|  | // Copyright (c) 2019, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  |  | 
|  | #include "vm/globals.h"  // Needed here to get TARGET_ARCH_ARM64. | 
|  | #if defined(TARGET_ARCH_ARM64) | 
|  |  | 
|  | #define SHOULD_NOT_INCLUDE_RUNTIME | 
|  |  | 
|  | #include "vm/class_id.h" | 
|  | #include "vm/compiler/asm_intrinsifier.h" | 
|  | #include "vm/compiler/assembler/assembler.h" | 
|  |  | 
|  | namespace dart { | 
|  | namespace compiler { | 
|  |  | 
|  | // When entering intrinsics code: | 
|  | // PP: Caller's ObjectPool in JIT / global ObjectPool in AOT | 
|  | // CODE_REG: Callee's Code in JIT / not passed in AOT | 
|  | // R4: Arguments descriptor | 
|  | // LR: Return address | 
|  | // The R4 and CODE_REG registers can be destroyed only if there is no slow-path, | 
|  | // i.e. if the intrinsified method always executes a return. | 
|  | // The FP register should not be modified, because it is used by the profiler. | 
|  | // The PP and THR registers (see constants_arm64.h) must be preserved. | 
|  |  | 
|  | #define __ assembler-> | 
|  |  | 
|  | // Loads args from stack into R0 and R1 | 
|  | // Tests if they are smis, jumps to label not_smi if not. | 
|  | static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { | 
|  | __ ldr(R0, Address(SP, +0 * target::kWordSize)); | 
|  | __ ldr(R1, Address(SP, +1 * target::kWordSize)); | 
|  | __ orr(TMP, R0, Operand(R1)); | 
|  | __ BranchIfNotSmi(TMP, not_smi); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) { | 
|  | ASSERT(kSmiTagShift == 1); | 
|  | ASSERT(kSmiTag == 0); | 
|  | const Register right = R0; | 
|  | const Register left = R1; | 
|  | const Register temp = R2; | 
|  | const Register result = R0; | 
|  |  | 
|  | TestBothArgumentsSmis(assembler, normal_ir_body); | 
|  | __ CompareImmediate(right, target::ToRawSmi(target::kSmiBits), | 
|  | compiler::kObjectBytes); | 
|  | __ b(normal_ir_body, CS); | 
|  |  | 
|  | // Left is not a constant. | 
|  | // Check if count too large for handling it inlined. | 
|  | __ SmiUntag(TMP, right);  // SmiUntag right into TMP. | 
|  | // Overflow test (preserve left, right, and TMP); | 
|  | __ lslv(temp, left, TMP, kObjectBytes); | 
|  | __ asrv(TMP2, temp, TMP, kObjectBytes); | 
|  | __ cmp(left, Operand(TMP2), kObjectBytes); | 
|  | __ b(normal_ir_body, NE);  // Overflow. | 
|  | // Shift for result now we know there is no overflow. | 
|  | __ lslv(result, left, TMP, kObjectBytes); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | static void CompareIntegers(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | Condition true_condition) { | 
|  | Label true_label; | 
|  | TestBothArgumentsSmis(assembler, normal_ir_body); | 
|  | // R0 contains the right argument, R1 the left. | 
|  | __ CompareObjectRegisters(R1, R0); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); | 
|  | __ csel(R0, TMP, R0, true_condition); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_lessThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareIntegers(assembler, normal_ir_body, LT); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareIntegers(assembler, normal_ir_body, GT); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareIntegers(assembler, normal_ir_body, LE); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareIntegers(assembler, normal_ir_body, GE); | 
|  | } | 
|  |  | 
|  | // This is called for Smi and Mint receivers. The right argument | 
|  | // can be Smi, Mint or double. | 
|  | void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label true_label, check_for_mint; | 
|  | // For integer receiver '===' check first. | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ ldr(R1, Address(SP, 1 * target::kWordSize)); | 
|  | __ CompareObjectRegisters(R0, R1); | 
|  | __ b(&true_label, EQ); | 
|  |  | 
|  | __ orr(R2, R0, Operand(R1)); | 
|  | __ BranchIfNotSmi(R2, &check_for_mint); | 
|  | // If R0 or R1 is not a smi do Mint checks. | 
|  |  | 
|  | // Both arguments are smi, '===' is good enough. | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | __ Bind(&true_label); | 
|  | __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | // At least one of the arguments was not Smi. | 
|  | Label receiver_not_smi; | 
|  | __ Bind(&check_for_mint); | 
|  |  | 
|  | __ BranchIfNotSmi(R1, &receiver_not_smi);  // Check receiver. | 
|  |  | 
|  | // Left (receiver) is Smi, return false if right is not Double. | 
|  | // Note that an instance of Mint never contains a value that can be | 
|  | // represented by Smi. | 
|  |  | 
|  | __ CompareClassId(R0, kDoubleCid); | 
|  | __ b(normal_ir_body, EQ); | 
|  | __ LoadObject(R0, | 
|  | CastHandle<Object>(FalseObject()));  // Smi == Mint -> false. | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&receiver_not_smi); | 
|  | // R1: receiver. | 
|  |  | 
|  | __ CompareClassId(R1, kMintCid); | 
|  | __ b(normal_ir_body, NE); | 
|  | // Receiver is Mint, return false if right is Smi. | 
|  | __ BranchIfNotSmi(R0, normal_ir_body); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | // TODO(srdjan): Implement Mint == Mint comparison. | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Integer_equal(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Integer_equalToInteger(assembler, normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Smi_bitLength(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ SmiUntag(R0); | 
|  | // XOR with sign bit to complement bits if value is negative. | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ eor(R0, R0, Operand(R0, ASR, 63)); | 
|  | __ clz(R0, R0); | 
|  | __ LoadImmediate(R1, 64); | 
|  | #else | 
|  | __ eorw(R0, R0, Operand(R0, ASR, 31)); | 
|  | __ clzw(R0, R0); | 
|  | __ LoadImmediate(R1, 32); | 
|  | #endif | 
|  | __ sub(R0, R1, Operand(R0)); | 
|  | __ SmiTag(R0); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) { | 
|  | // static void _lsh(Uint32List x_digits, int x_used, int n, | 
|  | //                  Uint32List r_digits) | 
|  |  | 
|  | // R2 = x_used, R3 = x_digits, x_used > 0, x_used is Smi. | 
|  | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R2, R2); | 
|  | #endif | 
|  | __ add(R2, R2, Operand(2));  // x_used > 0, Smi. R2 = x_used + 1, round up. | 
|  | __ AsrImmediate(R2, R2, 2);  // R2 = num of digit pairs to read. | 
|  | // R4 = r_digits, R5 = n, n is Smi, n % _DIGIT_BITS != 0. | 
|  | __ ldp(R4, R5, Address(SP, 0 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R5, R5); | 
|  | #endif | 
|  | __ SmiUntag(R5); | 
|  | // R0 = n ~/ (2*_DIGIT_BITS) | 
|  | __ AsrImmediate(R0, R5, 6); | 
|  | // R6 = &x_digits[0] | 
|  | __ add(R6, R3, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  | // R7 = &x_digits[2*R2] | 
|  | __ add(R7, R6, Operand(R2, LSL, 3)); | 
|  | // R8 = &r_digits[2*1] | 
|  | __ add(R8, R4, | 
|  | Operand(target::TypedData::payload_offset() - kHeapObjectTag + | 
|  | 2 * kBytesPerBigIntDigit)); | 
|  | // R8 = &r_digits[2*(R2 + n ~/ (2*_DIGIT_BITS) + 1)] | 
|  | __ add(R0, R0, Operand(R2)); | 
|  | __ add(R8, R8, Operand(R0, LSL, 3)); | 
|  | // R3 = n % (2 * _DIGIT_BITS) | 
|  | __ AndImmediate(R3, R5, 63); | 
|  | // R2 = 64 - R3 | 
|  | __ LoadImmediate(R2, 64); | 
|  | __ sub(R2, R2, Operand(R3)); | 
|  | __ mov(R1, ZR); | 
|  | Label loop; | 
|  | __ Bind(&loop); | 
|  | __ ldr(R0, Address(R7, -2 * kBytesPerBigIntDigit, Address::PreIndex)); | 
|  | __ lsrv(R4, R0, R2); | 
|  | __ orr(R1, R1, Operand(R4)); | 
|  | __ str(R1, Address(R8, -2 * kBytesPerBigIntDigit, Address::PreIndex)); | 
|  | __ lslv(R1, R0, R3); | 
|  | __ cmp(R7, Operand(R6)); | 
|  | __ b(&loop, NE); | 
|  | __ str(R1, Address(R8, -2 * kBytesPerBigIntDigit, Address::PreIndex)); | 
|  | __ LoadObject(R0, NullObject()); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) { | 
|  | // static void _rsh(Uint32List x_digits, int x_used, int n, | 
|  | //                  Uint32List r_digits) | 
|  |  | 
|  | // R2 = x_used, R3 = x_digits, x_used > 0, x_used is Smi. | 
|  | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R2, R2); | 
|  | #endif | 
|  | __ add(R2, R2, Operand(2));  // x_used > 0, Smi. R2 = x_used + 1, round up. | 
|  | __ AsrImmediate(R2, R2, 2);  // R2 = num of digit pairs to read. | 
|  | // R4 = r_digits, R5 = n, n is Smi, n % _DIGIT_BITS != 0. | 
|  | __ ldp(R4, R5, Address(SP, 0 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R5, R5); | 
|  | #endif | 
|  | __ SmiUntag(R5); | 
|  | // R0 = n ~/ (2*_DIGIT_BITS) | 
|  | __ AsrImmediate(R0, R5, 6); | 
|  | // R8 = &r_digits[0] | 
|  | __ add(R8, R4, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  | // R7 = &x_digits[2*(n ~/ (2*_DIGIT_BITS))] | 
|  | __ add(R7, R3, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  | __ add(R7, R7, Operand(R0, LSL, 3)); | 
|  | // R6 = &r_digits[2*(R2 - n ~/ (2*_DIGIT_BITS) - 1)] | 
|  | __ add(R0, R0, Operand(1)); | 
|  | __ sub(R0, R2, Operand(R0)); | 
|  | __ add(R6, R8, Operand(R0, LSL, 3)); | 
|  | // R3 = n % (2*_DIGIT_BITS) | 
|  | __ AndImmediate(R3, R5, 63); | 
|  | // R2 = 64 - R3 | 
