blob: bd8577607e97b0d0494d27faf87885c091457e06 [file] [log] [blame]
// Copyright (c) 2021, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_RISCV.
#if defined(TARGET_ARCH_RISCV32) || defined(TARGET_ARCH_RISCV64)
#define SHOULD_NOT_INCLUDE_RUNTIME
#include "vm/class_id.h"
#include "vm/compiler/asm_intrinsifier.h"
#include "vm/compiler/assembler/assembler.h"
namespace dart {
namespace compiler {
// When entering intrinsics code:
// PP: Caller's ObjectPool in JIT / global ObjectPool in AOT
// CODE_REG: Callee's Code in JIT / not passed in AOT
// S4: Arguments descriptor
// RA: Return address
// The S4 and CODE_REG registers can be destroyed only if there is no slow-path,
// i.e. if the intrinsified method always executes a return.
// The FP register should not be modified, because it is used by the profiler.
// The PP and THR registers (see constants_riscv.h) must be preserved.
#define __ assembler->
// Allocate a GrowableObjectArray:: using the backing array specified.
// On stack: type argument (+1), data (+0).
void AsmIntrinsifier::GrowableArray_Allocate(Assembler* assembler,
Label* normal_ir_body) {
// The newly allocated object is returned in R0.
const intptr_t kTypeArgumentsOffset = 1 * target::kWordSize;
const intptr_t kArrayOffset = 0 * target::kWordSize;
// Try allocating in new space.
const Class& cls = GrowableObjectArrayClass();
__ TryAllocate(cls, normal_ir_body, Assembler::kFarJump, A0, A1);
// Store backing array object in growable array object.
__ lx(A1, Address(SP, kArrayOffset)); // Data argument.
// R0 is new, no barrier needed.
__ StoreCompressedIntoObjectNoBarrier(
A0, FieldAddress(A0, target::GrowableObjectArray::data_offset()), A1);
// R0: new growable array object start as a tagged pointer.
// Store the type argument field in the growable array object.
__ lx(A1, Address(SP, kTypeArgumentsOffset)); // Type argument.
__ StoreCompressedIntoObjectNoBarrier(
A0,
FieldAddress(A0, target::GrowableObjectArray::type_arguments_offset()),
A1);
// Set the length field in the growable array object to 0.
__ StoreCompressedIntoObjectNoBarrier(
A0, FieldAddress(A0, target::GrowableObjectArray::length_offset()), ZR);
__ ret(); // Returns the newly allocated object in A0.
__ Bind(normal_ir_body);
}
// Loads args from stack into A0 and A1
// Tests if they are smis, jumps to label not_smi if not.
static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
__ lx(A0, Address(SP, +1 * target::kWordSize));
__ lx(A1, Address(SP, +0 * target::kWordSize));
__ or_(TMP, A0, A1);
__ BranchIfNotSmi(TMP, not_smi, Assembler::kNearJump);
}
void AsmIntrinsifier::Integer_shl(Assembler* assembler, Label* normal_ir_body) {
const Register left = A0;
const Register right = A1;
const Register result = A0;
TestBothArgumentsSmis(assembler, normal_ir_body);
__ CompareImmediate(right, target::ToRawSmi(target::kSmiBits),
compiler::kObjectBytes);
__ BranchIf(CS, normal_ir_body, Assembler::kNearJump);
__ SmiUntag(right);
__ sll(TMP, left, right);
__ sra(TMP2, TMP, right);
__ bne(TMP2, left, normal_ir_body, Assembler::kNearJump);
__ mv(result, TMP);
__ ret();
__ Bind(normal_ir_body);
}
static void CompareIntegers(Assembler* assembler,
Label* normal_ir_body,
Condition true_condition) {
Label true_label;
TestBothArgumentsSmis(assembler, normal_ir_body);
__ CompareObjectRegisters(A0, A1);
__ BranchIf(true_condition, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_lessThan(Assembler* assembler,
Label* normal_ir_body) {
CompareIntegers(assembler, normal_ir_body, LT);
}
void AsmIntrinsifier::Integer_greaterThan(Assembler* assembler,
Label* normal_ir_body) {
CompareIntegers(assembler, normal_ir_body, GT);
}
void AsmIntrinsifier::Integer_lessEqualThan(Assembler* assembler,
Label* normal_ir_body) {
CompareIntegers(assembler, normal_ir_body, LE);
}
void AsmIntrinsifier::Integer_greaterEqualThan(Assembler* assembler,
Label* normal_ir_body) {
CompareIntegers(assembler, normal_ir_body, GE);
}
// This is called for Smi and Mint receivers. The right argument
// can be Smi, Mint or double.
