blob: e8930755916d4ea7b4d2dfa521bf0b4067a46537 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
part of js_backend;
/// For each class, stores the possible class subtype tests that could succeed.
abstract class TypeChecks {
/// Get the set of checks required for class [element].
Iterable<ClassElement> operator[](ClassElement element);
/// Get the iterator for all classes that need type checks.
Iterator<ClassElement> get iterator;
}
class RuntimeTypeInformation {
final Compiler compiler;
RuntimeTypeInformation(this.compiler);
/// Contains the classes of all arguments that have been used in
/// instantiations and checks.
Set<ClassElement> allArguments;
bool isJsNative(Element element) {
return (element == compiler.intClass ||
element == compiler.boolClass ||
element == compiler.numClass ||
element == compiler.doubleClass ||
element == compiler.stringClass ||
element == compiler.listClass);
}
TypeChecks cachedRequiredChecks;
TypeChecks getRequiredChecks() {
if (cachedRequiredChecks != null) return cachedRequiredChecks;
// Get all types used in type arguments of instantiated types.
Set<ClassElement> instantiatedArguments = getInstantiatedArguments();
// Collect all type arguments used in is-checks.
Set<ClassElement> checkedArguments = getCheckedArguments();
// Precompute the set of all seen type arguments for use in the emitter.
allArguments = new Set<ClassElement>.from(instantiatedArguments)
..addAll(checkedArguments);
// Finally, run through the combination of instantiated and checked
// arguments and record all combination where the element of a checked
// argument is a superclass of the element of an instantiated type.
TypeCheckMapping requiredChecks = new TypeCheckMapping();
for (ClassElement element in instantiatedArguments) {
if (element == compiler.dynamicClass) continue;
if (checkedArguments.contains(element)) {
requiredChecks.add(element, element);
}
// Find all supertypes of [element] in [checkedArguments] and add checks.
for (DartType supertype in element.allSupertypes) {
ClassElement superelement = supertype.element;
if (checkedArguments.contains(superelement)) {
requiredChecks.add(element, superelement);
}
}
}
// TODO(karlklose): remove this temporary fix: we need to add the classes
// used in substitutions to addArguments.
allArguments.addAll([compiler.intClass,
compiler.boolClass,
compiler.numClass,
compiler.doubleClass,
compiler.stringClass,
compiler.listClass]);
return cachedRequiredChecks = requiredChecks;
}
/**
* Collects all types used in type arguments of instantiated types.
*
* This includes type arguments used in supertype relations, because we may
* have a type check against this supertype that includes a check against
* the type arguments.
*/
Set<ClassElement> getInstantiatedArguments() {
Set<ClassElement> instantiatedArguments = new Set<ClassElement>();
for (DartType type in instantiatedTypes) {
addAllInterfaceTypeArguments(type, instantiatedArguments);
ClassElement cls = type.element;
for (DartType type in cls.allSupertypes) {
addAllInterfaceTypeArguments(type, instantiatedArguments);
}
}
for (ClassElement cls in instantiatedArguments.toList()) {
for (DartType type in cls.allSupertypes) {
addAllInterfaceTypeArguments(type, instantiatedArguments);
}
}
return instantiatedArguments;
}
/// Collects all type arguments used in is-checks.
Set<ClassElement> getCheckedArguments() {
Set<ClassElement> checkedArguments = new Set<ClassElement>();
for (DartType type in isChecks) {
addAllInterfaceTypeArguments(type, checkedArguments);
}
return checkedArguments;
}
Iterable<DartType> get isChecks {
return compiler.enqueuer.resolution.universe.isChecks;
}
Iterable<DartType> get instantiatedTypes {
return compiler.codegenWorld.instantiatedTypes;
}
void addAllInterfaceTypeArguments(DartType type, Set<ClassElement> classes) {
if (type is !InterfaceType) return;
for (DartType argument in type.typeArguments) {
forEachInterfaceType(argument, (InterfaceType t) {
ClassElement cls = t.element;
if (cls != compiler.dynamicClass) {
classes.add(cls);
}
});
}
}
void forEachInterfaceType(DartType type, f(InterfaceType type)) {
if (type.kind == TypeKind.INTERFACE) {
f(type);
InterfaceType interface = type;
for (DartType argument in interface.typeArguments) {
forEachInterfaceType(argument, f);
}
}
}
/// Return the unique name for the element as an unquoted string.
String getNameAsString(Element element) {
JavaScriptBackend backend = compiler.backend;
return backend.namer.getName(element);
}
/// Return the unique JS name for the element, which is a quoted string for
/// native classes and the isolate acccess to the constructor for classes.
