|  | // Copyright (c) 2018, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  |  | 
|  | #include "vm/compiler/backend/loops.h" | 
|  |  | 
|  | #include "vm/bit_vector.h" | 
|  | #include "vm/compiler/backend/il.h" | 
|  |  | 
|  | namespace dart { | 
|  |  | 
|  | // Private class to perform induction variable analysis on a single loop | 
|  | // or a full loop hierarchy. The analysis implementation is based on the | 
|  | // paper by M. Gerlek et al. "Beyond Induction Variables: Detecting and | 
|  | // Classifying Sequences Using a Demand-Driven SSA Form" (ACM Transactions | 
|  | // on Programming Languages and Systems, Volume 17 Issue 1, Jan. 1995). | 
|  | // | 
|  | // The algorithm discovers and classifies definitions within loops that | 
|  | // behave like induction variables, and attaches an InductionVar record | 
|  | // to it (this mapping is stored in the loop data structure). The algorithm | 
|  | // first finds strongly connected components in the flow graph and classifies | 
|  | // each component as an induction when possible. Due to the descendant-first | 
|  | // nature, classification happens "on-demand" (e.g. basic induction is | 
|  | // classified before derived induction). | 
|  | class InductionVarAnalysis : public ValueObject { | 
|  | public: | 
|  | // Constructor to set up analysis phase. | 
|  | explicit InductionVarAnalysis(const GrowableArray<BlockEntryInstr*>& preorder) | 
|  | : preorder_(preorder), | 
|  | stack_(), | 
|  | scc_(), | 
|  | cycle_(), | 
|  | map_(), | 
|  | current_index_(0), | 
|  | zone_(Thread::Current()->zone()) {} | 
|  |  | 
|  | // Detects induction variables on the full loop hierarchy. | 
|  | void VisitHierarchy(LoopInfo* loop); | 
|  |  | 
|  | // Detects induction variables on a single loop. | 
|  | void VisitLoop(LoopInfo* loop); | 
|  |  | 
|  | private: | 
|  | // An information node needed during SCC traversal that can | 
|  | // reside in a map without any explicit memory allocation. | 
|  | struct SCCInfo { | 
|  | SCCInfo() : depth(-1), done(false) {} | 
|  | explicit SCCInfo(intptr_t d) : depth(d), done(false) {} | 
|  | intptr_t depth; | 
|  | bool done; | 
|  | bool operator!=(const SCCInfo& other) const { | 
|  | return depth != other.depth || done != other.done; | 
|  | } | 
|  | bool operator==(const SCCInfo& other) const { | 
|  | return depth == other.depth && done == other.done; | 
|  | } | 
|  | }; | 
|  | typedef RawPointerKeyValueTrait<Definition, SCCInfo> VisitKV; | 
|  |  | 
|  | // Traversal methods. | 
|  | bool Visit(LoopInfo* loop, Definition* def); | 
|  | intptr_t VisitDescendant(LoopInfo* loop, Definition* def); | 
|  | void Classify(LoopInfo* loop, Definition* def); | 
|  | void ClassifySCC(LoopInfo* loop); | 
|  | void ClassifyControl(LoopInfo* loop); | 
|  |  | 
|  | // Transfer methods. Compute how induction of the operands, if any, | 
|  | // transfers over the operation performed by the given definition. | 
|  | InductionVar* TransferPhi(LoopInfo* loop, Definition* def, intptr_t idx = -1); | 
|  | InductionVar* TransferDef(LoopInfo* loop, Definition* def); | 
|  | InductionVar* TransferBinary(LoopInfo* loop, Definition* def); | 
|  | InductionVar* TransferUnary(LoopInfo* loop, Definition* def); | 
|  |  | 
|  | // Solver methods. Compute how temporary meaning given to the | 
|  | // definitions in a cycle transfer over the operation performed | 
|  | // by the given definition. | 
|  | InductionVar* SolvePhi(LoopInfo* loop, Definition* def, intptr_t idx = -1); | 
|  | InductionVar* SolveConstraint(LoopInfo* loop, | 
|  | Definition* def, | 
|  | InductionVar* init); | 
|  | InductionVar* SolveBinary(LoopInfo* loop, | 
|  | Definition* def, | 
|  | InductionVar* init); | 
|  | InductionVar* SolveUnary(LoopInfo* loop, Definition* def, InductionVar* init); | 
|  |  | 
|  | // Lookup. | 
|  | InductionVar* Lookup(LoopInfo* loop, Definition* def); | 
|  | InductionVar* LookupCycle(Definition* def); | 
|  |  | 
|  | // Arithmetic. | 
|  | InductionVar* Add(InductionVar* x, InductionVar* y); | 
|  | InductionVar* Sub(InductionVar* x, InductionVar* y); | 
|  | InductionVar* Mul(InductionVar* x, InductionVar* y); | 
|  |  | 
|  | // Bookkeeping data (released when analysis goes out of scope). | 
|  | const GrowableArray<BlockEntryInstr*>& preorder_; | 
|  | GrowableArray<Definition*> stack_; | 
|  | GrowableArray<Definition*> scc_; | 
|  | GrowableArray<BranchInstr*> branches_; | 
|  | DirectChainedHashMap<LoopInfo::InductionKV> cycle_; | 
|  | DirectChainedHashMap<VisitKV> map_; | 
|  | intptr_t current_index_; | 
|  | Zone* zone_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(InductionVarAnalysis); | 
|  | }; | 
|  |  | 
|  | // Helper method that finds phi-index of the initial value | 
|  | // that comes from a block outside the loop. Note that the | 
|  | // algorithm still works if there are several of these. | 
|  | static intptr_t InitIndex(LoopInfo* loop) { | 
|  | BlockEntryInstr* header = loop->header(); | 
|  | for (intptr_t i = 0; i < header->PredecessorCount(); ++i) { | 
|  | if (!loop->Contains(header->PredecessorAt(i))) {  // pick first | 
|  | return i; | 
|  | } | 
|  | } | 
|  | UNREACHABLE(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Helper method that determines if a definition is a constant. | 
|  | static bool IsConstant(Definition* def, int64_t* val) { | 
|  | if (def->IsConstant()) { | 
|  | const Object& value = def->AsConstant()->value(); | 
|  | if (value.IsInteger()) { | 
|  | *val = Integer::Cast(value).Value();  // smi and mint | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Helper method to determine if a non-strict (inclusive) bound on | 
