blob: 70e6a5e42eb9e566ab079761944f839b2fe25013 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/heap.h"
#include "platform/assert.h"
#include "platform/utils.h"
#include "vm/compiler_stats.h"
#include "vm/flags.h"
#include "vm/heap_profiler.h"
#include "vm/isolate.h"
#include "vm/object.h"
#include "vm/object_set.h"
#include "vm/os.h"
#include "vm/pages.h"
#include "vm/scavenger.h"
#include "vm/stack_frame.h"
#include "vm/verifier.h"
#include "vm/virtual_memory.h"
namespace dart {
DEFINE_FLAG(bool, verbose_gc, false, "Enables verbose GC.");
DEFINE_FLAG(bool, verify_before_gc, false,
"Enables heap verification before GC.");
DEFINE_FLAG(bool, verify_after_gc, false,
"Enables heap verification after GC.");
DEFINE_FLAG(bool, gc_at_alloc, false, "GC at every allocation.");
DEFINE_FLAG(int, new_gen_heap_size, 32, "new gen heap size in MB,"
"e.g: --new_gen_heap_size=64 allocates a 64MB new gen heap");
DEFINE_FLAG(int, old_gen_heap_size, Heap::kHeapSizeInMB,
"old gen heap size in MB,"
"e.g: --old_gen_heap_size=1024 allocates a 1024MB old gen heap");
DEFINE_FLAG(int, code_heap_size, Heap::kCodeHeapSizeInMB,
"code heap size in MB,"
"e.g: --code_heap_size=8 allocates a 8MB code heap");
Heap::Heap() : read_only_(false) {
new_space_ = new Scavenger(this,
(FLAG_new_gen_heap_size * MB),
kNewObjectAlignmentOffset);
old_space_ = new PageSpace(this, (FLAG_old_gen_heap_size * MB));
code_space_ = new PageSpace(this, (FLAG_code_heap_size * MB), true);
}
Heap::~Heap() {
delete new_space_;
delete old_space_;
delete code_space_;
}
uword Heap::AllocateNew(intptr_t size) {
ASSERT(Isolate::Current()->no_gc_scope_depth() == 0);
uword addr = new_space_->TryAllocate(size);
if (addr != 0) {
return addr;
}
CollectGarbage(kNew);
addr = new_space_->TryAllocate(size);
if (addr != 0) {
return addr;
}
return AllocateOld(size);
}
uword Heap::AllocateOld(intptr_t size) {
ASSERT(Isolate::Current()->no_gc_scope_depth() == 0);
uword addr = old_space_->TryAllocate(size);
if (addr == 0) {
CollectAllGarbage();
addr = old_space_->TryAllocate(size, PageSpace::kForceGrowth);
if (addr == 0) {
OS::PrintErr("Exhausted heap space, trying to allocate %"Pd" bytes.\n",
size);
}
}
return addr;
}
uword Heap::AllocateCode(PageSpace* space, intptr_t size) {
ASSERT(Isolate::Current()->no_gc_scope_depth() == 0);
ASSERT(Utils::IsAligned(size, OS::PreferredCodeAlignment()));
uword addr = space->TryAllocate(size);
if (addr == 0) {
// TODO(iposva): Support GC.
