// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |

// for details. All rights reserved. Use of this source code is governed by a | |

// BSD-style license that can be found in the LICENSE file. | |

part of dart.core; | |

/** | |

* An integer or floating-point number. | |

* | |

* It is a compile-time error for any type other than [int] or [double] | |

* to attempt to extend or implement num. | |

*/ | |

abstract class num implements Comparable<num> { | |

/** | |

* Test whether this value is numerically equal to `other`. | |

* | |

* If both operands are doubles, they are equal if they have the same | |

* representation, except that: | |

* | |

* * zero and minus zero (0.0 and -0.0) are considered equal. They | |

* both have the numerical value zero. | |

* * NaN is not equal to anything, including NaN. If either operand is | |

* NaN, the result is always false. | |

* | |

* If one operand is a double and the other is an int, they are equal if | |

* the double has an integer value (finite with no fractional part) and | |

* `identical(doubleValue.toInt(), intValue)` is true. | |

* | |

* If both operands are integers, they are equal if they have the same value. | |

* | |

* Returns false if `other` is not a [num]. | |

* | |

* Notice that the behavior for NaN is non-reflexive. This means that | |

* equality of double values is not a proper equality relation, as is | |

* otherwise required of `operator==`. Using NaN in, e.g., a [HashSet] | |

* will fail to work. The behavior is the standard IEEE-754 equality of | |

* doubles. | |

* | |

* If you can avoid NaN values, the remaining doubles do have a proper | |

* equality relation, and can be used safely. | |

* | |

* Use [compareTo] for a comparison that distinguishes zero and minus zero, | |

* and that considers NaN values as equal. | |

*/ | |

bool operator ==(Object other); | |

/** | |

* Returns a hash code for a numerical value. | |

* | |

* The hash code is compatible with equality. It returns the same value | |

* for an [int] and a [double] with the same numerical value, and therefore | |

* the same value for the doubles zero and minus zero. | |

* | |

* No guarantees are made about the hash code of NaN values. | |

*/ | |

int get hashCode; | |

/** | |

* Compares this to `other`. | |

* | |

* Returns a negative number if `this` is less than `other`, zero if they are | |

* equal, and a positive number if `this` is greater than `other`. | |

* | |

* The ordering represented by this method is a total ordering of [num] | |

* values. All distinct doubles are non-equal, as are all distinct integers, | |

* but integers are equal to doubles if they have the same numerical | |

* value. | |

* | |

* For doubles, the `compareTo` operation is different from the partial | |

* ordering given by [operator==], [operator<] and [operator>]. For example, | |

* IEEE doubles impose that `0.0 == -0.0` and all comparison operations on | |

* NaN return false. | |

* | |

* This function imposes a complete ordering for doubles. When using | |

* `compareTo` the following properties hold: | |

* | |

* - All NaN values are considered equal, and greater than any numeric value. | |

* - -0.0 is less than 0.0 (and the integer 0), but greater than any non-zero | |

* negative value. | |

* - Negative infinity is less than all other values and positive infinity is | |

* greater than all non-NaN values. | |

* - All other values are compared using their numeric value. | |

* | |

* Examples: | |

* ``` | |

* print(1.compareTo(2)); // => -1 | |

* print(2.compareTo(1)); // => 1 | |

* print(1.compareTo(1)); // => 0 | |

* | |

* // The following comparisons yield different results than the | |

* // corresponding comparison operators. | |

* print((-0.0).compareTo(0.0)); // => -1 | |

* print(double.nan.compareTo(double.nan)); // => 0 | |

* print(double.infinity.compareTo(double.nan)); // => -1 | |

* | |

* // -0.0, and NaN comparison operators have rules imposed by the IEEE | |

* // standard. | |

* print(-0.0 == 0.0); // => true | |

* print(double.nan == double.nan); // => false | |

* print(double.infinity < double.nan); // => false | |

* print(double.nan < double.infinity); // => false | |

* print(double.nan == double.infinity); // => false | |

