| // Copyright (c) 2021, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| |
| // For `AllocateObjectInstr::WillAllocateNewOrRemembered` |
| // For `GenericCheckBoundInstr::UseUnboxedRepresentation` |
| #include "vm/compiler/backend/il.h" |
| |
| #define SHOULD_NOT_INCLUDE_RUNTIME |
| |
| #include "vm/compiler/stub_code_compiler.h" |
| |
| #if defined(TARGET_ARCH_RISCV32) || defined(TARGET_ARCH_RISCV64) |
| |
| #include "vm/class_id.h" |
| #include "vm/code_entry_kind.h" |
| #include "vm/compiler/api/type_check_mode.h" |
| #include "vm/compiler/assembler/assembler.h" |
| #include "vm/compiler/backend/locations.h" |
| #include "vm/constants.h" |
| #include "vm/instructions.h" |
| #include "vm/static_type_exactness_state.h" |
| #include "vm/tags.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| namespace compiler { |
| |
| // Ensures that [A0] is a new object, if not it will be added to the remembered |
| // set via a leaf runtime call. |
| // |
| // WARNING: This might clobber all registers except for [A0], [THR] and [FP]. |
| // The caller should simply call LeaveStubFrame() and return. |
| void StubCodeCompiler::EnsureIsNewOrRemembered(Assembler* assembler, |
| bool preserve_registers) { |
| // If the object is not remembered we call a leaf-runtime to add it to the |
| // remembered set. |
| Label done; |
| __ andi(TMP2, A0, 1 << target::ObjectAlignment::kNewObjectBitPosition); |
| __ bnez(TMP2, &done); |
| |
| { |
| Assembler::CallRuntimeScope scope( |
| assembler, kEnsureRememberedAndMarkingDeferredRuntimeEntry, |
| /*frame_size=*/0, /*preserve_registers=*/preserve_registers); |
| __ mv(A1, THR); |
| scope.Call(/*argument_count=*/2); |
| } |
| |
| __ Bind(&done); |
| } |
| |
| // Input parameters: |
| // RA : return address. |
| // SP : address of last argument in argument array. |
| // SP + 8*T4 - 8 : address of first argument in argument array. |
| // SP + 8*T4 : address of return value. |
| // T5 : address of the runtime function to call. |
| // T4 : number of arguments to the call. |
| void StubCodeCompiler::GenerateCallToRuntimeStub(Assembler* assembler) { |
| const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
| const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
| |
| __ Comment("CallToRuntimeStub"); |
| __ lx(CODE_REG, Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| __ SetPrologueOffset(); |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ StoreToOffset(FP, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ LoadImmediate(TMP, target::Thread::exit_through_runtime_call()); |
| __ StoreToOffset(TMP, THR, target::Thread::exit_through_ffi_offset()); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ LoadFromOffset(TMP, THR, target::Thread::vm_tag_offset()); |
| __ CompareImmediate(TMP, VMTag::kDartTagId); |
| __ BranchIf(EQ, &ok); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing VM code. |
| __ StoreToOffset(T5, THR, target::Thread::vm_tag_offset()); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| // target::NativeArguments are passed in registers. |
| __ Comment("align stack"); |
| // Reserve space for arguments. |
| ASSERT(target::NativeArguments::StructSize() == 4 * target::kWordSize); |
| __ ReserveAlignedFrameSpace(target::NativeArguments::StructSize()); |
| |
| // Pass target::NativeArguments structure by value and call runtime. |
| // Registers R0, R1, R2, and R3 are used. |
| |
| ASSERT(thread_offset == 0 * target::kWordSize); |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * target::kWordSize); |
