|  | LocationSummary* ShiftUint32OpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) LocationSummary( | 
|  | zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, RangeUtils::IsPositive(shift_range()) | 
|  | ? LocationFixedRegisterOrConstant(right(), RCX) | 
|  | : Location::RegisterLocation(RCX)); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void ShiftUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register left = locs()->in(0).reg(); | 
|  | Register out = locs()->out(0).reg(); | 
|  | ASSERT(left == out); | 
|  |  | 
|  | if (locs()->in(1).IsConstant()) { | 
|  | EmitShiftUint32ByConstant(compiler, op_kind(), left, | 
|  | locs()->in(1).constant()); | 
|  | } else { | 
|  | // Code for a variable shift amount (or constant that throws). | 
|  | ASSERT(locs()->in(1).reg() == RCX); | 
|  |  | 
|  | // Jump to a slow path if shift count is > 31 or negative. | 
|  | ShiftUint32OpSlowPath* slow_path = nullptr; | 
|  | if (!IsShiftCountInRange(kUint32ShiftCountLimit)) { | 
|  | slow_path = new (Z) ShiftUint32OpSlowPath(this); | 
|  | compiler->AddSlowPathCode(slow_path); | 
|  |  | 
|  | __ cmpq(RCX, compiler::Immediate(kUint32ShiftCountLimit)); | 
|  | __ j(ABOVE, slow_path->entry_label()); | 
|  | } | 
|  |  | 
|  | EmitShiftUint32ByRCX(compiler, op_kind(), left); | 
|  |  | 
|  | if (slow_path != nullptr) { | 
|  | __ Bind(slow_path->exit_label()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* SpeculativeShiftUint32OpInstr::MakeLocationSummary( | 
|  | Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, LocationFixedRegisterOrSmiConstant(right(), RCX)); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void SpeculativeShiftUint32OpInstr::EmitNativeCode( | 
|  | FlowGraphCompiler* compiler) { | 
|  | Register left = locs()->in(0).reg(); | 
|  | Register out = locs()->out(0).reg(); | 
|  | ASSERT(left == out); | 
|  |  | 
|  | if (locs()->in(1).IsConstant()) { | 
|  | EmitShiftUint32ByConstant(compiler, op_kind(), left, | 
|  | locs()->in(1).constant()); | 
|  | } else { | 
|  | ASSERT(locs()->in(1).reg() == RCX); | 
|  | __ SmiUntag(RCX); | 
|  |  | 
|  | if (!IsShiftCountInRange(kUint32ShiftCountLimit)) { | 
|  | if (!IsShiftCountInRange()) { | 
|  | // Deoptimize if shift count is negative. | 
|  | ASSERT(CanDeoptimize()); | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op); | 
|  |  | 
|  | __ OBJ(test)(RCX, RCX); | 
|  | __ j(LESS, deopt); | 
|  | } | 
|  |  | 
|  | compiler::Label cont; | 
|  | __ OBJ(cmp)(RCX, compiler::Immediate(kUint32ShiftCountLimit)); | 
|  | __ j(LESS_EQUAL, &cont); | 
|  |  | 
|  | __ xorl(left, left); | 
|  |  | 
|  | __ Bind(&cont); | 
|  | } | 
|  |  | 
|  | EmitShiftUint32ByRCX(compiler, op_kind(), left); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* BinaryUint32OpInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_in(1, Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | template <typename OperandType> | 
|  | static void EmitIntegerArithmetic(FlowGraphCompiler* compiler, | 
|  | Token::Kind op_kind, | 
|  | Register left, | 
|  | const OperandType& right) { | 
|  | switch (op_kind) { | 
|  | case Token::kADD: | 
|  | __ addl(left, right); | 
|  | break; | 
|  | case Token::kSUB: | 
|  | __ subl(left, right); | 
|  | break; | 
|  | case Token::kBIT_AND: | 
|  | __ andl(left, right); | 
|  | break; | 
|  | case Token::kBIT_OR: | 
|  | __ orl(left, right); | 
|  | break; | 
|  | case Token::kBIT_XOR: | 
|  | __ xorl(left, right); | 
|  | break; | 
|  | case Token::kMUL: | 
|  | __ imull(left, right); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void BinaryUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register left = locs()->in(0).reg(); | 
|  | Register right = locs()->in(1).reg(); | 
|  | Register out = locs()->out(0).reg(); | 
|  | ASSERT(out == left); | 
|  | switch (op_kind()) { | 
|  | case Token::kBIT_AND: | 
|  | case Token::kBIT_OR: | 
|  | case Token::kBIT_XOR: | 
|  | case Token::kADD: | 
|  | case Token::kSUB: | 
|  | case Token::kMUL: | 
|  | EmitIntegerArithmetic(compiler, op_kind(), left, right); | 
