| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "platform/utils.h" |
| |
| #include "platform/allocation.h" |
| #include "platform/globals.h" |
| |
| namespace dart { |
| |
| // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., |
| // figure 3-3, page 48, where the function is called clp2. |
| uintptr_t Utils::RoundUpToPowerOfTwo(uintptr_t x) { |
| x = x - 1; |
| x = x | (x >> 1); |
| x = x | (x >> 2); |
| x = x | (x >> 4); |
| x = x | (x >> 8); |
| x = x | (x >> 16); |
| #if defined(ARCH_IS_64_BIT) |
| x = x | (x >> 32); |
| #endif // defined(ARCH_IS_64_BIT) |
| return x + 1; |
| } |
| |
| int Utils::CountOneBits64(uint64_t x) { |
| // Apparently there are x64 chips without popcount. |
| #if __GNUC__ && !defined(HOST_ARCH_IA32) && !defined(HOST_ARCH_X64) |
| return __builtin_popcountll(x); |
| #else |
| return CountOneBits32(static_cast<uint32_t>(x)) + |
| CountOneBits32(static_cast<uint32_t>(x >> 32)); |
| #endif |
| } |
| |
| int Utils::CountOneBits32(uint32_t x) { |
| // Apparently there are x64 chips without popcount. |
| #if __GNUC__ && !defined(HOST_ARCH_IA32) && !defined(HOST_ARCH_X64) |
| return __builtin_popcount(x); |
| #else |
| // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., |
| // figure 5-2, page 66, where the function is called pop. |
| x = x - ((x >> 1) & 0x55555555); |
| x = (x & 0x33333333) + ((x >> 2) & 0x33333333); |
| x = (x + (x >> 4)) & 0x0F0F0F0F; |
| x = x + (x >> 8); |
| x = x + (x >> 16); |
| return static_cast<int>(x & 0x0000003F); |
| #endif |
| } |
| |
| int Utils::CountLeadingZeros64(uint64_t x) { |
| #if defined(ARCH_IS_32_BIT) |
| const uint32_t x_hi = static_cast<uint32_t>(x >> 32); |
| if (x_hi != 0) { |
| return CountLeadingZeros32(x_hi); |
| } |
| return 32 + CountLeadingZeros32(static_cast<uint32_t>(x)); |
| #elif defined(DART_HOST_OS_WINDOWS) |
| unsigned long position; // NOLINT |
| return (_BitScanReverse64(&position, x) == 0) |
| ? 64 |
| : 63 - static_cast<int>(position); |
| #else |
| return x == 0 ? 64 : __builtin_clzll(x); |
| #endif |
| } |
| |
| int Utils::CountLeadingZeros32(uint32_t x) { |
| #if defined(DART_HOST_OS_WINDOWS) |
| unsigned long position; // NOLINT |
| return (_BitScanReverse(&position, x) == 0) ? 32 |
| : 31 - static_cast<int>(position); |
| #else |
| return x == 0 ? 32 : __builtin_clz(x); |
| #endif |
| } |
| |
| int Utils::CountTrailingZeros64(uint64_t x) { |
| #if defined(ARCH_IS_32_BIT) |
| const uint32_t x_lo = static_cast<uint32_t>(x); |
| if (x_lo != 0) { |
| return CountTrailingZeros32(x_lo); |
| } |
| return 32 + CountTrailingZeros32(static_cast<uint32_t>(x >> 32)); |
| #elif defined(DART_HOST_OS_WINDOWS) |
| unsigned long position; // NOLINT |
| return (_BitScanForward64(&position, x) == 0) ? 64 |
| : static_cast<int>(position); |
| #else |
| return x == 0 ? 64 : __builtin_ctzll(x); |
| #endif |
| } |
| |
| int Utils::CountTrailingZeros32(uint32_t x) { |
| #if defined(DART_HOST_OS_WINDOWS) |
| unsigned long position; // NOLINT |
| return (_BitScanForward(&position, x) == 0) ? 32 : static_cast<int>(position); |
| #else |
| return x == 0 ? 32 : __builtin_ctz(x); |
| #endif |
| } |
| |
| uint64_t Utils::ReverseBits64(uint64_t x) { |
| const uint64_t one = static_cast<uint64_t>(1); |
| uint64_t result = 0; |
| for (uint64_t rbit = one << 63; x != 0; x >>= 1) { |
| if ((x & one) != 0) result |= rbit; |
| rbit >>= 1; |
| } |
| return result; |
| } |
| |
| uint32_t Utils::ReverseBits32(uint32_t x) { |
| const uint32_t one = static_cast<uint32_t>(1); |
| uint32_t result = 0; |
| for (uint32_t rbit = one << 31; x != 0; x >>= 1) { |