FATAL("Exhausted code heap space.");
}
if (FLAG_compiler_stats) {
CompilerStats::code_allocated += size;
}
return addr;
}
bool Heap::Contains(uword addr) const {
return new_space_->Contains(addr) ||
old_space_->Contains(addr) ||
code_space_->Contains(addr);
}
bool Heap::NewContains(uword addr) const {
return new_space_->Contains(addr);
}
bool Heap::OldContains(uword addr) const {
return old_space_->Contains(addr);
}
bool Heap::CodeContains(uword addr) const {
return code_space_->Contains(addr);
}
void Heap::IterateObjects(ObjectVisitor* visitor) {
new_space_->VisitObjects(visitor);
old_space_->VisitObjects(visitor);
code_space_->VisitObjects(visitor);
}
void Heap::IteratePointers(ObjectPointerVisitor* visitor) {
new_space_->VisitObjectPointers(visitor);
old_space_->VisitObjectPointers(visitor);
code_space_->VisitObjectPointers(visitor);
}
void Heap::IterateNewPointers(ObjectPointerVisitor* visitor) {
new_space_->VisitObjectPointers(visitor);
}
void Heap::IterateOldPointers(ObjectPointerVisitor* visitor) {
old_space_->VisitObjectPointers(visitor);
code_space_->VisitObjectPointers(visitor);
}
void Heap::IterateCodePointers(ObjectPointerVisitor* visitor) {
code_space_->VisitObjectPointers(visitor);
}
void Heap::IterateNewObjects(ObjectVisitor* visitor) {
new_space_->VisitObjects(visitor);
}
void Heap::IterateOldObjects(ObjectVisitor* visitor) {
old_space_->VisitObjects(visitor);
code_space_->VisitObjects(visitor);
}
void Heap::IterateCodeObjects(ObjectVisitor* visitor) {
code_space_->VisitObjects(visitor);
}
RawInstructions* Heap::FindObjectInCodeSpace(FindObjectVisitor* visitor) {
// The code heap can only have RawInstructions objects.
RawObject* raw_obj = code_space_->FindObject(visitor);
ASSERT((raw_obj == Object::null()) ||
(raw_obj->GetClassId() == kInstructionsCid));
return reinterpret_cast<RawInstructions*>(raw_obj);
}
void Heap::CollectGarbage(Space space, ApiCallbacks api_callbacks) {
bool invoke_api_callbacks = (api_callbacks == kInvokeApiCallbacks);
switch (space) {
case kNew: {
new_space_->Scavenge(invoke_api_callbacks,
GCReasonToString(kNewSpace));
if (new_space_->HadPromotionFailure()) {
old_space_->MarkSweep(true,
GCReasonToString(kPromotionFailure));
}
break;
}
case kOld:
old_space_->MarkSweep(invoke_api_callbacks,
GCReasonToString(kOldSpace));
break;
case kCode:
UNIMPLEMENTED();
code_space_->MarkSweep(invoke_api_callbacks,
GCReasonToString(kCodeSpace));
break;
default:
UNREACHABLE();
}
if (FLAG_verbose_gc) {
PrintSizes();
}
}
void Heap::CollectGarbage(Space space) {
ApiCallbacks api_callbacks;
if (space == kOld) {
api_callbacks = kInvokeApiCallbacks;
} else {
api_callbacks = kIgnoreApiCallbacks;
}
CollectGarbage(space, api_callbacks);
}
void Heap::CollectAllGarbage() {
const char* gc_reason = GCReasonToString(kFull);
new_space_->Scavenge(kInvokeApiCallbacks, gc_reason);
old_space_->MarkSweep(kInvokeApiCallbacks, gc_reason);
// TODO(iposva): Merge old and code space.
// code_space_->MarkSweep(kInvokeApiCallbacks, gc_reason);
if (FLAG_verbose_gc) {
PrintSizes();
}
}
void Heap::EnableGrowthControl() {
old_space_->EnableGrowthControl();
}
void Heap::WriteProtect(bool read_only) {
read_only_ = read_only;
new_space_->WriteProtect(read_only);
old_space_->WriteProtect(read_only);
// TODO(iposva): Merge old and code space.