* ``` | |

*/ | |

int compareTo(num other); | |

/** Addition operator. */ | |

num operator +(num other); | |

/** Subtraction operator. */ | |

num operator -(num other); | |

/** Multiplication operator. */ | |

num operator *(num other); | |

/** | |

* Euclidean modulo operator. | |

* | |

* Returns the remainder of the Euclidean division. The Euclidean division of | |

* two integers `a` and `b` yields two integers `q` and `r` such that | |

* `a == b * q + r` and `0 <= r < b.abs()`. | |

* | |

* The Euclidean division is only defined for integers, but can be easily | |

* extended to work with doubles. In that case `r` may have a non-integer | |

* value, but it still verifies `0 <= r < |b|`. | |

* | |

* The sign of the returned value `r` is always positive. | |

* | |

* See [remainder] for the remainder of the truncating division. | |

*/ | |

num operator %(num other); | |

/** Division operator. */ | |

double operator /(num other); | |

/** | |

* Truncating division operator. | |

* | |

* If either operand is a [double] then the result of the truncating division | |

* `a ~/ b` is equivalent to `(a / b).truncate().toInt()`. | |

* | |

* If both operands are [int]s then `a ~/ b` performs the truncating | |

* integer division. | |

*/ | |

int operator ~/(num other); | |

/** Negate operator. */ | |

num operator -(); | |

/** | |

* Returns the remainder of the truncating division of `this` by [other]. | |

* | |

* The result `r` of this operation satisfies: | |

* `this == (this ~/ other) * other + r`. | |

* As a consequence the remainder `r` has the same sign as the divider `this`. | |

*/ | |

num remainder(num other); | |

/** Relational less than operator. */ | |

bool operator <(num other); | |

/** Relational less than or equal operator. */ | |

bool operator <=(num other); | |

/** Relational greater than operator. */ | |

bool operator >(num other); | |

/** Relational greater than or equal operator. */ | |

bool operator >=(num other); | |

/** True if the number is the double Not-a-Number value; otherwise, false. */ | |

