blob: e8a5ee4d84d2b1c73d9253a40b5809ead6538135 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_ARM64.
#if defined(TARGET_ARCH_ARM64)
#include "vm/intrinsifier.h"
#include "vm/assembler.h"
#include "vm/flow_graph_compiler.h"
#include "vm/object.h"
#include "vm/object_store.h"
#include "vm/symbols.h"
namespace dart {
DECLARE_FLAG(bool, enable_type_checks);
#define __ assembler->
void Intrinsifier::Array_getLength(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, Array::length_offset()));
__ ret();
}
void Intrinsifier::ImmutableList_getLength(Assembler* assembler) {
Array_getLength(assembler);
}
void Intrinsifier::Array_getIndexed(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, + 0 * kWordSize)); // Index
__ ldr(R1, Address(SP, + 1 * kWordSize)); // Array
__ tsti(R0, kSmiTagMask);
__ b(&fall_through, NE); // Index is not an smi, fall through.
// Range check.
__ ldr(R6, FieldAddress(R1, Array::length_offset()));
__ cmp(R0, Operand(R6));
__ b(&fall_through, CS);
ASSERT(kSmiTagShift == 1);
// array element at R1 + R0*4 + Array::data_offset - 1
__ add(R6, R1, Operand(R0, LSL, 2));
__ ldr(R0, FieldAddress(R6, Array::data_offset()));
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::ImmutableList_getIndexed(Assembler* assembler) {
Array_getIndexed(assembler);
}
static intptr_t ComputeObjectArrayTypeArgumentsOffset() {
const Library& core_lib = Library::Handle(Library::CoreLibrary());
const Class& cls = Class::Handle(
core_lib.LookupClassAllowPrivate(Symbols::_List()));
ASSERT(!cls.IsNull());
ASSERT(cls.NumTypeArguments() == 1);
const intptr_t field_offset = cls.type_arguments_field_offset();
ASSERT(field_offset != Class::kNoTypeArguments);
return field_offset;
}
// Intrinsify only for Smi value and index. Non-smi values need a store buffer
// update. Array length is always a Smi.
void Intrinsifier::Array_setIndexed(Assembler* assembler) {
Label fall_through;
if (FLAG_enable_type_checks) {
const intptr_t type_args_field_offset =
ComputeObjectArrayTypeArgumentsOffset();
// Inline simple tests (Smi, null), fallthrough if not positive.
Label checked_ok;
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
// Null value is valid for any type.
__ CompareObject(R2, Object::null_object(), PP);
__ b(&checked_ok, EQ);
__ ldr(R1, Address(SP, 2 * kWordSize)); // Array.
__ ldr(R1, FieldAddress(R1, type_args_field_offset));
// R1: Type arguments of array.
__ CompareObject(R1, Object::null_object(), PP);
__ b(&checked_ok, EQ);
// Check if it's dynamic.
// Get type at index 0.
__ ldr(R0, FieldAddress(R1, TypeArguments::type_at_offset(0)));
__ CompareObject(R0, Type::ZoneHandle(Type::DynamicType()), PP);
__ b(&checked_ok, EQ);
// Check for int and num.
__ tsti(R2, kSmiTagMask); // Value is Smi?
__ b(&fall_through, NE); // Non-smi value.
__ CompareObject(R0, Type::ZoneHandle(Type::IntType()), PP);
__ b(&checked_ok, EQ);
__ CompareObject(R0, Type::ZoneHandle(Type::Number()), PP);
__ b(&fall_through, NE);
__ Bind(&checked_ok);
}
__ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
__ tsti(R1, kSmiTagMask);
// Index not Smi.
__ b(&fall_through, NE);
__ ldr(R0, Address(SP, 2 * kWordSize)); // Array.
// Range check.
__ ldr(R3, FieldAddress(R0, Array::length_offset())); // Array length.
__ cmp(R1, Operand(R3));
// Runtime throws exception.
__ b(&fall_through, CS);
// Note that R1 is Smi, i.e, times 2.
ASSERT(kSmiTagShift == 1);
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
__ add(R1, R0, Operand(R1, LSL, 2)); // R1 is Smi.
__ StoreIntoObject(R0,
FieldAddress(R1, Array::data_offset()),
R2);
// Caller is responsible for preserving the value if necessary.
__ ret();
__ Bind(&fall_through);
}
// Allocate a GrowableObjectArray using the backing array specified.
// On stack: type argument (+1), data (+0).
void Intrinsifier::GrowableList_Allocate(Assembler* assembler) {
// The newly allocated object is returned in R0.
const intptr_t kTypeArgumentsOffset = 1 * kWordSize;
const intptr_t kArrayOffset = 0 * kWordSize;
Label fall_through;
// Compute the size to be allocated, it is based on the array length
// and is computed as:
// RoundedAllocationSize(sizeof(RawGrowableObjectArray)) +
intptr_t fixed_size = GrowableObjectArray::InstanceSize();
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
__ LoadImmediate(R2, heap->TopAddress(), kNoPP);
__ ldr(R0, Address(R2, 0));
__ AddImmediate(R1, R0, fixed_size, kNoPP);
// Check if the allocation fits into the remaining space.
// R0: potential new backing array object start.
// R1: potential next object start.
__ LoadImmediate(R3, heap->EndAddress(), kNoPP);
__ ldr(R3, Address(R3, 0));
__ cmp(R1, Operand(R3));
__ b(&fall_through, CS);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ str(R1, Address(R2, 0));
__ AddImmediate(R0, R0, kHeapObjectTag, kNoPP);
// Initialize the tags.
// R0: new growable array object start as a tagged pointer.
const Class& cls = Class::Handle(
isolate->object_store()->growable_object_array_class());
uword tags = 0;
tags = RawObject::SizeTag::update(fixed_size, tags);
tags = RawObject::ClassIdTag::update(cls.id(), tags);
__ LoadImmediate(R1, tags, kNoPP);
__ str(R1, FieldAddress(R0, GrowableObjectArray::tags_offset()));
// Store backing array object in growable array object.
__ ldr(R1, Address(SP, kArrayOffset)); // Data argument.
// R0 is new, no barrier needed.