|  | return; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEFINE_BACKEND(UnaryUint32Op, (SameAsFirstInput, Register value)) { | 
|  | ASSERT(instr->op_kind() == Token::kBIT_NOT); | 
|  | __ notl(value); | 
|  | } | 
|  |  | 
|  | DEFINE_UNIMPLEMENTED_INSTRUCTION(BinaryInt32OpInstr) | 
|  |  | 
|  | LocationSummary* IntConverterInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | if (from() == kUntagged || to() == kUntagged) { | 
|  | ASSERT((from() == kUntagged && to() == kUnboxedIntPtr) || | 
|  | (from() == kUnboxedIntPtr && to() == kUntagged)); | 
|  | ASSERT(!CanDeoptimize()); | 
|  | } else if (from() == kUnboxedInt64) { | 
|  | ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32); | 
|  | } else if (to() == kUnboxedInt64) { | 
|  | ASSERT(from() == kUnboxedInt32 || from() == kUnboxedUint32); | 
|  | } else { | 
|  | ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32); | 
|  | ASSERT(from() == kUnboxedUint32 || from() == kUnboxedInt32); | 
|  | } | 
|  |  | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_out(0, Location::SameAsFirstInput()); | 
|  |  | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void IntConverterInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | const bool is_nop_conversion = | 
|  | (from() == kUntagged && to() == kUnboxedIntPtr) || | 
|  | (from() == kUnboxedIntPtr && to() == kUntagged); | 
|  | if (is_nop_conversion) { | 
|  | ASSERT(locs()->in(0).reg() == locs()->out(0).reg()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (from() == kUnboxedInt32 && to() == kUnboxedUint32) { | 
|  | const Register value = locs()->in(0).reg(); | 
|  | const Register out = locs()->out(0).reg(); | 
|  | // Representations are bitwise equivalent but we want to normalize | 
|  | // upperbits for safety reasons. | 
|  | // TODO(vegorov) if we ensure that we never use upperbits we could | 
|  | // avoid this. | 
|  | __ movl(out, value); | 
|  | } else if (from() == kUnboxedUint32 && to() == kUnboxedInt32) { | 
|  | // Representations are bitwise equivalent. | 
|  | const Register value = locs()->in(0).reg(); | 
|  | const Register out = locs()->out(0).reg(); | 
|  | __ movsxd(out, value); | 
|  | if (CanDeoptimize()) { | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger); | 
|  | __ testl(out, out); | 
|  | __ j(NEGATIVE, deopt); | 
|  | } | 
|  | } else if (from() == kUnboxedInt64) { | 
|  | ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32); | 
|  | const Register value = locs()->in(0).reg(); | 
|  | const Register out = locs()->out(0).reg(); | 
|  | if (!CanDeoptimize()) { | 
|  | // Copy low. | 
|  | __ movl(out, value); | 
|  | } else { | 
|  | compiler::Label* deopt = | 
|  | compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger); | 
|  | // Sign extend. | 
|  | __ movsxd(out, value); | 
|  | // Compare with original value. | 
|  | __ cmpq(out, value); | 
|  | // Value cannot be held in Int32, deopt. | 
|  | __ j(NOT_EQUAL, deopt); | 
|  | } | 
|  | } else if (to() == kUnboxedInt64) { | 
|  | ASSERT((from() == kUnboxedUint32) || (from() == kUnboxedInt32)); | 
|  | const Register value = locs()->in(0).reg(); | 
|  | const Register out = locs()->out(0).reg(); | 
|  | if (from() == kUnboxedUint32) { | 
|  | // Zero extend. | 
|  | __ movl(out, value); | 
|  | } else { | 
|  | // Sign extend. | 
|  | ASSERT(from() == kUnboxedInt32); | 
|  | __ movsxd(out, value); | 
|  | } | 
|  | } else { | 
|  | UNREACHABLE(); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* StopInstr::MakeLocationSummary(Zone* zone, bool opt) const { | 
|  | return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void StopInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | __ Stop(message()); | 
|  | } | 
|  |  | 
|  | void GraphEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | BlockEntryInstr* entry = normal_entry(); | 
|  | if (entry != nullptr) { | 
|  | if (!compiler->CanFallThroughTo(entry)) { | 
|  | FATAL("Checked function entry must have no offset"); | 
|  | } | 
|  | } else { | 
|  | entry = osr_entry(); | 
|  | if (!compiler->CanFallThroughTo(entry)) { | 