void AsmIntrinsifier::Integer_equalToInteger(Assembler* assembler,
Label* normal_ir_body) {
Label true_label, check_for_mint;
// For integer receiver '===' check first.
__ lx(A0, Address(SP, 1 * target::kWordSize));
__ lx(A1, Address(SP, 0 * target::kWordSize));
__ CompareObjectRegisters(A0, A1);
__ BranchIf(EQ, &true_label, Assembler::kNearJump);
__ or_(TMP, A0, A1);
__ BranchIfNotSmi(TMP, &check_for_mint, Assembler::kNearJump);
// If R0 or R1 is not a smi do Mint checks.
// Both arguments are smi, '===' is good enough.
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
// At least one of the arguments was not Smi.
Label receiver_not_smi;
__ Bind(&check_for_mint);
__ BranchIfNotSmi(A0, &receiver_not_smi,
Assembler::kNearJump); // Check receiver.
// Left (receiver) is Smi, return false if right is not Double.
// Note that an instance of Mint never contains a value that can be
// represented by Smi.
__ CompareClassId(A1, kDoubleCid, TMP);
__ BranchIf(EQ, normal_ir_body, Assembler::kNearJump);
__ LoadObject(A0,
CastHandle<Object>(FalseObject())); // Smi == Mint -> false.
__ ret();
__ Bind(&receiver_not_smi);
// A0: receiver.
__ CompareClassId(A0, kMintCid, TMP);
__ BranchIf(NE, normal_ir_body, Assembler::kNearJump);
// Receiver is Mint, return false if right is Smi.
__ BranchIfNotSmi(A1, normal_ir_body, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
// TODO(srdjan): Implement Mint == Mint comparison.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Integer_equal(Assembler* assembler,
Label* normal_ir_body) {
Integer_equalToInteger(assembler, normal_ir_body);
}
void AsmIntrinsifier::Smi_bitLength(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Bigint_lsh(Assembler* assembler, Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Bigint_rsh(Assembler* assembler, Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Bigint_absAdd(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Bigint_absSub(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Bigint_mulAdd(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Bigint_sqrAdd(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Bigint_estimateQuotientDigit(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Montgomery_mulMod(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
// FA0: left
// FA1: right
static void PrepareDoubleOp(Assembler* assembler, Label* normal_ir_body) {
Label double_op;
__ lx(A0, Address(SP, 1 * target::kWordSize)); // Left
__ lx(A1, Address(SP, 0 * target::kWordSize)); // Right
__ fld(FA0, FieldAddress(A0, target::Double::value_offset()));
__ SmiUntag(TMP, A1);
#if XLEN == 32
__ fcvtdw(FA1, TMP);
#else
__ fcvtdl(FA1, TMP);
#endif
__ BranchIfSmi(A1, &double_op, Assembler::kNearJump);
__ CompareClassId(A1, kDoubleCid, TMP);
__ BranchIf(NE, normal_ir_body, Assembler::kNearJump);
__ fld(FA1, FieldAddress(A1, target::Double::value_offset()));
__ Bind(&double_op);
}
void AsmIntrinsifier::Double_greaterThan(Assembler* assembler,
Label* normal_ir_body) {
Label true_label;
PrepareDoubleOp(assembler, normal_ir_body);
__ fltd(TMP, FA1, FA0);
__ bnez(TMP, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Double_greaterEqualThan(Assembler* assembler,
Label* normal_ir_body) {
Label true_label;
PrepareDoubleOp(assembler, normal_ir_body);
__ fled(TMP, FA1, FA0);
__ bnez(TMP, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Double_lessThan(Assembler* assembler,
Label* normal_ir_body) {
Label true_label;
PrepareDoubleOp(assembler, normal_ir_body);
__ fltd(TMP, FA0, FA1);
__ bnez(TMP, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Double_equal(Assembler* assembler,
Label* normal_ir_body) {
Label true_label;
PrepareDoubleOp(assembler, normal_ir_body);
__ feqd(TMP, FA0, FA1);
__ bnez(TMP, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Double_lessEqualThan(Assembler* assembler,
Label* normal_ir_body) {
Label true_label;
PrepareDoubleOp(assembler, normal_ir_body);
__ fled(TMP, FA0, FA1);
__ bnez(TMP, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
__ Bind(normal_ir_body);
}
// Expects left argument to be double (receiver). Right argument is unknown.
