blob: 2064fcc875de4087807e4dab4b17e77464e0f482 [file] [log] [blame]
// Copyright (c) 2020, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_PLATFORM_PRIORITY_QUEUE_H_
#define RUNTIME_PLATFORM_PRIORITY_QUEUE_H_
#include "platform/assert.h"
#include "platform/globals.h"
#include "platform/hashmap.h"
#include "platform/utils.h"
namespace dart {
// A min-priority queue with deletion support.
//
// The [PriorityQueue] allows insertion of entries with a priority [P] and a
// value [V]. The minimum element can be queried in O(1) time.
// Insertion/Deletion operations have O(N) time.
//
// In addition to the normal insert/minimum/remove-minimum operations this
// priority queue allows deletion-by-value. We have therefore an invariant
// is that the value must be unique amongst all entries.
template <typename P, typename V>
class PriorityQueue {
public:
static const intptr_t kMinimumSize = 16;
struct Entry {
P priority;
V value;
};
PriorityQueue() : hashmap_(&MatchFun, kMinimumSize) {
min_heap_size_ = kMinimumSize;
min_heap_ =
reinterpret_cast<Entry*>(malloc(sizeof(Entry) * min_heap_size_));
if (min_heap_ == nullptr) FATAL("Cannot allocate memory.");
size_ = 0;
}
~PriorityQueue() { free(min_heap_); }
// Whether the queue is empty.
bool IsEmpty() const { return size_ == 0; }
// Inserts a new entry with [priority] and [value], requires there to be no
// existing entry with given [value].
void Insert(const P& priority, const V& value) {
ASSERT(!ContainsValue(value));
if (size_ == min_heap_size_) {
Resize(min_heap_size_ << 1);
}
Set(size_, {priority, value});
BubbleUp(size_);
size_++;
}
// Returns a reference to the minimum entry.
//
// The caller can access it's priority and value in read-only mode only.
const Entry& Minimum() const {
ASSERT(!IsEmpty());
return min_heap_[0];
}
// Removes the minimum entry.
void RemoveMinimum() {
ASSERT(!IsEmpty());
RemoveAt(0);
}
// Removes an existing entry with the given [value].
//
// Returns true if such an entry was removed.
bool RemoveByValue(const V& value) {
auto entry = FindMapEntry(value);
if (entry != nullptr) {
const intptr_t offset = ValueOfMapEntry(entry);
RemoveAt(offset);
ASSERT(hashmap_.size() == size_);
return true;
}
return false;
}
// Whether the priority queue contains an entry with the given [value].
bool ContainsValue(const V& value) { return FindMapEntry(value) != nullptr; }
// Changes the priority of an existing entry with given [value] or adds a
// new entry.
bool InsertOrChangePriority(const P& priority, const V& value) {
auto map_entry = FindMapEntry(value);
if (map_entry == nullptr) {
Insert(priority, value);
return true;
}
const intptr_t offset = ValueOfMapEntry(map_entry);
ASSERT(offset < size_);
Entry& entry = min_heap_[offset];
entry.priority = priority;
if (offset == 0) {
BubbleDown(offset);
} else {
intptr_t parent = (offset - 1) / 2;
intptr_t diff = entry.priority - min_heap_[parent].priority;
if (diff < 0) {
BubbleUp(offset);
} else if (diff > 0) {
BubbleDown(offset);
}
}
return false;
}
#ifdef TESTING
intptr_t min_heap_size() { return min_heap_size_; }
#endif // TESTING
private:
// Utility functions dealing with the SimpleHashMap interface.