|  | __ jmp(compiler->GetJumpLabel(entry)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* GotoInstr::MakeLocationSummary(Zone* zone, bool opt) const { | 
|  | return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | if (!compiler->is_optimizing()) { | 
|  | if (FLAG_reorder_basic_blocks) { | 
|  | compiler->EmitEdgeCounter(block()->preorder_number()); | 
|  | } | 
|  | // Add a deoptimization descriptor for deoptimizing instructions that | 
|  | // may be inserted before this instruction. | 
|  | compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kDeopt, GetDeoptId(), | 
|  | InstructionSource()); | 
|  | } | 
|  | if (HasParallelMove()) { | 
|  | parallel_move()->EmitNativeCode(compiler); | 
|  | } | 
|  |  | 
|  | // We can fall through if the successor is the next block in the list. | 
|  | // Otherwise, we need a jump. | 
|  | if (!compiler->CanFallThroughTo(successor())) { | 
|  | __ jmp(compiler->GetJumpLabel(successor())); | 
|  | } | 
|  | } | 
|  |  | 
|  | LocationSummary* IndirectGotoInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 1; | 
|  |  | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  |  | 
|  | summary->set_in(0, Location::RequiresRegister()); | 
|  | summary->set_temp(0, Location::RequiresRegister()); | 
|  |  | 
|  | return summary; | 
|  | } | 
|  |  | 
|  | void IndirectGotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register index_reg = locs()->in(0).reg(); | 
|  | Register offset_reg = locs()->temp(0).reg(); | 
|  |  | 
|  | ASSERT(RequiredInputRepresentation(0) == kTagged); | 
|  | // Note: we don't bother to ensure index is a writable input because any | 
|  | // other instructions using it must also not rely on the upper bits | 
|  | // when compressed. | 
|  | __ ExtendNonNegativeSmi(index_reg); | 
|  | __ LoadObject(offset_reg, offsets_); | 
|  | __ movsxd(offset_reg, compiler::Assembler::ElementAddressForRegIndex( | 
|  | /*is_external=*/false, kTypedDataInt32ArrayCid, | 
|  | /*index_scale=*/4, | 
|  | /*index_unboxed=*/false, offset_reg, index_reg)); | 
|  |  | 
|  | { | 
|  | const intptr_t kRIPRelativeLeaqSize = 7; | 
|  | const intptr_t entry_to_rip_offset = __ CodeSize() + kRIPRelativeLeaqSize; | 
|  | __ leaq(TMP, compiler::Address::AddressRIPRelative(-entry_to_rip_offset)); | 
|  | ASSERT(__ CodeSize() == entry_to_rip_offset); | 
|  | } | 
|  |  | 
|  | __ addq(TMP, offset_reg); | 
|  |  | 
|  | // Jump to the absolute address. | 
|  | __ jmp(TMP); | 
|  | } | 
|  |  | 
|  | LocationSummary* StrictCompareInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 2; | 
|  | const intptr_t kNumTemps = 0; | 
|  | if (needs_number_check()) { | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); | 
|  | locs->set_in(0, Location::RegisterLocation(RAX)); | 
|  | locs->set_in(1, Location::RegisterLocation(RCX)); | 
|  | locs->set_out(0, Location::RegisterLocation(RAX)); | 
|  | return locs; | 
|  | } | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall); | 
|  | locs->set_in(0, LocationRegisterOrConstant(left())); | 
|  | // Only one of the inputs can be a constant. Choose register if the first one | 
|  | // is a constant. | 
|  | locs->set_in(1, locs->in(0).IsConstant() | 
|  | ? Location::RequiresRegister() | 
|  | : LocationRegisterOrConstant(right())); | 
|  | locs->set_out(0, Location::RequiresRegister()); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | Condition StrictCompareInstr::EmitComparisonCodeRegConstant( | 
|  | FlowGraphCompiler* compiler, | 
|  | BranchLabels labels, | 
|  | Register reg, | 
|  | const Object& obj) { | 
|  | return compiler->EmitEqualityRegConstCompare(reg, obj, needs_number_check(), | 
|  | source(), deopt_id()); | 
|  | } | 
|  |  | 
|  | LocationSummary* ClosureCallInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = 1; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* summary = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); | 
|  | summary->set_in(0, Location::RegisterLocation( | 
|  | FLAG_precompiled_mode ? RAX : FUNCTION_REG)); | 
|  | return MakeCallSummary(zone, this, summary); | 
|  | } | 
|  |  | 
|  | void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | // Arguments descriptor is expected in ARGS_DESC_REG. | 