// Both arguments are on stack.
static void DoubleArithmeticOperations(Assembler* assembler,
Label* normal_ir_body,
Token::Kind kind) {
PrepareDoubleOp(assembler, normal_ir_body);
switch (kind) {
case Token::kADD:
__ faddd(FA0, FA0, FA1);
break;
case Token::kSUB:
__ fsubd(FA0, FA0, FA1);
break;
case Token::kMUL:
__ fmuld(FA0, FA0, FA1);
break;
case Token::kDIV:
__ fdivd(FA0, FA0, FA1);
break;
default:
UNREACHABLE();
}
const Class& double_class = DoubleClass();
__ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, A0, TMP);
__ StoreDFieldToOffset(FA0, A0, target::Double::value_offset());
__ ret();
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Double_add(Assembler* assembler, Label* normal_ir_body) {
DoubleArithmeticOperations(assembler, normal_ir_body, Token::kADD);
}
void AsmIntrinsifier::Double_mul(Assembler* assembler, Label* normal_ir_body) {
DoubleArithmeticOperations(assembler, normal_ir_body, Token::kMUL);
}
void AsmIntrinsifier::Double_sub(Assembler* assembler, Label* normal_ir_body) {
DoubleArithmeticOperations(assembler, normal_ir_body, Token::kSUB);
}
void AsmIntrinsifier::Double_div(Assembler* assembler, Label* normal_ir_body) {
DoubleArithmeticOperations(assembler, normal_ir_body, Token::kDIV);
}
// Left is double, right is integer (Mint or Smi)
void AsmIntrinsifier::Double_mulFromInteger(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::DoubleFromInteger(Assembler* assembler,
Label* normal_ir_body) {
__ lx(A0, Address(SP, 0 * target::kWordSize));
__ BranchIfNotSmi(A0, normal_ir_body, Assembler::kNearJump);
// Is Smi.
__ SmiUntag(A0);
#if XLEN == 32
__ fcvtdw(FA0, A0);
#else
__ fcvtdl(FA0, A0);
#endif
const Class& double_class = DoubleClass();
__ TryAllocate(double_class, normal_ir_body, Assembler::kFarJump, A0, TMP);
__ StoreDFieldToOffset(FA0, A0, target::Double::value_offset());
__ ret();
__ Bind(normal_ir_body);
}
static void DoubleIsClass(Assembler* assembler, intx_t fclass) {
Label true_label;
__ lx(A0, Address(SP, 0 * target::kWordSize));
__ LoadDFieldFromOffset(FA0, A0, target::Double::value_offset());
__ fclassd(TMP, FA0);
__ andi(TMP, TMP, fclass);
__ bnez(TMP, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
}
void AsmIntrinsifier::Double_getIsNaN(Assembler* assembler,
Label* normal_ir_body) {
DoubleIsClass(assembler, kFClassSignallingNan | kFClassQuietNan);
}
void AsmIntrinsifier::Double_getIsInfinite(Assembler* assembler,
Label* normal_ir_body) {
DoubleIsClass(assembler, kFClassNegInfinity | kFClassPosInfinity);
}
void AsmIntrinsifier::Double_getIsNegative(Assembler* assembler,
Label* normal_ir_body) {
DoubleIsClass(assembler, kFClassNegInfinity | kFClassNegNormal |
kFClassNegSubnormal | kFClassNegZero);
}
void AsmIntrinsifier::Double_hashCode(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
// var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64;
// _state[kSTATE_LO] = state & _MASK_32;
// _state[kSTATE_HI] = state >> 32;
void AsmIntrinsifier::Random_nextState(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::ObjectEquals(Assembler* assembler,
Label* normal_ir_body) {
Label true_label;
__ lx(A0, Address(SP, 1 * target::kWordSize));
__ lx(A1, Address(SP, 0 * target::kWordSize));
__ beq(A0, A1, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
}
// Return type quickly for simple types (not parameterized and not signature).