bool get isNaN; | |

/** | |

* True if the number is negative; otherwise, false. | |

* | |

* Negative numbers are those less than zero, and the double `-0.0`. | |

*/ | |

bool get isNegative; | |

/** | |

* True if the number is positive infinity or negative infinity; otherwise, | |

* false. | |

*/ | |

bool get isInfinite; | |

/** | |

* True if the number is finite; otherwise, false. | |

* | |

* The only non-finite numbers are NaN, positive infinity, and | |

* negative infinity. | |

*/ | |

bool get isFinite; | |

/** Returns the absolute value of this [num]. */ | |

num abs(); | |

/** | |

* Returns minus one, zero or plus one depending on the sign and | |

* numerical value of the number. | |

* | |

* Returns minus one if the number is less than zero, | |

* plus one if the number is greater than zero, | |

* and zero if the number is equal to zero. | |

* | |

* Returns NaN if the number is the double NaN value. | |

* | |

* Returns a number of the same type as this number. | |

* For doubles, `-0.0.sign == -0.0`. | |

* The result satisfies: | |

* | |

* n == n.sign * n.abs() | |

* | |

* for all numbers `n` (except NaN, because NaN isn't `==` to itself). | |

*/ | |

num get sign; | |

/** | |

* Returns the integer closest to `this`. | |

* | |

* Rounds away from zero when there is no closest integer: | |

* `(3.5).round() == 4` and `(-3.5).round() == -4`. | |

* | |

* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError]. | |

*/ | |

int round(); | |

/** | |

* Returns the greatest integer no greater than `this`. | |

* | |

* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError]. | |

*/ | |

int floor(); | |

/** | |

* Returns the least integer no smaller than `this`. | |

* | |

* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError]. | |

*/ | |

int ceil(); | |

/** | |

* Returns the integer obtained by discarding any fractional | |

* digits from `this`. | |

* | |

* If `this` is not finite (`NaN` or infinity), throws an [UnsupportedError]. | |

*/ | |

int truncate(); | |

/** | |

* Returns the double integer value closest to `this`. | |

* | |

* Rounds away from zero when there is no closest integer: | |

* `(3.5).roundToDouble() == 4` and `(-3.5).roundToDouble() == -4`. | |

* | |

* If this is already an integer valued double, including `-0.0`, or it is a | |

* non-finite double value, the value is returned unmodified. | |

* | |

* For the purpose of rounding, `-0.0` is considered to be below `0.0`, | |

* and `-0.0` is therefore considered closer to negative numbers than `0.0`. | |

* This means that for a value, `d` in the range `-0.5 < d < 0.0`, | |

* the result is `-0.0`. | |

* | |

* The result is always a double. | |

* If this is a numerically large integer, the result may be an infinite | |

* double. | |

*/ | |

double roundToDouble(); | |

/** | |

* Returns the greatest double integer value no greater than `this`. | |

* | |

* If this is already an integer valued double, including `-0.0`, or it is a | |

* non-finite double value, the value is returned unmodified. | |

* | |

* For the purpose of rounding, `-0.0` is considered to be below `0.0`. | |

* A number `d` in the range `0.0 < d < 1.0` will return `0.0`. | |

* | |

* The result is always a double. | |

* If this is a numerically large integer, the result may be an infinite | |

* double. | |

*/ | |

double floorToDouble(); | |

/** | |

* Returns the least double integer value no smaller than `this`. | |

* | |

* If this is already an integer valued double, including `-0.0`, or it is a | |

* non-finite double value, the value is returned unmodified. | |

* | |

* For the purpose of rounding, `-0.0` is considered to be below `0.0`. | |

* A number `d` in the range `-1.0 < d < 0.0` will return `-0.0`. | |

* | |

* The result is always a double. | |

* If this is a numerically large integer, the result may be an infinite | |

* double. | |

*/ | |

double ceilToDouble(); | |

/** | |

* Returns the double integer value obtained by discarding any fractional | |

* digits from the double value of `this`. | |

* | |

* If this is already an integer valued double, including `-0.0`, or it is a | |

* non-finite double value, the value is returned unmodified. | |

* | |

* For the purpose of rounding, `-0.0` is considered to be below `0.0`. | |

* A number `d` in the range `-1.0 < d < 0.0` will return `-0.0`, and | |

* in the range `0.0 < d < 1.0` it will return 0.0. | |

* | |

* The result is always a double. | |

* If this is a numerically large integer, the result may be an infinite | |

* double. | |

*/ | |

double truncateToDouble(); | |

/** | |

* Returns this [num] clamped to be in the range [lowerLimit]-[upperLimit]. | |

* | |

* The comparison is done using [compareTo] and therefore takes `-0.0` into | |

* account. This also implies that [double.nan] is treated as the maximal | |

* double value. | |

* | |

* The arguments [lowerLimit] and [upperLimit] must form a valid range where | |

* `lowerLimit.compareTo(upperLimit) <= 0`. | |

*/ | |

num clamp(num lowerLimit, num upperLimit); | |

/** Truncates this [num] to an integer and returns the result as an [int]. */ | |

int toInt(); | |

/** | |

* Return this [num] as a [double]. | |

* | |

* If the number is not representable as a [double], an | |

* approximation is returned. For numerically large integers, the | |

* approximation may be infinite. | |

*/ | |

double toDouble(); | |

/** | |

* Returns a decimal-point string-representation of `this`. | |

* | |

* Converts `this` to a [double] before computing the string representation. | |

* | |

* If the absolute value of `this` is greater or equal to `10^21` then this | |

* methods returns an exponential representation computed by | |

* `this.toStringAsExponential()`. Otherwise the result | |

* is the closest string representation with exactly [fractionDigits] digits | |

* after the decimal point. If [fractionDigits] equals 0 then the decimal | |

* point is omitted. | |

* | |

* The parameter [fractionDigits] must be an integer satisfying: | |

* `0 <= fractionDigits <= 20`. | |

* | |

* Examples: | |

* | |

* 1.toStringAsFixed(3); // 1.000 | |

* (4321.12345678).toStringAsFixed(3); // 4321.123 | |

* (4321.12345678).toStringAsFixed(5); // 4321.12346 | |

* 123456789012345.toStringAsFixed(3); // 123456789012345.000 | |

* 10000000000000000.toStringAsFixed(4); // 10000000000000000.0000 | |

* 5.25.toStringAsFixed(0); // 5 | |

*/ | |

String toStringAsFixed(int fractionDigits); | |

/** | |

* Returns an exponential string-representation of `this`. | |

* | |

* Converts `this` to a [double] before computing the string representation. | |

* | |

* If [fractionDigits] is given then it must be an integer satisfying: | |

* `0 <= fractionDigits <= 20`. In this case the string contains exactly | |

* [fractionDigits] after the decimal point. Otherwise, without the parameter, | |