|  | // a unit stride linear induction can be made strict (exclusive) | 
|  | // without arithmetic wrap-around complications. | 
|  | static bool CanBeMadeExclusive(LoopInfo* loop, | 
|  | InductionVar* x, | 
|  | Instruction* branch, | 
|  | bool is_lower) { | 
|  | InductionVar* min = nullptr; | 
|  | InductionVar* max = nullptr; | 
|  | if (x->CanComputeBounds(loop, branch, &min, &max)) { | 
|  | int64_t end = 0; | 
|  | if (is_lower) { | 
|  | if (InductionVar::IsConstant(min, &end)) { | 
|  | return kMinInt64 < end; | 
|  | } | 
|  | } else if (InductionVar::IsConstant(max, &end)) { | 
|  | return end < kMaxInt64; | 
|  | } else if (InductionVar::IsInvariant(max) && max->mult() == 1 && | 
|  | Definition::IsLengthLoad(max->def())) { | 
|  | return max->offset() < 0;  // a.length - C, C > 0 | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Helper method to adjust a range [lower_bound,upper_bound] into the | 
|  | // range [lower_bound+lower_bound_offset,upper_bound+upper_bound+offset] | 
|  | // without arithmetic wrap-around complications. On entry, we know that | 
|  | // lower_bound <= upper_bound is enforced by an actual comparison in the | 
|  | // code (so that even if lower_bound > upper_bound, the loop is not taken). | 
|  | // This method ensures the resulting range has the same property by | 
|  | // very conservatively testing if everything stays between constants | 
|  | // or a properly offset array length. | 
|  | static bool SafelyAdjust(Zone* zone, | 
|  | InductionVar* lower_bound, | 
|  | int64_t lower_bound_offset, | 
|  | InductionVar* upper_bound, | 
|  | int64_t upper_bound_offset, | 
|  | InductionVar** min, | 
|  | InductionVar** max) { | 
|  | bool success = false; | 
|  | int64_t lval = 0; | 
|  | int64_t uval = 0; | 
|  | if (InductionVar::IsConstant(lower_bound, &lval)) { | 
|  | const int64_t l = lval + lower_bound_offset; | 
|  | if (InductionVar::IsConstant(upper_bound, &uval)) { | 
|  | // Make sure a proper new range [l,u] results. Even if bounds | 
|  | // were subject to arithmetic wrap-around, we preserve the | 
|  | // property that the minimum is in l and the maximum in u. | 
|  | const int64_t u = uval + upper_bound_offset; | 
|  | success = (l <= u); | 
|  | } else if (InductionVar::IsInvariant(upper_bound) && | 
|  | upper_bound->mult() == 1 && | 
|  | Definition::IsLengthLoad(upper_bound->def())) { | 
|  | // No arithmetic wrap-around on the lower bound, and a properly | 
|  | // non-positive offset on an array length, which is always >= 0. | 
|  | const int64_t c = upper_bound->offset() + upper_bound_offset; | 
|  | success = ((lower_bound_offset >= 0 && lval <= l) || | 
|  | (lower_bound_offset < 0 && lval > l)) && | 
|  | (c <= 0); | 
|  | } | 
|  | } | 
|  | if (success) { | 
|  | *min = (lower_bound_offset == 0) | 
|  | ? lower_bound | 
|  | : new (zone) InductionVar(lval + lower_bound_offset); | 
|  | *max = (upper_bound_offset == 0) | 
|  | ? upper_bound | 
|  | : new (zone) | 
|  | InductionVar(upper_bound->offset() + upper_bound_offset, | 
|  | upper_bound->mult(), upper_bound->def()); | 
|  | } | 
|  | return success; | 
|  | } | 
|  |  | 
|  | void InductionVarAnalysis::VisitHierarchy(LoopInfo* loop) { | 
|  | for (; loop != nullptr; loop = loop->next_) { | 
|  | VisitLoop(loop); | 
|  | VisitHierarchy(loop->inner_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InductionVarAnalysis::VisitLoop(LoopInfo* loop) { | 
|  | loop->ResetInduction(); | 
|  | // Find strongly connected components (SSCs) in the SSA graph of this | 
|  | // loop using Tarjan's algorithm. Due to the descendant-first nature, | 
|  | // classification happens "on-demand". | 
|  | current_index_ = 0; | 
|  | ASSERT(stack_.is_empty()); | 
|  | ASSERT(map_.IsEmpty()); | 
|  | ASSERT(branches_.is_empty()); | 
|  | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { | 
|  | BlockEntryInstr* block = preorder_[it.Current()]; | 
|  | ASSERT(block->loop_info() != nullptr); | 
|  | if (block->loop_info() != loop) { | 
|  | continue;  // inner loop | 
|  | } | 
|  | // Visit phi-operations. | 
|  | if (block->IsJoinEntry()) { | 
|  | for (PhiIterator it(block->AsJoinEntry()); !it.Done(); it.Advance()) { | 
|  | Visit(loop, it.Current()); | 
|  | } | 
|  | } | 
|  | // Visit instructions and collect branches. | 
|  | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { | 
|  | Instruction* instruction = it.Current(); | 
|  | Visit(loop, instruction->AsDefinition()); | 
|  | if (instruction->IsBranch()) { | 
|  | branches_.Add(instruction->AsBranch()); | 
|  | } | 
|  | } | 
|  | } | 
|  | ASSERT(stack_.is_empty()); | 
|  | map_.Clear(); | 
|  | // Classify loop control. | 
|  | ClassifyControl(loop); | 
|  | branches_.Clear(); | 
|  | } | 
|  |  | 
|  | bool InductionVarAnalysis::Visit(LoopInfo* loop, Definition* def) { | 
|  | if (def == nullptr || map_.HasKey(def)) { | 
|  | return false;  // no def, or already visited | 
|  | } | 
|  | intptr_t d = ++current_index_; | 
|  | map_.Insert(VisitKV::Pair(def, SCCInfo(d))); | 
|  | stack_.Add(def); | 
|  |  | 
|  | // Visit all descendants. | 
|  | intptr_t low = d; | 
|  | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { | 
|  | Value* input = def->InputAt(i); | 
|  | if (input != nullptr) { | 
|  | low = Utils::Minimum(low, VisitDescendant(loop, input->definition())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Lower or found SCC? | 
|  | if (low < d) { | 
|  | map_.Lookup(def)->value.depth = low; | 
|  | } else { | 
|  | // Pop the stack to build the SCC for classification. | 