| ASSERT(argv_offset == 2 * target::kWordSize); |
| __ slli(T2, T4, target::kWordSizeLog2); |
| __ add(T2, FP, T2); // Compute argv. |
| // Set argv in target::NativeArguments. |
| __ AddImmediate(T2, |
| target::frame_layout.param_end_from_fp * target::kWordSize); |
| |
| ASSERT(retval_offset == 3 * target::kWordSize); |
| __ AddImmediate(T3, T2, target::kWordSize); |
| |
| __ StoreToOffset(THR, SP, thread_offset); |
| __ StoreToOffset(T4, SP, argc_tag_offset); |
| __ StoreToOffset(T2, SP, argv_offset); |
| __ StoreToOffset(T3, SP, retval_offset); |
| __ mv(A0, SP); // Pass the pointer to the target::NativeArguments. |
| |
| ASSERT(IsAbiPreservedRegister(THR)); |
| __ jalr(T5); |
| __ Comment("CallToRuntimeStub return"); |
| |
| // Refresh pinned registers values (inc. write barrier mask and null object). |
| __ RestorePinnedRegisters(); |
| |
| // Retval is next to 1st argument. |
| // Mark that the thread is executing Dart code. |
| __ LoadImmediate(TMP, VMTag::kDartTagId); |
| __ StoreToOffset(TMP, THR, target::Thread::vm_tag_offset()); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ StoreToOffset(ZR, THR, target::Thread::exit_through_ffi_offset()); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ StoreToOffset(ZR, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode) { |
| __ SetupGlobalPoolAndDispatchTable(); |
| } |
| |
| __ LeaveStubFrame(); |
| |
| // The following return can jump to a lazy-deopt stub, which assumes A0 |
| // contains a return value and will save it in a GC-visible way. We therefore |
| // have to ensure A0 does not contain any garbage value left from the C |
| // function we called (which has return type "void"). |
| // (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.) |
| __ LoadImmediate(A0, 0); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStubGeneric( |
| Assembler* assembler, |
| bool save_fpu_registers, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| std::function<void()> perform_runtime_call) { |
| // We want the saved registers to appear like part of the caller's frame, so |
| // we push them before calling EnterStubFrame. |
| RegisterSet all_registers; |
| all_registers.AddAllNonReservedRegisters(save_fpu_registers); |
| |
| // To make the stack map calculation architecture independent we do the same |
| // as on intel. |
| __ PushRegister(RA); |
| __ PushRegisters(all_registers); |
| __ lx(CODE_REG, Address(THR, self_code_stub_offset_from_thread)); |
| __ EnterStubFrame(); |
| perform_runtime_call(); |
| if (!allow_return) { |
| __ Breakpoint(); |
| return; |
| } |
| __ LeaveStubFrame(); |
| __ PopRegisters(all_registers); |
| __ Drop(1); // We use the RA restored via LeaveStubFrame. |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateSharedStub( |
| Assembler* assembler, |
| bool save_fpu_registers, |
| const RuntimeEntry* target, |
| intptr_t self_code_stub_offset_from_thread, |
| bool allow_return, |
| bool store_runtime_result_in_result_register) { |
| ASSERT(!store_runtime_result_in_result_register || allow_return); |
| auto perform_runtime_call = [&]() { |
| if (store_runtime_result_in_result_register) { |
| __ PushRegister(NULL_REG); |
| } |
| __ CallRuntime(*target, /*argument_count=*/0); |
| if (store_runtime_result_in_result_register) { |
| __ PopRegister(A0); |
| __ sx(A0, Address(FP, target::kWordSize * |
| StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
| SharedSlowPathStubABI::kResultReg))); |
| } |
| }; |
| GenerateSharedStubGeneric(assembler, save_fpu_registers, |