__ StoreIntoObjectNoBarrier(
R0,
FieldAddress(R0, GrowableObjectArray::data_offset()),
R1);
// R0: new growable array object start as a tagged pointer.
// Store the type argument field in the growable array object.
__ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument.
__ StoreIntoObjectNoBarrier(
R0,
FieldAddress(R0, GrowableObjectArray::type_arguments_offset()),
R1);
// Set the length field in the growable array object to 0.
__ LoadImmediate(R1, 0, kNoPP);
__ str(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
__ UpdateAllocationStats(kGrowableObjectArrayCid, kNoPP);
__ ret(); // Returns the newly allocated object in R0.
__ Bind(&fall_through);
}
void Intrinsifier::GrowableList_getLength(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, GrowableObjectArray::length_offset()));
__ ret();
}
void Intrinsifier::GrowableList_getCapacity(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, GrowableObjectArray::data_offset()));
__ ldr(R0, FieldAddress(R0, Array::length_offset()));
__ ret();
}
void Intrinsifier::GrowableList_getIndexed(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, + 0 * kWordSize)); // Index
__ ldr(R1, Address(SP, + 1 * kWordSize)); // Array
__ tsti(R0, kSmiTagMask);
__ b(&fall_through, NE); // Index is not an smi, fall through.
// Range check.
__ ldr(R6, FieldAddress(R1, GrowableObjectArray::length_offset()));
__ cmp(R0, Operand(R6));
__ b(&fall_through, CS);
ASSERT(kSmiTagShift == 1);
// array element at R6 + R0 * 4 + Array::data_offset - 1
__ ldr(R6, FieldAddress(R1, GrowableObjectArray::data_offset())); // Data
__ add(R6, R6, Operand(R0, LSL, 2));
__ ldr(R0, FieldAddress(R6, Array::data_offset()));
__ ret();
__ Bind(&fall_through);
}
// Set value into growable object array at specified index.
// On stack: growable array (+2), index (+1), value (+0).
void Intrinsifier::GrowableList_setIndexed(Assembler* assembler) {
if (FLAG_enable_type_checks) {
return;
}
Label fall_through;
__ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
__ ldr(R0, Address(SP, 2 * kWordSize)); // GrowableArray.
__ tsti(R1, kSmiTagMask);
__ b(&fall_through, NE); // Non-smi index.
// Range check using _length field.
__ ldr(R2, FieldAddress(R0, GrowableObjectArray::length_offset()));
__ cmp(R1, Operand(R2));
// Runtime throws exception.
__ b(&fall_through, CS);
__ ldr(R0, FieldAddress(R0, GrowableObjectArray::data_offset())); // data.
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
// Note that R1 is Smi, i.e, times 2.
ASSERT(kSmiTagShift == 1);
__ add(R1, R0, Operand(R1, LSL, 2));
__ StoreIntoObject(R0,
FieldAddress(R1, Array::data_offset()),
R2);
__ ret();
__ Bind(&fall_through);
}
// Set length of growable object array. The length cannot
// be greater than the length of the data container.
// On stack: growable array (+1), length (+0).
void Intrinsifier::GrowableList_setLength(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, 1 * kWordSize)); // Growable array.
__ ldr(R1, Address(SP, 0 * kWordSize)); // Length value.
__ tsti(R1, kSmiTagMask); // Check for Smi.
__ b(&fall_through, NE);
__ str(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
__ ret();
__ Bind(&fall_through);
// Fall through on non-Smi.
}
// Set data of growable object array.
// On stack: growable array (+1), data (+0).
void Intrinsifier::GrowableList_setData(Assembler* assembler) {
if (FLAG_enable_type_checks) {
return;
}
Label fall_through;
__ ldr(R1, Address(SP, 0 * kWordSize)); // Data.
// Check that data is an ObjectArray.
__ tsti(R1, kSmiTagMask);
__ b(&fall_through, EQ); // Data is Smi.
__ CompareClassId(R1, kArrayCid, kNoPP);
__ b(&fall_through, NE);
__ ldr(R0, Address(SP, 1 * kWordSize)); // Growable array.
__ StoreIntoObject(R0,
FieldAddress(R0, GrowableObjectArray::data_offset()),
R1);
__ ret();
__ Bind(&fall_through);
}
// Add an element to growable array if it doesn't need to grow, otherwise
// call into regular code.
// On stack: growable array (+1), value (+0).
void Intrinsifier::GrowableList_add(Assembler* assembler) {
// In checked mode we need to type-check the incoming argument.
if (FLAG_enable_type_checks) {
return;
}
Label fall_through;
// R0: Array.
__ ldr(R0, Address(SP, 1 * kWordSize));
// R1: length.
__ ldr(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
// R2: data.
__ ldr(R2, FieldAddress(R0, GrowableObjectArray::data_offset()));
// R3: capacity.
__ ldr(R3, FieldAddress(R2, Array::length_offset()));
// Compare length with capacity.
__ cmp(R1, Operand(R3));
__ b(&fall_through, EQ); // Must grow data.
const int64_t value_one = reinterpret_cast<int64_t>(Smi::New(1));
// len = len + 1;
__ add(R3, R1, Operand(value_one));
__ str(R3, FieldAddress(R0, GrowableObjectArray::length_offset()));
__ ldr(R0, Address(SP, 0 * kWordSize)); // Value.
ASSERT(kSmiTagShift == 1);
__ add(R1, R2, Operand(R1, LSL, 2));
__ StoreIntoObject(R2,
FieldAddress(R1, Array::data_offset()),
R0);
__ LoadObject(R0, Object::null_object(), PP);
__ ret();
__ Bind(&fall_through);
}
// Gets the length of a TypedData.
void Intrinsifier::TypedData_getLength(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, TypedData::length_offset()));
__ ret();
}
void Intrinsifier::Uint8Array_getIndexed(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, + 0 * kWordSize)); // Index.
__ ldr(R1, Address(SP, + 1 * kWordSize)); // Array.
__ tsti(R0, kSmiTagMask);
__ b(&fall_through, NE); // Index is not a smi, fall through.
// Range check.