|  | ASSERT(scc_.is_empty()); | 
|  | while (!stack_.is_empty()) { | 
|  | Definition* top = stack_.RemoveLast(); | 
|  | scc_.Add(top); | 
|  | map_.Lookup(top)->value.done = true; | 
|  | if (top == def) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Classify. | 
|  | if (scc_.length() == 1) { | 
|  | Classify(loop, scc_[0]); | 
|  | } else { | 
|  | ASSERT(scc_.length() > 1); | 
|  | ASSERT(cycle_.IsEmpty()); | 
|  | ClassifySCC(loop); | 
|  | cycle_.Clear(); | 
|  | } | 
|  | scc_.Clear(); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | intptr_t InductionVarAnalysis::VisitDescendant(LoopInfo* loop, | 
|  | Definition* def) { | 
|  | // The traversal stops at anything not defined in this loop | 
|  | // (either a loop invariant entry value defined outside the | 
|  | // loop or an inner exit value defined by an inner loop). | 
|  | if (def->GetBlock()->loop_info() != loop) { | 
|  | return current_index_; | 
|  | } | 
|  | // Inspect descendant node. | 
|  | if (!Visit(loop, def) && map_.Lookup(def)->value.done) { | 
|  | return current_index_; | 
|  | } | 
|  | return map_.Lookup(def)->value.depth; | 
|  | } | 
|  |  | 
|  | void InductionVarAnalysis::Classify(LoopInfo* loop, Definition* def) { | 
|  | // Classify different kind of instructions. | 
|  | InductionVar* induc = nullptr; | 
|  | if (loop->IsHeaderPhi(def)) { | 
|  | intptr_t idx = InitIndex(loop); | 
|  | induc = TransferPhi(loop, def, idx); | 
|  | if (induc != nullptr) { | 
|  | InductionVar* init = Lookup(loop, def->InputAt(idx)->definition()); | 
|  | // Wrap-around (except for unusual header phi(x,..,x) = x). | 
|  | if (!init->IsEqual(induc)) { | 
|  | induc = | 
|  | new (zone_) InductionVar(InductionVar::kWrapAround, init, induc); | 
|  | } | 
|  | } | 
|  | } else if (def->IsPhi()) { | 
|  | induc = TransferPhi(loop, def); | 
|  | } else { | 
|  | induc = TransferDef(loop, def); | 
|  | } | 
|  | // Successfully classified? | 
|  | if (induc != nullptr) { | 
|  | loop->AddInduction(def, induc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void InductionVarAnalysis::ClassifySCC(LoopInfo* loop) { | 
|  | intptr_t size = scc_.length(); | 
|  | // Find a header phi, usually at the end. | 
|  | intptr_t p = -1; | 
|  | for (intptr_t i = size - 1; i >= 0; i--) { | 
|  | if (loop->IsHeaderPhi(scc_[i])) { | 
|  | p = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Rotate header phi up front. | 
|  | if (p >= 0) { | 
|  | Definition* phi = scc_[p]; | 
|  | intptr_t idx = InitIndex(loop); | 
|  | InductionVar* init = Lookup(loop, phi->InputAt(idx)->definition()); | 
|  | // Inspect remainder of the cycle. The cycle mapping assigns temporary | 
|  | // meaning to instructions, seeded from the phi instruction and back. | 
|  | // The init of the phi is passed as marker token to detect first use. | 
|  | cycle_.Insert(LoopInfo::InductionKV::Pair(phi, init)); | 
|  | for (intptr_t i = 1, j = p; i < size; i++) { | 
|  | if (++j >= size) j = 0; | 
|  | Definition* def = scc_[j]; | 
|  | InductionVar* update = nullptr; | 
|  | if (def->IsPhi()) { | 
|  | update = SolvePhi(loop, def); | 
|  | } else if (def->IsBinaryIntegerOp()) { | 
|  | update = SolveBinary(loop, def, init); | 
|  | } else if (def->IsUnaryIntegerOp()) { | 
|  | update = SolveUnary(loop, def, init); | 
|  | } else if (def->IsConstraint()) { | 
|  | update = SolveConstraint(loop, def, init); | 
|  | } else { | 
|  | Definition* orig = def->OriginalDefinitionIgnoreBoxingAndConstraints(); | 
|  | if (orig != def) { | 
|  | update = LookupCycle(orig);  // pass-through | 
|  | } | 
|  | } | 
|  | // Continue cycle? | 
|  | if (update == nullptr) { | 
|  | return; | 
|  | } | 
|  | cycle_.Insert(LoopInfo::InductionKV::Pair(def, update)); | 
|  | } | 
|  | // Success if all internal links (inputs to the phi that are along | 
|  | // back-edges) received the same temporary meaning. The external | 
|  | // link (initial value coming from outside the loop) is excluded | 
|  | // while taking this join. | 
|  | InductionVar* induc = SolvePhi(loop, phi, idx); | 
|  | if (induc != nullptr) { | 
|  | // Invariant means linear induction. | 
|  | if (induc->kind_ == InductionVar::kInvariant) { | 
|  | induc = new (zone_) InductionVar(InductionVar::kLinear, init, induc); | 
|  | } else { | 
|  | ASSERT(induc->kind_ == InductionVar::kPeriodic); | 
|  | } | 
|  | // Classify first phi and then the rest of the cycle "on-demand". | 
|  | loop->AddInduction(phi, induc); | 
|  | for (intptr_t i = 1, j = p; i < size; i++) { | 
|  | if (++j >= size) j = 0; | 
|  | Classify(loop, scc_[j]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void InductionVarAnalysis::ClassifyControl(LoopInfo* loop) { | 
|  | for (auto branch : branches_) { | 
|  | // Proper comparison? | 
|  | ConditionInstr* condition = branch->condition(); | 
|  | if (condition->InputCount() != 2) { | 
|  | continue; | 
|  | } | 
|  | Token::Kind cmp = condition->kind(); | 
|  | // Proper loop exit? Express the condition in "loop while true" form. | 
|  | TargetEntryInstr* ift = branch->true_successor(); | 
|  | TargetEntryInstr* iff = branch->false_successor(); | 
|  | if (loop->Contains(ift) && !loop->Contains(iff)) { | 
|  | // ok as is | 
|  | } else if (!loop->Contains(ift) && loop->Contains(iff)) { | 
|  | cmp = Token::NegateComparison(cmp); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | // Comparison against linear constant stride induction? | 
|  | // Express the comparison such that induction appears left. | 
|  | int64_t stride = 0; | 
|  | auto left = condition->InputAt(0) | 
|  | ->definition() | 