void AsmIntrinsifier::ObjectRuntimeType(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::String_getHashCode(Assembler* assembler,
Label* normal_ir_body) {
__ lx(A0, Address(SP, 0 * target::kWordSize));
#if XLEN == 32
// Smi field.
__ lw(A0, FieldAddress(A0, target::String::hash_offset()));
#else
// uint32_t field in header.
__ lwu(A0, FieldAddress(A0, target::String::hash_offset()));
__ SmiTag(A0);
#endif
__ beqz(A0, normal_ir_body, Assembler::kNearJump);
__ ret();
// Hash not yet computed.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Type_getHashCode(Assembler* assembler,
Label* normal_ir_body) {
__ lx(A0, Address(SP, 0 * target::kWordSize));
__ LoadCompressed(A0, FieldAddress(A0, target::Type::hash_offset()));
__ beqz(A0, normal_ir_body, Assembler::kNearJump);
__ ret();
// Hash not yet computed.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::Type_equality(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::FunctionType_getHashCode(Assembler* assembler,
Label* normal_ir_body) {
__ lx(A0, Address(SP, 0 * target::kWordSize));
__ LoadCompressed(A0, FieldAddress(A0, target::FunctionType::hash_offset()));
__ beqz(A0, normal_ir_body, Assembler::kNearJump);
__ ret();
// Hash not yet computed.
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::FunctionType_equality(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
// Keep in sync with Instance::IdentityHashCode.
// Note int and double never reach here because they override _identityHashCode.
// Special cases are also not needed for null or bool because they were pre-set
// during VM isolate finalization.
void AsmIntrinsifier::Object_getHash(Assembler* assembler,
Label* normal_ir_body) {
#if XLEN == 32
UNREACHABLE();
#else
Label not_yet_computed;
__ lx(A0, Address(SP, 0 * target::kWordSize)); // Object.
__ lwu(A0, FieldAddress(
A0, target::Object::tags_offset() +
target::UntaggedObject::kHashTagPos / kBitsPerByte));
__ beqz(A0, &not_yet_computed);
__ SmiTag(A0);
__ ret();
__ Bind(&not_yet_computed);
__ LoadFromOffset(A1, THR, target::Thread::random_offset());
__ AndImmediate(T2, A1, 0xffffffff); // state_lo
__ srli(T3, A1, 32); // state_hi
__ LoadImmediate(A1, 0xffffda61); // A
__ mul(A1, A1, T2);
__ add(A1, A1, T3); // new_state = (A * state_lo) + state_hi
__ StoreToOffset(A1, THR, target::Thread::random_offset());
__ AndImmediate(A1, A1, 0x3fffffff);
__ beqz(A1, &not_yet_computed);
__ lx(A0, Address(SP, 0 * target::kWordSize)); // Object
__ subi(A0, A0, kHeapObjectTag);
__ slli(T3, A1, target::UntaggedObject::kHashTagPos);
Label retry, already_set_in_r4;
__ Bind(&retry);
__ lr(T2, Address(A0, 0));
__ srli(T4, T2, target::UntaggedObject::kHashTagPos);
__ bnez(T4, &already_set_in_r4);
__ or_(T2, T2, T3);
__ sc(T4, T2, Address(A0, 0));
__ bnez(T4, &retry);
// Fall-through with A1 containing new hash value (untagged).