| self_code_stub_offset_from_thread, allow_return, |
| perform_runtime_call); |
| } |
| |
| void StubCodeCompiler::GenerateEnterSafepointStub(Assembler* assembler) { |
| RegisterSet all_registers; |
| all_registers.AddAllGeneralRegisters(); |
| |
| __ EnterFrame(0); |
| __ PushRegisters(all_registers); |
| |
| __ ReserveAlignedFrameSpace(0); |
| |
| __ lx(TMP, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread())); |
| __ jalr(TMP); |
| |
| __ PopRegisters(all_registers); |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| static void GenerateExitSafepointStubCommon(Assembler* assembler, |
| uword runtime_entry_offset) { |
| RegisterSet all_registers; |
| all_registers.AddAllGeneralRegisters(); |
| |
| __ EnterFrame(0); |
| __ PushRegisters(all_registers); |
| |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Set the execution state to VM while waiting for the safepoint to end. |
| // This isn't strictly necessary but enables tests to check that we're not |
| // in native code anymore. See tests/ffi/function_gc_test.dart for example. |
| __ LoadImmediate(TMP, target::Thread::vm_execution_state()); |
| __ sx(TMP, Address(THR, target::Thread::execution_state_offset())); |
| |
| __ lx(TMP, Address(THR, runtime_entry_offset)); |
| __ jalr(TMP); |
| |
| __ PopRegisters(all_registers); |
| __ LeaveFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointStub(Assembler* assembler) { |
| GenerateExitSafepointStubCommon( |
| assembler, kExitSafepointRuntimeEntry.OffsetFromThread()); |
| } |
| |
| void StubCodeCompiler::GenerateExitSafepointIgnoreUnwindInProgressStub( |
| Assembler* assembler) { |
| GenerateExitSafepointStubCommon( |
| assembler, |
| kExitSafepointIgnoreUnwindInProgressRuntimeEntry.OffsetFromThread()); |
| } |
| |
| // Calls native code within a safepoint. |
| // |
| // On entry: |
| // T0: target to call |
| // Stack: set up for native call (SP), aligned, CSP < SP |
| // |
| // On exit: |
| // S2: clobbered, although normally callee-saved |
| // Stack: preserved, CSP == SP |
| void StubCodeCompiler::GenerateCallNativeThroughSafepointStub( |
| Assembler* assembler) { |
| COMPILE_ASSERT(IsAbiPreservedRegister(S2)); |
| __ mv(S2, RA); |
| __ LoadImmediate(T1, target::Thread::exit_through_ffi()); |
| __ TransitionGeneratedToNative(T0, FPREG, T1 /*volatile*/, |
| /*enter_safepoint=*/true); |
| |
| #if defined(DEBUG) |
| // Check SP alignment. |
| __ andi(T2 /*volatile*/, SP, ~(OS::ActivationFrameAlignment() - 1)); |
| Label done; |
| __ beq(T2, SP, &done); |
| __ Breakpoint(); |
| __ Bind(&done); |
| #endif |
| |
| __ jalr(T0); |
| |
| __ TransitionNativeToGenerated(T1, /*leave_safepoint=*/true); |
| __ jr(S2); |
| } |
| |
| #if !defined(DART_PRECOMPILER) |
| void StubCodeCompiler::GenerateJITCallbackTrampolines( |
| Assembler* assembler, |
| intptr_t next_callback_id) { |
| #if defined(USING_SIMULATOR) |
| // TODO(37299): FFI is not support in SIMRISCV32/64. |
| __ ebreak(); |
| #else |
| Label loaded_callback_id_hi; |
| |
| // T1 is volatile and not used for passing any arguments. |
| COMPILE_ASSERT(!IsCalleeSavedRegister(T1) && !IsArgumentRegister(T1)); |
| for (intptr_t i = 0; |
| i < NativeCallbackTrampolines::NumCallbackTrampolinesPerPage(); ++i) { |
| // We don't use LoadImmediate because we need the trampoline size to be |
| // fixed independently of the callback ID. |
| // lui has 20 bits of range. |
| __ lui_fixed(T1, (next_callback_id + i) << 12); |
| __ j(&loaded_callback_id_hi); |
| } |
| |
| ASSERT(__ CodeSize() == |