|  | __ LoadImmediate(R2, 64); | 
|  | __ sub(R2, R2, Operand(R3)); | 
|  | // R1 = x_digits[n ~/ (2*_DIGIT_BITS)] >> (n % (2*_DIGIT_BITS)) | 
|  | __ ldr(R1, Address(R7, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ lsrv(R1, R1, R3); | 
|  | Label loop_entry; | 
|  | __ b(&loop_entry); | 
|  | Label loop; | 
|  | __ Bind(&loop); | 
|  | __ ldr(R0, Address(R7, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ lslv(R4, R0, R2); | 
|  | __ orr(R1, R1, Operand(R4)); | 
|  | __ str(R1, Address(R8, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ lsrv(R1, R0, R3); | 
|  | __ Bind(&loop_entry); | 
|  | __ cmp(R8, Operand(R6)); | 
|  | __ b(&loop, NE); | 
|  | __ str(R1, Address(R8, 0)); | 
|  | __ LoadObject(R0, NullObject()); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // static void _absAdd(Uint32List digits, int used, | 
|  | //                     Uint32List a_digits, int a_used, | 
|  | //                     Uint32List r_digits) | 
|  |  | 
|  | // R2 = used, R3 = digits | 
|  | __ ldp(R2, R3, Address(SP, 3 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R2, R2); | 
|  | #endif | 
|  | __ add(R2, R2, Operand(2));  // used > 0, Smi. R2 = used + 1, round up. | 
|  | __ add(R2, ZR, Operand(R2, ASR, 2));  // R2 = num of digit pairs to process. | 
|  | // R3 = &digits[0] | 
|  | __ add(R3, R3, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R4 = a_used, R5 = a_digits | 
|  | __ ldp(R4, R5, Address(SP, 1 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R4, R4); | 
|  | #endif | 
|  | __ add(R4, R4, Operand(2));  // a_used > 0, Smi. R4 = a_used + 1, round up. | 
|  | __ add(R4, ZR, Operand(R4, ASR, 2));  // R4 = num of digit pairs to process. | 
|  | // R5 = &a_digits[0] | 
|  | __ add(R5, R5, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R6 = r_digits | 
|  | __ ldr(R6, Address(SP, 0 * target::kWordSize)); | 
|  | // R6 = &r_digits[0] | 
|  | __ add(R6, R6, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R7 = &digits[a_used rounded up to even number]. | 
|  | __ add(R7, R3, Operand(R4, LSL, 3)); | 
|  |  | 
|  | // R8 = &digits[a_used rounded up to even number]. | 
|  | __ add(R8, R3, Operand(R2, LSL, 3)); | 
|  |  | 
|  | __ adds(R0, R0, Operand(0));  // carry flag = 0 | 
|  | Label add_loop; | 
|  | __ Bind(&add_loop); | 
|  | // Loop (a_used+1)/2 times, a_used > 0. | 
|  | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ ldr(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ adcs(R0, R0, R1); | 
|  | __ sub(R9, R3, Operand(R7));  // Does not affect carry flag. | 
|  | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ cbnz(&add_loop, R9);  // Does not affect carry flag. | 
|  |  | 
|  | Label last_carry; | 
|  | __ sub(R9, R3, Operand(R8));  // Does not affect carry flag. | 
|  | __ cbz(&last_carry, R9);      // If used - a_used == 0. | 
|  |  | 
|  | Label carry_loop; | 
|  | __ Bind(&carry_loop); | 
|  | // Loop (used+1)/2 - (a_used+1)/2 times, used - a_used > 0. | 
|  | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ adcs(R0, R0, ZR); | 
|  | __ sub(R9, R3, Operand(R8));  // Does not affect carry flag. | 
|  | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ cbnz(&carry_loop, R9); | 
|  |  | 
|  | __ Bind(&last_carry); | 
|  | Label done; | 
|  | __ b(&done, CC); | 
|  | __ LoadImmediate(R0, 1); | 
|  | __ str(R0, Address(R6, 0)); | 
|  |  | 
|  | __ Bind(&done); | 
|  | __ LoadObject(R0, NullObject()); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_absSub(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // static void _absSub(Uint32List digits, int used, | 
|  | //                     Uint32List a_digits, int a_used, | 
|  | //                     Uint32List r_digits) | 
|  |  | 
|  | // R2 = used, R3 = digits | 
|  | __ ldp(R2, R3, Address(SP, 3 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R2, R2); | 
|  | #endif | 
|  | __ add(R2, R2, Operand(2));  // used > 0, Smi. R2 = used + 1, round up. | 
|  | __ add(R2, ZR, Operand(R2, ASR, 2));  // R2 = num of digit pairs to process. | 
|  | // R3 = &digits[0] | 
|  | __ add(R3, R3, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R4 = a_used, R5 = a_digits | 
|  | __ ldp(R4, R5, Address(SP, 1 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R4, R4); | 
|  | #endif | 
|  | __ add(R4, R4, Operand(2));  // a_used > 0, Smi. R4 = a_used + 1, round up. | 
|  | __ add(R4, ZR, Operand(R4, ASR, 2));  // R4 = num of digit pairs to process. | 
|  | // R5 = &a_digits[0] | 
|  | __ add(R5, R5, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R6 = r_digits | 
|  | __ ldr(R6, Address(SP, 0 * target::kWordSize)); | 
|  | // R6 = &r_digits[0] | 
|  | __ add(R6, R6, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R7 = &digits[a_used rounded up to even number]. | 
|  | __ add(R7, R3, Operand(R4, LSL, 3)); | 
|  |  | 
|  | // R8 = &digits[a_used rounded up to even number]. | 
|  | __ add(R8, R3, Operand(R2, LSL, 3)); | 
|  |  | 
|  | __ subs(R0, R0, Operand(0));  // carry flag = 1 | 
|  | Label sub_loop; | 
|  | __ Bind(&sub_loop); | 
|  | // Loop (a_used+1)/2 times, a_used > 0. | 
|  | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ ldr(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ sbcs(R0, R0, R1); | 
|  | __ sub(R9, R3, Operand(R7));  // Does not affect carry flag. | 
|  | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ cbnz(&sub_loop, R9);  // Does not affect carry flag. | 
|  |  | 
|  | Label done; | 
|  | __ sub(R9, R3, Operand(R8));  // Does not affect carry flag. | 
|  | __ cbz(&done, R9);            // If used - a_used == 0. | 
|  |  | 
|  | Label carry_loop; | 
|  | __ Bind(&carry_loop); | 
|  | // Loop (used+1)/2 - (a_used+1)/2 times, used - a_used > 0. | 
|  | __ ldr(R0, Address(R3, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ sbcs(R0, R0, ZR); | 
|  | __ sub(R9, R3, Operand(R8));  // Does not affect carry flag. | 
|  | __ str(R0, Address(R6, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ cbnz(&carry_loop, R9); | 
|  |  | 
|  | __ Bind(&done); | 
|  | __ LoadObject(R0, NullObject()); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Pseudo code: | 
|  | // static int _mulAdd(Uint32List x_digits, int xi, | 
|  | //                    Uint32List m_digits, int i, | 
|  | //                    Uint32List a_digits, int j, int n) { | 
|  | //   uint64_t x = x_digits[xi >> 1 .. (xi >> 1) + 1];  // xi is Smi and even. | 
|  | //   if (x == 0 || n == 0) { | 
|  | //     return 2; | 
|  | //   } | 
|  | //   uint64_t* mip = &m_digits[i >> 1];  // i is Smi and even. | 
|  | //   uint64_t* ajp = &a_digits[j >> 1];  // j is Smi and even. | 
|  | //   uint64_t c = 0; | 
|  | //   SmiUntag(n);  // n is Smi and even. | 
|  | //   n = (n + 1)/2;  // Number of pairs to process. | 
|  | //   do { | 
|  | //     uint64_t mi = *mip++; | 
|  | //     uint64_t aj = *ajp; | 
|  | //     uint128_t t = x*mi + aj + c;  // 64-bit * 64-bit -> 128-bit. | 
|  | //     *ajp++ = low64(t); | 
|  | //     c = high64(t); | 
|  | //   } while (--n > 0); | 
|  | //   while (c != 0) { | 
|  | //     uint128_t t = *ajp + c; | 
|  | //     *ajp++ = low64(t); | 
|  | //     c = high64(t);  // c == 0 or 1. | 
|  | //   } | 
|  | //   return 2; | 
|  | // } | 
|  |  | 
|  | Label done; | 
|  | // R3 = x, no_op if x == 0 | 
|  | // R0 = xi as Smi, R1 = x_digits. | 
|  | __ ldp(R0, R1, Address(SP, 5 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R0, R0); | 
|  | #endif | 
|  | __ add(R1, R1, Operand(R0, LSL, 1)); | 
|  | __ ldr(R3, FieldAddress(R1, target::TypedData::payload_offset())); | 
|  | __ tst(R3, Operand(R3)); | 
|  | __ b(&done, EQ); | 
|  |  | 
|  | // R6 = (SmiUntag(n) + 1)/2, no_op if n == 0 | 
|  | __ ldr(R6, Address(SP, 0 * target::kWordSize)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R6, R6); | 
|  | #endif | 
|  | __ add(R6, R6, Operand(2)); | 
|  | __ adds(R6, ZR, Operand(R6, ASR, 2));  // SmiUntag(R6) and set cc. | 
|  | __ b(&done, EQ); | 
|  |  | 
|  | // R4 = mip = &m_digits[i >> 1] | 
|  | // R0 = i as Smi, R1 = m_digits. | 
|  | __ ldp(R0, R1, Address(SP, 3 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R0, R0); | 
|  | #endif | 
|  | __ add(R1, R1, Operand(R0, LSL, 1)); | 
|  | __ add(R4, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R5 = ajp = &a_digits[j >> 1] | 
|  | // R0 = j as Smi, R1 = a_digits. | 
|  | __ ldp(R0, R1, Address(SP, 1 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R0, R0); | 
|  | #endif | 
|  | __ add(R1, R1, Operand(R0, LSL, 1)); | 
|  | __ add(R5, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R1 = c = 0 | 
|  | __ mov(R1, ZR); | 
|  |  | 
|  | Label muladd_loop; | 
|  | __ Bind(&muladd_loop); | 
|  | // x:   R3 | 
|  | // mip: R4 | 
|  | // ajp: R5 | 
|  | // c:   R1 | 
|  | // n:   R6 | 
|  | // t:   R7:R8 (not live at loop entry) | 
|  |  | 
|  | // uint64_t mi = *mip++ | 
|  | __ ldr(R2, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  |  | 
|  | // uint64_t aj = *ajp | 
|  | __ ldr(R0, Address(R5, 0)); | 
|  |  | 
|  | // uint128_t t = x*mi + aj + c | 