|  | ->OriginalDefinitionIgnoreBoxingAndConstraints(); | 
|  | auto right = condition->InputAt(1) | 
|  | ->definition() | 
|  | ->OriginalDefinitionIgnoreBoxingAndConstraints(); | 
|  | InductionVar* x = Lookup(loop, left); | 
|  | InductionVar* y = Lookup(loop, right); | 
|  | if (InductionVar::IsLinear(x, &stride) && InductionVar::IsInvariant(y)) { | 
|  | // ok as is | 
|  | } else if (InductionVar::IsInvariant(x) && | 
|  | InductionVar::IsLinear(y, &stride)) { | 
|  | InductionVar* tmp = x; | 
|  | x = y; | 
|  | y = tmp; | 
|  | cmp = Token::FlipComparison(cmp); | 
|  | } else { | 
|  | continue; | 
|  | } | 
|  | // Can we find a strict (exclusive) comparison for the looping condition? | 
|  | // Note that we reject symbolic bounds in non-strict (inclusive) looping | 
|  | // conditions like i <= U as upperbound or i >= L as lowerbound since this | 
|  | // could loop forever when U is kMaxInt64 or L is kMinInt64 under Dart's | 
|  | // 64-bit arithmetic wrap-around. Non-unit strides could overshoot the | 
|  | // bound due to arithmetic wrap-around. | 
|  | switch (cmp) { | 
|  | case Token::kLT: | 
|  | // Accept i < U (i++). | 
|  | if (stride == 1) break; | 
|  | continue; | 
|  | case Token::kGT: | 
|  | // Accept i > L (i--). | 
|  | if (stride == -1) break; | 
|  | continue; | 
|  | case Token::kLTE: { | 
|  | // Accept i <= U (i++) as i < U + 1 | 
|  | // only when U != MaxInt is certain. | 
|  | if (stride == 1 && | 
|  | CanBeMadeExclusive(loop, y, branch, /*is_lower=*/false)) { | 
|  | y = Add(y, new (zone_) InductionVar(1)); | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | case Token::kGTE: { | 
|  | // Accept i >= L (i--) as i > L - 1 | 
|  | // only when L != MinInt is certain. | 
|  | if (stride == -1 && | 
|  | CanBeMadeExclusive(loop, y, branch, /*is_lower=*/true)) { | 
|  | y = Sub(y, new (zone_) InductionVar(1)); | 
|  | break; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | case Token::kNE: { | 
|  | // Accept i != E as either i < E (i++) or i > E (i--) | 
|  | // for constants bounds that make the loop always-taken. | 
|  | int64_t start = 0; | 
|  | int64_t end = 0; | 
|  | if (InductionVar::IsConstant(x->initial_, &start) && | 
|  | InductionVar::IsConstant(y, &end)) { | 
|  | if ((stride == +1 && start < end) || (stride == -1 && start > end)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  | default: | 
|  | continue; | 
|  | } | 
|  | // We found a strict upper or lower bound on a unit stride linear | 
|  | // induction. Note that depending on the intended use of this | 
|  | // information, clients should still test dominance on the test | 
|  | // and the initial value of the induction variable. | 
|  | x->bounds_.Add(InductionVar::Bound(branch, y)); | 
|  | // Record control induction. | 
|  | if (branch == loop->header_->last_instruction()) { | 
|  | loop->control_ = x; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::TransferPhi(LoopInfo* loop, | 
|  | Definition* def, | 
|  | intptr_t idx) { | 
|  | InductionVar* induc = nullptr; | 
|  | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { | 
|  | if (i != idx) { | 
|  | InductionVar* x = Lookup(loop, def->InputAt(i)->definition()); | 
|  | if (x == nullptr) { | 
|  | return nullptr; | 
|  | } else if (induc == nullptr) { | 
|  | induc = x; | 
|  | } else if (!induc->IsEqual(x)) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  | return induc; | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::TransferDef(LoopInfo* loop, | 
|  | Definition* def) { | 
|  | if (def->IsBinaryIntegerOp()) { | 
|  | return TransferBinary(loop, def); | 
|  | } else if (def->IsUnaryIntegerOp()) { | 
|  | return TransferUnary(loop, def); | 
|  | } else { | 
|  | // Note that induction analysis does not really need the second | 
|  | // argument of a bound check, since it will just pass-through the | 
|  | // index. However, we do a lookup on the, most likely loop-invariant, | 
|  | // length anyway, to make sure it is stored in the induction | 
|  | // environment for later lookup during BCE. | 
|  | if (auto check = def->AsCheckBoundBase()) { | 
|  | Definition* len = check->length() | 
|  | ->definition() | 
|  | ->OriginalDefinitionIgnoreBoxingAndConstraints(); | 
|  | Lookup(loop, len);  // pre-store likely invariant length | 
|  | } | 
|  | // Proceed with regular pass-through. | 
|  | Definition* orig = def->OriginalDefinitionIgnoreBoxingAndConstraints(); | 
|  | if (orig != def) { | 
|  | return Lookup(loop, orig);  // pass-through | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::TransferBinary(LoopInfo* loop, | 
|  | Definition* def) { | 
|  | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); | 
|  | InductionVar* y = Lookup(loop, def->InputAt(1)->definition()); | 
|  |  | 
|  | switch (def->AsBinaryIntegerOp()->op_kind()) { | 
|  | case Token::kADD: | 
|  | return Add(x, y); | 
|  | case Token::kSUB: | 
|  | return Sub(x, y); | 
|  | case Token::kMUL: | 
|  | return Mul(x, y); | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::TransferUnary(LoopInfo* loop, | 
|  | Definition* def) { | 
|  | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); | 
|  | switch (def->AsUnaryIntegerOp()->op_kind()) { | 
|  | case Token::kNEGATE: { | 
|  | InductionVar* zero = new (zone_) InductionVar(0); | 
|  | return Sub(zero, x); | 
|  | } | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::SolvePhi(LoopInfo* loop, | 
|  | Definition* def, | 
|  | intptr_t idx) { | 
|  | InductionVar* induc = nullptr; | 
|  | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { | 
|  | if (i != idx) { | 
|  | InductionVar* c = LookupCycle(def->InputAt(i)->definition()); | 