| kNativeCallbackTrampolineSize * |
| NativeCallbackTrampolines::NumCallbackTrampolinesPerPage()); |
| |
| __ Bind(&loaded_callback_id_hi); |
| __ srai(T1, T1, 12); |
| |
| const intptr_t shared_stub_start = __ CodeSize(); |
| |
| // Save THR (callee-saved) and RA. Keeps stack aligned. |
| COMPILE_ASSERT(StubCodeCompiler::kNativeCallbackTrampolineStackDelta == 2); |
| __ PushRegisterPair(RA, THR); |
| COMPILE_ASSERT(!IsArgumentRegister(THR)); |
| |
| RegisterSet all_registers; |
| all_registers.AddAllArgumentRegisters(); |
| |
| // The call below might clobber T1 (volatile, holding callback_id). |
| all_registers.Add(Location::RegisterLocation(T1)); |
| |
| // Load the thread, verify the callback ID and exit the safepoint. |
| // |
| // We exit the safepoint inside DLRT_GetThreadForNativeCallbackTrampoline |
| // in order to safe code size on this shared stub. |
| { |
| __ PushRegisters(all_registers); |
| __ EnterFrame(0); |
| __ ReserveAlignedFrameSpace(0); |
| |
| // Since DLRT_GetThreadForNativeCallbackTrampoline can theoretically be |
| // loaded anywhere, we use the same trick as before to ensure a predictable |
| // instruction sequence. |
| Label call; |
| __ mv(A0, T1); |
| |
| const intptr_t kPCRelativeLoadOffset = 12; |
| intptr_t start = __ CodeSize(); |
| __ auipc(T1, 0); |
| __ lx(T1, Address(T1, kPCRelativeLoadOffset)); |
| __ j(&call); |
| |
| ASSERT_EQUAL(__ CodeSize() - start, kPCRelativeLoadOffset); |
| #if XLEN == 32 |
| __ Emit32( |
| reinterpret_cast<int32_t>(&DLRT_GetThreadForNativeCallbackTrampoline)); |
| #else |
| __ Emit64( |
| reinterpret_cast<int64_t>(&DLRT_GetThreadForNativeCallbackTrampoline)); |
| #endif |
| |
| __ Bind(&call); |
| __ jalr(T1); |
| __ mv(THR, A0); |
| |
| __ LeaveFrame(); |
| |
| __ PopRegisters(all_registers); |
| } |
| |
| COMPILE_ASSERT(!IsCalleeSavedRegister(T2) && !IsArgumentRegister(T2)); |
| COMPILE_ASSERT(!IsCalleeSavedRegister(T3) && !IsArgumentRegister(T3)); |
| |
| // Load the code object. |
| __ LoadFromOffset(T2, THR, compiler::target::Thread::callback_code_offset()); |
| __ LoadCompressedFieldFromOffset( |
| T2, T2, compiler::target::GrowableObjectArray::data_offset()); |
| __ LoadCompressed( |
| T2, |
| __ ElementAddressForRegIndex( |
| /*external=*/false, |
| /*array_cid=*/kArrayCid, |
| /*index_scale, smi-tagged=*/compiler::target::kCompressedWordSize * 2, |
| /*index_unboxed=*/false, |
| /*array=*/T2, |
| /*index=*/T1, |
| /*temp=*/T3)); |
| __ LoadFieldFromOffset(T2, T2, compiler::target::Code::entry_point_offset()); |
| |
| // Clobbers all volatile registers, including the callback ID in T1. |
| __ jalr(T2); |
| |
| // Clobbers TMP, TMP2 and T1 -- all volatile and not holding return values. |
| __ EnterFullSafepoint(/*scratch=*/T1); |
| |
| __ PopRegisterPair(RA, THR); |
| __ ret(); |
| |
| ASSERT_EQUAL((__ CodeSize() - shared_stub_start), |
| kNativeCallbackSharedStubSize); |
| ASSERT(__ CodeSize() <= VirtualMemory::PageSize()); |
| |
| #if defined(DEBUG) |
| while (__ CodeSize() < VirtualMemory::PageSize()) { |
| __ ebreak(); |
| } |
| #endif |
| #endif |
| } |
| #endif // !defined(DART_PRECOMPILER) |
| |
| // T1: The extracted method. |
| // T4: The type_arguments_field_offset (or 0) |
| void StubCodeCompiler::GenerateBuildMethodExtractorStub( |
| Assembler* assembler, |
| const Code& closure_allocation_stub, |
| const Code& context_allocation_stub, |
| bool generic) { |
| const intptr_t kReceiverOffset = target::frame_layout.param_end_from_fp + 1; |
| |
| __ EnterStubFrame(); |