|  | __ mul(R7, R2, R3);    // R7 = low64(R2*R3). | 
|  | __ umulh(R8, R2, R3);  // R8 = high64(R2*R3), t = R8:R7 = x*mi. | 
|  | __ adds(R7, R7, Operand(R0)); | 
|  | __ adc(R8, R8, ZR);            // t += aj. | 
|  | __ adds(R0, R7, Operand(R1));  // t += c, R0 = low64(t). | 
|  | __ adc(R1, R8, ZR);            // c = R1 = high64(t). | 
|  |  | 
|  | // *ajp++ = low64(t) = R0 | 
|  | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  |  | 
|  | // while (--n > 0) | 
|  | __ subs(R6, R6, Operand(1));  // --n | 
|  | __ b(&muladd_loop, NE); | 
|  |  | 
|  | __ tst(R1, Operand(R1)); | 
|  | __ b(&done, EQ); | 
|  |  | 
|  | // *ajp++ += c | 
|  | __ ldr(R0, Address(R5, 0)); | 
|  | __ adds(R0, R0, Operand(R1)); | 
|  | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ b(&done, CC); | 
|  |  | 
|  | Label propagate_carry_loop; | 
|  | __ Bind(&propagate_carry_loop); | 
|  | __ ldr(R0, Address(R5, 0)); | 
|  | __ adds(R0, R0, Operand(1)); | 
|  | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ b(&propagate_carry_loop, CS); | 
|  |  | 
|  | __ Bind(&done); | 
|  | __ LoadImmediate(R0, target::ToRawSmi(2));  // Two digits processed. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Pseudo code: | 
|  | // static int _sqrAdd(Uint32List x_digits, int i, | 
|  | //                    Uint32List a_digits, int used) { | 
|  | //   uint64_t* xip = &x_digits[i >> 1];  // i is Smi and even. | 
|  | //   uint64_t x = *xip++; | 
|  | //   if (x == 0) return 2; | 
|  | //   uint64_t* ajp = &a_digits[i];  // j == 2*i, i is Smi. | 
|  | //   uint64_t aj = *ajp; | 
|  | //   uint128_t t = x*x + aj; | 
|  | //   *ajp++ = low64(t); | 
|  | //   uint128_t c = high64(t); | 
|  | //   int n = ((used - i + 2) >> 2) - 1;  // used and i are Smi. n: num pairs. | 
|  | //   while (--n >= 0) { | 
|  | //     uint64_t xi = *xip++; | 
|  | //     uint64_t aj = *ajp; | 
|  | //     uint192_t t = 2*x*xi + aj + c;  // 2-bit * 64-bit * 64-bit -> 129-bit. | 
|  | //     *ajp++ = low64(t); | 
|  | //     c = high128(t);  // 65-bit. | 
|  | //   } | 
|  | //   uint64_t aj = *ajp; | 
|  | //   uint128_t t = aj + c;  // 64-bit + 65-bit -> 66-bit. | 
|  | //   *ajp++ = low64(t); | 
|  | //   *ajp = high64(t); | 
|  | //   return 2; | 
|  | // } | 
|  |  | 
|  | // R4 = xip = &x_digits[i >> 1] | 
|  | // R2 = i as Smi, R3 = x_digits | 
|  | __ ldp(R2, R3, Address(SP, 2 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R2, R2); | 
|  | #endif | 
|  | __ add(R3, R3, Operand(R2, LSL, 1)); | 
|  | __ add(R4, R3, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R3 = x = *xip++, return if x == 0 | 
|  | Label x_zero; | 
|  | __ ldr(R3, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  | __ tst(R3, Operand(R3)); | 
|  | __ b(&x_zero, EQ); | 
|  |  | 
|  | // R5 = ajp = &a_digits[i] | 
|  | __ ldr(R1, Address(SP, 1 * target::kWordSize));  // a_digits | 
|  | __ add(R1, R1, Operand(R2, LSL, 2));             // j == 2*i, i is Smi. | 
|  | __ add(R5, R1, Operand(target::TypedData::payload_offset() - kHeapObjectTag)); | 
|  |  | 
|  | // R6:R1 = t = x*x + *ajp | 
|  | __ ldr(R0, Address(R5, 0)); | 
|  | __ mul(R1, R3, R3);            // R1 = low64(R3*R3). | 
|  | __ umulh(R6, R3, R3);          // R6 = high64(R3*R3). | 
|  | __ adds(R1, R1, Operand(R0));  // R6:R1 += *ajp. | 
|  | __ adc(R6, R6, ZR);            // R6 = low64(c) = high64(t). | 
|  | __ mov(R7, ZR);                // R7 = high64(c) = 0. | 
|  |  | 
|  | // *ajp++ = low64(t) = R1 | 
|  | __ str(R1, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  |  | 
|  | // int n = (used - i + 1)/2 - 1 | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize));  // used is Smi | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R0, R0); | 
|  | #endif | 
|  | __ sub(R8, R0, Operand(R2)); | 
|  | __ add(R8, R8, Operand(2)); | 
|  | __ movn(R0, Immediate(1), 0);          // R0 = ~1 = -2. | 
|  | __ adds(R8, R0, Operand(R8, ASR, 2));  // while (--n >= 0) | 
|  |  | 
|  | Label loop, done; | 
|  | __ b(&done, MI); | 
|  |  | 
|  | __ Bind(&loop); | 
|  | // x:   R3 | 
|  | // xip: R4 | 
|  | // ajp: R5 | 
|  | // c:   R7:R6 | 
|  | // t:   R2:R1:R0 (not live at loop entry) | 
|  | // n:   R8 | 
|  |  | 
|  | // uint64_t xi = *xip++ | 
|  | __ ldr(R2, Address(R4, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  |  | 
|  | // uint192_t t = R2:R1:R0 = 2*x*xi + aj + c | 
|  | __ mul(R0, R2, R3);    // R0 = low64(R2*R3) = low64(x*xi). | 
|  | __ umulh(R1, R2, R3);  // R1 = high64(R2*R3) = high64(x*xi). | 
|  | __ adds(R0, R0, Operand(R0)); | 
|  | __ adcs(R1, R1, R1); | 
|  | __ adc(R2, ZR, ZR);  // R2:R1:R0 = R1:R0 + R1:R0 = 2*x*xi. | 
|  | __ adds(R0, R0, Operand(R6)); | 
|  | __ adcs(R1, R1, R7); | 
|  | __ adc(R2, R2, ZR);          // R2:R1:R0 += c. | 
|  | __ ldr(R7, Address(R5, 0));  // R7 = aj = *ajp. | 
|  | __ adds(R0, R0, Operand(R7)); | 
|  | __ adcs(R6, R1, ZR); | 
|  | __ adc(R7, R2, ZR);  // R7:R6:R0 = 2*x*xi + aj + c. | 
|  |  | 
|  | // *ajp++ = low64(t) = R0 | 
|  | __ str(R0, Address(R5, 2 * kBytesPerBigIntDigit, Address::PostIndex)); | 
|  |  | 
|  | // while (--n >= 0) | 
|  | __ subs(R8, R8, Operand(1));  // --n | 
|  | __ b(&loop, PL); | 
|  |  | 
|  | __ Bind(&done); | 
|  | // uint64_t aj = *ajp | 
|  | __ ldr(R0, Address(R5, 0)); | 
|  |  | 
|  | // uint128_t t = aj + c | 
|  | __ adds(R6, R6, Operand(R0)); | 
|  | __ adc(R7, R7, ZR); | 
|  |  | 
|  | // *ajp = low64(t) = R6 | 
|  | // *(ajp + 1) = high64(t) = R7 | 
|  | __ stp(R6, R7, Address(R5, 0, Address::PairOffset)); | 
|  |  | 
|  | __ Bind(&x_zero); | 
|  | __ LoadImmediate(R0, target::ToRawSmi(2));  // Two digits processed. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // There is no 128-bit by 64-bit division instruction on arm64, so we use two | 
|  | // 64-bit by 32-bit divisions and two 64-bit by 64-bit multiplications to | 
|  | // adjust the two 32-bit digits of the estimated quotient. | 
|  | // | 
|  | // Pseudo code: | 
|  | // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { | 
|  | //   uint64_t yt = args[_YT_LO .. _YT];  // _YT_LO == 0, _YT == 1. | 
|  | //   uint64_t* dp = &digits[(i >> 1) - 1];  // i is Smi. | 
|  | //   uint64_t dh = dp[0];  // dh == digits[(i >> 1) - 1 .. i >> 1]. | 
|  | //   uint64_t qd; | 
|  | //   if (dh == yt) { | 
|  | //     qd = (DIGIT_MASK << 32) | DIGIT_MASK; | 
|  | //   } else { | 
|  | //     dl = dp[-1];  // dl == digits[(i >> 1) - 3 .. (i >> 1) - 2]. | 
|  | //     // We cannot calculate qd = dh:dl / yt, so ... | 
|  | //     uint64_t yth = yt >> 32; | 
|  | //     uint64_t qh = dh / yth; | 
|  | //     uint128_t ph:pl = yt*qh; | 
|  | //     uint64_t tl = (dh << 32)|(dl >> 32); | 
|  | //     uint64_t th = dh >> 32; | 
|  | //     while ((ph > th) || ((ph == th) && (pl > tl))) { | 
|  | //       if (pl < yt) --ph; | 
|  | //       pl -= yt; | 
|  | //       --qh; | 
|  | //     } | 
|  | //     qd = qh << 32; | 
|  | //     tl = (pl << 32); | 
|  | //     th = (ph << 32)|(pl >> 32); | 
|  | //     if (tl > dl) ++th; | 
|  | //     dl -= tl; | 
|  | //     dh -= th; | 
|  | //     uint64_t ql = ((dh << 32)|(dl >> 32)) / yth; | 
|  | //     ph:pl = yt*ql; | 
|  | //     while ((ph > dh) || ((ph == dh) && (pl > dl))) { | 
|  | //       if (pl < yt) --ph; | 
|  | //       pl -= yt; | 
|  | //       --ql; | 
|  | //     } | 
|  | //     qd |= ql; | 
|  | //   } | 
|  | //   args[_QD .. _QD_HI] = qd;  // _QD == 2, _QD_HI == 3. | 
|  | //   return 2; | 
|  | // } | 
|  |  | 
|  | // R4 = args | 
|  | __ ldr(R4, Address(SP, 2 * target::kWordSize));  // args | 
|  |  | 
|  | // R3 = yt = args[0..1] | 
|  | __ ldr(R3, FieldAddress(R4, target::TypedData::payload_offset())); | 
|  |  | 
|  | // R2 = dh = digits[(i >> 1) - 1 .. i >> 1] | 
|  | // R0 = i as Smi, R1 = digits | 
|  | __ ldp(R0, R1, Address(SP, 0 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R0, R0); | 
|  | #endif | 
|  | __ add(R1, R1, Operand(R0, LSL, 1)); | 
|  | __ ldr(R2, FieldAddress(R1, target::TypedData::payload_offset() - | 
|  | kBytesPerBigIntDigit)); | 
|  |  | 
|  | // R0 = qd = (DIGIT_MASK << 32) | DIGIT_MASK = -1 | 
|  | __ movn(R0, Immediate(0), 0); | 
|  |  | 
|  | // Return qd if dh == yt | 
|  | Label return_qd; | 
|  | __ cmp(R2, Operand(R3)); | 
|  | __ b(&return_qd, EQ); | 
|  |  | 
|  | // R1 = dl = digits[(i >> 1) - 3 .. (i >> 1) - 2] | 
|  | __ ldr(R1, FieldAddress(R1, target::TypedData::payload_offset() - | 
|  | 3 * kBytesPerBigIntDigit)); | 
|  |  | 
|  | // R5 = yth = yt >> 32 | 
|  | __ orr(R5, ZR, Operand(R3, LSR, 32)); | 
|  |  | 
|  | // R6 = qh = dh / yth | 
|  | __ udiv(R6, R2, R5); | 
|  |  | 
|  | // R8:R7 = ph:pl = yt*qh | 
|  | __ mul(R7, R3, R6); | 
|  | __ umulh(R8, R3, R6); | 
|  |  | 
|  | // R9 = tl = (dh << 32)|(dl >> 32) | 
|  | __ orr(R9, ZR, Operand(R2, LSL, 32)); | 
|  | __ orr(R9, R9, Operand(R1, LSR, 32)); | 
|  |  | 
|  | // R10 = th = dh >> 32 | 
|  | __ orr(R10, ZR, Operand(R2, LSR, 32)); | 
|  |  | 
|  | // while ((ph > th) || ((ph == th) && (pl > tl))) | 
|  | Label qh_adj_loop, qh_adj, qh_ok; | 