|  | if (c == nullptr) { | 
|  | return nullptr; | 
|  | } else if (induc == nullptr) { | 
|  | induc = c; | 
|  | } else if (!induc->IsEqual(c)) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  | return induc; | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::SolveConstraint(LoopInfo* loop, | 
|  | Definition* def, | 
|  | InductionVar* init) { | 
|  | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); | 
|  | if (c == init) { | 
|  | // Record a non-artificial bound constraint on a phi. | 
|  | ConstraintInstr* constraint = def->AsConstraint(); | 
|  | if (constraint->target() != nullptr) { | 
|  | loop->limit_ = constraint; | 
|  | } | 
|  | } | 
|  | return c; | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::SolveBinary(LoopInfo* loop, | 
|  | Definition* def, | 
|  | InductionVar* init) { | 
|  | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); | 
|  | InductionVar* y = Lookup(loop, def->InputAt(1)->definition()); | 
|  | switch (def->AsBinaryIntegerOp()->op_kind()) { | 
|  | case Token::kADD: | 
|  | if (InductionVar::IsInvariant(x)) { | 
|  | InductionVar* c = LookupCycle(def->InputAt(1)->definition()); | 
|  | // The init marker denotes first use, otherwise aggregate. | 
|  | if (c == init) { | 
|  | return x; | 
|  | } else if (InductionVar::IsInvariant(c)) { | 
|  | return Add(x, c); | 
|  | } | 
|  | } | 
|  | if (InductionVar::IsInvariant(y)) { | 
|  | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); | 
|  | // The init marker denotes first use, otherwise aggregate. | 
|  | if (c == init) { | 
|  | return y; | 
|  | } else if (InductionVar::IsInvariant(c)) { | 
|  | return Add(c, y); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | case Token::kSUB: | 
|  | if (InductionVar::IsInvariant(x)) { | 
|  | InductionVar* c = LookupCycle(def->InputAt(1)->definition()); | 
|  | // Note that i = x - i is periodic. The temporary | 
|  | // meaning is expressed in terms of the header phi. | 
|  | if (c == init) { | 
|  | InductionVar* next = Sub(x, init); | 
|  | if (InductionVar::IsInvariant(next)) { | 
|  | return new (zone_) | 
|  | InductionVar(InductionVar::kPeriodic, init, next); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (InductionVar::IsInvariant(y)) { | 
|  | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); | 
|  | // The init marker denotes first use, otherwise aggregate. | 
|  | if (c == init) { | 
|  | InductionVar* zero = new (zone_) InductionVar(0); | 
|  | return Sub(zero, y); | 
|  | } else if (InductionVar::IsInvariant(c)) { | 
|  | return Sub(c, y); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::SolveUnary(LoopInfo* loop, | 
|  | Definition* def, | 
|  | InductionVar* init) { | 
|  | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); | 
|  | switch (def->AsUnaryIntegerOp()->op_kind()) { | 
|  | case Token::kNEGATE: | 
|  | // Note that i = - i is periodic. The temporary | 
|  | // meaning is expressed in terms of the header phi. | 
|  | if (c == init) { | 
|  | InductionVar* zero = new (zone_) InductionVar(0); | 
|  | InductionVar* next = Sub(zero, init); | 
|  | if (InductionVar::IsInvariant(next)) { | 
|  | return new (zone_) InductionVar(InductionVar::kPeriodic, init, next); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::Lookup(LoopInfo* loop, Definition* def) { | 
|  | InductionVar* induc = loop->LookupInduction(def); | 
|  | if (induc == nullptr) { | 
|  | // Loop-invariants are added lazily. | 
|  | int64_t val = 0; | 
|  | if (IsConstant(def, &val)) { | 
|  | induc = new (zone_) InductionVar(val); | 
|  | loop->AddInduction(def, induc); | 
|  | } else if (!loop->Contains(def->GetBlock())) { | 
|  | // Look "under the hood" of invariant definitions to expose | 
|  | // more details on common constructs like "length - 1". | 
|  | induc = TransferDef(loop, def); | 
|  | if (induc == nullptr) { | 
|  | induc = new (zone_) InductionVar(0, 1, def); | 
|  | } | 
|  | loop->AddInduction(def, induc); | 
|  | } | 
|  | } | 
|  | return induc; | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::LookupCycle(Definition* def) { | 
|  | LoopInfo::InductionKV::Pair* pair = cycle_.Lookup(def); | 
|  | if (pair != nullptr) { | 
|  | return pair->value; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::Add(InductionVar* x, InductionVar* y) { | 
|  | if (InductionVar::IsInvariant(x)) { | 
|  | if (InductionVar::IsInvariant(y)) { | 
|  | // Invariant + Invariant : only for same or just one instruction. | 
|  | if (x->def_ == y->def_) { | 
|  | return new (zone_) | 
|  | InductionVar(Utils::AddWithWrapAround(x->offset_, y->offset_), | 
|  | Utils::AddWithWrapAround(x->mult_, y->mult_), x->def_); | 
|  | } else if (y->mult_ == 0) { | 
|  | return new (zone_) | 
|  | InductionVar(Utils::AddWithWrapAround(x->offset_, y->offset_), | 
|  | x->mult_, x->def_); | 
|  | } else if (x->mult_ == 0) { | 
|  | return new (zone_) | 
|  | InductionVar(Utils::AddWithWrapAround(x->offset_, y->offset_), | 
|  | y->mult_, y->def_); | 
|  | } | 
|  | } else if (y != nullptr) { | 
|  | // Invariant + Induction. | 
|  | InductionVar* i = Add(x, y->initial_); | 
|  | InductionVar* n = | 
|  | y->kind_ == InductionVar::kLinear ? y->next_ : Add(x, y->next_); | 
|  | if (i != nullptr && n != nullptr) { | 
|  | return new (zone_) InductionVar(y->kind_, i, n); | 
|  | } | 
|  | } | 
|  | } else if (InductionVar::IsInvariant(y)) { | 
|  | if (x != nullptr) { | 
|  | // Induction + Invariant. | 
|  | ASSERT(!InductionVar::IsInvariant(x)); | 
|  | InductionVar* i = Add(x->initial_, y); | 
|  | InductionVar* n = | 