static bool MatchFun(void* key1, void* key2) { return key1 == key2; }
SimpleHashMap::Entry* FindMapEntry(const V& key, bool insert = false) {
return hashmap_.Lookup(CastKey(key), HashKey(key), insert);
}
void RemoveMapEntry(const V& key) {
ASSERT(FindMapEntry(key) != nullptr);
hashmap_.Remove(CastKey(key), HashKey(key));
}
void SetMapEntry(const V& key, intptr_t value) {
FindMapEntry(key, /*insert=*/true)->value = reinterpret_cast<void*>(value);
}
static uint32_t HashKey(const V& key) {
return static_cast<uint32_t>(reinterpret_cast<intptr_t>(CastKey(key)));
}
static intptr_t ValueOfMapEntry(SimpleHashMap::Entry* entry) {
return reinterpret_cast<intptr_t>(entry->value);
}
static void* CastKey(const V& key) {
return reinterpret_cast<void*>((const_cast<V&>(key)));
}
void RemoveAt(intptr_t offset) {
ASSERT(offset < size_);
size_--;
if (offset == size_) {
RemoveMapEntry(min_heap_[offset].value);
} else {
Replace(offset, size_);
BubbleDown(offset);
}
if (size_ <= (min_heap_size_ >> 2) &&
kMinimumSize <= (min_heap_size_ >> 1)) {
Resize(min_heap_size_ >> 1);
}
}
void BubbleUp(intptr_t offset) {
while (true) {
if (offset == 0) return;
intptr_t parent = (offset - 1) / 2;
if (min_heap_[parent].priority > min_heap_[offset].priority) {
Swap(parent, offset);
}
offset = parent;
}
}
void BubbleDown(intptr_t offset) {
while (true) {
intptr_t left_child_index = 2 * offset + 1;
bool has_left_child = left_child_index < size_;
if (!has_left_child) return;
intptr_t smallest_index = offset;
if (min_heap_[left_child_index].priority < min_heap_[offset].priority) {
smallest_index = left_child_index;
}
intptr_t right_child_index = left_child_index + 1;
bool has_right_child = right_child_index < size_;
if (has_right_child) {
if (min_heap_[right_child_index].priority <
min_heap_[smallest_index].priority) {
smallest_index = right_child_index;
}
}
if (offset == smallest_index) {
return;
}
Swap(offset, smallest_index);
offset = smallest_index;
}
}
void Set(intptr_t offset1, const Entry& entry) {
min_heap_[offset1] = entry;
SetMapEntry(entry.value, offset1);
}
void Swap(intptr_t offset1, intptr_t offset2) {
Entry temp = min_heap_[offset1];
min_heap_[offset1] = min_heap_[offset2];
min_heap_[offset2] = temp;
SetMapEntry(min_heap_[offset1].value, offset1);
SetMapEntry(min_heap_[offset2].value, offset2);
}
void Replace(intptr_t index, intptr_t with_other) {
RemoveMapEntry(min_heap_[index].value);
const Entry& entry = min_heap_[with_other];
SetMapEntry(entry.value, index);
min_heap_[index] = entry;
}
void Resize(intptr_t new_min_heap_size) {
ASSERT(size_ < new_min_heap_size);
ASSERT(new_min_heap_size != min_heap_size_);
Entry* new_backing = reinterpret_cast<Entry*>(
realloc(min_heap_, sizeof(Entry) * new_min_heap_size));
if (new_backing == NULL) FATAL("Cannot allocate memory.");
min_heap_ = new_backing;
min_heap_size_ = new_min_heap_size;
}
// The array is representing a tree structure with guaranteed log(n) height.
// It has the property that the value of node N is always equal or smaller
// than the value of N's children. Furthermore it is a "dense" tree in the
// sense that all rows/layers of the tree are fully occupied except the last
// one. The way to represent such "dense" trees is via an array that allows
// finding left/right children by <2*index+1><2*index+2> and the parent by
// <(index-1)/2>.
//
// Insertion operations can be performed by adding one more entry at the end
// (bottom right) and bubbling it up until the tree invariant is satisfied
// again.
//
// Deletion operations can be performed by replacing the minimum element
// (first entry) by the last entry (bottom right) and bubbling it down until
// the tree invariant is satisified again.
Entry* min_heap_;
intptr_t min_heap_size_;
intptr_t size_;
SimpleHashMap hashmap_;
};
} // namespace dart
#endif // RUNTIME_PLATFORM_PRIORITY_QUEUE_H_