__ SmiTag(A0, A1);
__ ret();
__ Bind(&already_set_in_r4);
__ SmiTag(A0, T4);
__ ret();
#endif
}
void GenerateSubstringMatchesSpecialization(Assembler* assembler,
intptr_t receiver_cid,
intptr_t other_cid,
Label* return_true,
Label* return_false) {
UNIMPLEMENTED();
}
// bool _substringMatches(int start, String other)
// This intrinsic handles a OneByteString or TwoByteString receiver with a
// OneByteString other.
void AsmIntrinsifier::StringBaseSubstringMatches(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::StringBaseCharAt(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::StringBaseIsEmpty(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::OneByteString_getHashCode(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
// Arg0: OneByteString (receiver).
// Arg1: Start index as Smi.
// Arg2: End index as Smi.
// The indexes must be valid.
void AsmIntrinsifier::OneByteString_substringUnchecked(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::WriteIntoOneByteString(Assembler* assembler,
Label* normal_ir_body) {
__ lx(A0, Address(SP, 2 * target::kWordSize)); // OneByteString.
__ lx(A1, Address(SP, 1 * target::kWordSize)); // Index.
__ lx(A2, Address(SP, 0 * target::kWordSize)); // Value.
__ SmiUntag(A1);
__ SmiUntag(A2);
__ add(A1, A1, A0);
__ sb(A2, FieldAddress(A1, target::OneByteString::data_offset()));
__ ret();
}
void AsmIntrinsifier::WriteIntoTwoByteString(Assembler* assembler,
Label* normal_ir_body) {
__ lx(A0, Address(SP, 2 * target::kWordSize)); // TwoByteString.
__ lx(A1, Address(SP, 1 * target::kWordSize)); // Index.
__ lx(A2, Address(SP, 0 * target::kWordSize)); // Value.
// Untag index and multiply by element size -> no-op.
__ SmiUntag(A2);
__ add(A1, A1, A0);
__ sh(A2, FieldAddress(A1, target::OneByteString::data_offset()));
__ ret();
}
void AsmIntrinsifier::AllocateOneByteString(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::AllocateTwoByteString(Assembler* assembler,
Label* normal_ir_body) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
// TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
static void StringEquality(Assembler* assembler,
Label* normal_ir_body,
intptr_t string_cid) {
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::OneByteString_equality(Assembler* assembler,
Label* normal_ir_body) {
StringEquality(assembler, normal_ir_body, kOneByteStringCid);
}
void AsmIntrinsifier::TwoByteString_equality(Assembler* assembler,
Label* normal_ir_body) {
StringEquality(assembler, normal_ir_body, kTwoByteStringCid);
}
void AsmIntrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler,
Label* normal_ir_body,
bool sticky) {
if (FLAG_interpret_irregexp) return;
// TODO(riscv)
__ Bind(normal_ir_body);
}
void AsmIntrinsifier::UserTag_defaultTag(Assembler* assembler,
Label* normal_ir_body) {
__ LoadIsolate(A0);
__ lx(A0, Address(A0, target::Isolate::default_tag_offset()));
__ ret();
}
void AsmIntrinsifier::Profiler_getCurrentTag(Assembler* assembler,
Label* normal_ir_body) {
__ LoadIsolate(A0);
__ lx(A0, Address(A0, target::Isolate::current_tag_offset()));
__ ret();
}
void AsmIntrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler,
Label* normal_ir_body) {
#if !defined(SUPPORT_TIMELINE)
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
#else
Label true_label;
// Load TimelineStream*.
__ lx(A0, Address(THR, target::Thread::dart_stream_offset()));
// Load uintptr_t from TimelineStream*.
__ lx(A0, Address(A0, target::TimelineStream::enabled_offset()));
__ bnez(A0, &true_label, Assembler::kNearJump);
__ LoadObject(A0, CastHandle<Object>(FalseObject()));
__ ret();
__ Bind(&true_label);
__ LoadObject(A0, CastHandle<Object>(TrueObject()));
__ ret();
#endif
}
#undef __
} // namespace compiler
} // namespace dart
#endif // defined(TARGET_ARCH_RISCV)