|  | x->kind_ == InductionVar::kLinear ? x->next_ : Add(x->next_, y); | 
|  | if (i != nullptr && n != nullptr) { | 
|  | return new (zone_) InductionVar(x->kind_, i, n); | 
|  | } | 
|  | } | 
|  | } else if (InductionVar::IsLinear(x) && InductionVar::IsLinear(y)) { | 
|  | // Linear + Linear. | 
|  | InductionVar* i = Add(x->initial_, y->initial_); | 
|  | InductionVar* n = Add(x->next_, y->next_); | 
|  | if (i != nullptr && n != nullptr) { | 
|  | return new (zone_) InductionVar(InductionVar::kLinear, i, n); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::Sub(InductionVar* x, InductionVar* y) { | 
|  | if (InductionVar::IsInvariant(x)) { | 
|  | if (InductionVar::IsInvariant(y)) { | 
|  | // Invariant + Invariant : only for same or just one instruction. | 
|  | if (x->def_ == y->def_) { | 
|  | return new (zone_) | 
|  | InductionVar(Utils::SubWithWrapAround(x->offset_, y->offset_), | 
|  | Utils::SubWithWrapAround(x->mult_, y->mult_), x->def_); | 
|  | } else if (y->mult_ == 0) { | 
|  | return new (zone_) | 
|  | InductionVar(Utils::SubWithWrapAround(x->offset_, y->offset_), | 
|  | x->mult_, x->def_); | 
|  | } else if (x->mult_ == 0) { | 
|  | return new (zone_) | 
|  | InductionVar(Utils::SubWithWrapAround(x->offset_, y->offset_), | 
|  | Utils::NegWithWrapAround(y->mult_), y->def_); | 
|  | } | 
|  | } else if (y != nullptr) { | 
|  | // Invariant - Induction. | 
|  | InductionVar* i = Sub(x, y->initial_); | 
|  | InductionVar* n; | 
|  | if (y->kind_ == InductionVar::kLinear) { | 
|  | InductionVar* zero = new (zone_) InductionVar(0, 0, nullptr); | 
|  | n = Sub(zero, y->next_); | 
|  | } else { | 
|  | n = Sub(x, y->next_); | 
|  | } | 
|  | if (i != nullptr && n != nullptr) { | 
|  | return new (zone_) InductionVar(y->kind_, i, n); | 
|  | } | 
|  | } | 
|  | } else if (InductionVar::IsInvariant(y)) { | 
|  | if (x != nullptr) { | 
|  | // Induction - Invariant. | 
|  | ASSERT(!InductionVar::IsInvariant(x)); | 
|  | InductionVar* i = Sub(x->initial_, y); | 
|  | InductionVar* n = | 
|  | x->kind_ == InductionVar::kLinear ? x->next_ : Sub(x->next_, y); | 
|  | if (i != nullptr && n != nullptr) { | 
|  | return new (zone_) InductionVar(x->kind_, i, n); | 
|  | } | 
|  | } | 
|  | } else if (InductionVar::IsLinear(x) && InductionVar::IsLinear(y)) { | 
|  | // Linear - Linear. | 
|  | InductionVar* i = Sub(x->initial_, y->initial_); | 
|  | InductionVar* n = Sub(x->next_, y->next_); | 
|  | if (i != nullptr && n != nullptr) { | 
|  | return new (zone_) InductionVar(InductionVar::kLinear, i, n); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | InductionVar* InductionVarAnalysis::Mul(InductionVar* x, InductionVar* y) { | 
|  | // Swap constant left. | 
|  | if (!InductionVar::IsConstant(x)) { | 
|  | InductionVar* tmp = x; | 
|  | x = y; | 
|  | y = tmp; | 
|  | } | 
|  | // Apply constant to any induction. | 
|  | if (InductionVar::IsConstant(x) && y != nullptr) { | 
|  | if (y->kind_ == InductionVar::kInvariant) { | 
|  | return new (zone_) | 
|  | InductionVar(Utils::MulWithWrapAround(x->offset_, y->offset_), | 
|  | Utils::MulWithWrapAround(x->offset_, y->mult_), y->def_); | 
|  | } | 
|  | return new (zone_) | 
|  | InductionVar(y->kind_, Mul(x, y->initial_), Mul(x, y->next_)); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool InductionVar::CanComputeDifferenceWith(const InductionVar* other, | 
|  | int64_t* diff) const { | 
|  | if (IsInvariant(this) && IsInvariant(other)) { | 
|  | if (def_ == other->def_ && mult_ == other->mult_) { | 
|  | *diff = other->offset_ - offset_; | 
|  | return true; | 
|  | } | 
|  | } else if (IsLinear(this) && IsLinear(other)) { | 
|  | return next_->IsEqual(other->next_) && | 
|  | initial_->CanComputeDifferenceWith(other->initial_, diff); | 
|  | } | 
|  | // TODO(ajcbik): examine other induction kinds too? | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool InductionVar::CanComputeBoundsImpl(LoopInfo* loop, | 
|  | Instruction* pos, | 
|  | InductionVar** min, | 
|  | InductionVar** max) { | 
|  | // Refine symbolic part of an invariant with outward induction. | 
|  | if (IsInvariant(this)) { | 
|  | if (mult_ == 1 && def_ != nullptr) { | 
|  | for (loop = loop->outer(); loop != nullptr; loop = loop->outer()) { | 
|  | InductionVar* induc = loop->LookupInduction(def_); | 
|  | InductionVar* i_min = nullptr; | 
|  | InductionVar* i_max = nullptr; | 
|  | // Accept i+C with i in [L,U] as [L+C,U+C] when this adjustment | 
|  | // does not have arithmetic wrap-around complications. | 
|  | if (IsInduction(induc) && | 
|  | induc->CanComputeBounds(loop, pos, &i_min, &i_max)) { | 
|  | Zone* z = Thread::Current()->zone(); | 
|  | return SafelyAdjust(z, i_min, offset_, i_max, offset_, min, max); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Otherwise invariant itself suffices. | 
|  | *min = *max = this; | 
|  | return true; | 
|  | } | 
|  | // Refine unit stride induction with lower and upper bound. | 
|  | //    for (int i = L; i < U; i++) | 
|  | //       j = i+C in [L+C,U+C-1] | 
|  | int64_t stride = 0; | 
|  | int64_t off = 0; | 
|  | if (IsLinear(this, &stride) && Utils::Abs(stride) == 1 && | 
|  | CanComputeDifferenceWith(loop->control(), &off)) { | 
|  | // Find ranges on both L and U first (and not just minimum | 
|  | // of L and maximum of U) to avoid arithmetic wrap-around | 
|  | // complications such as the one shown below. | 
|  | //   for (int i = 0; i < maxint - 10; i++) | 
|  | //     for (int j = i + 20; j < 100; j++) | 
|  | //       j in [minint, 99] and not in [20, 100] | 
|  | InductionVar* l_min = nullptr; | 
|  | InductionVar* l_max = nullptr; | 