|  | __ Bind(&qh_adj_loop); | 
|  | __ cmp(R8, Operand(R10)); | 
|  | __ b(&qh_adj, HI); | 
|  | __ b(&qh_ok, NE); | 
|  | __ cmp(R7, Operand(R9)); | 
|  | __ b(&qh_ok, LS); | 
|  |  | 
|  | __ Bind(&qh_adj); | 
|  | // if (pl < yt) --ph | 
|  | __ sub(TMP, R8, Operand(1));  // TMP = ph - 1 | 
|  | __ cmp(R7, Operand(R3)); | 
|  | __ csel(R8, TMP, R8, CC);  // R8 = R7 < R3 ? TMP : R8 | 
|  |  | 
|  | // pl -= yt | 
|  | __ sub(R7, R7, Operand(R3)); | 
|  |  | 
|  | // --qh | 
|  | __ sub(R6, R6, Operand(1)); | 
|  |  | 
|  | // Continue while loop. | 
|  | __ b(&qh_adj_loop); | 
|  |  | 
|  | __ Bind(&qh_ok); | 
|  | // R0 = qd = qh << 32 | 
|  | __ orr(R0, ZR, Operand(R6, LSL, 32)); | 
|  |  | 
|  | // tl = (pl << 32) | 
|  | __ orr(R9, ZR, Operand(R7, LSL, 32)); | 
|  |  | 
|  | // th = (ph << 32)|(pl >> 32); | 
|  | __ orr(R10, ZR, Operand(R8, LSL, 32)); | 
|  | __ orr(R10, R10, Operand(R7, LSR, 32)); | 
|  |  | 
|  | // if (tl > dl) ++th | 
|  | __ add(TMP, R10, Operand(1));  // TMP = th + 1 | 
|  | __ cmp(R9, Operand(R1)); | 
|  | __ csel(R10, TMP, R10, HI);  // R10 = R9 > R1 ? TMP : R10 | 
|  |  | 
|  | // dl -= tl | 
|  | __ sub(R1, R1, Operand(R9)); | 
|  |  | 
|  | // dh -= th | 
|  | __ sub(R2, R2, Operand(R10)); | 
|  |  | 
|  | // R6 = ql = ((dh << 32)|(dl >> 32)) / yth | 
|  | __ orr(R6, ZR, Operand(R2, LSL, 32)); | 
|  | __ orr(R6, R6, Operand(R1, LSR, 32)); | 
|  | __ udiv(R6, R6, R5); | 
|  |  | 
|  | // R8:R7 = ph:pl = yt*ql | 
|  | __ mul(R7, R3, R6); | 
|  | __ umulh(R8, R3, R6); | 
|  |  | 
|  | // while ((ph > dh) || ((ph == dh) && (pl > dl))) { | 
|  | Label ql_adj_loop, ql_adj, ql_ok; | 
|  | __ Bind(&ql_adj_loop); | 
|  | __ cmp(R8, Operand(R2)); | 
|  | __ b(&ql_adj, HI); | 
|  | __ b(&ql_ok, NE); | 
|  | __ cmp(R7, Operand(R1)); | 
|  | __ b(&ql_ok, LS); | 
|  |  | 
|  | __ Bind(&ql_adj); | 
|  | // if (pl < yt) --ph | 
|  | __ sub(TMP, R8, Operand(1));  // TMP = ph - 1 | 
|  | __ cmp(R7, Operand(R3)); | 
|  | __ csel(R8, TMP, R8, CC);  // R8 = R7 < R3 ? TMP : R8 | 
|  |  | 
|  | // pl -= yt | 
|  | __ sub(R7, R7, Operand(R3)); | 
|  |  | 
|  | // --ql | 
|  | __ sub(R6, R6, Operand(1)); | 
|  |  | 
|  | // Continue while loop. | 
|  | __ b(&ql_adj_loop); | 
|  |  | 
|  | __ Bind(&ql_ok); | 
|  | // qd |= ql; | 
|  | __ orr(R0, R0, Operand(R6)); | 
|  |  | 
|  | __ Bind(&return_qd); | 
|  | // args[2..3] = qd | 
|  | __ str(R0, FieldAddress(R4, target::TypedData::payload_offset() + | 
|  | 2 * kBytesPerBigIntDigit)); | 
|  |  | 
|  | __ LoadImmediate(R0, target::ToRawSmi(2));  // Two digits processed. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Pseudo code: | 
|  | // static int _mulMod(Uint32List args, Uint32List digits, int i) { | 
|  | //   uint64_t rho = args[_RHO .. _RHO_HI];  // _RHO == 2, _RHO_HI == 3. | 
|  | //   uint64_t d = digits[i >> 1 .. (i >> 1) + 1];  // i is Smi and even. | 
|  | //   uint128_t t = rho*d; | 
|  | //   args[_MU .. _MU_HI] = t mod DIGIT_BASE^2;  // _MU == 4, _MU_HI == 5. | 
|  | //   return 2; | 
|  | // } | 
|  |  | 
|  | // R4 = args | 
|  | __ ldr(R4, Address(SP, 2 * target::kWordSize));  // args | 
|  |  | 
|  | // R3 = rho = args[2..3] | 
|  | __ ldr(R3, FieldAddress(R4, target::TypedData::payload_offset() + | 
|  | 2 * kBytesPerBigIntDigit)); | 
|  |  | 
|  | // R2 = digits[i >> 1 .. (i >> 1) + 1] | 
|  | // R0 = i as Smi, R1 = digits | 
|  | __ ldp(R0, R1, Address(SP, 0 * target::kWordSize, Address::PairOffset)); | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R0, R0); | 
|  | #endif | 
|  | __ add(R1, R1, Operand(R0, LSL, 1)); | 
|  | __ ldr(R2, FieldAddress(R1, target::TypedData::payload_offset())); | 
|  |  | 
|  | // R0 = rho*d mod DIGIT_BASE | 
|  | __ mul(R0, R2, R3);  // R0 = low64(R2*R3). | 
|  |  | 
|  | // args[4 .. 5] = R0 | 
|  | __ str(R0, FieldAddress(R4, target::TypedData::payload_offset() + | 
|  | 4 * kBytesPerBigIntDigit)); | 
|  |  | 
|  | __ LoadImmediate(R0, target::ToRawSmi(2));  // Two digits processed. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | // Check if the last argument is a double, jump to label 'is_smi' if smi | 
|  | // (easy to convert to double), otherwise jump to label 'not_double_smi', | 
|  | // Returns the last argument in R0. | 
|  | static void TestLastArgumentIsDouble(Assembler* assembler, | 
|  | Label* is_smi, | 
|  | Label* not_double_smi) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ BranchIfSmi(R0, is_smi); | 
|  | __ CompareClassId(R0, kDoubleCid); | 
|  | __ b(not_double_smi, NE); | 
|  | // Fall through with Double in R0. | 
|  | } | 
|  |  | 
|  | // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown | 
|  | // type. Return true or false object in the register R0. Any NaN argument | 
|  | // returns false. Any non-double arg1 causes control flow to fall through to the | 
|  | // slow case (compiled method body). | 
|  | static void CompareDoubles(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | Condition true_condition) { | 
|  | Label is_smi, double_op, not_nan; | 
|  |  | 
|  | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); | 
|  | // Both arguments are double, right operand is in R0. | 
|  |  | 
|  | __ LoadDFieldFromOffset(V1, R0, target::Double::value_offset()); | 
|  | __ Bind(&double_op); | 
|  | __ ldr(R0, Address(SP, 1 * target::kWordSize));  // Left argument. | 
|  | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); | 
|  |  | 
|  | __ fcmpd(V0, V1); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | // Return false if D0 or D1 was NaN before checking true condition. | 
|  | __ b(¬_nan, VC); | 
|  | __ ret(); | 
|  | __ Bind(¬_nan); | 
|  | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); | 
|  | __ csel(R0, TMP, R0, true_condition); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&is_smi);  // Convert R0 to a double. | 
|  | __ SmiUntag(R0); | 
|  | __ scvtfdx(V1, R0); | 
|  | __ b(&double_op);  // Then do the comparison. | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_greaterThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, HI); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, CS); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_lessThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, CC); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_equal(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, EQ); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | CompareDoubles(assembler, normal_ir_body, LS); | 
|  | } | 
|  |  | 
|  | // Expects left argument to be double (receiver). Right argument is unknown. | 
|  | // Both arguments are on stack. | 
|  | static void DoubleArithmeticOperations(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | Token::Kind kind) { | 
|  | Label is_smi, double_op; | 
|  |  | 
|  | TestLastArgumentIsDouble(assembler, &is_smi, normal_ir_body); | 
|  | // Both arguments are double, right operand is in R0. | 
|  | __ LoadDFieldFromOffset(V1, R0, target::Double::value_offset()); | 
|  | __ Bind(&double_op); | 
|  | __ ldr(R0, Address(SP, 1 * target::kWordSize));  // Left argument. | 
|  | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); | 
|  | switch (kind) { | 
|  | case Token::kADD: | 
|  | __ faddd(V0, V0, V1); | 
|  | break; | 
|  | case Token::kSUB: | 
|  | __ fsubd(V0, V0, V1); | 
|  | break; | 
|  | case Token::kMUL: | 
|  | __ fmuld(V0, V0, V1); | 
|  | break; | 
|  | case Token::kDIV: | 
|  | __ fdivd(V0, V0, V1); | 
|  | break; | 
|  | default: | 
|  | UNREACHABLE(); | 
|  | } | 
|  | const Class& double_class = DoubleClass(); | 
|  | __ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, R0, R1); | 
|  | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&is_smi);  // Convert R0 to a double. | 
|  | __ SmiUntag(R0); | 
|  | __ scvtfdx(V1, R0); | 
|  | __ b(&double_op); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) { | 
|  | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) { | 
|  | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) { | 
|  | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) { | 
|  | DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV); | 
|  | } | 
|  |  | 
|  | // Left is double, right is integer (Mint or Smi) | 
|  | void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | // Only smis allowed. | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ BranchIfNotSmi(R0, normal_ir_body); | 
|  | // Is Smi. | 
|  | __ SmiUntag(R0); | 
|  | __ scvtfdx(V1, R0); | 
|  | __ ldr(R0, Address(SP, 1 * target::kWordSize)); | 
|  | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); | 
|  | __ fmuld(V0, V0, V1); | 
|  | const Class& double_class = DoubleClass(); | 
|  | __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, R0, R1); | 
|  | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ BranchIfNotSmi(R0, normal_ir_body); | 
|  | // Is Smi. | 
|  | __ SmiUntag(R0); | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ scvtfdx(V0, R0); | 
|  | #else | 
|  | __ scvtfdw(V0, R0); | 
|  | #endif | 
|  | const Class& double_class = DoubleClass(); | 
