blob: 7a846f406e02b956f22c43016d77df1c00ecad6a [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_X64.
#if defined(TARGET_ARCH_X64)
#include "vm/code_patcher.h"
#include "vm/cpu.h"
#include "vm/dart_entry.h"
#include "vm/instructions.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/raw_object.h"
#include "vm/reverse_pc_lookup_cache.h"
namespace dart {
class UnoptimizedCall : public ValueObject {
public:
UnoptimizedCall(uword return_address, const Code& code)
: object_pool_(ObjectPool::Handle(code.GetObjectPool())),
code_index_(-1),
argument_index_(-1) {
uword pc = return_address;
// callq [CODE_REG + entry_point_offset]
static int16_t call_pattern[] = {
0x41, 0xff, 0x54, 0x24, -1,
};
if (MatchesPattern(pc, call_pattern, ARRAY_SIZE(call_pattern))) {
pc -= ARRAY_SIZE(call_pattern);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
// movq CODE_REG, [PP + offset]
static int16_t load_code_disp8[] = {
0x4d, 0x8b, 0x67, -1, //
};
static int16_t load_code_disp32[] = {
0x4d, 0x8b, 0xa7, -1, -1, -1, -1,
};
if (MatchesPattern(pc, load_code_disp8, ARRAY_SIZE(load_code_disp8))) {
pc -= ARRAY_SIZE(load_code_disp8);
code_index_ = IndexFromPPLoadDisp8(pc + 3);
} else if (MatchesPattern(pc, load_code_disp32,
ARRAY_SIZE(load_code_disp32))) {
pc -= ARRAY_SIZE(load_code_disp32);
code_index_ = IndexFromPPLoadDisp32(pc + 3);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
ASSERT(Object::Handle(object_pool_.ObjectAt(code_index_)).IsCode());
// movq RBX, [PP + offset]
static int16_t load_argument_disp8[] = {
0x49, 0x8b, 0x5f, -1, //
};
static int16_t load_argument_disp32[] = {
0x49, 0x8b, 0x9f, -1, -1, -1, -1,
};
if (MatchesPattern(pc, load_argument_disp8,
ARRAY_SIZE(load_argument_disp8))) {
pc -= ARRAY_SIZE(load_argument_disp8);
argument_index_ = IndexFromPPLoadDisp8(pc + 3);
} else if (MatchesPattern(pc, load_argument_disp32,
ARRAY_SIZE(load_argument_disp32))) {
pc -= ARRAY_SIZE(load_argument_disp32);
argument_index_ = IndexFromPPLoadDisp32(pc + 3);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
}
intptr_t argument_index() const { return argument_index_; }
CodePtr target() const {
Code& code = Code::Handle();
code ^= object_pool_.ObjectAt(code_index_);
return code.ptr();
}
void set_target(const Code& target) const {
object_pool_.SetObjectAt(code_index_, target);
// No need to flush the instruction cache, since the code is not modified.
}
protected:
const ObjectPool& object_pool_;
intptr_t code_index_;
intptr_t argument_index_;
private:
uword start_;
DISALLOW_IMPLICIT_CONSTRUCTORS(UnoptimizedCall);
};
class NativeCall : public UnoptimizedCall {
public:
NativeCall(uword return_address, const Code& code)
: UnoptimizedCall(return_address, code) {}
NativeFunction native_function() const {
return reinterpret_cast<NativeFunction>(
object_pool_.RawValueAt(argument_index()));
}
void set_native_function(NativeFunction func) const {
object_pool_.SetRawValueAt(argument_index(), reinterpret_cast<uword>(func));
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(NativeCall);
};
class InstanceCall : public UnoptimizedCall {
public:
InstanceCall(uword return_address, const Code& code)
: UnoptimizedCall(return_address, code) {
#if defined(DEBUG)
Object& test_data = Object::Handle(data());
ASSERT(test_data.IsArray() || test_data.IsICData() ||
test_data.IsMegamorphicCache());
if (test_data.IsICData()) {
ASSERT(ICData::Cast(test_data).NumArgsTested() > 0);
}
#endif // DEBUG
}
ObjectPtr data() const { return object_pool_.ObjectAt(argument_index()); }
void set_data(const Object& data) const {
ASSERT(data.IsArray() || data.IsICData() || data.IsMegamorphicCache());
object_pool_.SetObjectAt(argument_index(), data);
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(InstanceCall);
};
class UnoptimizedStaticCall : public UnoptimizedCall {
public:
UnoptimizedStaticCall(uword return_address, const Code& caller_code)
: UnoptimizedCall(return_address, caller_code) {
#if defined(DEBUG)
ICData& test_ic_data = ICData::Handle();
test_ic_data ^= ic_data();
ASSERT(test_ic_data.NumArgsTested() >= 0);
#endif // DEBUG
}
ObjectPtr ic_data() const { return object_pool_.ObjectAt(argument_index()); }
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(UnoptimizedStaticCall);
};
// The expected pattern of a call where the target is loaded from
// the object pool.