String getJsName(Element element) {
JavaScriptBackend backend = compiler.backend;
Namer namer = backend.namer;
return namer.isolateAccess(element);
}
String getRawTypeRepresentation(DartType type) {
String name = getNameAsString(type.element);
if (!type.element.isClass()) return name;
InterfaceType interface = type;
Link<DartType> variables = interface.element.typeVariables;
if (variables.isEmpty) return name;
String arguments = variables.map((_) => 'dynamic').join(', ');
return '$name<$arguments>';
}
// TODO(karlklose): maybe precompute this value and store it in typeChecks?
bool isTrivialSubstitution(ClassElement cls, ClassElement check) {
if (cls.isClosure()) {
// TODO(karlklose): handle closures.
return true;
}
// If there are no type variables or the type is the same, we do not need
// a substitution.
if (check.typeVariables.isEmpty || cls == check) {
return true;
}
InterfaceType originalType = cls.computeType(compiler);
InterfaceType type = originalType.asInstanceOf(check);
// [type] is not a subtype of [check]. we do not generate a check and do not
// need a substitution.
if (type == null) return true;
// Run through both lists of type variables and check if the type variables
// are identical at each position. If they are not, we need to calculate a
// substitution function.
Link<DartType> variables = cls.typeVariables;
Link<DartType> arguments = type.typeArguments;
while (!variables.isEmpty && !arguments.isEmpty) {
if (variables.head.element != arguments.head.element) {
return false;
}
variables = variables.tail;
arguments = arguments.tail;
}
return (variables.isEmpty == arguments.isEmpty);
}
// TODO(karlklose): rewrite to use js.Expressions.
/**
* Compute a JavaScript expression that describes the necessary substitution
* for type arguments in a subtype test.
*
* The result can be:
* 1) [:null:], if no substituted check is necessary, because the
* type variables are the same or there are no type variables in the class
* that is checked for.
* 2) A list expression describing the type arguments to be used in the
* subtype check, if the type arguments to be used in the check do not
* depend on the type arguments of the object.
* 3) A function mapping the type variables of the object to be checked to
* a list expression.
*/
String getSupertypeSubstitution(ClassElement cls, ClassElement check,
{alwaysGenerateFunction: false}) {
if (isTrivialSubstitution(cls, check)) return null;
// TODO(karlklose): maybe precompute this value and store it in typeChecks?
InterfaceType type = cls.computeType(compiler);
InterfaceType target = type.asInstanceOf(check);
String substitution = target.typeArguments
.map((type) => _getTypeRepresentation(type, (v) => v.toString()))
.join(', ');
substitution = '[$substitution]';
if (cls.typeVariables.isEmpty && !alwaysGenerateFunction) {
return substitution;
} else {
String parameters = cls.typeVariables.toList().join(', ');
return 'function ($parameters) { return $substitution; }';
}
}
String getTypeRepresentation(DartType type, void onVariable(variable)) {
// Create a type representation. For type variables call the original
// callback for side effects and return a template placeholder.
return _getTypeRepresentation(type, (variable) {
onVariable(variable);
return '#';
});
}
// TODO(karlklose): rewrite to use js.Expressions.
String _getTypeRepresentation(DartType type, String onVariable(variable)) {
StringBuffer builder = new StringBuffer();
void build(DartType part) {
if (part is TypeVariableType) {
builder.write(onVariable(part));
} else {
bool hasArguments = part is InterfaceType && !part.isRaw;
Element element = part.element;
if (element == compiler.dynamicClass) {
builder.write('null');
} else {
String name = getJsName(element);
if (!hasArguments) {
builder.write(name);
} else {
builder.write('[');
builder.write(name);
InterfaceType interface = part;
for (DartType argument in interface.typeArguments) {
builder.write(', ');
build(argument);
}
builder.write(']');
}
}
}
}
build(type);
return builder.toString();
}
static bool hasTypeArguments(DartType type) {
if (type is InterfaceType) {
InterfaceType interfaceType = type;
return !interfaceType.isRaw;
}
return false;
}
static int getTypeVariableIndex(TypeVariableType variable) {
ClassElement classElement = variable.element.getEnclosingClass();
Link<DartType> variables = classElement.typeVariables;
for (int index = 0; !variables.isEmpty;
index++, variables = variables.tail) {
if (variables.head == variable) return index;
}
}
}
class TypeCheckMapping implements TypeChecks {
final Map<ClassElement, Set<ClassElement>> map =
new Map<ClassElement, Set<ClassElement>>();
Iterable<ClassElement> operator[](ClassElement element) {
Set<ClassElement> result = map[element];
return result != null ? result : const <ClassElement>[];
}
void add(ClassElement cls, ClassElement check) {
map.putIfAbsent(cls, () => new Set<ClassElement>());
map[cls].add(check);
}
Iterator<ClassElement> get iterator => map.keys.iterator;
String toString() {
StringBuffer sb = new StringBuffer();
for (ClassElement holder in this) {
for (ClassElement check in [holder]) {
sb.add('${holder.name.slowToString()}.${check.name.slowToString()}, ');
}
}
return '[$sb]';
}
}