| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| // This benchmark is based on a JavaScript log processing module used |
| // by the V8 profiler to generate execution time profiles for runs of |
| // JavaScript applications, and it effectively measures how fast the |
| // JavaScript engine is at allocating nodes and reclaiming the memory |
| // used for old nodes. Because of the way splay trees work, the engine |
| // also has to deal with a lot of changes to the large tree object |
| // graph. |
| |
| // VMOptions= |
| // VMOptions=--no_concurrent_mark --no_concurrent_sweep |
| // VMOptions=--no_concurrent_mark --concurrent_sweep |
| // VMOptions=--no_concurrent_mark --use_compactor |
| // VMOptions=--no_concurrent_mark --use_compactor --force_evacuation |
| // VMOptions=--concurrent_mark --no_concurrent_sweep |
| // VMOptions=--concurrent_mark --concurrent_sweep |
| // VMOptions=--concurrent_mark --use_compactor |
| // VMOptions=--concurrent_mark --use_compactor --force_evacuation |
| // VMOptions=--scavenger_tasks=0 |
| // VMOptions=--scavenger_tasks=1 |
| // VMOptions=--scavenger_tasks=2 |
| // VMOptions=--scavenger_tasks=3 |
| // VMOptions=--verify_before_gc |
| // VMOptions=--verify_after_gc |
| // VMOptions=--verify_before_gc --verify_after_gc |
| // VMOptions=--verify_store_buffer |
| // VMOptions=--stress_write_barrier_elimination |
| // VMOptions=--old_gen_heap_size=100 |
| |
| import "dart:math"; |
| import 'package:benchmark_harness/benchmark_harness.dart'; |
| |
| void main() { |
| Splay.main(); |
| } |
| |
| class Splay extends BenchmarkBase { |
| const Splay() : super("Splay"); |
| |
| // Configuration. |
| static final int kTreeSize = 8000; |
| static final int kTreeModifications = 80; |
| static final int kTreePayloadDepth = 5; |
| |
| static SplayTree? tree; |
| |
| static Random rnd = new Random(12345); |
| |
| // Insert new node with a unique key. |
| static num insertNewNode() { |
| num key; |
| final localTree = tree!; |
| do { |
| key = rnd.nextDouble(); |
| } while (localTree.find(key) != null); |
| Payload payload = Payload.generate(kTreePayloadDepth, key.toString()); |
| localTree.insert(key, payload); |
| return key; |
| } |
| |
| static void mysetup() { |
| tree = new SplayTree(); |
| for (int i = 0; i < kTreeSize; i++) insertNewNode(); |
| } |
| |
| static void tearDown() { |
| // Allow the garbage collector to reclaim the memory |
| // used by the splay tree no matter how we exit the |
| // tear down function. |
| List<num> keys = tree!.exportKeys(); |
| tree = null; |
| |
| // Verify that the splay tree has the right size. |
| int length = keys.length; |
| if (length != kTreeSize) throw new Error("Splay tree has wrong size"); |
| |
| // Verify that the splay tree has sorted, unique keys. |
| for (int i = 0; i < length - 1; i++) { |
| if (keys[i] >= keys[i + 1]) throw new Error("Splay tree not sorted"); |
| } |
| } |
| |
| void warmup() { |
| exercise(); |
| } |
| |
| void exercise() { |
| // Replace a few nodes in the splay tree. |
| final localTree = tree!; |
| for (int i = 0; i < kTreeModifications; i++) { |
| num key = insertNewNode(); |
| Node? greatest = localTree.findGreatestLessThan(key); |
| if (greatest == null) { |
| localTree.remove(key); |
| } else { |
| localTree.remove(greatest.key); |
| } |
| } |
| } |
| |
| static void main() { |
| mysetup(); |
| new Splay().report(); |
| tearDown(); |
| } |
| } |
| |
| |
| class Leaf { |
| Leaf(String tag) : |
| string = "String for key $tag in leaf node", |
| array = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] |
| {} |
| String string; |
| List<num> array; |
| } |
| |
| |
| class Payload { |
| Payload(this.left, this.right); |
| var left, right; |
| |
| static generate(depth, tag) { |
| if (depth == 0) return new Leaf(tag); |
| return new Payload(generate(depth - 1, tag), |
| generate(depth - 1, tag)); |
| } |
| } |
| |
| class Error implements Exception { |
| const Error(this.message); |
| final String message; |
| } |
| |
| |
| /** |
| * A splay tree is a self-balancing binary search tree with the additional |
| * property that recently accessed elements are quick to access again. |
| * It performs basic operations such as insertion, look-up and removal |
| * in O(log(n)) amortized time. |
| */ |
| class SplayTree { |
| SplayTree(); |
| |
| /** |
| * Inserts a node into the tree with the specified [key] and value if |
| * the tree does not already contain a node with the specified key. If |
| * the value is inserted, it becomes the root of the tree. |
| */ |
| void insert(num key, value) { |
| if (isEmpty) { |
| root = new Node(key, value); |
| return; |
| } |
| // Splay on the key to move the last node on the search path for |
| // the key to the root of the tree. |
| splay(key); |