class PoolPointerCall : public ValueObject {
public:
explicit PoolPointerCall(uword return_address, const Code& caller_code)
: object_pool_(ObjectPool::Handle(caller_code.GetObjectPool())),
code_index_(-1) {
uword pc = return_address;
// callq [CODE_REG + entry_point_offset]
static int16_t call_pattern[] = {
0x41, 0xff, 0x54, 0x24, -1,
};
if (MatchesPattern(pc, call_pattern, ARRAY_SIZE(call_pattern))) {
pc -= ARRAY_SIZE(call_pattern);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
// movq CODE_REG, [PP + offset]
static int16_t load_code_disp8[] = {
0x4d, 0x8b, 0x67, -1, //
};
static int16_t load_code_disp32[] = {
0x4d, 0x8b, 0xa7, -1, -1, -1, -1,
};
if (MatchesPattern(pc, load_code_disp8, ARRAY_SIZE(load_code_disp8))) {
pc -= ARRAY_SIZE(load_code_disp8);
code_index_ = IndexFromPPLoadDisp8(pc + 3);
} else if (MatchesPattern(pc, load_code_disp32,
ARRAY_SIZE(load_code_disp32))) {
pc -= ARRAY_SIZE(load_code_disp32);
code_index_ = IndexFromPPLoadDisp32(pc + 3);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
ASSERT(Object::Handle(object_pool_.ObjectAt(code_index_)).IsCode());
}
CodePtr Target() const {
Code& code = Code::Handle();
code ^= object_pool_.ObjectAt(code_index_);
return code.ptr();
}
void SetTarget(const Code& target) const {
object_pool_.SetObjectAt(code_index_, target);
// No need to flush the instruction cache, since the code is not modified.
}
protected:
const ObjectPool& object_pool_;
intptr_t code_index_;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(PoolPointerCall);
};
// Instance call that can switch between a direct monomorphic call, an IC call,
// and a megamorphic call.
// load guarded cid load ICData load MegamorphicCache
// load monomorphic target <-> load ICLookup stub -> load MMLookup stub
// call target.entry call stub.entry call stub.entry
class SwitchableCallBase : public ValueObject {
public:
explicit SwitchableCallBase(const ObjectPool& object_pool)
: object_pool_(object_pool), target_index_(-1), data_index_(-1) {}
intptr_t data_index() const { return data_index_; }
intptr_t target_index() const { return target_index_; }
ObjectPtr data() const { return object_pool_.ObjectAt(data_index()); }
void SetData(const Object& data) const {
ASSERT(!Object::Handle(object_pool_.ObjectAt(data_index())).IsCode());
object_pool_.SetObjectAt(data_index(), data);
// No need to flush the instruction cache, since the code is not modified.
}
protected:
const ObjectPool& object_pool_;
intptr_t target_index_;
intptr_t data_index_;
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(SwitchableCallBase);
};
// See [SwitchableCallBase] for a switchable calls in general.
//
// The target slot is always a [Code] object: Either the code of the
// monomorphic function or a stub code.