|  | __ TryAllocate(double_class, normal_ir_body, Assembler::kNearJump, R0, R1); | 
|  | __ StoreDFieldToOffset(V0, R0, target::Double::value_offset()); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); | 
|  | __ fcmpd(V0, V0); | 
|  | __ LoadObject(TMP, CastHandle<Object>(FalseObject())); | 
|  | __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
|  | __ csel(R0, TMP, R0, VC); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ LoadFieldFromOffset(R0, R0, target::Double::value_offset()); | 
|  | // Mask off the sign. | 
|  | __ AndImmediate(R0, R0, 0x7FFFFFFFFFFFFFFFLL); | 
|  | // Compare with +infinity. | 
|  | __ CompareImmediate(R0, 0x7FF0000000000000LL); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); | 
|  | __ csel(R0, TMP, R0, EQ); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | const Register false_reg = R0; | 
|  | const Register true_reg = R2; | 
|  | Label is_false, is_true, is_zero; | 
|  |  | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ LoadDFieldFromOffset(V0, R0, target::Double::value_offset()); | 
|  | __ fcmpdz(V0); | 
|  | __ LoadObject(true_reg, CastHandle<Object>(TrueObject())); | 
|  | __ LoadObject(false_reg, CastHandle<Object>(FalseObject())); | 
|  | __ b(&is_false, VS);  // NaN -> false. | 
|  | __ b(&is_zero, EQ);   // Check for negative zero. | 
|  | __ b(&is_false, CS);  // >= 0 -> false. | 
|  |  | 
|  | __ Bind(&is_true); | 
|  | __ mov(R0, true_reg); | 
|  |  | 
|  | __ Bind(&is_false); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&is_zero); | 
|  | // Check for negative zero by looking at the sign bit. | 
|  | __ fmovrd(R1, V0); | 
|  | __ LsrImmediate(R1, R1, 63); | 
|  | __ tsti(R1, Immediate(1)); | 
|  | __ csel(R0, true_reg, false_reg, NE);  // Sign bit set. | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::ObjectEquals(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ ldr(R1, Address(SP, 1 * target::kWordSize)); | 
|  | __ CompareObjectRegisters(R0, R1); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); | 
|  | __ csel(R0, TMP, R0, EQ); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | static void JumpIfInteger(Assembler* assembler, | 
|  | Register cid, | 
|  | Register tmp, | 
|  | Label* target) { | 
|  | assembler->RangeCheck(cid, tmp, kSmiCid, kMintCid, Assembler::kIfInRange, | 
|  | target); | 
|  | } | 
|  |  | 
|  | static void JumpIfNotInteger(Assembler* assembler, | 
|  | Register cid, | 
|  | Register tmp, | 
|  | Label* target) { | 
|  | assembler->RangeCheck(cid, tmp, kSmiCid, kMintCid, Assembler::kIfNotInRange, | 
|  | target); | 
|  | } | 
|  |  | 
|  | static void JumpIfString(Assembler* assembler, | 
|  | Register cid, | 
|  | Register tmp, | 
|  | Label* target) { | 
|  | assembler->RangeCheck(cid, tmp, kOneByteStringCid, kTwoByteStringCid, | 
|  | Assembler::kIfInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfNotString(Assembler* assembler, | 
|  | Register cid, | 
|  | Register tmp, | 
|  | Label* target) { | 
|  | assembler->RangeCheck(cid, tmp, kOneByteStringCid, kTwoByteStringCid, | 
|  | Assembler::kIfNotInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfNotList(Assembler* assembler, | 
|  | Register cid, | 
|  | Register tmp, | 
|  | Label* target) { | 
|  | assembler->RangeCheck(cid, tmp, kArrayCid, kGrowableObjectArrayCid, | 
|  | Assembler::kIfNotInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfType(Assembler* assembler, | 
|  | Register cid, | 
|  | Register tmp, | 
|  | Label* target) { | 
|  | COMPILE_ASSERT((kFunctionTypeCid == kTypeCid + 1) && | 
|  | (kRecordTypeCid == kTypeCid + 2)); | 
|  | assembler->RangeCheck(cid, tmp, kTypeCid, kRecordTypeCid, | 
|  | Assembler::kIfInRange, target); | 
|  | } | 
|  |  | 
|  | static void JumpIfNotType(Assembler* assembler, | 
|  | Register cid, | 
|  | Register tmp, | 
|  | Label* target) { | 
|  | COMPILE_ASSERT((kFunctionTypeCid == kTypeCid + 1) && | 
|  | (kRecordTypeCid == kTypeCid + 2)); | 
|  | assembler->RangeCheck(cid, tmp, kTypeCid, kRecordTypeCid, | 
|  | Assembler::kIfNotInRange, target); | 
|  | } | 
|  |  | 
|  | // Return type quickly for simple types (not parameterized and not signature). | 
|  | void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label use_declaration_type, not_double, not_integer, not_string; | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ LoadClassIdMayBeSmi(R1, R0); | 
|  |  | 
|  | __ CompareImmediate(R1, kClosureCid); | 
|  | __ b(normal_ir_body, EQ);  // Instance is a closure. | 
|  |  | 
|  | __ CompareImmediate(R1, kRecordCid); | 
|  | __ b(normal_ir_body, EQ);  // Instance is a record. | 
|  |  | 
|  | __ CompareImmediate(R1, kNumPredefinedCids); | 
|  | __ b(&use_declaration_type, HI); | 
|  |  | 
|  | __ LoadIsolateGroup(R2); | 
|  | __ LoadFromOffset(R2, R2, target::IsolateGroup::object_store_offset()); | 
|  |  | 
|  | __ CompareImmediate(R1, kDoubleCid); | 
|  | __ b(¬_double, NE); | 
|  | __ LoadFromOffset(R0, R2, target::ObjectStore::double_type_offset()); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_double); | 
|  | JumpIfNotInteger(assembler, R1, R0, ¬_integer); | 
|  | __ LoadFromOffset(R0, R2, target::ObjectStore::int_type_offset()); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_integer); | 
|  | JumpIfNotString(assembler, R1, R0, ¬_string); | 
|  | __ LoadFromOffset(R0, R2, target::ObjectStore::string_type_offset()); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_string); | 
|  | JumpIfNotType(assembler, R1, R0, &use_declaration_type); | 
|  | __ LoadFromOffset(R0, R2, target::ObjectStore::type_type_offset()); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&use_declaration_type); | 
|  | __ LoadClassById(R2, R1); | 
|  | __ ldr(R3, FieldAddress(R2, target::Class::num_type_arguments_offset()), | 
|  | kTwoBytes); | 
|  | __ cbnz(normal_ir_body, R3); | 
|  |  | 
|  | __ LoadCompressed(R0, | 
|  | FieldAddress(R2, target::Class::declaration_type_offset())); | 
|  | __ CompareObject(R0, NullObject()); | 
|  | __ b(normal_ir_body, EQ); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | // Compares cid1 and cid2 to see if they're syntactically equivalent. If this | 
|  | // can be determined by this fast path, it jumps to either equal_* or not_equal. | 
|  | // If classes are equivalent but may be generic, then jumps to | 
|  | // equal_may_be_generic. Clobbers scratch. | 
|  | static void EquivalentClassIds(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | Label* equal_may_be_generic, | 
|  | Label* equal_not_generic, | 
|  | Label* not_equal, | 
|  | Register cid1, | 
|  | Register cid2, | 
|  | Register scratch, | 
|  | bool testing_instance_cids) { | 
|  | Label not_integer, not_integer_or_string, not_integer_or_string_or_list; | 
|  |  | 
|  | // Check if left hand side is a closure. Closures are handled in the runtime. | 
|  | __ CompareImmediate(cid1, kClosureCid); | 
|  | __ b(normal_ir_body, EQ); | 
|  |  | 
|  | // Check if left hand side is a record. Records are handled in the runtime. | 
|  | __ CompareImmediate(cid1, kRecordCid); | 
|  | __ b(normal_ir_body, EQ); | 
|  |  | 
|  | // Check whether class ids match. If class ids don't match types may still be | 
|  | // considered equivalent (e.g. multiple string implementation classes map to a | 
|  | // single String type). | 
|  | __ cmp(cid1, Operand(cid2)); | 
|  | __ b(equal_may_be_generic, EQ); | 
|  |  | 
|  | // Class ids are different. Check if we are comparing two string types (with | 
|  | // different representations), two integer types, two list types or two type | 
|  | // types. | 
|  | __ CompareImmediate(cid1, kNumPredefinedCids); | 
|  | __ b(not_equal, HI); | 
|  |  | 
|  | // Check if both are integer types. | 
|  | JumpIfNotInteger(assembler, cid1, scratch, ¬_integer); | 
|  |  | 
|  | // First type is an integer. Check if the second is an integer too. | 
|  | JumpIfInteger(assembler, cid2, scratch, equal_not_generic); | 
|  | // Integer types are only equivalent to other integer types. | 
|  | __ b(not_equal); | 
|  |  | 
|  | __ Bind(¬_integer); | 
|  | // Check if both are String types. | 
|  | JumpIfNotString(assembler, cid1, scratch, | 
|  | testing_instance_cids ? ¬_integer_or_string : not_equal); | 
|  |  | 
|  | // First type is String. Check if the second is a string too. | 
|  | JumpIfString(assembler, cid2, scratch, equal_not_generic); | 
|  | // String types are only equivalent to other String types. | 
|  | __ b(not_equal); | 
|  |  | 
|  | if (testing_instance_cids) { | 
|  | __ Bind(¬_integer_or_string); | 
|  | // Check if both are List types. | 
|  | JumpIfNotList(assembler, cid1, scratch, ¬_integer_or_string_or_list); | 
|  |  | 
|  | // First type is a List. Check if the second is a List too. | 
|  | JumpIfNotList(assembler, cid2, scratch, not_equal); | 
|  | ASSERT(compiler::target::Array::type_arguments_offset() == | 
|  | compiler::target::GrowableObjectArray::type_arguments_offset()); | 
|  | __ b(equal_may_be_generic); | 
|  |  | 
|  | __ Bind(¬_integer_or_string_or_list); | 
|  | // Check if the first type is a Type. If it is not then types are not | 