|  | if (initial_->CanComputeBounds(loop, pos, &l_min, &l_max)) { | 
|  | // Find extreme using a control bound for which the branch dominates | 
|  | // the given position (to make sure it really is under its control). | 
|  | // Then refine with anything that dominates that branch. | 
|  | for (auto bound : loop->control()->bounds()) { | 
|  | if (pos->IsDominatedBy(bound.branch_)) { | 
|  | InductionVar* u_min = nullptr; | 
|  | InductionVar* u_max = nullptr; | 
|  | if (bound.limit_->CanComputeBounds(loop, bound.branch_, &u_min, | 
|  | &u_max)) { | 
|  | Zone* z = Thread::Current()->zone(); | 
|  | return stride > 0 ? SafelyAdjust(z, l_min, 0, u_max, -stride - off, | 
|  | min, max) | 
|  | : SafelyAdjust(z, u_min, -stride - off, l_max, 0, | 
|  | min, max); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Failure. TODO(ajcbik): examine other kinds of induction too? | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Driver method to compute bounds with per-loop memoization. | 
|  | bool InductionVar::CanComputeBounds(LoopInfo* loop, | 
|  | Instruction* pos, | 
|  | InductionVar** min, | 
|  | InductionVar** max) { | 
|  | // Consult cache first. | 
|  | LoopInfo::MemoKV::Pair* pair1 = loop->memo_cache_.Lookup(this); | 
|  | if (pair1 != nullptr) { | 
|  | LoopInfo::MemoVal::PosKV::Pair* pair2 = pair1->value->memo_.Lookup(pos); | 
|  | if (pair2 != nullptr) { | 
|  | *min = pair2->value.first; | 
|  | *max = pair2->value.second; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // Compute and cache. | 
|  | if (CanComputeBoundsImpl(loop, pos, min, max)) { | 
|  | ASSERT(*min != nullptr && *max != nullptr); | 
|  | LoopInfo::MemoVal* memo = nullptr; | 
|  | if (pair1 != nullptr) { | 
|  | memo = pair1->value; | 
|  | } else { | 
|  | memo = new LoopInfo::MemoVal(); | 
|  | loop->memo_cache_.Insert(LoopInfo::MemoKV::Pair(this, memo)); | 
|  | } | 
|  | memo->memo_.Insert( | 
|  | LoopInfo::MemoVal::PosKV::Pair(pos, std::make_pair(*min, *max))); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void InductionVar::PrintTo(BaseTextBuffer* f) const { | 
|  | switch (kind_) { | 
|  | case kInvariant: | 
|  | if (mult_ != 0) { | 
|  | f->Printf("(%" Pd64 " + %" Pd64 " x %.4s)", offset_, mult_, | 
|  | def_->ToCString()); | 
|  | } else { | 
|  | f->Printf("%" Pd64, offset_); | 
|  | } | 
|  | break; | 
|  | case kLinear: | 
|  | f->Printf("LIN(%s + %s * i)", initial_->ToCString(), next_->ToCString()); | 
|  | break; | 
|  | case kWrapAround: | 
|  | f->Printf("WRAP(%s, %s)", initial_->ToCString(), next_->ToCString()); | 
|  | break; | 
|  | case kPeriodic: | 
|  | f->Printf("PERIOD(%s, %s)", initial_->ToCString(), next_->ToCString()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | const char* InductionVar::ToCString() const { | 
|  | char buffer[1024]; | 
|  | BufferFormatter f(buffer, sizeof(buffer)); | 
|  | PrintTo(&f); | 
|  | return Thread::Current()->zone()->MakeCopyOfString(buffer); | 
|  | } | 
|  |  | 
|  | LoopInfo::LoopInfo(intptr_t id, BlockEntryInstr* header, BitVector* blocks) | 
|  | : id_(id), | 
|  | header_(header), | 
|  | blocks_(blocks), | 
|  | back_edges_(), | 
|  | induction_(), | 
|  | memo_cache_(), | 
|  | limit_(nullptr), | 
|  | control_(nullptr), | 
|  | outer_(nullptr), | 
|  | inner_(nullptr), | 
|  | next_(nullptr) {} | 
|  |  | 
|  | void LoopInfo::AddBlocks(BitVector* blocks) { | 
|  | blocks_->AddAll(blocks); | 
|  | } | 
|  |  | 
|  | void LoopInfo::AddBackEdge(BlockEntryInstr* block) { | 
|  | back_edges_.Add(block); | 
|  | } | 
|  |  | 
|  | bool LoopInfo::IsBackEdge(BlockEntryInstr* block) const { | 
|  | for (intptr_t i = 0, n = back_edges_.length(); i < n; i++) { | 
|  | if (back_edges_[i] == block) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LoopInfo::IsAlwaysTaken(BlockEntryInstr* block) const { | 
|  | // The loop header is always executed when executing a loop (including | 
|  | // loop body of a do-while). Reject any other loop body block that is | 
|  | // not directly controlled by header. | 
|  | if (block == header_) { | 
|  | return true; | 
|  | } else if (block->PredecessorCount() != 1 || | 
|  | block->PredecessorAt(0) != header_) { | 
|  | return false; | 
|  | } | 
|  | // If the loop has a control induction, make sure the condition is such | 
|  | // that the loop body is entered at least once from the header. | 
|  | if (control_ != nullptr) { | 
|  | InductionVar* limit = nullptr; | 
|  | for (auto bound : control_->bounds()) { | 
|  | if (bound.branch_ == header_->last_instruction()) { | 
|  | limit = bound.limit_; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // Control iterates at least once? | 
|  | if (limit != nullptr) { | 
|  | int64_t stride = 0; | 
|  | int64_t begin = 0; | 
|  | int64_t end = 0; | 
|  | if (InductionVar::IsLinear(control_, &stride) && | 
|  | InductionVar::IsConstant(control_->initial(), &begin) && | 
|  | InductionVar::IsConstant(limit, &end) && | 
|  | ((stride == 1 && begin < end) || (stride == -1 && begin > end))) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LoopInfo::IsHeaderPhi(Definition* def) const { | 
|  | return def != nullptr && def->IsPhi() && def->GetBlock() == header_ && | 
|  | !def->AsPhi()->IsRedundant();  // phi(x,..,x) = x | 
|  | } | 
|  |  | 
|  | bool LoopInfo::IsIn(LoopInfo* loop) const { | 
|  | if (loop != nullptr) { | 
|  | return loop->Contains(header_); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool LoopInfo::Contains(BlockEntryInstr* block) const { | 
|  | return blocks_->Contains(block->preorder_number()); | 
|  | } | 
|  |  | 
|  | intptr_t LoopInfo::NestingDepth() const { | 