* the returned string uses the shortest number of digits that accurately | |

* represent [this]. | |

* | |

* If [fractionDigits] equals 0 then the decimal point is omitted. | |

* Examples: | |

* | |

* 1.toStringAsExponential(); // 1e+0 | |

* 1.toStringAsExponential(3); // 1.000e+0 | |

* 123456.toStringAsExponential(); // 1.23456e+5 | |

* 123456.toStringAsExponential(3); // 1.235e+5 | |

* 123.toStringAsExponential(0); // 1e+2 | |

*/ | |

String toStringAsExponential([int? fractionDigits]); | |

/** | |

* Converts `this` to a double and returns a string representation with | |

* exactly [precision] significant digits. | |

* | |

* The parameter [precision] must be an integer satisfying: | |

* `1 <= precision <= 21`. | |

* | |

* Examples: | |

* | |

* 1.toStringAsPrecision(2); // 1.0 | |

* 1e15.toStringAsPrecision(3); // 1.00e+15 | |

* 1234567.toStringAsPrecision(3); // 1.23e+6 | |

* 1234567.toStringAsPrecision(9); // 1234567.00 | |

* 12345678901234567890.toStringAsPrecision(20); // 12345678901234567168 | |

* 12345678901234567890.toStringAsPrecision(14); // 1.2345678901235e+19 | |

* 0.00000012345.toStringAsPrecision(15); // 1.23450000000000e-7 | |

* 0.0000012345.toStringAsPrecision(15); // 0.00000123450000000000 | |

*/ | |

String toStringAsPrecision(int precision); | |

/** | |

* Returns the shortest string that correctly represent the input number. | |

* | |

* All [double]s in the range `10^-6` (inclusive) to `10^21` (exclusive) | |

* are converted to their decimal representation with at least one digit | |

* after the decimal point. For all other doubles, | |

* except for special values like `NaN` or `Infinity`, this method returns an | |

* exponential representation (see [toStringAsExponential]). | |

* | |

* Returns `"NaN"` for [double.nan], `"Infinity"` for [double.infinity], and | |

* `"-Infinity"` for [double.negativeInfinity]. | |

* | |

* An [int] is converted to a decimal representation with no decimal point. | |

* | |

* Examples: | |

* | |

* (0.000001).toString(); // "0.000001" | |

* (0.0000001).toString(); // "1e-7" | |

* (111111111111111111111.0).toString(); // "111111111111111110000.0" | |

* (100000000000000000000.0).toString(); // "100000000000000000000.0" | |

* (1000000000000000000000.0).toString(); // "1e+21" | |

* (1111111111111111111111.0).toString(); // "1.1111111111111111e+21" | |

* 1.toString(); // "1" | |

* 111111111111111111111.toString(); // "111111111111111110000" | |

* 100000000000000000000.toString(); // "100000000000000000000" | |

* 1000000000000000000000.toString(); // "1000000000000000000000" | |

* 1111111111111111111111.toString(); // "1111111111111111111111" | |

* 1.234e5.toString(); // 123400 | |

* 1234.5e6.toString(); // 1234500000 | |

* 12.345e67.toString(); // 1.2345e+68 | |

* | |

* Note: the conversion may round the output if the returned string | |

* is accurate enough to uniquely identify the input-number. | |

* For example the most precise representation of the [double] `9e59` equals | |

* `"899999999999999918767229449717619953810131273674690656206848"`, but | |

* this method returns the shorter (but still uniquely identifying) `"9e59"`. | |

* | |

*/ | |

String toString(); | |

/** | |

* Parses a string containing a number literal into a number. | |

* | |

* The method first tries to read the [input] as integer (similar to | |

* [int.parse] without a radix). | |

* If that fails, it tries to parse the [input] as a double (similar to | |

* [double.parse]). | |

* If that fails, too, it invokes [onError] with [input], and the result | |

* of that invocation becomes the result of calling `parse`. | |

* | |

* If no [onError] is supplied, it defaults to a function that throws a | |

* [FormatException]. | |

* | |

* For any number `n`, this function satisfies | |

* `identical(n, num.parse(n.toString()))` (except when `n` is a NaN `double` | |

* with a payload). | |

* | |

* The [onError] parameter is deprecated and will be removed. | |

* Instead of `num.parse(string, (string) { ... })`, | |

* you should use `num.tryParse(string) ?? (...)`. | |

*/ | |

static num parse(String input, [@deprecated num onError(String input)?]) { | |

num? result = tryParse(input); | |

if (result != null) return result; | |

if (onError == null) throw FormatException(input); | |

return onError(input); | |

} | |

/** | |

* Parses a string containing a number literal into a number. | |

* | |

* Like [parse] except that this function returns `null` for invalid inputs | |

* instead of throwing. | |

*/ | |

static num? tryParse(String input) { | |

String source = input.trim(); | |

// TODO(lrn): Optimize to detect format and result type in one check. | |

return int.tryParse(source) ?? double.tryParse(source); | |

} | |

} |