|  | // equivalent because they have different class ids and they are not String | 
|  | // or integer or List or Type. | 
|  | JumpIfNotType(assembler, cid1, scratch, not_equal); | 
|  |  | 
|  | // First type is a Type. Check if the second is a Type too. | 
|  | JumpIfType(assembler, cid2, scratch, equal_not_generic); | 
|  | // Type types are only equivalent to other Type types. | 
|  | __ b(not_equal); | 
|  | } | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldp(R0, R1, Address(SP, 0 * target::kWordSize, Address::PairOffset)); | 
|  | __ LoadClassIdMayBeSmi(R2, R1); | 
|  | __ LoadClassIdMayBeSmi(R1, R0); | 
|  |  | 
|  | Label equal_may_be_generic, equal, not_equal; | 
|  | EquivalentClassIds(assembler, normal_ir_body, &equal_may_be_generic, &equal, | 
|  | ¬_equal, R1, R2, R0, | 
|  | /* testing_instance_cids = */ true); | 
|  |  | 
|  | __ Bind(&equal_may_be_generic); | 
|  | // Classes are equivalent and neither is a closure class. | 
|  | // Check if there are no type arguments. In this case we can return true. | 
|  | // Otherwise fall through into the runtime to handle comparison. | 
|  | __ LoadClassById(R0, R1); | 
|  | __ ldr(R0, | 
|  | FieldAddress( | 
|  | R0, | 
|  | target::Class::host_type_arguments_field_offset_in_words_offset()), | 
|  | kFourBytes); | 
|  | __ CompareImmediate(R0, target::Class::kNoTypeArguments); | 
|  | __ b(&equal, EQ); | 
|  |  | 
|  | // Compare type arguments, host_type_arguments_field_offset_in_words in R0. | 
|  | __ ldp(R1, R2, Address(SP, 0 * target::kWordSize, Address::PairOffset)); | 
|  | __ AddImmediate(R1, -kHeapObjectTag); | 
|  | __ ldr(R1, Address(R1, R0, UXTX, Address::Scaled), kObjectBytes); | 
|  | __ AddImmediate(R2, -kHeapObjectTag); | 
|  | __ ldr(R2, Address(R2, R0, UXTX, Address::Scaled), kObjectBytes); | 
|  | __ CompareObjectRegisters(R1, R2); | 
|  | __ b(normal_ir_body, NE); | 
|  | // Fall through to equal case if type arguments are equal. | 
|  |  | 
|  | __ Bind(&equal); | 
|  | __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
|  | __ Ret(); | 
|  |  | 
|  | __ Bind(¬_equal); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::String_getHashCode(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ ldr(R0, FieldAddress(R0, target::String::hash_offset()), | 
|  | kUnsignedFourBytes); | 
|  | __ adds(R0, R0, Operand(R0));  // Smi tag the hash code, setting Z flag. | 
|  | __ b(normal_ir_body, EQ); | 
|  | __ ret(); | 
|  | // Hash not yet computed. | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Type_equality(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label equal, not_equal, equiv_cids_may_be_generic, equiv_cids; | 
|  |  | 
|  | __ ldp(R1, R2, Address(SP, 0 * target::kWordSize, Address::PairOffset)); | 
|  | __ CompareObjectRegisters(R1, R2); | 
|  | __ b(&equal, EQ); | 
|  |  | 
|  | // R1 might not be a Type object, so check that first (R2 should be though, | 
|  | // since this is a method on the Type class). | 
|  | __ LoadClassIdMayBeSmi(R0, R1); | 
|  | __ CompareImmediate(R0, kTypeCid); | 
|  | __ b(normal_ir_body, NE); | 
|  |  | 
|  | // Check if types are syntactically equal. | 
|  | __ LoadTypeClassId(R3, R1); | 
|  | __ LoadTypeClassId(R4, R2); | 
|  | // We are not testing instance cids, but type class cids of Type instances. | 
|  | EquivalentClassIds(assembler, normal_ir_body, &equiv_cids_may_be_generic, | 
|  | &equiv_cids, ¬_equal, R3, R4, R0, | 
|  | /* testing_instance_cids = */ false); | 
|  |  | 
|  | __ Bind(&equiv_cids_may_be_generic); | 
|  | // Compare type arguments in Type instances. | 
|  | __ LoadCompressed(R3, FieldAddress(R1, target::Type::arguments_offset())); | 
|  | __ LoadCompressed(R4, FieldAddress(R2, target::Type::arguments_offset())); | 
|  | __ CompareObjectRegisters(R3, R4); | 
|  | __ b(normal_ir_body, NE); | 
|  | // Fall through to check nullability if type arguments are equal. | 
|  |  | 
|  | // Check nullability. | 
|  | __ Bind(&equiv_cids); | 
|  | __ LoadAbstractTypeNullability(R1, R1); | 
|  | __ LoadAbstractTypeNullability(R2, R2); | 
|  | __ cmp(R1, Operand(R2)); | 
|  | __ b(¬_equal, NE); | 
|  | // Fall through to equal case if nullability is equal. | 
|  |  | 
|  | __ Bind(&equal); | 
|  | __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_equal); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::AbstractType_getHashCode(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ LoadCompressedSmi(R0, | 
|  | FieldAddress(R0, target::AbstractType::hash_offset())); | 
|  | __ cbz(normal_ir_body, R0, kObjectBytes); | 
|  | __ ret(); | 
|  | // Hash not yet computed. | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::AbstractType_equality(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldp(R1, R2, Address(SP, 0 * target::kWordSize, Address::PairOffset)); | 
|  | __ CompareObjectRegisters(R1, R2); | 
|  | __ b(normal_ir_body, NE); | 
|  |  | 
|  | __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | // Keep in sync with Instance::IdentityHashCode. | 
|  | // Note int and double never reach here because they override _identityHashCode. | 
|  | // Special cases are also not needed for null or bool because they were pre-set | 
|  | // during VM isolate finalization. | 
|  | void AsmIntrinsifier::Object_getHash(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label not_yet_computed; | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize));  // Object. | 
|  | __ ldr( | 
|  | R0, | 
|  | FieldAddress(R0, target::Object::tags_offset() + | 
|  | target::UntaggedObject::kHashTagPos / kBitsPerByte), | 
|  | kUnsignedFourBytes); | 
|  | __ cbz(¬_yet_computed, R0); | 
|  | __ SmiTag(R0); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(¬_yet_computed); | 
|  | __ LoadFromOffset(R1, THR, target::Thread::random_offset()); | 
|  | __ AndImmediate(R2, R1, 0xffffffff);  // state_lo | 
|  | __ LsrImmediate(R3, R1, 32);          // state_hi | 
|  | __ LoadImmediate(R1, 0xffffda61);     // A | 
|  | __ mul(R1, R1, R2); | 
|  | __ add(R1, R1, Operand(R3));  // new_state = (A * state_lo) + state_hi | 
|  | __ StoreToOffset(R1, THR, target::Thread::random_offset()); | 
|  | __ AndImmediate(R1, R1, 0x3fffffff); | 
|  | __ cbz(¬_yet_computed, R1); | 
|  |  | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize));  // Object. | 
|  | __ sub(R0, R0, Operand(kHeapObjectTag)); | 
|  | __ LslImmediate(R3, R1, target::UntaggedObject::kHashTagPos); | 
|  |  | 
|  | Label retry, already_set_in_r4; | 
|  | __ Bind(&retry); | 
|  | __ ldxr(R2, R0, kEightBytes); | 
|  | __ LsrImmediate(R4, R2, target::UntaggedObject::kHashTagPos); | 
|  | __ cbnz(&already_set_in_r4, R4); | 
|  | __ orr(R2, R2, Operand(R3)); | 
|  | __ stxr(R4, R2, R0, kEightBytes); | 
|  | __ cbnz(&retry, R4); | 
|  | // Fall-through with R1 containing new hash value (untagged). | 
|  | __ SmiTag(R0, R1); | 
|  | __ ret(); | 
|  | __ Bind(&already_set_in_r4); | 
|  | __ clrex(); | 
|  | __ SmiTag(R0, R4); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void GenerateSubstringMatchesSpecialization(Assembler* assembler, | 
|  | intptr_t receiver_cid, | 
|  | intptr_t other_cid, | 
|  | Label* return_true, | 
|  | Label* return_false) { | 
|  | __ SmiUntag(R1); | 
|  | __ LoadCompressedSmi( | 
|  | R8, FieldAddress(R0, target::String::length_offset()));  // this.length | 
|  | __ SmiUntag(R8); | 
|  | __ LoadCompressedSmi( | 
|  | R9, FieldAddress(R2, target::String::length_offset()));  // other.length | 
|  | __ SmiUntag(R9); | 
|  |  | 
|  | // if (other.length == 0) return true; | 
|  | __ cmp(R9, Operand(0)); | 
|  | __ b(return_true, EQ); | 
|  |  | 
|  | // if (start < 0) return false; | 
|  | __ cmp(R1, Operand(0)); | 
|  | __ b(return_false, LT); | 
|  |  | 
|  | // if (start + other.length > this.length) return false; | 
|  | __ add(R3, R1, Operand(R9)); | 
|  | __ cmp(R3, Operand(R8)); | 
|  | __ b(return_false, GT); | 
|  |  | 
|  | if (receiver_cid == kOneByteStringCid) { | 
|  | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); | 
|  | __ add(R0, R0, Operand(R1)); | 
|  | } else { | 
|  | ASSERT(receiver_cid == kTwoByteStringCid); | 
|  | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); | 
|  | __ add(R0, R0, Operand(R1)); | 
|  | __ add(R0, R0, Operand(R1)); | 
|  | } | 
|  | if (other_cid == kOneByteStringCid) { | 
|  | __ AddImmediate(R2, target::OneByteString::data_offset() - kHeapObjectTag); | 
|  | } else { | 
|  | ASSERT(other_cid == kTwoByteStringCid); | 
|  | __ AddImmediate(R2, target::TwoByteString::data_offset() - kHeapObjectTag); | 
|  | } | 
|  |  | 
|  | // i = 0 | 
|  | __ LoadImmediate(R3, 0); | 
|  |  | 
|  | // do | 
|  | Label loop; | 
|  | __ Bind(&loop); | 
|  |  | 
|  | // this.codeUnitAt(i + start) | 
|  | __ ldr(R10, Address(R0, 0), | 
|  | receiver_cid == kOneByteStringCid ? kUnsignedByte : kUnsignedTwoBytes); | 
|  | // other.codeUnitAt(i) | 
|  | __ ldr(R11, Address(R2, 0), | 
|  | other_cid == kOneByteStringCid ? kUnsignedByte : kUnsignedTwoBytes); | 
|  | __ cmp(R10, Operand(R11)); | 