| |
| // Build type_arguments vector (or null) |
| Label no_type_args; |
| __ lx(T3, Address(THR, target::Thread::object_null_offset())); |
| __ CompareImmediate(T4, 0); |
| __ BranchIf(EQ, &no_type_args); |
| __ lx(T0, Address(FP, kReceiverOffset * target::kWordSize)); |
| __ add(TMP, T0, T4); |
| __ LoadCompressed(T3, Address(TMP, 0)); |
| __ Bind(&no_type_args); |
| |
| // Push type arguments & extracted method. |
| __ PushRegister(T3); |
| __ PushRegister(T1); |
| |
| // Allocate context. |
| { |
| Label done, slow_path; |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| __ TryAllocateArray(kContextCid, target::Context::InstanceSize(1), |
| &slow_path, |
| A0, // instance |
| T1, // end address |
| T2, T3); |
| __ StoreCompressedIntoObjectNoBarrier( |
| A0, FieldAddress(A0, target::Context::parent_offset()), NULL_REG); |
| __ LoadImmediate(T1, 1); |
| __ sw(T1, FieldAddress(A0, target::Context::num_variables_offset())); |
| __ j(&done, compiler::Assembler::kNearJump); |
| } |
| |
| __ Bind(&slow_path); |
| |
| __ LoadImmediate(/*num_vars=*/T1, 1); |
| __ LoadObject(CODE_REG, context_allocation_stub); |
| __ lx(RA, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jalr(RA); |
| |
| __ Bind(&done); |
| } |
| |
| // Put context in right register for AllocateClosure call. |
| __ MoveRegister(AllocateClosureABI::kContextReg, A0); |
| |
| // Store receiver in context |
| __ lx(AllocateClosureABI::kScratchReg, |
| Address(FP, target::kWordSize * kReceiverOffset)); |
| __ StoreCompressedIntoObject( |
| AllocateClosureABI::kContextReg, |
| FieldAddress(AllocateClosureABI::kContextReg, |
| target::Context::variable_offset(0)), |
| AllocateClosureABI::kScratchReg); |
| |
| // Pop function before pushing context. |
| __ PopRegister(AllocateClosureABI::kFunctionReg); |
| |
| // Allocate closure. After this point, we only use the registers in |
| // AllocateClosureABI. |
| __ LoadObject(CODE_REG, closure_allocation_stub); |
| __ lx(AllocateClosureABI::kScratchReg, |
| FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| __ jalr(AllocateClosureABI::kScratchReg); |
| |
| // Populate closure object. |
| __ PopRegister(AllocateClosureABI::kScratchReg); // Pop type arguments. |
| __ StoreCompressedIntoObjectNoBarrier( |
| AllocateClosureABI::kResultReg, |
| FieldAddress(AllocateClosureABI::kResultReg, |
| target::Closure::instantiator_type_arguments_offset()), |
| AllocateClosureABI::kScratchReg); |
| // Keep delayed_type_arguments as null if non-generic (see Closure::New). |
| if (generic) { |
| __ LoadObject(AllocateClosureABI::kScratchReg, EmptyTypeArguments()); |
| __ StoreCompressedIntoObjectNoBarrier( |
| AllocateClosureABI::kResultReg, |
| FieldAddress(AllocateClosureABI::kResultReg, |
| target::Closure::delayed_type_arguments_offset()), |
| AllocateClosureABI::kScratchReg); |
| } |
| |
| __ LeaveStubFrame(); |
| // No-op if the two are the same. |
| __ MoveRegister(A0, AllocateClosureABI::kResultReg); |
| __ Ret(); |
| } |
| |
| void StubCodeCompiler::GenerateDispatchTableNullErrorStub( |
| Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ SmiTag(DispatchTableNullErrorABI::kClassIdReg); |
| __ PushRegister(DispatchTableNullErrorABI::kClassIdReg); |
| __ CallRuntime(kDispatchTableNullErrorRuntimeEntry, /*argument_count=*/1); |
| // The NullError runtime entry does not return. |
| __ Breakpoint(); |
| } |
| |
| void StubCodeCompiler::GenerateRangeError(Assembler* assembler, |
| bool with_fpu_regs) { |
| auto perform_runtime_call = [&]() { |