__ ldr(R6, FieldAddress(R1, TypedData::length_offset()));
__ cmp(R0, Operand(R6));
__ b(&fall_through, CS);
// Array element at R1 + R0 + TypedData::data_offset - 1.
// Untag R0.
__ add(R1, R1, Operand(R0, LSR, 1));
__ ldr(R0, FieldAddress(R1, TypedData::data_offset()), kUnsignedByte);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::ExternalUint8Array_getIndexed(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, + 0 * kWordSize)); // Index.
__ ldr(R1, Address(SP, + 1 * kWordSize)); // Array.
__ tsti(R0, kSmiTagMask);
__ b(&fall_through, NE); // Index is not a smi, fall through.
// Range check.
__ ldr(R6, FieldAddress(R1, TypedData::length_offset()));
__ cmp(R0, Operand(R6));
__ b(&fall_through, CS);
__ ldr(R1, FieldAddress(R1, ExternalTypedData::data_offset()));
// Untag R0.
__ add(R1, R1, Operand(R0, LSR, 1));
__ ldr(R0, Address(R1, 0), kUnsignedByte);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
static int GetScaleFactor(intptr_t size) {
switch (size) {
case 1: return 0;
case 2: return 1;
case 4: return 2;
case 8: return 3;
case 16: return 4;
}
UNREACHABLE();
return -1;
}
#define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \
Label fall_through; \
const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \
__ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
/* Check that length is a positive Smi. */ \
/* R2: requested array length argument. */ \
__ tsti(R2, kSmiTagMask); \
__ b(&fall_through, NE); \
__ CompareRegisters(R2, ZR); \
__ b(&fall_through, LT); \
__ SmiUntag(R2); \
/* Check for maximum allowed length. */ \
/* R2: untagged array length. */ \
__ CompareImmediate(R2, max_len, kNoPP); \
__ b(&fall_through, GT); \
__ Lsl(R2, R2, scale_shift); \
const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \
__ AddImmediate(R2, R2, fixed_size, kNoPP); \
__ andi(R2, R2, ~(kObjectAlignment - 1)); \
Heap* heap = Isolate::Current()->heap(); \
\
__ LoadImmediate(R0, heap->TopAddress(), kNoPP); \
__ ldr(R0, Address(R0, 0)); \
\
/* R2: allocation size. */ \
__ add(R1, R0, Operand(R2)); \
__ b(&fall_through, VS); \
\
/* Check if the allocation fits into the remaining space. */ \
/* R0: potential new object start. */ \
/* R1: potential next object start. */ \
/* R2: allocation size. */ \
__ LoadImmediate(R3, heap->EndAddress(), kNoPP); \
__ ldr(R3, Address(R3, 0)); \
__ cmp(R1, Operand(R3)); \
__ b(&fall_through, CS); \
\
/* Successfully allocated the object(s), now update top to point to */ \
/* next object start and initialize the object. */ \
__ LoadImmediate(R3, heap->TopAddress(), kNoPP); \
__ str(R1, Address(R3, 0)); \
__ AddImmediate(R0, R0, kHeapObjectTag, kNoPP); \
__ UpdateAllocationStatsWithSize(cid, R2, kNoPP); \
/* Initialize the tags. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: allocation size. */ \
{ \
__ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag, kNoPP); \
__ Lsl(R2, R2, RawObject::kSizeTagPos - kObjectAlignmentLog2); \
__ csel(R2, ZR, R2, HI); \
\
/* Get the class index and insert it into the tags. */ \
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid), kNoPP); \
__ orr(R2, R2, Operand(TMP)); \
__ str(R2, FieldAddress(R0, type_name::tags_offset())); /* Tags. */ \
} \
/* Set the length field. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
__ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
__ StoreIntoObjectNoBarrier(R0, \
FieldAddress(R0, type_name::length_offset()), \
R2); \
/* Initialize all array elements to 0. */ \
/* R0: new object start as a tagged pointer. */ \
/* R1: new object end address. */ \
/* R2: iterator which initially points to the start of the variable */ \
/* R3: scratch register. */ \
/* data area to be initialized. */ \
__ mov(R3, ZR); \
__ AddImmediate(R2, R0, sizeof(Raw##type_name) - 1, kNoPP); \
Label init_loop, done; \
__ Bind(&init_loop); \
__ cmp(R2, Operand(R1)); \
__ b(&done, CS); \
__ str(R3, Address(R2, 0)); \
__ add(R2, R2, Operand(kWordSize)); \
__ b(&init_loop); \
__ Bind(&done); \
\
__ ret(); \
__ Bind(&fall_through); \
#define TYPED_DATA_ALLOCATOR(clazz) \
void Intrinsifier::TypedData_##clazz##_new(Assembler* assembler) { \
intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
int shift = GetScaleFactor(size); \
TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
} \
void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \
intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
int shift = GetScaleFactor(size); \
TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
}
CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR)
#undef TYPED_DATA_ALLOCATOR
// Loads args from stack into R0 and R1
// Tests if they are smis, jumps to label not_smi if not.
static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
__ ldr(R0, Address(SP, + 0 * kWordSize));
__ ldr(R1, Address(SP, + 1 * kWordSize));
__ orr(TMP, R0, Operand(R1));
__ tsti(TMP, kSmiTagMask);
__ b(not_smi, NE);
}
void Intrinsifier::Integer_addFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ adds(R0, R0, Operand(R1)); // Adds.
__ b(&fall_through, VS); // Fall-through on overflow.
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_add(Assembler* assembler) {
Integer_addFromInteger(assembler);
}
void Intrinsifier::Integer_subFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ subs(R0, R0, Operand(R1)); // Subtract.
__ b(&fall_through, VS); // Fall-through on overflow.
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_sub(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ subs(R0, R1, Operand(R0)); // Subtract.
__ b(&fall_through, VS); // Fall-through on overflow.
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
__ SmiUntag(R0); // Untags R6. We only want result shifted by one.
__ mul(TMP, R0, R1);
__ smulh(TMP2, R0, R1);
// TMP: result bits 64..127.