|  | __ b(return_false, NE); | 
|  |  | 
|  | // i++, while (i < len) | 
|  | __ add(R3, R3, Operand(1)); | 
|  | __ add(R0, R0, Operand(receiver_cid == kOneByteStringCid ? 1 : 2)); | 
|  | __ add(R2, R2, Operand(other_cid == kOneByteStringCid ? 1 : 2)); | 
|  | __ cmp(R3, Operand(R9)); | 
|  | __ b(&loop, LT); | 
|  |  | 
|  | __ b(return_true); | 
|  | } | 
|  |  | 
|  | // bool _substringMatches(int start, String other) | 
|  | // This intrinsic handles a OneByteString or TwoByteString receiver with a | 
|  | // OneByteString other. | 
|  | void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label return_true, return_false, try_two_byte; | 
|  | __ ldr(R0, Address(SP, 2 * target::kWordSize));  // this | 
|  | __ ldr(R1, Address(SP, 1 * target::kWordSize));  // start | 
|  | __ ldr(R2, Address(SP, 0 * target::kWordSize));  // other | 
|  |  | 
|  | __ BranchIfNotSmi(R1, normal_ir_body); | 
|  |  | 
|  | __ CompareClassId(R2, kOneByteStringCid); | 
|  | __ b(normal_ir_body, NE); | 
|  |  | 
|  | __ CompareClassId(R0, kOneByteStringCid); | 
|  | __ b(normal_ir_body, NE); | 
|  |  | 
|  | GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid, | 
|  | kOneByteStringCid, &return_true, | 
|  | &return_false); | 
|  |  | 
|  | __ Bind(&try_two_byte); | 
|  | __ CompareClassId(R0, kTwoByteStringCid); | 
|  | __ b(normal_ir_body, NE); | 
|  |  | 
|  | GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid, | 
|  | kOneByteStringCid, &return_true, | 
|  | &return_false); | 
|  |  | 
|  | __ Bind(&return_true); | 
|  | __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&return_false); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label try_two_byte_string; | 
|  |  | 
|  | __ ldr(R1, Address(SP, 0 * target::kWordSize));  // Index. | 
|  | __ ldr(R0, Address(SP, 1 * target::kWordSize));  // String. | 
|  | __ BranchIfNotSmi(R1, normal_ir_body);           // Index is not a Smi. | 
|  | // Range check. | 
|  | __ LoadCompressedSmi(R2, FieldAddress(R0, target::String::length_offset())); | 
|  | __ cmp(R1, Operand(R2)); | 
|  | __ b(normal_ir_body, CS);  // Runtime throws exception. | 
|  |  | 
|  | __ CompareClassId(R0, kOneByteStringCid); | 
|  | __ b(&try_two_byte_string, NE); | 
|  | __ SmiUntag(R1); | 
|  | __ AddImmediate(R0, target::OneByteString::data_offset() - kHeapObjectTag); | 
|  | __ ldr(R1, Address(R0, R1), kUnsignedByte); | 
|  | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); | 
|  | __ b(normal_ir_body, GE); | 
|  | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); | 
|  | __ AddImmediate( | 
|  | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); | 
|  | __ ldr(R0, Address(R0, R1, UXTX, Address::Scaled)); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(&try_two_byte_string); | 
|  | __ CompareClassId(R0, kTwoByteStringCid); | 
|  | __ b(normal_ir_body, NE); | 
|  | ASSERT(kSmiTagShift == 1); | 
|  | __ AddImmediate(R0, target::TwoByteString::data_offset() - kHeapObjectTag); | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ ldr(R1, Address(R0, R1), kUnsignedTwoBytes); | 
|  | #else | 
|  | // Upper half of a compressed Smi is garbage. | 
|  | __ ldr(R1, Address(R0, R1, SXTW, Address::Unscaled), kUnsignedTwoBytes); | 
|  | #endif | 
|  | __ CompareImmediate(R1, target::Symbols::kNumberOfOneCharCodeSymbols); | 
|  | __ b(normal_ir_body, GE); | 
|  | __ ldr(R0, Address(THR, target::Thread::predefined_symbols_address_offset())); | 
|  | __ AddImmediate( | 
|  | R0, target::Symbols::kNullCharCodeSymbolOffset * target::kWordSize); | 
|  | __ ldr(R0, Address(R0, R1, UXTX, Address::Scaled)); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 0 * target::kWordSize)); | 
|  | __ LoadCompressedSmi(R0, FieldAddress(R0, target::String::length_offset())); | 
|  | __ cmp(R0, Operand(target::ToRawSmi(0)), kObjectBytes); | 
|  | __ LoadObject(R0, CastHandle<Object>(TrueObject())); | 
|  | __ LoadObject(TMP, CastHandle<Object>(FalseObject())); | 
|  | __ csel(R0, TMP, R0, NE); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label compute_hash; | 
|  | __ ldr(R1, Address(SP, 0 * target::kWordSize));  // OneByteString object. | 
|  | __ ldr(R0, FieldAddress(R1, target::String::hash_offset()), | 
|  | kUnsignedFourBytes); | 
|  | __ adds(R0, R0, Operand(R0));  // Smi tag the hash code, setting Z flag. | 
|  | __ b(&compute_hash, EQ); | 
|  | __ ret();  // Return if already computed. | 
|  |  | 
|  | __ Bind(&compute_hash); | 
|  | __ LoadCompressedSmi(R2, FieldAddress(R1, target::String::length_offset())); | 
|  | __ SmiUntag(R2); | 
|  |  | 
|  | __ mov(R3, ZR); | 
|  | __ AddImmediate(R6, R1, | 
|  | target::OneByteString::data_offset() - kHeapObjectTag); | 
|  | // R1: Instance of OneByteString. | 
|  | // R2: String length, untagged integer. | 
|  | // R3: Loop counter, untagged integer. | 
|  | // R6: String data. | 
|  | // R0: Hash code, untagged integer. | 
|  |  | 
|  | Label loop, done; | 
|  | __ Bind(&loop); | 
|  | __ cmp(R3, Operand(R2)); | 
|  | __ b(&done, EQ); | 
|  | // Add to hash code: (hash_ is uint32) | 
|  | // Get one characters (ch). | 
|  | __ ldr(R7, Address(R6, R3), kUnsignedByte); | 
|  | // R7: ch. | 
|  | __ add(R3, R3, Operand(1)); | 
|  | __ CombineHashes(R0, R7); | 
|  | __ cmp(R3, Operand(R2)); | 
|  | __ b(&loop); | 
|  |  | 
|  | __ Bind(&done); | 
|  | // Finalize. Allow a zero result to combine checks from empty string branch. | 
|  | __ FinalizeHashForSize(target::String::kHashBits, R0); | 
|  |  | 
|  | // R1: Untagged address of header word (ldxr/stxr do not support offsets). | 
|  | __ sub(R1, R1, Operand(kHeapObjectTag)); | 
|  | __ LslImmediate(R0, R0, target::UntaggedObject::kHashTagPos); | 
|  | Label retry; | 
|  | __ Bind(&retry); | 
|  | __ ldxr(R2, R1, kEightBytes); | 
|  | __ orr(R2, R2, Operand(R0)); | 
|  | __ stxr(R4, R2, R1, kEightBytes); | 
|  | __ cbnz(&retry, R4); | 
|  |  | 
|  | __ LsrImmediate(R0, R0, target::UntaggedObject::kHashTagPos); | 
|  | __ SmiTag(R0); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | // Allocates a _OneByteString or _TwoByteString. The content is not initialized. | 
|  | // 'length-reg' (R2) contains the desired length as a _Smi or _Mint. | 
|  | // Returns new string as tagged pointer in R0. | 
|  | static void TryAllocateString(Assembler* assembler, | 
|  | classid_t cid, | 
|  | intptr_t max_elements, | 
|  | Label* ok, | 
|  | Label* failure) { | 
|  | ASSERT(cid == kOneByteStringCid || cid == kTwoByteStringCid); | 
|  | const Register length_reg = R2; | 
|  | // _Mint length: call to runtime to produce error. | 
|  | __ BranchIfNotSmi(length_reg, failure); | 
|  | // negative length: call to runtime to produce error. | 
|  | // Too big: call to runtime to allocate old. | 
|  | __ CompareImmediate(length_reg, target::ToRawSmi(max_elements), kObjectBytes); | 
|  | __ b(failure, HI); | 
|  |  | 
|  | NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, failure, R0)); | 
|  | __ mov(R6, length_reg);  // Save the length register. | 
|  | if (cid == kOneByteStringCid) { | 
|  | // Untag length. | 
|  | __ SmiUntag(length_reg, length_reg); | 
|  | } else { | 
|  | // Untag length and multiply by element size -> no-op. | 
|  | ASSERT(kSmiTagSize == 1); | 
|  | } | 
|  | const intptr_t fixed_size_plus_alignment_padding = | 
|  | target::String::InstanceSize() + | 
|  | target::ObjectAlignment::kObjectAlignment - 1; | 
|  | __ AddImmediate(length_reg, fixed_size_plus_alignment_padding); | 
|  | __ andi(length_reg, length_reg, | 
|  | Immediate(~(target::ObjectAlignment::kObjectAlignment - 1))); | 
|  |  | 
|  | __ ldr(R0, Address(THR, target::Thread::top_offset())); | 
|  |  | 
|  | // length_reg: allocation size. | 
|  | __ adds(R1, R0, Operand(length_reg)); | 
|  | __ b(failure, CS);  // Fail on unsigned overflow. | 
|  |  | 
|  | // Check if the allocation fits into the remaining space. | 
|  | // R0: potential new object start. | 
|  | // R1: potential next object start. | 
|  | // R2: allocation size. | 
|  | __ ldr(R7, Address(THR, target::Thread::end_offset())); | 
|  | __ cmp(R1, Operand(R7)); | 
|  | __ b(failure, CS); | 
|  | __ CheckAllocationCanary(R0); | 
|  |  | 
|  | // Successfully allocated the object(s), now update top to point to | 
|  | // next object start and initialize the object. | 
|  | __ str(R1, Address(THR, target::Thread::top_offset())); | 
|  | __ AddImmediate(R0, kHeapObjectTag); | 
|  | // Clear last double word to ensure string comparison doesn't need to | 
|  | // specially handle remainder of strings with lengths not factors of double | 
|  | // offsets. | 
|  | __ stp(ZR, ZR, Address(R1, -2 * target::kWordSize, Address::PairOffset)); | 
|  |  | 
|  | // Initialize the tags. | 
|  | // R0: new object start as a tagged pointer. | 
|  | // R1: new object end address. | 
|  | // R2: allocation size. | 
|  | { | 
|  | const intptr_t shift = target::UntaggedObject::kTagBitsSizeTagPos - | 
|  | target::ObjectAlignment::kObjectAlignmentLog2; | 
|  |  | 
|  | __ CompareImmediate(R2, target::UntaggedObject::kSizeTagMaxSizeTag); | 
