blob: 200e5ad8b5261b0c3466402f987cf5681ee6c54b [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library dart2js.js_emitter.runtime_type_generator;
import '../closure.dart' show ClosureClassMap, ClosureFieldElement, ClosureTask;
import '../common.dart';
import '../common/names.dart' show Identifiers;
import '../common_elements.dart' show CommonElements;
import '../elements/resolution_types.dart'
show ResolutionDartType, ResolutionFunctionType, ResolutionInterfaceType;
import '../elements/elements.dart'
show ClassElement, Element, FunctionElement, MixinApplicationElement;
import '../js/js.dart' as jsAst;
import '../js/js.dart' show js;
import '../js_backend/js_interop_analysis.dart';
import '../js_backend/native_data.dart';
import '../js_backend/namer.dart' show Namer;
import '../js_backend/runtime_types.dart'
show
RuntimeTypesChecks,
RuntimeTypesNeed,
RuntimeTypesEncoder,
RuntimeTypesSubstitutions,
Substitution,
TypeCheck,
TypeChecks;
import '../util/util.dart' show Setlet;
import 'code_emitter_task.dart' show CodeEmitterTask;
import 'type_test_registry.dart' show TypeTestRegistry;
// Function signatures used in the generation of runtime type information.
typedef void FunctionTypeSignatureEmitter(
Element method, ResolutionFunctionType methodType);
typedef void SubstitutionEmitter(Element element, {bool emitNull});
class TypeTestProperties {
/// The index of the function type into the metadata.
///
/// If the class doesn't have a function type this field is `null`.
///
/// If the is tests were generated with `storeFunctionTypeInMetadata` set to
/// `false`, this field is `null`, and the [properties] contain a property
/// that encodes the function type.
jsAst.Expression functionTypeIndex;
/// The properties that must be installed on the prototype of the
/// JS constructor of the [ClassElement] for which the is checks were
/// generated.
final Map<jsAst.Name, jsAst.Node> properties = <jsAst.Name, jsAst.Node>{};
}
class RuntimeTypeGenerator {
final CommonElements _commonElements;
final ClosureTask _closureToClassMapper;
final CodeEmitterTask emitterTask;
final Namer _namer;
final NativeData _nativeData;
final RuntimeTypesChecks _rtiChecks;
final RuntimeTypesEncoder _rtiEncoder;
final RuntimeTypesNeed _rtiNeed;
final RuntimeTypesSubstitutions _rtiSubstitutions;
final JsInteropAnalysis _jsInteropAnalysis;
RuntimeTypeGenerator(
this._commonElements,
this._closureToClassMapper,
this.emitterTask,
this._namer,
this._nativeData,
this._rtiChecks,
this._rtiEncoder,
this._rtiNeed,
this._rtiSubstitutions,
this._jsInteropAnalysis);
TypeTestRegistry get _typeTestRegistry => emitterTask.typeTestRegistry;
Set<ClassElement> get checkedClasses => _typeTestRegistry.checkedClasses;
Iterable<ClassElement> get classesUsingTypeVariableTests =>
_typeTestRegistry.classesUsingTypeVariableTests;
Set<ResolutionFunctionType> get checkedFunctionTypes =>
_typeTestRegistry.checkedFunctionTypes;
/// Generates all properties necessary for is-checks on the [classElement].
///
/// Returns an instance of [TypeTestProperties] that contains the properties
/// that must be installed on the prototype of the JS constructor of the
/// [classElement].
///
/// If [storeFunctionTypeInMetadata] is `true`, stores the reified function
/// type (if class has one) in the metadata object and stores its index in
/// the result. This is only possible for function types that do not contain
/// type variables.
TypeTestProperties generateIsTests(ClassElement classElement,
{bool storeFunctionTypeInMetadata: true}) {
assert(invariant(classElement, classElement.isDeclaration));
TypeTestProperties result = new TypeTestProperties();
/// Generates an is-test if the test is not inherited from a superclass
/// This assumes that for every class an is-tests is generated
/// dynamically at runtime. We also always generate tests against
/// native classes.