__ cmp(TMP2, Operand(TMP, ASR, 63));
__ b(&fall_through, NE);
__ mov(R0, TMP);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_mul(Assembler* assembler) {
Integer_mulFromInteger(assembler);
}
// Optimizations:
// - result is 0 if:
// - left is 0
// - left equals right
// - result is left if
// - left > 0 && left < right
// R1: Tagged left (dividend).
// R0: Tagged right (divisor).
// Returns with result in R0, OR:
// R1: Untagged result (remainder).
static void EmitRemainderOperation(Assembler* assembler) {
Label return_zero, modulo;
const Register left = R1;
const Register right = R0;
const Register result = R1;
const Register tmp = R2;
ASSERT(left == result);
// Check for quick zero results.
__ CompareRegisters(left, ZR);
__ b(&return_zero, EQ);
__ CompareRegisters(left, right);
__ b(&return_zero, EQ);
// Check if result should be left.
__ CompareRegisters(left, ZR);
__ b(&modulo, LT);
// left is positive.
__ CompareRegisters(left, right);
// left is less than right, result is left.
__ b(&modulo, GT);
__ mov(R0, left);
__ ret();
__ Bind(&return_zero);
__ mov(R0, ZR);
__ ret();
__ Bind(&modulo);
// result <- left - right * (left / right)
__ SmiUntag(left);
__ SmiUntag(right);
__ sdiv(tmp, left, right);
__ msub(result, right, tmp, left); // result <- left - right * tmp
}
// Implementation:
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) {
// Check to see if we have integer division
Label neg_remainder, fall_through;
__ ldr(R1, Address(SP, + 0 * kWordSize));
__ ldr(R0, Address(SP, + 1 * kWordSize));
__ orr(TMP, R0, Operand(R1));
__ tsti(TMP, kSmiTagMask);
__ b(&fall_through, NE);
// R1: Tagged left (dividend).
// R0: Tagged right (divisor).
// Check if modulo by zero -> exception thrown in main function.
__ CompareRegisters(R0, ZR);
__ b(&fall_through, EQ);
EmitRemainderOperation(assembler);
// Untagged right in R0. Untagged remainder result in R1.
__ CompareRegisters(R1, ZR);
__ b(&neg_remainder, LT);
__ Lsl(R0, R1, 1); // Tag and move result to R0.
__ ret();
__ Bind(&neg_remainder);
// Result is negative, adjust it.
__ CompareRegisters(R0, ZR);
__ sub(TMP, R1, Operand(R0));
__ add(TMP2, R1, Operand(R0));
__ csel(R0, TMP2, TMP, GE);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_truncDivide(Assembler* assembler) {
// Check to see if we have integer division
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ CompareRegisters(R0, ZR);
__ b(&fall_through, EQ); // If b is 0, fall through.
__ SmiUntag(R0);
__ SmiUntag(R1);
__ sdiv(R0, R1, R0);
// Check the corner case of dividing the 'MIN_SMI' with -1, in which case we
// cannot tag the result.
__ CompareImmediate(R0, 0x4000000000000000, kNoPP);
__ b(&fall_through, EQ);
__ SmiTag(R0); // Not equal. Okay to tag and return.
__ ret(); // Return.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_negate(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, + 0 * kWordSize)); // Grab first argument.
__ tsti(R0, kSmiTagMask); // Test for Smi.
__ b(&fall_through, NE);
__ negs(R0, R0);
__ b(&fall_through, VS);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ and_(R0, R0, Operand(R1));
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitAnd(Assembler* assembler) {
Integer_bitAndFromInteger(assembler);
}
void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ orr(R0, R0, Operand(R1));
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitOr(Assembler* assembler) {
Integer_bitOrFromInteger(assembler);
}
void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
__ eor(R0, R0, Operand(R1));
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_bitXor(Assembler* assembler) {
Integer_bitXorFromInteger(assembler);
}
void Intrinsifier::Integer_shl(Assembler* assembler) {
ASSERT(kSmiTagShift == 1);
ASSERT(kSmiTag == 0);
const Register right = R0;
const Register left = R1;
const Register temp = R2;
const Register result = R0;
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
__ CompareImmediate(
right, reinterpret_cast<int64_t>(Smi::New(Smi::kBits)), PP);
__ b(&fall_through, CS);
// Left is not a constant.
// Check if count too large for handling it inlined.
__ Asr(TMP, right, kSmiTagSize); // SmiUntag right into TMP.
// Overflow test (preserve left, right, and TMP);
__ lslv(temp, left, TMP);
__ asrv(TMP2, temp, TMP);
__ CompareRegisters(left, TMP2);
__ b(&fall_through, NE); // Overflow.
// Shift for result now we know there is no overflow.
__ lslv(result, left, TMP);
__ ret();
__ Bind(&fall_through);
}
static void CompareIntegers(Assembler* assembler, Condition true_condition) {
Label fall_through, true_label;
TestBothArgumentsSmis(assembler, &fall_through);
// R0 contains the right argument, R1 the left.
__ CompareRegisters(R1, R0);
__ LoadObject(R0, Bool::False(), PP);
__ LoadObject(TMP, Bool::True(), PP);
__ csel(R0, TMP, R0, true_condition);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) {
CompareIntegers(assembler, LT);
}
void Intrinsifier::Integer_lessThan(Assembler* assembler) {
Integer_greaterThanFromInt(assembler);
}
void Intrinsifier::Integer_greaterThan(Assembler* assembler) {
CompareIntegers(assembler, GT);
}
void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) {
CompareIntegers(assembler, LE);
}
void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) {
CompareIntegers(assembler, GE);
}
// This is called for Smi, Mint and Bigint receivers. The right argument
// can be Smi, Mint, Bigint or double.
void Intrinsifier::Integer_equalToInteger(Assembler* assembler) {
Label fall_through, true_label, check_for_mint;
// For integer receiver '===' check first.
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R1, Address(SP, 1 * kWordSize));
__ cmp(R0, Operand(R1));
__ b(&true_label, EQ);
__ orr(R2, R0, Operand(R1));
__ tsti(R2, kSmiTagMask);
__ b(&check_for_mint, NE); // If R0 or R1 is not a smi do Mint checks.
// Both arguments are smi, '===' is good enough.