| if ((x & one) != 0) result |= rbit; |
| rbit >>= 1; |
| } |
| return result; |
| } |
| |
| // Implementation according to H.S.Warren's "Hacker's Delight" |
| // (Addison Wesley, 2002) Chapter 10 and T.Grablund, P.L.Montogomery's |
| // "Division by Invariant Integers Using Multiplication" (PLDI 1994). |
| void Utils::CalculateMagicAndShiftForDivRem(int64_t divisor, |
| int64_t* magic, |
| int64_t* shift) { |
| ASSERT(divisor <= -2 || divisor >= 2); |
| /* The magic number M and shift S can be calculated in the following way: |
| * Let nc be the most positive value of numerator(n) such that nc = kd - 1, |
| * where divisor(d) >= 2. |
| * Let nc be the most negative value of numerator(n) such that nc = kd + 1, |
| * where divisor(d) <= -2. |
| * Thus nc can be calculated like: |
| * nc = exp + exp % d - 1, where d >= 2 and exp = 2^63. |
| * nc = -exp + (exp + 1) % d, where d >= 2 and exp = 2^63. |
| * |
| * So the shift p is the smallest p satisfying |
| * 2^p > nc * (d - 2^p % d), where d >= 2 |
| * 2^p > nc * (d + 2^p % d), where d <= -2. |
| * |
| * The magic number M is calculated by |
| * M = (2^p + d - 2^p % d) / d, where d >= 2 |
| * M = (2^p - d - 2^p % d) / d, where d <= -2. |
| */ |
| int64_t p = 63; |
| const uint64_t exp = 1LL << 63; |
| |
| // Initialize the computations. |
| uint64_t abs_d = (divisor >= 0) ? divisor : -static_cast<uint64_t>(divisor); |
| uint64_t sign_bit = static_cast<uint64_t>(divisor) >> 63; |
| uint64_t tmp = exp + sign_bit; |
| uint64_t abs_nc = tmp - 1 - (tmp % abs_d); |
| uint64_t quotient1 = exp / abs_nc; |
| uint64_t remainder1 = exp % abs_nc; |
| uint64_t quotient2 = exp / abs_d; |
| uint64_t remainder2 = exp % abs_d; |
| |
| // To avoid handling both positive and negative divisor, |
| // "Hacker's Delight" introduces a method to handle these |
| // two cases together to avoid duplication. |
| uint64_t delta; |
| do { |
| p++; |
| quotient1 = 2 * quotient1; |
| remainder1 = 2 * remainder1; |
| if (remainder1 >= abs_nc) { |
| quotient1++; |
| remainder1 = remainder1 - abs_nc; |
| } |
| quotient2 = 2 * quotient2; |
| remainder2 = 2 * remainder2; |
| if (remainder2 >= abs_d) { |
| quotient2++; |
| remainder2 = remainder2 - abs_d; |
| } |
| delta = abs_d - remainder2; |
| } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); |
| |
| *magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1); |
| *shift = p - 64; |
| } |
| |
| // This implementation is based on the public domain MurmurHash |
| // version 2.0. The constants M and R have been determined |
| // to work well experimentally. |
| static constexpr uint32_t kStringHashM = 0x5bd1e995; |
| static constexpr int kStringHashR = 24; |
| |
| // hash and part must be lvalues. |
| #define MIX(hash, part) \ |
| { \ |
| (part) *= kStringHashM; \ |
| (part) ^= (part) >> kStringHashR; \ |
| (part) *= kStringHashM; \ |
| (hash) *= kStringHashM; \ |
| (hash) ^= (part); \ |
| } |
| |
| uint32_t Utils::StringHash(const void* data, int length) { |
| int size = length; |
| uint32_t hash = size; |
| |
| auto cursor = reinterpret_cast<const uint8_t*>(data); |
| |
| if (size >= kInt32Size) { |
| const intptr_t misalignment = |
| reinterpret_cast<intptr_t>(cursor) % kInt32Size; |
| if (misalignment > 0) { |
| // Stores 4-byte values starting from the start of the string to mimic |
| // the algorithm on aligned data. |
| uint32_t data_window = 0; |
| |
| // Shift sizes for adjusting the data window when adding the next aligned |
| // piece of data. |
| const uint32_t sr = misalignment * kBitsPerByte; |
| const uint32_t sl = kBitsPerInt32 - sr; |
| |