// code_space_->WriteProtect(read_only);
}
uword Heap::TopAddress() {
return reinterpret_cast<uword>(new_space_->TopAddress());
}
uword Heap::EndAddress() {
return reinterpret_cast<uword>(new_space_->EndAddress());
}
void Heap::Init(Isolate* isolate) {
ASSERT(isolate->heap() == NULL);
Heap* heap = new Heap();
isolate->set_heap(heap);
}
void Heap::StartEndAddress(uword* start, uword* end) const {
ASSERT(new_space_->capacity() != 0);
new_space_->StartEndAddress(start, end);
if (old_space_->capacity() != 0) {
uword old_start;
uword old_end;
old_space_->StartEndAddress(&old_start, &old_end);
*start = Utils::Minimum(old_start, *start);
*end = Utils::Maximum(old_end, *end);
}
if (code_space_->capacity() != 0) {
uword code_start;
uword code_end;
code_space_->StartEndAddress(&code_start, &code_end);
*start = Utils::Minimum(code_start, *start);
*end = Utils::Maximum(code_end, *end);
}
ASSERT(*start <= *end);
}
ObjectSet* Heap::CreateAllocatedObjectSet() const {
Isolate* isolate = Isolate::Current();
uword start, end;
isolate->heap()->StartEndAddress(&start, &end);
Isolate* vm_isolate = Dart::vm_isolate();
uword vm_start, vm_end;
vm_isolate->heap()->StartEndAddress(&vm_start, &vm_end);
ObjectSet* allocated_set = new ObjectSet(Utils::Minimum(start, vm_start),
Utils::Maximum(end, vm_end));
VerifyObjectVisitor object_visitor(isolate, allocated_set);
isolate->heap()->IterateObjects(&object_visitor);
vm_isolate->heap()->IterateObjects(&object_visitor);
return allocated_set;
}
bool Heap::Verify() const {
Isolate* isolate = Isolate::Current();
ObjectSet* allocated_set = isolate->heap()->CreateAllocatedObjectSet();
VerifyPointersVisitor visitor(isolate, allocated_set);
isolate->heap()->IteratePointers(&visitor);
delete allocated_set;
// Only returning a value so that Heap::Validate can be called from an ASSERT.
return true;
}
void Heap::PrintSizes() const {
OS::PrintErr("New space (%"Pd"k of %"Pd"k) "
"Old space (%"Pd"k of %"Pd"k) "
"Code space (%"Pd"k of %"Pd"k)\n",
(new_space_->in_use() / KB), (new_space_->capacity() / KB),
(old_space_->in_use() / KB), (old_space_->capacity() / KB),
(code_space_->in_use() / KB), (code_space_->capacity() / KB));
}
void Heap::Profile(Dart_HeapProfileWriteCallback callback, void* stream) const {
HeapProfiler profiler(callback, stream);
// Dump the root set.
HeapProfilerRootVisitor root_visitor(&profiler);
Isolate* isolate = Isolate::Current();
Isolate* vm_isolate = Dart::vm_isolate();
isolate->VisitObjectPointers(&root_visitor, false,
StackFrameIterator::kDontValidateFrames);
HeapProfilerWeakRootVisitor weak_root_visitor(&root_visitor);
isolate->VisitWeakPersistentHandles(&weak_root_visitor, true);
// Dump the current and VM isolate heaps.
HeapProfilerObjectVisitor object_visitor(isolate, &profiler);
isolate->heap()->IterateObjects(&object_visitor);
vm_isolate->heap()->IterateObjects(&object_visitor);
}
const char* Heap::GCReasonToString(GCReason gc_reason) {
switch (gc_reason) {
case kNewSpace:
return "new space";
case kPromotionFailure:
return "promotion failure";
case kOldSpace:
return "old space";
case kCodeSpace:
return "code space";
case kFull:
return "full";
case kGCAtAlloc:
return "debugging";
case kGCTestCase:
return "test case";
default:
UNREACHABLE();
return "";
}
}
void Heap::SetPeer(RawObject* raw_obj, void* peer) {
if (raw_obj->IsNewObject()) {
new_space_->SetPeer(raw_obj, peer);
} else {
ASSERT(raw_obj->IsOldObject());
old_space_->SetPeer(raw_obj, peer);
}
}
void* Heap::GetPeer(RawObject* raw_obj) {
if (raw_obj->IsNewObject()) {
return new_space_->GetPeer(raw_obj);
}
ASSERT(raw_obj->IsOldObject());
return old_space_->GetPeer(raw_obj);
}
int64_t Heap::PeerCount() const {
return new_space_->PeerCount() + old_space_->PeerCount();
}
#if defined(DEBUG)
NoGCScope::NoGCScope() : StackResource(Isolate::Current()) {
isolate()->IncrementNoGCScopeDepth();
}
NoGCScope::~NoGCScope() {
isolate()->DecrementNoGCScopeDepth();
}
#endif // defined(DEBUG)
} // namespace dart