__ LoadObject(R0, Bool::False(), PP);
__ ret();
__ Bind(&true_label);
__ LoadObject(R0, Bool::True(), PP);
__ ret();
// At least one of the arguments was not Smi.
Label receiver_not_smi;
__ Bind(&check_for_mint);
__ tsti(R1, kSmiTagMask); // Check receiver.
__ b(&receiver_not_smi, NE);
// Left (receiver) is Smi, return false if right is not Double.
// Note that an instance of Mint or Bigint never contains a value that can be
// represented by Smi.
__ CompareClassId(R0, kDoubleCid, kNoPP);
__ b(&fall_through, EQ);
__ LoadObject(R0, Bool::False(), PP); // Smi == Mint -> false.
__ ret();
__ Bind(&receiver_not_smi);
// R1: receiver.
__ CompareClassId(R1, kMintCid, kNoPP);
__ b(&fall_through, NE);
// Receiver is Mint, return false if right is Smi.
__ tsti(R0, kSmiTagMask);
__ b(&fall_through, NE);
__ LoadObject(R0, Bool::False(), PP);
__ ret();
// TODO(srdjan): Implement Mint == Mint comparison.
__ Bind(&fall_through);
}
void Intrinsifier::Integer_equal(Assembler* assembler) {
Integer_equalToInteger(assembler);
}
void Intrinsifier::Integer_sar(Assembler* assembler) {
Label fall_through;
TestBothArgumentsSmis(assembler, &fall_through);
// Shift amount in R0. Value to shift in R1.
// Fall through if shift amount is negative.
__ SmiUntag(R0);
__ CompareRegisters(R0, ZR);
__ b(&fall_through, LT);
// If shift amount is bigger than 63, set to 63.
__ LoadImmediate(TMP, 0x3F, kNoPP);
__ CompareRegisters(R0, TMP);
__ csel(R0, TMP, R0, GT);
__ SmiUntag(R1);
__ asrv(R0, R1, R0);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Smi_bitNegate(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ mvn(R0, R0);
__ andi(R0, R0, ~kSmiTagMask); // Remove inverted smi-tag.
__ ret();
}
void Intrinsifier::Smi_bitLength(Assembler* assembler) {
// TODO(sra): Implement as word-length - CLZ.
}
// Check if the last argument is a double, jump to label 'is_smi' if smi
// (easy to convert to double), otherwise jump to label 'not_double_smi',
// Returns the last argument in R0.
static void TestLastArgumentIsDouble(Assembler* assembler,
Label* is_smi,
Label* not_double_smi) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ tsti(R0, kSmiTagMask);
__ b(is_smi, EQ);
__ CompareClassId(R0, kDoubleCid, kNoPP);
__ b(not_double_smi, NE);
// Fall through with Double in R0.
}
// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown
// type. Return true or false object in the register R0. Any NaN argument
// returns false. Any non-double arg1 causes control flow to fall through to the
// slow case (compiled method body).
static void CompareDoubles(Assembler* assembler, Condition true_condition) {
Label fall_through, is_smi, double_op, not_nan;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Both arguments are double, right operand is in R0.
__ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP);
__ Bind(&double_op);
__ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument.
__ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
__ fcmpd(V0, V1);
__ LoadObject(R0, Bool::False(), PP);
// Return false if D0 or D1 was NaN before checking true condition.
__ b(&not_nan, VC);
__ ret();
__ Bind(&not_nan);
__ LoadObject(TMP, Bool::True(), PP);
__ csel(R0, TMP, R0, true_condition);
__ ret();
__ Bind(&is_smi); // Convert R0 to a double.
__ SmiUntag(R0);
__ scvtfd(V1, R0);
__ b(&double_op); // Then do the comparison.
__ Bind(&fall_through);
}
void Intrinsifier::Double_greaterThan(Assembler* assembler) {
CompareDoubles(assembler, HI);
}
void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) {
CompareDoubles(assembler, CS);
}
void Intrinsifier::Double_lessThan(Assembler* assembler) {
CompareDoubles(assembler, CC);
}
void Intrinsifier::Double_equal(Assembler* assembler) {
CompareDoubles(assembler, EQ);
}
void Intrinsifier::Double_lessEqualThan(Assembler* assembler) {
CompareDoubles(assembler, LS);
}
// Expects left argument to be double (receiver). Right argument is unknown.
// Both arguments are on stack.
static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) {
Label fall_through;
TestLastArgumentIsDouble(assembler, &fall_through, &fall_through);
// Both arguments are double, right operand is in R0.
__ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP);
__ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument.
__ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
switch (kind) {
case Token::kADD: __ faddd(V0, V0, V1); break;
case Token::kSUB: __ fsubd(V0, V0, V1); break;
case Token::kMUL: __ fmuld(V0, V0, V1); break;
case Token::kDIV: __ fdivd(V0, V0, V1); break;
default: UNREACHABLE();
}
const Class& double_class = Class::Handle(
Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, kNoPP);
__ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Double_add(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kADD);
}
void Intrinsifier::Double_mul(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kMUL);
}
void Intrinsifier::Double_sub(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kSUB);
}
void Intrinsifier::Double_div(Assembler* assembler) {
DoubleArithmeticOperations(assembler, Token::kDIV);
}
// Left is double right is integer (Bigint, Mint or Smi)
void Intrinsifier::Double_mulFromInteger(Assembler* assembler) {
Label fall_through;
// Only smis allowed.
__ ldr(R0, Address(SP, 0 * kWordSize));
__ tsti(R0, kSmiTagMask);
__ b(&fall_through, NE);
// Is Smi.
__ SmiUntag(R0);
__ scvtfd(V1, R0);
__ ldr(R0, Address(SP, 1 * kWordSize));
__ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
__ fmuld(V0, V0, V1);
const Class& double_class = Class::Handle(
Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, kNoPP);
__ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Double_fromInteger(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ tsti(R0, kSmiTagMask);
__ b(&fall_through, NE);
// Is Smi.