| // If the generated code has unboxed index/length we need to box them before |
| // calling the runtime entry. |
| #if XLEN == 32 |
| ASSERT(!GenericCheckBoundInstr::UseUnboxedRepresentation()); |
| #else |
| if (GenericCheckBoundInstr::UseUnboxedRepresentation()) { |
| Label length, smi_case; |
| |
| // The user-controlled index might not fit into a Smi. |
| __ mv(TMP, RangeErrorABI::kIndexReg); |
| __ SmiTag(RangeErrorABI::kIndexReg, RangeErrorABI::kIndexReg); |
| __ SmiUntag(TMP2, RangeErrorABI::kIndexReg); |
| __ beq(TMP, TMP2, &length); // No overflow. |
| { |
| // Allocate a mint, reload the two registers and popualte the mint. |
| __ PushRegister(NULL_REG); |
| __ CallRuntime(kAllocateMintRuntimeEntry, /*argument_count=*/0); |
| __ PopRegister(RangeErrorABI::kIndexReg); |
| __ lx(TMP, |
| Address(FP, target::kWordSize * |
| StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
| RangeErrorABI::kIndexReg))); |
| __ sx(TMP, FieldAddress(RangeErrorABI::kIndexReg, |
| target::Mint::value_offset())); |
| __ lx(RangeErrorABI::kLengthReg, |
| Address(FP, target::kWordSize * |
| StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
| RangeErrorABI::kLengthReg))); |
| } |
| |
| // Length is guaranteed to be in positive Smi range (it comes from a load |
| // of a vm recognized array). |
| __ Bind(&length); |
| __ SmiTag(RangeErrorABI::kLengthReg); |
| } |
| #endif // XLEN != 32 |
| __ PushRegister(RangeErrorABI::kLengthReg); |
| __ PushRegister(RangeErrorABI::kIndexReg); |
| __ CallRuntime(kRangeErrorRuntimeEntry, /*argument_count=*/2); |
| __ Breakpoint(); |
| }; |
| |
| GenerateSharedStubGeneric( |
| assembler, /*save_fpu_registers=*/with_fpu_regs, |
| with_fpu_regs |
| ? target::Thread::range_error_shared_with_fpu_regs_stub_offset() |
| : target::Thread::range_error_shared_without_fpu_regs_stub_offset(), |
| /*allow_return=*/false, perform_runtime_call); |
| } |
| |
| // Input parameters: |
| // RA : return address. |
| // SP : address of return value. |
| // T5 : address of the native function to call. |
| // T2 : address of first argument in argument array. |
| // T1 : argc_tag including number of arguments and function kind. |
| static void GenerateCallNativeWithWrapperStub(Assembler* assembler, |
| Address wrapper) { |
| const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
| const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ StoreToOffset(FP, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // Mark that the thread exited generated code through a runtime call. |
| __ LoadImmediate(TMP, target::Thread::exit_through_runtime_call()); |
| __ StoreToOffset(TMP, THR, target::Thread::exit_through_ffi_offset()); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that we are always entering from Dart code. |
| __ LoadFromOffset(TMP, THR, target::Thread::vm_tag_offset()); |
| __ CompareImmediate(TMP, VMTag::kDartTagId); |
| __ BranchIf(EQ, &ok); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ StoreToOffset(T5, THR, target::Thread::vm_tag_offset()); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // R0) and align frame before entering the C++ world. |
| __ ReserveAlignedFrameSpace(target::NativeArguments::StructSize()); |
| |
| // Initialize target::NativeArguments structure and call native function. |
| ASSERT(thread_offset == 0 * target::kWordSize); |
| // There are no native calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| ASSERT(argc_tag_offset == 1 * target::kWordSize); |
| // Set argc in target::NativeArguments: R1 already contains argc. |