/// TODO(herhut): Generate tests for native classes dynamically, as well.
void generateIsTest(ClassElement other) {
if (_nativeData.isNativeClass(classElement) ||
!classElement.isSubclassOf(other)) {
result.properties[_namer.operatorIs(other)] = js('1');
}
}
void generateFunctionTypeSignature(
FunctionElement method, ResolutionFunctionType type) {
assert(method.isImplementation);
jsAst.Expression thisAccess = new jsAst.This();
if (!method.isAbstract) {
ClosureClassMap closureData =
_closureToClassMapper.getClosureToClassMapping(method.resolvedAst);
if (closureData != null) {
ClosureFieldElement thisLocal =
closureData.freeVariableMap[closureData.thisLocal];
if (thisLocal != null) {
jsAst.Name thisName = _namer.instanceFieldPropertyName(thisLocal);
thisAccess = js('this.#', thisName);
}
}
}
if (storeFunctionTypeInMetadata && !type.containsTypeVariables) {
result.functionTypeIndex =
emitterTask.metadataCollector.reifyType(type);
} else {
jsAst.Expression encoding = _rtiEncoder.getSignatureEncoding(
emitterTask.emitter, type, thisAccess);
jsAst.Name operatorSignature = _namer.asName(_namer.operatorSignature);
result.properties[operatorSignature] = encoding;
}
}
void generateSubstitution(ClassElement cls, {bool emitNull: false}) {
if (cls.typeVariables.isEmpty) return;
jsAst.Expression expression;
bool needsNativeCheck =
emitterTask.nativeEmitter.requiresNativeIsCheck(cls);
Substitution substitution =
_rtiSubstitutions.getSubstitution(classElement, cls);
if (substitution != null) {
expression =
_rtiEncoder.getSubstitutionCode(emitterTask.emitter, substitution);
}
if (expression == null && (emitNull || needsNativeCheck)) {
expression = new jsAst.LiteralNull();
}
if (expression != null) {
result.properties[_namer.substitutionName(cls)] = expression;
}
}
void generateTypeCheck(TypeCheck check) {
ClassElement checkedClass = check.cls;
generateIsTest(checkedClass);
Substitution substitution = check.substitution;
if (substitution != null) {
jsAst.Expression body =
_rtiEncoder.getSubstitutionCode(emitterTask.emitter, substitution);
result.properties[_namer.substitutionName(checkedClass)] = body;
}
}
_generateIsTestsOn(classElement, generateIsTest,
generateFunctionTypeSignature, generateSubstitution, generateTypeCheck);
if (classElement == _commonElements.jsJavaScriptFunctionClass) {
var type = _jsInteropAnalysis.buildJsFunctionType();
if (type != null) {
jsAst.Expression thisAccess = new jsAst.This();
jsAst.Expression encoding = _rtiEncoder.getSignatureEncoding(
emitterTask.emitter, type, thisAccess);
jsAst.Name operatorSignature = _namer.asName(_namer.operatorSignature);
result.properties[operatorSignature] = encoding;
}
}
return result;
}
/**
* Generate "is tests" for [cls] itself, and the "is tests" for the
* classes it implements and type argument substitution functions for these
* tests. We don't need to add the "is tests" of the super class because
* they will be inherited at runtime, but we may need to generate the
* substitutions, because they may have changed.
*/
void _generateIsTestsOn(
ClassElement cls,
void generateIsTest(Element element),
FunctionTypeSignatureEmitter generateFunctionTypeSignature,
SubstitutionEmitter generateSubstitution,
void emitTypeCheck(TypeCheck check)) {
Setlet<ClassElement> generated = new Setlet<ClassElement>();
if (checkedClasses.contains(cls)) {
generateIsTest(cls);
generateSubstitution(cls);
generated.add(cls);
}
// Precomputed is checks.