__ SmiUntag(R0);
__ scvtfd(V0, R0);
const Class& double_class = Class::Handle(
Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, kNoPP);
__ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Double_getIsNaN(Assembler* assembler) {
Label is_true;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
__ fcmpd(V0, V0);
__ LoadObject(TMP, Bool::False(), PP);
__ LoadObject(R0, Bool::True(), PP);
__ csel(R0, TMP, R0, VC);
__ ret();
}
void Intrinsifier::Double_getIsNegative(Assembler* assembler) {
const Register false_reg = R0;
const Register true_reg = R2;
Label is_false, is_true, is_zero;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
__ fcmpdz(V0);
__ LoadObject(true_reg, Bool::True(), PP);
__ LoadObject(false_reg, Bool::False(), PP);
__ b(&is_false, VS); // NaN -> false.
__ b(&is_zero, EQ); // Check for negative zero.
__ b(&is_false, CS); // >= 0 -> false.
__ Bind(&is_true);
__ mov(R0, true_reg);
__ Bind(&is_false);
__ ret();
__ Bind(&is_zero);
// Check for negative zero by looking at the sign bit.
__ fmovrd(R1, V0);
__ Lsr(R1, R1, 63);
__ tsti(R1, 1);
__ csel(R0, true_reg, false_reg, NE); // Sign bit set.
__ ret();
}
void Intrinsifier::Double_toInt(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
// Explicit NaN check, since ARM gives an FPU exception if you try to
// convert NaN to an int.
__ fcmpd(V0, V0);
__ b(&fall_through, VS);
__ fcvtzds(R0, V0);
// Overflow is signaled with minint.
// Check for overflow and that it fits into Smi.
__ CompareImmediate(R0, 0xC000000000000000, kNoPP);
__ b(&fall_through, MI);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::Math_sqrt(Assembler* assembler) {
Label fall_through, is_smi, double_op;
TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
// Argument is double and is in R0.
__ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP);
__ Bind(&double_op);
__ fsqrtd(V0, V1);
const Class& double_class = Class::Handle(
Isolate::Current()->object_store()->double_class());
__ TryAllocate(double_class, &fall_through, R0, kNoPP);
__ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP);
__ ret();
__ Bind(&is_smi);
__ SmiUntag(R0);
__ scvtfd(V1, R0);
__ b(&double_op);
__ Bind(&fall_through);
}
// var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64;
// _state[kSTATE_LO] = state & _MASK_32;
// _state[kSTATE_HI] = state >> 32;
void Intrinsifier::Random_nextState(Assembler* assembler) {
const Library& math_lib = Library::Handle(Library::MathLibrary());
ASSERT(!math_lib.IsNull());
const Class& random_class = Class::Handle(
math_lib.LookupClassAllowPrivate(Symbols::_Random()));
ASSERT(!random_class.IsNull());
const Field& state_field = Field::ZoneHandle(
random_class.LookupInstanceField(Symbols::_state()));
ASSERT(!state_field.IsNull());
const Field& random_A_field = Field::ZoneHandle(
random_class.LookupStaticField(Symbols::_A()));
ASSERT(!random_A_field.IsNull());
ASSERT(random_A_field.is_const());
const Instance& a_value = Instance::Handle(random_A_field.value());
const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value();
__ ldr(R0, Address(SP, 0 * kWordSize)); // Receiver.
__ ldr(R1, FieldAddress(R0, state_field.Offset())); // Field '_state'.
// Addresses of _state[0].
const int64_t disp =
Instance::DataOffsetFor(kTypedDataUint32ArrayCid) - kHeapObjectTag;
__ LoadImmediate(R0, a_int_value, kNoPP);
__ LoadFromOffset(R2, R1, disp, kNoPP);
__ Lsr(R3, R2, 32);
__ andi(R2, R2, 0xffffffff);
__ mul(R2, R0, R2);
__ add(R2, R2, Operand(R3));
__ StoreToOffset(R2, R1, disp, kNoPP);
__ ret();
}
void Intrinsifier::Object_equal(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R1, Address(SP, 1 * kWordSize));
__ cmp(R0, Operand(R1));
__ LoadObject(R0, Bool::False(), PP);
__ LoadObject(TMP, Bool::True(), PP);
__ csel(R0, TMP, R0, EQ);
__ ret();
}
void Intrinsifier::String_getHashCode(Assembler* assembler) {
Label fall_through;
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, String::hash_offset()));
__ CompareRegisters(R0, ZR);
__ b(&fall_through, EQ);
__ ret();
// Hash not yet computed.
__ Bind(&fall_through);
}
void Intrinsifier::String_getLength(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, String::length_offset()));
__ ret();
}
void Intrinsifier::String_codeUnitAt(Assembler* assembler) {
Label fall_through, try_two_byte_string;
__ ldr(R1, Address(SP, 0 * kWordSize)); // Index.
__ ldr(R0, Address(SP, 1 * kWordSize)); // String.
__ tsti(R1, kSmiTagMask);
__ b(&fall_through, NE); // Index is not a Smi.
// Range check.
__ ldr(R2, FieldAddress(R0, String::length_offset()));
__ cmp(R1, Operand(R2));
__ b(&fall_through, CS); // Runtime throws exception.
__ CompareClassId(R0, kOneByteStringCid, kNoPP);
__ b(&try_two_byte_string, NE);
__ SmiUntag(R1);
__ AddImmediate(R0, R0, OneByteString::data_offset() - kHeapObjectTag, kNoPP);
__ ldr(R0, Address(R0, R1), kUnsignedByte);
__ SmiTag(R0);
__ ret();
__ Bind(&try_two_byte_string);
__ CompareClassId(R0, kTwoByteStringCid, kNoPP);
__ b(&fall_through, NE);
ASSERT(kSmiTagShift == 1);
__ AddImmediate(R0, R0, TwoByteString::data_offset() - kHeapObjectTag, kNoPP);
__ ldr(R0, Address(R0, R1), kUnsignedHalfword);
__ SmiTag(R0);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::String_getIsEmpty(Assembler* assembler) {
__ ldr(R0, Address(SP, 0 * kWordSize));
__ ldr(R0, FieldAddress(R0, String::length_offset()));
__ cmp(R0, Operand(Smi::RawValue(0)));
__ LoadObject(R0, Bool::True(), PP);
__ LoadObject(TMP, Bool::False(), PP);
__ csel(R0, TMP, R0, NE);
__ ret();
}
void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) {
Label compute_hash;
__ ldr(R1, Address(SP, 0 * kWordSize)); // OneByteString object.
__ ldr(R0, FieldAddress(R1, String::hash_offset()));
__ CompareRegisters(R0, ZR);
__ b(&compute_hash, EQ);
__ ret(); // Return if already computed.
__ Bind(&compute_hash);
__ ldr(R2, FieldAddress(R1, String::length_offset()));
__ SmiUntag(R2);
Label done;
// If the string is empty, set the hash to 1, and return.