| if (root!.key == key) return; |
| Node node = new Node(key, value); |
| if (key > root!.key) { |
| node.left = root; |
| node.right = root!.right; |
| root!.right = null; |
| } else { |
| node.right = root; |
| node.left = root!.left; |
| root!.left = null; |
| } |
| root = node; |
| } |
| |
| /** |
| * Removes a node with the specified key from the tree if the tree |
| * contains a node with this key. The removed node is returned. If |
| * [key] is not found, an exception is thrown. |
| */ |
| Node remove(num key) { |
| if (isEmpty) throw new Error('Key not found: $key'); |
| splay(key); |
| if (root!.key != key) throw new Error('Key not found: $key'); |
| Node removed = root!; |
| if (root!.left == null) { |
| root = root!.right; |
| } else { |
| Node? right = root!.right; |
| root = root!.left; |
| // Splay to make sure that the new root has an empty right child. |
| splay(key); |
| // Insert the original right child as the right child of the new |
| // root. |
| root!.right = right; |
| } |
| return removed; |
| } |
| |
| /** |
| * Returns the node having the specified [key] or null if the tree doesn't |
| * contain a node with the specified [key]. |
| */ |
| Node? find(num key) { |
| if (isEmpty) return null; |
| splay(key); |
| return root!.key == key ? root : null; |
| } |
| |
| /** |
| * Returns the Node having the maximum key value. |
| */ |
| Node? findMax([Node? start]) { |
| if (isEmpty) return null; |
| Node current = null == start ? root! : start; |
| while (current.right != null) current = current.right!; |
| return current; |
| } |
| |
| /** |
| * Returns the Node having the maximum key value that |
| * is less than the specified [key]. |
| */ |
| Node? findGreatestLessThan(num key) { |
| if (isEmpty) return null; |
| // Splay on the key to move the node with the given key or the last |
| // node on the search path to the top of the tree. |
| splay(key); |
| // Now the result is either the root node or the greatest node in |
| // the left subtree. |
| if (root!.key < key) return root; |
| if (root!.left != null) return findMax(root!.left); |
| return null; |
| } |
| |
| /** |
| * Perform the splay operation for the given key. Moves the node with |
| * the given key to the top of the tree. If no node has the given |
| * key, the last node on the search path is moved to the top of the |
| * tree. This is the simplified top-down splaying algorithm from: |
| * "Self-adjusting Binary Search Trees" by Sleator and Tarjan |
| */ |
| void splay(num key) { |
| if (isEmpty) return; |
| // Create a dummy node. The use of the dummy node is a bit |
| // counter-intuitive: The right child of the dummy node will hold |
| // the L tree of the algorithm. The left child of the dummy node |
| // will hold the R tree of the algorithm. Using a dummy node, left |
| // and right will always be nodes and we avoid special cases. |
| final Node dummy = new Node(0, null); |
| Node left = dummy; |
| Node right = dummy; |
| Node current = root!; |
| while (true) { |
| if (key < current.key) { |
| if (current.left == null) break; |
| if (key < current.left!.key) { |
| // Rotate right. |
| Node tmp = current.left!; |
| current.left = tmp.right; |
| tmp.right = current; |
| current = tmp; |
| if (current.left == null) break; |
| } |
| // Link right. |
| right.left = current; |
| right = current; |
| current = current.left!; |
| } else if (key > current.key) { |
| if (current.right == null) break; |
| if (key > current.right!.key) { |
| // Rotate left. |
| Node tmp = current.right!; |
| current.right = tmp.left; |
| tmp.left = current; |
| current = tmp; |
| if (current.right == null) break; |
| } |
| // Link left. |
| left.right = current; |
| left = current; |
| current = current.right!; |
| } else { |
| break; |
| } |
| } |
| // Assemble. |
| left.right = current.left; |
| right.left = current.right; |
| current.left = dummy.right; |
| current.right = dummy.left; |
| root = current; |
| } |
| |
| /** |
| * Returns a list with all the keys of the tree. |
| */ |
| List<num> exportKeys() { |
| List<num> result = []; |
| if (!isEmpty) root!.traverse((Node node) => result.add(node.key)); |
| return result; |
| } |
| |
| // Tells whether the tree is empty. |
| bool get isEmpty => null == root; |
| |
| // Pointer to the root node of the tree. |
| Node? root; |
| } |
| |
| |
| class Node { |
| Node(this.key, this.value); |
| final num key; |
| final Object? value; |
| |
| Node? left, right; |
| |
| /** |
| * Performs an ordered traversal of the subtree starting here. |
| */ |
| void traverse(void f(Node n)) { |
| Node? current = this; |
| while (current != null) { |
| Node? left = current.left; |
| if (left != null) left.traverse(f); |
| f(current); |
| current = current.right; |
| } |
| } |
| } |