class SwitchableCall : public SwitchableCallBase {
public:
SwitchableCall(uword return_address, const Code& caller_code)
: SwitchableCallBase(ObjectPool::Handle(caller_code.GetObjectPool())) {
ASSERT(caller_code.ContainsInstructionAt(return_address));
uword pc = return_address;
// callq RCX
static int16_t call_pattern[] = {
0xff, 0xd1, //
};
if (MatchesPattern(pc, call_pattern, ARRAY_SIZE(call_pattern))) {
pc -= ARRAY_SIZE(call_pattern);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
// movq RBX, [PP + offset]
static int16_t load_data_disp8[] = {
0x49, 0x8b, 0x5f, -1, //
};
static int16_t load_data_disp32[] = {
0x49, 0x8b, 0x9f, -1, -1, -1, -1,
};
if (MatchesPattern(pc, load_data_disp8, ARRAY_SIZE(load_data_disp8))) {
pc -= ARRAY_SIZE(load_data_disp8);
data_index_ = IndexFromPPLoadDisp8(pc + 3);
} else if (MatchesPattern(pc, load_data_disp32,
ARRAY_SIZE(load_data_disp32))) {
pc -= ARRAY_SIZE(load_data_disp32);
data_index_ = IndexFromPPLoadDisp32(pc + 3);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
ASSERT(!Object::Handle(object_pool_.ObjectAt(data_index_)).IsCode());
// movq rcx, [CODE_REG + entrypoint_offset]
static int16_t load_entry_pattern[] = {
0x49, 0x8b, 0x4c, 0x24, -1,
};
if (MatchesPattern(pc, load_entry_pattern,
ARRAY_SIZE(load_entry_pattern))) {
pc -= ARRAY_SIZE(load_entry_pattern);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
// movq CODE_REG, [PP + offset]
static int16_t load_code_disp8[] = {
0x4d, 0x8b, 0x67, -1, //
};
static int16_t load_code_disp32[] = {
0x4d, 0x8b, 0xa7, -1, -1, -1, -1,
};
if (MatchesPattern(pc, load_code_disp8, ARRAY_SIZE(load_code_disp8))) {
pc -= ARRAY_SIZE(load_code_disp8);
target_index_ = IndexFromPPLoadDisp8(pc + 3);
} else if (MatchesPattern(pc, load_code_disp32,
ARRAY_SIZE(load_code_disp32))) {
pc -= ARRAY_SIZE(load_code_disp32);
target_index_ = IndexFromPPLoadDisp32(pc + 3);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
ASSERT(Object::Handle(object_pool_.ObjectAt(target_index_)).IsCode());
}
void SetTarget(const Code& target) const {
ASSERT(Object::Handle(object_pool_.ObjectAt(target_index())).IsCode());
object_pool_.SetObjectAt(target_index(), target);
// No need to flush the instruction cache, since the code is not modified.
}
uword target_entry() const {
return Code::Handle(Code::RawCast(object_pool_.ObjectAt(target_index())))
.MonomorphicEntryPoint();
}
};
// See [SwitchableCallBase] for a switchable calls in general.
//
// The target slot is always a direct entrypoint address: Either the entry point
// of the monomorphic function or a stub entry point.
class BareSwitchableCall : public SwitchableCallBase {
public:
explicit BareSwitchableCall(uword return_address)
: SwitchableCallBase(ObjectPool::Handle(
IsolateGroup::Current()->object_store()->global_object_pool())) {
uword pc = return_address;
// callq RCX
static int16_t call_pattern[] = {
0xff, 0xd1, //
};
if (MatchesPattern(pc, call_pattern, ARRAY_SIZE(call_pattern))) {
pc -= ARRAY_SIZE(call_pattern);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
// movq RBX, [PP + offset]
static int16_t load_data_disp8[] = {
0x49, 0x8b, 0x5f, -1, //
};
static int16_t load_data_disp32[] = {
0x49, 0x8b, 0x9f, -1, -1, -1, -1,
};
if (MatchesPattern(pc, load_data_disp8, ARRAY_SIZE(load_data_disp8))) {
pc -= ARRAY_SIZE(load_data_disp8);
data_index_ = IndexFromPPLoadDisp8(pc + 3);
} else if (MatchesPattern(pc, load_data_disp32,
ARRAY_SIZE(load_data_disp32))) {
pc -= ARRAY_SIZE(load_data_disp32);
data_index_ = IndexFromPPLoadDisp32(pc + 3);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
ASSERT(!Object::Handle(object_pool_.ObjectAt(data_index_)).IsCode());
// movq RCX, [PP + offset]
static int16_t load_code_disp8[] = {
0x49, 0x8b, 0x4f, -1, //
};
static int16_t load_code_disp32[] = {
0x49, 0x8b, 0x8f, -1, -1, -1, -1,
};
if (MatchesPattern(pc, load_code_disp8, ARRAY_SIZE(load_code_disp8))) {
pc -= ARRAY_SIZE(load_code_disp8);
target_index_ = IndexFromPPLoadDisp8(pc + 3);
} else if (MatchesPattern(pc, load_code_disp32,
ARRAY_SIZE(load_code_disp32))) {
pc -= ARRAY_SIZE(load_code_disp32);
target_index_ = IndexFromPPLoadDisp32(pc + 3);
} else {
FATAL1("Failed to decode at %" Px, pc);
}
ASSERT(object_pool_.TypeAt(target_index_) ==
ObjectPool::EntryType::kImmediate);
}
void SetTarget(const Code& target) const {