__ CompareRegisters(R2, ZR);
__ b(&done, EQ);
__ mov(R3, ZR);
__ AddImmediate(R6, R1, OneByteString::data_offset() - kHeapObjectTag, kNoPP);
// R1: Instance of OneByteString.
// R2: String length, untagged integer.
// R3: Loop counter, untagged integer.
// R6: String data.
// R0: Hash code, untagged integer.
Label loop;
// Add to hash code: (hash_ is uint32)
// hash_ += ch;
// hash_ += hash_ << 10;
// hash_ ^= hash_ >> 6;
// Get one characters (ch).
__ Bind(&loop);
__ ldr(R7, Address(R6, R3), kUnsignedByte);
// R7: ch.
__ add(R3, R3, Operand(1));
__ addw(R0, R0, Operand(R7));
__ addw(R0, R0, Operand(R0, LSL, 10));
__ eorw(R0, R0, Operand(R0, LSR, 6));
__ cmp(R3, Operand(R2));
__ b(&loop, NE);
// Finalize.
// hash_ += hash_ << 3;
// hash_ ^= hash_ >> 11;
// hash_ += hash_ << 15;
__ addw(R0, R0, Operand(R0, LSL, 3));
__ eorw(R0, R0, Operand(R0, LSR, 11));
__ addw(R0, R0, Operand(R0, LSL, 15));
// hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1);
__ AndImmediate(
R0, R0, (static_cast<intptr_t>(1) << String::kHashBits) - 1, kNoPP);
__ CompareRegisters(R0, ZR);
// return hash_ == 0 ? 1 : hash_;
__ Bind(&done);
__ csinc(R0, R0, ZR, NE); // R0 <- (R0 != 0) ? R0 : (ZR + 1).
__ SmiTag(R0);
__ str(R0, FieldAddress(R1, String::hash_offset()));
__ ret();
}
// Allocates one-byte string of length 'end - start'. The content is not
// initialized.
// 'length-reg' (R2) contains tagged length.
// Returns new string as tagged pointer in R0.
static void TryAllocateOnebyteString(Assembler* assembler,
Label* ok,
Label* failure) {
const Register length_reg = R2;
Label fail;
__ mov(R6, length_reg); // Save the length register.
__ SmiUntag(length_reg);
const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1;
__ AddImmediate(length_reg, length_reg, fixed_size, kNoPP);
__ andi(length_reg, length_reg, ~(kObjectAlignment - 1));
Isolate* isolate = Isolate::Current();
Heap* heap = isolate->heap();
__ LoadImmediate(R3, heap->TopAddress(), kNoPP);
__ ldr(R0, Address(R3));
// length_reg: allocation size.
__ adds(R1, R0, Operand(length_reg));
__ b(&fail, VS); // Fail on overflow.
// Check if the allocation fits into the remaining space.
// R0: potential new object start.
// R1: potential next object start.
// R2: allocation size.
// R3: heap->Top->Address().
__ LoadImmediate(R7, heap->EndAddress(), kNoPP);
__ ldr(R7, Address(R7));
__ cmp(R1, Operand(R7));
__ b(&fail, CS);
// Successfully allocated the object(s), now update top to point to
// next object start and initialize the object.
__ str(R1, Address(R3));
__ AddImmediate(R0, R0, kHeapObjectTag, kNoPP);
__ UpdateAllocationStatsWithSize(kOneByteStringCid, R2, kNoPP);
// Initialize the tags.
// R0: new object start as a tagged pointer.
// R1: new object end address.
// R2: allocation size.
{
const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
const Class& cls =
Class::Handle(isolate->object_store()->one_byte_string_class());
__ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag, kNoPP);
__ Lsl(R2, R2, shift);
__ csel(R2, R2, ZR, LS);
// Get the class index and insert it into the tags.
// R2: size and bit tags.
__ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cls.id()), kNoPP);
__ orr(R2, R2, Operand(TMP));
__ str(R2, FieldAddress(R0, String::tags_offset())); // Store tags.
}
// Set the length field using the saved length (R6).
__ StoreIntoObjectNoBarrier(R0,
FieldAddress(R0, String::length_offset()),
R6);
// Clear hash.
__ mov(TMP, ZR);
__ str(TMP, FieldAddress(R0, String::hash_offset()));
__ b(ok);
__ Bind(&fail);
__ b(failure);
}
// Arg0: OneByteString (receiver).
// Arg1: Start index as Smi.
// Arg2: End index as Smi.
// The indexes must be valid.
void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) {
const intptr_t kStringOffset = 2 * kWordSize;
const intptr_t kStartIndexOffset = 1 * kWordSize;
const intptr_t kEndIndexOffset = 0 * kWordSize;
Label fall_through, ok;
__ ldr(R2, Address(SP, kEndIndexOffset));
__ ldr(TMP, Address(SP, kStartIndexOffset));
__ orr(R3, R2, Operand(TMP));
__ tsti(R3, kSmiTagMask);
__ b(&fall_through, NE); // 'start', 'end' not Smi.
__ sub(R2, R2, Operand(TMP));
TryAllocateOnebyteString(assembler, &ok, &fall_through);
__ Bind(&ok);
// R0: new string as tagged pointer.
// Copy string.
__ ldr(R3, Address(SP, kStringOffset));
__ ldr(R1, Address(SP, kStartIndexOffset));
__ SmiUntag(R1);
__ add(R3, R3, Operand(R1));
// Calculate start address and untag (- 1).