|  | const intptr_t argument_count = ArgumentCount();  // Includes type args. | 
|  | const Array& arguments_descriptor = | 
|  | Array::ZoneHandle(Z, GetArgumentsDescriptor()); | 
|  | __ LoadObject(ARGS_DESC_REG, arguments_descriptor); | 
|  |  | 
|  | if (FLAG_precompiled_mode) { | 
|  | ASSERT(locs()->in(0).reg() == RAX); | 
|  | // RAX: Closure with cached entry point. | 
|  | __ movq(RCX, compiler::FieldAddress( | 
|  | RAX, compiler::target::Closure::entry_point_offset())); | 
|  | } else { | 
|  | ASSERT(locs()->in(0).reg() == FUNCTION_REG); | 
|  | // FUNCTION_REG: Function. | 
|  | __ LoadCompressed( | 
|  | CODE_REG, compiler::FieldAddress( | 
|  | FUNCTION_REG, compiler::target::Function::code_offset())); | 
|  | // Closure functions only have one entry point. | 
|  | __ movq(RCX, compiler::FieldAddress( | 
|  | FUNCTION_REG, | 
|  | compiler::target::Function::entry_point_offset())); | 
|  | } | 
|  |  | 
|  | // ARGS_DESC_REG: Arguments descriptor array. | 
|  | // RCX: instructions entry point. | 
|  | if (!FLAG_precompiled_mode) { | 
|  | // RBX: Smi 0 (no IC data; the lazy-compile stub expects a GC-safe value). | 
|  | __ xorq(IC_DATA_REG, IC_DATA_REG); | 
|  | } | 
|  | __ call(RCX); | 
|  | compiler->EmitCallsiteMetadata(source(), deopt_id(), | 
|  | UntaggedPcDescriptors::kOther, locs(), env()); | 
|  | compiler->EmitDropArguments(argument_count); | 
|  | } | 
|  |  | 
|  | LocationSummary* BooleanNegateInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | return LocationSummary::Make(zone, 1, Location::SameAsFirstInput(), | 
|  | LocationSummary::kNoCall); | 
|  | } | 
|  |  | 
|  | void BooleanNegateInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | Register input = locs()->in(0).reg(); | 
|  | Register result = locs()->out(0).reg(); | 
|  | ASSERT(input == result); | 
|  | __ xorq(result, compiler::Immediate( | 
|  | compiler::target::ObjectAlignment::kBoolValueMask)); | 
|  | } | 
|  |  | 
|  | LocationSummary* BoolToIntInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void BoolToIntInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | LocationSummary* IntToBoolInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | UNREACHABLE(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void IntToBoolInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | UNREACHABLE(); | 
|  | } | 
|  |  | 
|  | LocationSummary* AllocateObjectInstr::MakeLocationSummary(Zone* zone, | 
|  | bool opt) const { | 
|  | const intptr_t kNumInputs = (type_arguments() != nullptr) ? 1 : 0; | 
|  | const intptr_t kNumTemps = 0; | 
|  | LocationSummary* locs = new (zone) | 
|  | LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall); | 
|  | if (type_arguments() != nullptr) { | 
|  | locs->set_in(kTypeArgumentsPos, Location::RegisterLocation( | 
|  | AllocateObjectABI::kTypeArgumentsReg)); | 
|  | } | 
|  | locs->set_out(0, Location::RegisterLocation(AllocateObjectABI::kResultReg)); | 
|  | return locs; | 
|  | } | 
|  |  | 
|  | void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | if (type_arguments() != nullptr) { | 
|  | TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info(); | 
|  | if (type_usage_info != nullptr) { | 
|  | RegisterTypeArgumentsUse(compiler->function(), type_usage_info, cls_, | 
|  | type_arguments()->definition()); | 
|  | } | 
|  | } | 
|  | const Code& stub = Code::ZoneHandle( | 
|  | compiler->zone(), StubCode::GetAllocationStubForClass(cls())); | 
|  | compiler->GenerateStubCall(source(), stub, UntaggedPcDescriptors::kOther, | 
|  | locs(), deopt_id(), env()); | 
|  | } | 
|  |  | 
|  | void DebugStepCheckInstr::EmitNativeCode(FlowGraphCompiler* compiler) { | 
|  | #ifdef PRODUCT | 
|  | UNREACHABLE(); | 
|  | #else | 
|  | ASSERT(!compiler->is_optimizing()); | 
|  | __ CallPatchable(StubCode::DebugStepCheck()); | 
|  | compiler->AddCurrentDescriptor(stub_kind_, deopt_id_, source()); | 
|  | compiler->RecordSafepoint(locs()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | }  // namespace dart | 
|  |  | 
|  | #undef __ | 
|  |  | 
|  | #endif  // defined(TARGET_ARCH_X64) |