| const intptr_t pre_alignment_length = kInt32Size - misalignment; |
| switch (pre_alignment_length) { |
| case 3: |
| data_window |= cursor[2] << 16; |
| FALL_THROUGH; |
| case 2: |
| data_window |= cursor[1] << 8; |
| FALL_THROUGH; |
| case 1: |
| data_window |= cursor[0]; |
| } |
| cursor += pre_alignment_length; |
| size -= pre_alignment_length; |
| |
| // Mix four bytes at a time now that we're at an aligned spot. |
| for (; size >= kInt32Size; cursor += kInt32Size, size -= kInt32Size) { |
| uint32_t aligned_part = *reinterpret_cast<const uint32_t*>(cursor); |
| data_window |= (aligned_part << sl); |
| MIX(hash, data_window); |
| data_window = aligned_part >> sr; |
| } |
| |
| if (size >= misalignment) { |
| // There's one more full window in the data. We'll let the normal tail |
| // code handle any partial window. |
| switch (misalignment) { |
| case 3: |
| data_window |= cursor[2] << (16 + sl); |
| FALL_THROUGH; |
| case 2: |
| data_window |= cursor[1] << (8 + sl); |
| FALL_THROUGH; |
| case 1: |
| data_window |= cursor[0] << sl; |
| } |
| MIX(hash, data_window); |
| cursor += misalignment; |
| size -= misalignment; |
| } else { |
| // This is a partial window, so just xor and multiply by M. |
| switch (size) { |
| case 2: |
| data_window |= cursor[1] << (8 + sl); |
| FALL_THROUGH; |
| case 1: |
| data_window |= cursor[0] << sl; |
| } |
| hash ^= data_window; |
| hash *= kStringHashM; |
| cursor += size; |
| size = 0; |
| } |
| } else { |
| // Mix four bytes at a time into the hash. |
| for (; size >= kInt32Size; size -= kInt32Size, cursor += kInt32Size) { |
| uint32_t part = *reinterpret_cast<const uint32_t*>(cursor); |
| MIX(hash, part); |
| } |
| } |
| } |
| |
| // Handle the last few bytes of the string if any. |
| switch (size) { |
| case 3: |
| hash ^= cursor[2] << 16; |
| FALL_THROUGH; |
| case 2: |
| hash ^= cursor[1] << 8; |
| FALL_THROUGH; |
| case 1: |
| hash ^= cursor[0]; |
| hash *= kStringHashM; |
| } |
| |
| // Do a few final mixes of the hash to ensure the last few bytes are |
| // well-incorporated. |
| hash ^= hash >> 13; |
| hash *= kStringHashM; |
| hash ^= hash >> 15; |
| return hash; |
| } |
| |
| #undef MIX |
| |
| uint32_t Utils::WordHash(intptr_t key) { |
| // TODO(iposva): Need to check hash spreading. |
| // This example is from http://www.concentric.net/~Ttwang/tech/inthash.htm |
| // via. http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm |
| uword a = static_cast<uword>(key); |
| a = (a + 0x7ed55d16) + (a << 12); |
| a = (a ^ 0xc761c23c) ^ (a >> 19); |
| a = (a + 0x165667b1) + (a << 5); |
| a = (a + 0xd3a2646c) ^ (a << 9); |
| a = (a + 0xfd7046c5) + (a << 3); |
| a = (a ^ 0xb55a4f09) ^ (a >> 16); |
| return static_cast<uint32_t>(a); |
| } |
| |
| char* Utils::SCreate(const char* format, ...) { |
| va_list args; |
| va_start(args, format); |
| char* buffer = VSCreate(format, args); |
| va_end(args); |
| return buffer; |
| } |
| |
| char* Utils::VSCreate(const char* format, va_list args) { |
| // Measure. |
| va_list measure_args; |
| va_copy(measure_args, args); |
| intptr_t len = VSNPrint(NULL, 0, format, measure_args); |
| va_end(measure_args); |
| |
| char* buffer = reinterpret_cast<char*>(malloc(len + 1)); |
| ASSERT(buffer != NULL); |
| |
| // Print. |
| va_list print_args; |
| va_copy(print_args, args); |
| VSNPrint(buffer, len + 1, format, print_args); |
| va_end(print_args); |
| return buffer; |
| } |
| |
| Utils::CStringUniquePtr Utils::CreateCStringUniquePtr(char* str) { |
| return std::unique_ptr<char, decltype(std::free)*>{str, std::free}; |
| } |
| |
| } // namespace dart |