__ AddImmediate(R3, R3, OneByteString::data_offset() - 1, kNoPP);
// R3: Start address to copy from (untagged).
// R1: Untagged start index.
__ ldr(R2, Address(SP, kEndIndexOffset));
__ SmiUntag(R2);
__ sub(R2, R2, Operand(R1));
// R3: Start address to copy from (untagged).
// R2: Untagged number of bytes to copy.
// R0: Tagged result string.
// R6: Pointer into R3.
// R7: Pointer into R0.
// R1: Scratch register.
Label loop, done;
__ cmp(R2, Operand(0));
__ b(&done, LE);
__ mov(R6, R3);
__ mov(R7, R0);
__ Bind(&loop);
__ ldr(R1, Address(R6), kUnsignedByte);
__ AddImmediate(R6, R6, 1, kNoPP);
__ sub(R2, R2, Operand(1));
__ cmp(R2, Operand(0));
__ str(R1, FieldAddress(R7, OneByteString::data_offset()), kUnsignedByte);
__ AddImmediate(R7, R7, 1, kNoPP);
__ b(&loop, GT);
__ Bind(&done);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::OneByteString_setAt(Assembler* assembler) {
__ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
__ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
__ ldr(R0, Address(SP, 2 * kWordSize)); // OneByteString.
__ SmiUntag(R1);
__ SmiUntag(R2);
__ AddImmediate(R3, R0, OneByteString::data_offset() - kHeapObjectTag, kNoPP);
__ str(R2, Address(R3, R1), kUnsignedByte);
__ ret();
}
void Intrinsifier::OneByteString_allocate(Assembler* assembler) {
Label fall_through, ok;
__ ldr(R2, Address(SP, 0 * kWordSize)); // Length.
TryAllocateOnebyteString(assembler, &ok, &fall_through);
__ Bind(&ok);
__ ret();
__ Bind(&fall_through);
}
// TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
void StringEquality(Assembler* assembler, intptr_t string_cid) {
Label fall_through, is_true, is_false, loop;
__ ldr(R0, Address(SP, 1 * kWordSize)); // This.
__ ldr(R1, Address(SP, 0 * kWordSize)); // Other.
// Are identical?
__ cmp(R0, Operand(R1));
__ b(&is_true, EQ);
// Is other OneByteString?
__ tsti(R1, kSmiTagMask);
__ b(&fall_through, EQ);
__ CompareClassId(R1, string_cid, kNoPP);
__ b(&fall_through, NE);
// Have same length?
__ ldr(R2, FieldAddress(R0, String::length_offset()));
__ ldr(R3, FieldAddress(R1, String::length_offset()));
__ cmp(R2, Operand(R3));
__ b(&is_false, NE);
// Check contents, no fall-through possible.
// TODO(zra): try out other sequences.
ASSERT((string_cid == kOneByteStringCid) ||
(string_cid == kTwoByteStringCid));
const intptr_t offset = (string_cid == kOneByteStringCid) ?
OneByteString::data_offset() : TwoByteString::data_offset();
__ AddImmediate(R0, R0, offset - kHeapObjectTag, kNoPP);
__ AddImmediate(R1, R1, offset - kHeapObjectTag, kNoPP);
__ SmiUntag(R2);
__ Bind(&loop);
__ AddImmediate(R2, R2, -1, kNoPP);
__ CompareRegisters(R2, ZR);
__ b(&is_true, LT);
if (string_cid == kOneByteStringCid) {
__ ldr(R3, Address(R0), kUnsignedByte);
__ ldr(R4, Address(R1), kUnsignedByte);
__ AddImmediate(R0, R0, 1, kNoPP);
__ AddImmediate(R1, R1, 1, kNoPP);
} else if (string_cid == kTwoByteStringCid) {
__ ldr(R3, Address(R0), kUnsignedHalfword);
__ ldr(R4, Address(R1), kUnsignedHalfword);
__ AddImmediate(R0, R0, 2, kNoPP);
__ AddImmediate(R1, R1, 2, kNoPP);
} else {
UNIMPLEMENTED();
}
__ cmp(R3, Operand(R4));
__ b(&is_false, NE);
__ b(&loop);
__ Bind(&is_true);
__ LoadObject(R0, Bool::True(), PP);
__ ret();
__ Bind(&is_false);
__ LoadObject(R0, Bool::False(), PP);
__ ret();
__ Bind(&fall_through);
}
void Intrinsifier::OneByteString_equality(Assembler* assembler) {
StringEquality(assembler, kOneByteStringCid);
}
void Intrinsifier::TwoByteString_equality(Assembler* assembler) {
StringEquality(assembler, kTwoByteStringCid);
}
// On stack: user tag (+0).
void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) {
// R1: Isolate.
Isolate* isolate = Isolate::Current();
__ LoadImmediate(R1, reinterpret_cast<uword>(isolate), kNoPP);
// R0: Current user tag.
__ ldr(R0, Address(R1, Isolate::current_tag_offset()));
// R2: UserTag.
__ ldr(R2, Address(SP, + 0 * kWordSize));
// Set Isolate::current_tag_.
__ str(R2, Address(R1, Isolate::current_tag_offset()));
// R2: UserTag's tag.
__ ldr(R2, FieldAddress(R2, UserTag::tag_offset()));
// Set Isolate::user_tag_.
__ str(R2, Address(R1, Isolate::user_tag_offset()));
__ ret();
}
void Intrinsifier::UserTag_defaultTag(Assembler* assembler) {
Isolate* isolate = Isolate::Current();
// Set return value to default tag address.
__ LoadImmediate(R0,
reinterpret_cast<uword>(isolate->object_store()) +
ObjectStore::default_tag_offset(), kNoPP);
__ ldr(R0, Address(R0));
__ ret();
}
void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) {
// R1: Default tag address.
Isolate* isolate = Isolate::Current();
__ LoadImmediate(R1, reinterpret_cast<uword>(isolate), kNoPP);
// Set return value to Isolate::current_tag_.
__ ldr(R0, Address(R1, Isolate::current_tag_offset()));
__ ret();
}
} // namespace dart
#endif // defined TARGET_ARCH_ARM64