|  | __ LslImmediate(R2, R2, shift); | 
|  | __ csel(R2, R2, ZR, LS); | 
|  |  | 
|  | // Get the class index and insert it into the tags. | 
|  | // R2: size and bit tags. | 
|  | // This also clears the hash, which is in the high word of the tags. | 
|  | const uword tags = | 
|  | target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); | 
|  | __ LoadImmediate(TMP, tags); | 
|  | __ orr(R2, R2, Operand(TMP)); | 
|  | __ InitializeHeader(R2, R0); | 
|  | } | 
|  |  | 
|  | #if DART_COMPRESSED_POINTERS | 
|  | // Clear out padding caused by alignment gap between length and data. | 
|  | __ str(ZR, FieldAddress(R0, target::String::length_offset())); | 
|  | #endif | 
|  | // Set the length field using the saved length (R6). | 
|  | __ StoreCompressedIntoObjectNoBarrier( | 
|  | R0, FieldAddress(R0, target::String::length_offset()), R6); | 
|  | __ b(ok); | 
|  | } | 
|  |  | 
|  | // Arg0: OneByteString (receiver). | 
|  | // Arg1: Start index as Smi. | 
|  | // Arg2: End index as Smi. | 
|  | // The indexes must be valid. | 
|  | void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | const intptr_t kStringOffset = 2 * target::kWordSize; | 
|  | const intptr_t kStartIndexOffset = 1 * target::kWordSize; | 
|  | const intptr_t kEndIndexOffset = 0 * target::kWordSize; | 
|  | Label ok; | 
|  |  | 
|  | __ ldr(R2, Address(SP, kEndIndexOffset)); | 
|  | __ ldr(TMP, Address(SP, kStartIndexOffset)); | 
|  | __ orr(R3, R2, Operand(TMP)); | 
|  | __ BranchIfNotSmi(R3, normal_ir_body);  // 'start', 'end' not Smi. | 
|  |  | 
|  | __ sub(R2, R2, Operand(TMP)); | 
|  | TryAllocateString(assembler, kOneByteStringCid, | 
|  | target::OneByteString::kMaxNewSpaceElements, &ok, | 
|  | normal_ir_body); | 
|  | __ Bind(&ok); | 
|  | // R0: new string as tagged pointer. | 
|  | // Copy string. | 
|  | __ ldr(R3, Address(SP, kStringOffset)); | 
|  | __ ldr(R1, Address(SP, kStartIndexOffset)); | 
|  | __ SmiUntag(R1); | 
|  | __ add(R3, R3, Operand(R1)); | 
|  | // Calculate start address and untag (- 1). | 
|  | __ AddImmediate(R3, target::OneByteString::data_offset() - 1); | 
|  |  | 
|  | // R3: Start address to copy from (untagged). | 
|  | // R1: Untagged start index. | 
|  | __ ldr(R2, Address(SP, kEndIndexOffset)); | 
|  | __ SmiUntag(R2); | 
|  | __ sub(R2, R2, Operand(R1)); | 
|  |  | 
|  | // R3: Start address to copy from (untagged). | 
|  | // R2: Untagged number of bytes to copy. | 
|  | // R0: Tagged result string. | 
|  | // R6: Pointer into R3. | 
|  | // R7: Pointer into R0. | 
|  | // R1: Scratch register. | 
|  | Label loop, done; | 
|  | __ cmp(R2, Operand(0)); | 
|  | __ b(&done, LE); | 
|  | __ mov(R6, R3); | 
|  | __ mov(R7, R0); | 
|  | __ Bind(&loop); | 
|  | __ ldr(R1, Address(R6), kUnsignedByte); | 
|  | __ AddImmediate(R6, 1); | 
|  | __ sub(R2, R2, Operand(1)); | 
|  | __ cmp(R2, Operand(0)); | 
|  | __ str(R1, FieldAddress(R7, target::OneByteString::data_offset()), | 
|  | kUnsignedByte); | 
|  | __ AddImmediate(R7, 1); | 
|  | __ b(&loop, GT); | 
|  |  | 
|  | __ Bind(&done); | 
|  | __ ret(); | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R2, Address(SP, 0 * target::kWordSize));  // Value. | 
|  | __ ldr(R1, Address(SP, 1 * target::kWordSize));  // Index. | 
|  | __ ldr(R0, Address(SP, 2 * target::kWordSize));  // OneByteString. | 
|  | __ SmiUntag(R1); | 
|  | __ SmiUntag(R2); | 
|  | __ AddImmediate(R3, R0, | 
|  | target::OneByteString::data_offset() - kHeapObjectTag); | 
|  | __ str(R2, Address(R3, R1), kUnsignedByte); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R2, Address(SP, 0 * target::kWordSize));  // Value. | 
|  | __ ldr(R1, Address(SP, 1 * target::kWordSize));  // Index. | 
|  | __ ldr(R0, Address(SP, 2 * target::kWordSize));  // TwoByteString. | 
|  | // Untag index and multiply by element size -> no-op. | 
|  | __ SmiUntag(R2); | 
|  | __ AddImmediate(R3, R0, | 
|  | target::TwoByteString::data_offset() - kHeapObjectTag); | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ str(R2, Address(R3, R1), kUnsignedTwoBytes); | 
|  | #else | 
|  | // Upper half of a compressed Smi is garbage. | 
|  | __ str(R2, Address(R3, R1, SXTW, Address::Unscaled), kUnsignedTwoBytes); | 
|  | #endif | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label ok; | 
|  |  | 
|  | __ ldr(R2, Address(SP, 0 * target::kWordSize));  // Length. | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R2, R2); | 
|  | #endif | 
|  | TryAllocateString(assembler, kOneByteStringCid, | 
|  | target::OneByteString::kMaxNewSpaceElements, &ok, | 
|  | normal_ir_body); | 
|  |  | 
|  | __ Bind(&ok); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | Label ok; | 
|  |  | 
|  | __ ldr(R2, Address(SP, 0 * target::kWordSize));  // Length. | 
|  | #if defined(DART_COMPRESSED_POINTERS) | 
|  | __ sxtw(R2, R2); | 
|  | #endif | 
|  | TryAllocateString(assembler, kTwoByteStringCid, | 
|  | target::TwoByteString::kMaxNewSpaceElements, &ok, | 
|  | normal_ir_body); | 
|  |  | 
|  | __ Bind(&ok); | 
|  | __ ret(); | 
|  |  | 
|  | __ Bind(normal_ir_body); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::OneByteString_equality(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 1 * target::kWordSize));  // This. | 
|  | __ ldr(R1, Address(SP, 0 * target::kWordSize));  // Other. | 
|  |  | 
|  | StringEquality(assembler, R0, R1, R2, R3, R0, normal_ir_body, | 
|  | kOneByteStringCid); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ ldr(R0, Address(SP, 1 * target::kWordSize));  // This. | 
|  | __ ldr(R1, Address(SP, 0 * target::kWordSize));  // Other. | 
|  |  | 
|  | StringEquality(assembler, R0, R1, R2, R3, R0, normal_ir_body, | 
|  | kTwoByteStringCid); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler, | 
|  | Label* normal_ir_body, | 
|  | bool sticky) { | 
|  | if (FLAG_interpret_irregexp) return; | 
|  |  | 
|  | const intptr_t kRegExpParamOffset = 2 * target::kWordSize; | 
|  | const intptr_t kStringParamOffset = 1 * target::kWordSize; | 
|  | // start_index smi is located at offset 0. | 
|  |  | 
|  | // Incoming registers: | 
|  | // R0: Function. (Will be reloaded with the specialized matcher function.) | 
|  | // R4: Arguments descriptor. (Will be preserved.) | 
|  | // R5: Unknown. (Must be GC safe on tail call.) | 
|  |  | 
|  | // Load the specialized function pointer into R0. Leverage the fact the | 
|  | // string CIDs as well as stored function pointers are in sequence. | 
|  | __ ldr(R2, Address(SP, kRegExpParamOffset)); | 
|  | __ ldr(R1, Address(SP, kStringParamOffset)); | 
|  | __ LoadClassId(R1, R1); | 
|  | __ AddImmediate(R1, -kOneByteStringCid); | 
|  | #if !defined(DART_COMPRESSED_POINTERS) | 
|  | __ add(R1, R2, Operand(R1, LSL, target::kWordSizeLog2)); | 
|  | #else | 
|  | __ add(R1, R2, Operand(R1, LSL, target::kWordSizeLog2 - 1)); | 
|  | #endif | 
|  | __ LoadCompressed(FUNCTION_REG, | 
|  | FieldAddress(R1, target::RegExp::function_offset( | 
|  | kOneByteStringCid, sticky))); | 
|  |  | 
|  | // Registers are now set up for the lazy compile stub. It expects the function | 
|  | // in R0, the argument descriptor in R4, and IC-Data in R5. | 
|  | __ eor(R5, R5, Operand(R5)); | 
|  |  | 
|  | // Tail-call the function. | 
|  | __ LoadCompressed( | 
|  | CODE_REG, FieldAddress(FUNCTION_REG, target::Function::code_offset())); | 
|  | __ ldr(R1, | 
|  | FieldAddress(FUNCTION_REG, target::Function::entry_point_offset())); | 
|  | __ br(R1); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ LoadIsolate(R0); | 
|  | __ ldr(R0, Address(R0, target::Isolate::default_tag_offset())); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | __ LoadIsolate(R0); | 
|  | __ ldr(R0, Address(R0, target::Isolate::current_tag_offset())); | 
|  | __ ret(); | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | #if !defined(SUPPORT_TIMELINE) | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ ret(); | 
|  | #else | 
|  | // Load TimelineStream*. | 
|  | __ ldr(R0, Address(THR, target::Thread::dart_stream_offset())); | 
|  | // Load uintptr_t from TimelineStream*. | 
|  | __ ldr(R0, Address(R0, target::TimelineStream::enabled_offset())); | 
|  | __ cmp(R0, Operand(0)); | 
|  | __ LoadObject(R0, CastHandle<Object>(FalseObject())); | 
|  | __ LoadObject(TMP, CastHandle<Object>(TrueObject())); | 
|  | __ csel(R0, TMP, R0, NE); | 
|  | __ ret(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void AsmIntrinsifier::Timeline_getNextTaskId(Assembler* assembler, | 
|  | Label* normal_ir_body) { | 
|  | #if !defined(SUPPORT_TIMELINE) | 
|  | __ LoadImmediate(R0, target::ToRawSmi(0)); | 
|  | __ ret(); | 
|  | #else | 
|  | __ ldr(R0, Address(THR, target::Thread::next_task_id_offset())); | 
|  | __ add(R1, R0, Operand(1)); | 
|  | __ str(R1, Address(THR, target::Thread::next_task_id_offset())); | 
|  | __ SmiTag(R0);  // Ignore loss of precision. | 
|  | __ ret(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #undef __ | 
|  |  | 
|  | }  // namespace compiler | 
|  | }  // namespace dart | 
|  |  | 
|  | #endif  // defined(TARGET_ARCH_ARM64) |