|  | intptr_t nesting_depth = 1; | 
|  | for (LoopInfo* o = outer_; o != nullptr; o = o->outer()) { | 
|  | nesting_depth++; | 
|  | } | 
|  | return nesting_depth; | 
|  | } | 
|  |  | 
|  | void LoopInfo::ResetInduction() { | 
|  | induction_.Clear(); | 
|  | memo_cache_.Clear(); | 
|  | } | 
|  |  | 
|  | void LoopInfo::AddInduction(Definition* def, InductionVar* induc) { | 
|  | ASSERT(def != nullptr); | 
|  | ASSERT(induc != nullptr); | 
|  | induction_.Insert(InductionKV::Pair(def, induc)); | 
|  | } | 
|  |  | 
|  | InductionVar* LoopInfo::LookupInduction(Definition* def) const { | 
|  | InductionKV::Pair* pair = induction_.Lookup(def); | 
|  | if (pair != nullptr) { | 
|  | return pair->value; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Checks if an index is in range of a given length: | 
|  | //   for (int i = initial; i <= length - C; i++) { | 
|  | //     .... a[i] ....  // initial >= 0 and C > 0: | 
|  | //   } | 
|  | bool LoopInfo::IsInRange(Instruction* pos, Value* index, Value* length) { | 
|  | InductionVar* induc = LookupInduction( | 
|  | index->definition()->OriginalDefinitionIgnoreBoxingAndConstraints()); | 
|  | InductionVar* len = LookupInduction( | 
|  | length->definition()->OriginalDefinitionIgnoreBoxingAndConstraints()); | 
|  | if (induc != nullptr && len != nullptr) { | 
|  | // First, try the most common case. A simple induction directly | 
|  | // bounded by [c>=0,length-C>=0) for the length we are looking for. | 
|  | int64_t stride = 0; | 
|  | int64_t val = 0; | 
|  | int64_t diff = 0; | 
|  | if (InductionVar::IsLinear(induc, &stride) && stride == 1 && | 
|  | InductionVar::IsConstant(induc->initial(), &val) && 0 <= val) { | 
|  | for (auto bound : induc->bounds()) { | 
|  | if (pos->IsDominatedBy(bound.branch_) && | 
|  | len->CanComputeDifferenceWith(bound.limit_, &diff) && diff <= 0) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | // If that fails, try to compute bounds using more outer loops. | 
|  | // Since array lengths >= 0, the conditions used during this | 
|  | // process avoid arithmetic wrap-around complications. | 
|  | InductionVar* min = nullptr; | 
|  | InductionVar* max = nullptr; | 
|  | if (induc->CanComputeBounds(this, pos, &min, &max)) { | 
|  | return InductionVar::IsConstant(min, &val) && 0 <= val && | 
|  | len->CanComputeDifferenceWith(max, &diff) && diff < 0; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void LoopInfo::PrintTo(BaseTextBuffer* f) const { | 
|  | f->Printf("%*c", static_cast<int>(2 * NestingDepth()), ' '); | 
|  | f->Printf("loop%" Pd " B%" Pd " ", id_, header_->block_id()); | 
|  | intptr_t num_blocks = 0; | 
|  | for (BitVector::Iterator it(blocks_); !it.Done(); it.Advance()) { | 
|  | num_blocks++; | 
|  | } | 
|  | f->Printf("#blocks=%" Pd, num_blocks); | 
|  | if (outer_ != nullptr) f->Printf(" outer=%" Pd, outer_->id_); | 
|  | if (inner_ != nullptr) f->Printf(" inner=%" Pd, inner_->id_); | 
|  | if (next_ != nullptr) f->Printf(" next=%" Pd, next_->id_); | 
|  | f->AddString(" ["); | 
|  | for (intptr_t i = 0, n = back_edges_.length(); i < n; i++) { | 
|  | f->Printf(" B%" Pd, back_edges_[i]->block_id()); | 
|  | } | 
|  | f->AddString(" ]"); | 
|  | } | 
|  |  | 
|  | const char* LoopInfo::ToCString() const { | 
|  | char buffer[1024]; | 
|  | BufferFormatter f(buffer, sizeof(buffer)); | 
|  | PrintTo(&f); | 
|  | return Thread::Current()->zone()->MakeCopyOfString(buffer); | 
|  | } | 
|  |  | 
|  | LoopHierarchy::LoopHierarchy(ZoneGrowableArray<BlockEntryInstr*>* headers, | 
|  | const GrowableArray<BlockEntryInstr*>& preorder, | 
|  | bool print_traces) | 
|  | : headers_(headers), | 
|  | preorder_(preorder), | 
|  | top_(nullptr), | 
|  | print_traces_(print_traces) { | 
|  | Build(); | 
|  | } | 
|  |  | 
|  | void LoopHierarchy::Build() { | 
|  | // Link every entry block to the closest enveloping loop. | 
|  | for (intptr_t i = 0, n = headers_->length(); i < n; ++i) { | 
|  | LoopInfo* loop = (*headers_)[i]->loop_info(); | 
|  | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { | 
|  | BlockEntryInstr* block = preorder_[it.Current()]; | 
|  | if (block->loop_info() == nullptr) { | 
|  | block->set_loop_info(loop); | 
|  | } else { | 
|  | ASSERT(block->loop_info()->IsIn(loop)); | 
|  | } | 
|  | } | 
|  | } | 
|  | // Build hierarchy from headers. | 
|  | for (intptr_t i = 0, n = headers_->length(); i < n; ++i) { | 
|  | BlockEntryInstr* header = (*headers_)[i]; | 
|  | LoopInfo* loop = header->loop_info(); | 
|  | LoopInfo* dom_loop = header->dominator()->loop_info(); | 
|  | ASSERT(loop->outer_ == nullptr); | 
|  | ASSERT(loop->next_ == nullptr); | 
|  | if (loop->IsIn(dom_loop)) { | 
|  | loop->outer_ = dom_loop; | 
|  | loop->next_ = dom_loop->inner_; | 
|  | dom_loop->inner_ = loop; | 
|  | } else { | 
|  | loop->next_ = top_; | 
|  | top_ = loop; | 
|  | } | 
|  | } | 
|  | // If tracing is requested, print the loop hierarchy. | 
|  | if (FLAG_trace_optimization && print_traces_) { | 
|  | Print(top_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LoopHierarchy::Print(LoopInfo* loop) const { | 
|  | for (; loop != nullptr; loop = loop->next_) { | 
|  | THR_Print("%s {", loop->ToCString()); | 
|  | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { | 
|  | THR_Print(" B%" Pd, preorder_[it.Current()]->block_id()); | 
|  | } | 
|  | THR_Print(" }\n"); | 
|  | Print(loop->inner_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void LoopHierarchy::ComputeInduction() const { | 
|  | InductionVarAnalysis(preorder_).VisitHierarchy(top_); | 
|  | } | 
|  |  | 
|  | }  // namespace dart |