TypeChecks typeChecks = _rtiChecks.requiredChecks;
Iterable<TypeCheck> classChecks = typeChecks[cls];
if (classChecks != null) {
for (TypeCheck check in classChecks) {
if (!generated.contains(check.cls)) {
emitTypeCheck(check);
generated.add(check.cls);
}
}
}
ClassElement superclass = cls.superclass;
bool haveSameTypeVariables(ClassElement a, ClassElement b) {
if (a.isClosure) return true;
return _rtiSubstitutions.isTrivialSubstitution(a, b);
}
bool supertypesNeedSubstitutions = false;
if (superclass != null &&
superclass != _commonElements.objectClass &&
!haveSameTypeVariables(cls, superclass)) {
// We cannot inherit the generated substitutions, because the type
// variable layout for this class is different. Instead we generate
// substitutions for all checks and make emitSubstitution a NOP for the
// rest of this function.
// TODO(karlklose): move the computation of these checks to
// RuntimeTypeInformation.
while (superclass != null) {
if (_rtiNeed.classNeedsRti(superclass)) {
generateSubstitution(superclass, emitNull: true);
generated.add(superclass);
}
superclass = superclass.superclass;
}
supertypesNeedSubstitutions = true;
}
if (cls is MixinApplicationElement) {
supertypesNeedSubstitutions = true;
}
if (supertypesNeedSubstitutions) {
for (ResolutionInterfaceType supertype in cls.allSupertypes) {
ClassElement superclass = supertype.element;
if (generated.contains(superclass)) continue;
if (classesUsingTypeVariableTests.contains(superclass) ||
_rtiNeed.classUsesTypeVariableExpression(superclass) ||
checkedClasses.contains(superclass)) {
// Generate substitution. If no substitution is necessary, emit
// `null` to overwrite a (possibly) existing substitution from the
// super classes.
generateSubstitution(superclass, emitNull: true);
}
}
void emitNothing(_, {emitNull}) {}
generateSubstitution = emitNothing;
}
// A class that defines a `call` method implicitly implements
// [Function] and needs checks for all typedefs that are used in is-checks.
if (checkedClasses.contains(_commonElements.functionClass) ||
checkedFunctionTypes.isNotEmpty) {
Element call = cls.lookupLocalMember(Identifiers.call);
if (call == null) {
// If [cls] is a closure, it has a synthetic call operator method.
call = cls.lookupBackendMember(Identifiers.call);
}
if (call != null && call.isFunction) {
FunctionElement callFunction = call;
// A superclass might already implement the Function interface. In such
// a case, we can avoid emiting the is test here.
if (!cls.superclass.implementsFunction(_commonElements)) {
_generateInterfacesIsTests(_commonElements.functionClass,
generateIsTest, generateSubstitution, generated);
}
ResolutionFunctionType callType = callFunction.type;
generateFunctionTypeSignature(callFunction, callType);
}
}
for (ResolutionDartType interfaceType in cls.interfaces) {
_generateInterfacesIsTests(interfaceType.element, generateIsTest,
generateSubstitution, generated);
}
}
/**
* Generate "is tests" where [cls] is being implemented.
*/
void _generateInterfacesIsTests(
ClassElement cls,
void generateIsTest(ClassElement element),
SubstitutionEmitter generateSubstitution,
Set<Element> alreadyGenerated) {
void tryEmitTest(ClassElement check) {
if (!alreadyGenerated.contains(check) && checkedClasses.contains(check)) {
alreadyGenerated.add(check);
generateIsTest(check);
generateSubstitution(check);
}
}
tryEmitTest(cls);
for (ResolutionDartType interfaceType in cls.interfaces) {
Element element = interfaceType.element;
tryEmitTest(element);
_generateInterfacesIsTests(
element, generateIsTest, generateSubstitution, alreadyGenerated);
}
// We need to also emit "is checks" for the superclass and its supertypes.
ClassElement superclass = cls.superclass;
if (superclass != null) {
tryEmitTest(superclass);
_generateInterfacesIsTests(
superclass, generateIsTest, generateSubstitution, alreadyGenerated);
}
}
}