ASSERT(object_pool_.TypeAt(target_index()) ==
ObjectPool::EntryType::kImmediate);
object_pool_.SetRawValueAt(target_index(), target.MonomorphicEntryPoint());
}
uword target_entry() const { return object_pool_.RawValueAt(target_index()); }
};
CodePtr CodePatcher::GetStaticCallTargetAt(uword return_address,
const Code& code) {
ASSERT(code.ContainsInstructionAt(return_address));
PoolPointerCall call(return_address, code);
return call.Target();
}
void CodePatcher::PatchStaticCallAt(uword return_address,
const Code& code,
const Code& new_target) {
PatchPoolPointerCallAt(return_address, code, new_target);
}
void CodePatcher::PatchPoolPointerCallAt(uword return_address,
const Code& code,
const Code& new_target) {
ASSERT(code.ContainsInstructionAt(return_address));
PoolPointerCall call(return_address, code);
call.SetTarget(new_target);
}
CodePtr CodePatcher::GetInstanceCallAt(uword return_address,
const Code& caller_code,
Object* data) {
ASSERT(caller_code.ContainsInstructionAt(return_address));
InstanceCall call(return_address, caller_code);
if (data != NULL) {
*data = call.data();
}
return call.target();
}
void CodePatcher::PatchInstanceCallAt(uword return_address,
const Code& caller_code,
const Object& data,
const Code& target) {
auto thread = Thread::Current();
thread->isolate_group()->RunWithStoppedMutators([&]() {
PatchInstanceCallAtWithMutatorsStopped(thread, return_address, caller_code,
data, target);
});
}
void CodePatcher::PatchInstanceCallAtWithMutatorsStopped(
Thread* thread,
uword return_address,
const Code& caller_code,
const Object& data,
const Code& target) {
ASSERT(caller_code.ContainsInstructionAt(return_address));
InstanceCall call(return_address, caller_code);
call.set_data(data);
call.set_target(target);
}
void CodePatcher::InsertDeoptimizationCallAt(uword start) {
UNREACHABLE();
}
FunctionPtr CodePatcher::GetUnoptimizedStaticCallAt(uword return_address,
const Code& caller_code,
ICData* ic_data_result) {
ASSERT(caller_code.ContainsInstructionAt(return_address));
UnoptimizedStaticCall static_call(return_address, caller_code);
ICData& ic_data = ICData::Handle();
ic_data ^= static_call.ic_data();
if (ic_data_result != NULL) {
*ic_data_result = ic_data.ptr();
}
return ic_data.GetTargetAt(0);
}
void CodePatcher::PatchSwitchableCallAt(uword return_address,
const Code& caller_code,
const Object& data,
const Code& target) {
auto thread = Thread::Current();
// Ensure all threads are suspended as we update data and target pair.
thread->isolate_group()->RunWithStoppedMutators([&]() {
PatchSwitchableCallAtWithMutatorsStopped(thread, return_address,
caller_code, data, target);
});
}
void CodePatcher::PatchSwitchableCallAtWithMutatorsStopped(
Thread* thread,
uword return_address,
const Code& caller_code,
const Object& data,
const Code& target) {
if (FLAG_precompiled_mode) {
BareSwitchableCall call(return_address);
call.SetData(data);
call.SetTarget(target);
} else {
SwitchableCall call(return_address, caller_code);
call.SetData(data);
call.SetTarget(target);
}
}
uword CodePatcher::GetSwitchableCallTargetEntryAt(uword return_address,
const Code& caller_code) {
if (FLAG_precompiled_mode) {
BareSwitchableCall call(return_address);
return call.target_entry();
} else {
SwitchableCall call(return_address, caller_code);
return call.target_entry();
}
}
ObjectPtr CodePatcher::GetSwitchableCallDataAt(uword return_address,
const Code& caller_code) {
if (FLAG_precompiled_mode) {
BareSwitchableCall call(return_address);
return call.data();
} else {
SwitchableCall call(return_address, caller_code);
return call.data();
}
}
void CodePatcher::PatchNativeCallAt(uword return_address,
const Code& caller_code,
NativeFunction target,
const Code& trampoline) {
Thread::Current()->isolate_group()->RunWithStoppedMutators([&]() {
ASSERT(caller_code.ContainsInstructionAt(return_address));
NativeCall call(return_address, caller_code);
call.set_target(trampoline);
call.set_native_function(target);
});
}
CodePtr CodePatcher::GetNativeCallAt(uword return_address,
const Code& caller_code,
NativeFunction* target) {
ASSERT(caller_code.ContainsInstructionAt(return_address));
NativeCall call(return_address, caller_code);
*target = call.native_function();
return call.target();
}
} // namespace dart
#endif // defined TARGET_ARCH_X64