| ASSERT(argv_offset == 2 * target::kWordSize); |
| // Set argv in target::NativeArguments: R2 already contains argv. |
| // Set retval in NativeArgs. |
| ASSERT(retval_offset == 3 * target::kWordSize); |
| __ AddImmediate(T3, FP, 2 * target::kWordSize); |
| |
| // Passing the structure by value as in runtime calls would require changing |
| // Dart API for native functions. |
| // For now, space is reserved on the stack and we pass a pointer to it. |
| __ StoreToOffset(THR, SP, thread_offset); |
| __ StoreToOffset(T1, SP, argc_tag_offset); |
| __ StoreToOffset(T2, SP, argv_offset); |
| __ StoreToOffset(T3, SP, retval_offset); |
| __ mv(A0, SP); // Pass the pointer to the target::NativeArguments. |
| __ mv(A1, T5); // Pass the function entrypoint to call. |
| |
| // Call native function invocation wrapper or redirection via simulator. |
| ASSERT(IsAbiPreservedRegister(THR)); |
| __ Call(wrapper); |
| |
| // Refresh pinned registers values (inc. write barrier mask and null object). |
| __ RestorePinnedRegisters(); |
| |
| // Mark that the thread is executing Dart code. |
| __ LoadImmediate(TMP, VMTag::kDartTagId); |
| __ StoreToOffset(TMP, THR, target::Thread::vm_tag_offset()); |
| |
| // Mark that the thread has not exited generated Dart code. |
| __ StoreToOffset(ZR, THR, target::Thread::exit_through_ffi_offset()); |
| |
| // Reset exit frame information in Isolate's mutator thread structure. |
| __ StoreToOffset(ZR, THR, target::Thread::top_exit_frame_info_offset()); |
| |
| // Restore the global object pool after returning from runtime (old space is |
| // moving, so the GOP could have been relocated). |
| if (FLAG_precompiled_mode) { |
| __ SetupGlobalPoolAndDispatchTable(); |
| } |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateCallNoScopeNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::no_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| void StubCodeCompiler::GenerateCallAutoScopeNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::auto_scope_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // RA : return address. |
| // SP : address of return value. |
| // R5 : address of the native function to call. |
| // R2 : address of first argument in argument array. |
| // R1 : argc_tag including number of arguments and function kind. |
| void StubCodeCompiler::GenerateCallBootstrapNativeStub(Assembler* assembler) { |
| GenerateCallNativeWithWrapperStub( |
| assembler, |
| Address(THR, |
| target::Thread::bootstrap_native_wrapper_entry_point_offset())); |
| } |
| |
| // Input parameters: |
| // S4: arguments descriptor array. |
| void StubCodeCompiler::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ subi(SP, SP, 2 * target::kWordSize); |
| __ sx(S4, Address(SP, 1 * target::kWordSize)); // Preserve args descriptor. |
| __ sx(ZR, Address(SP, 0 * target::kWordSize)); // Result slot. |
| __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
| __ lx(CODE_REG, Address(SP, 0 * target::kWordSize)); // Result. |
| __ lx(S4, Address(SP, 1 * target::kWordSize)); // Restore args descriptor. |
| __ addi(SP, SP, 2 * target::kWordSize); |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ LoadFieldFromOffset(TMP, CODE_REG, target::Code::entry_point_offset()); |
| __ jr(TMP); |
| } |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // S4: arguments descriptor array. |
| void StubCodeCompiler::GenerateFixCallersTargetStub(Assembler* assembler) { |
| Label monomorphic; |
| __ BranchOnMonomorphicCheckedEntryJIT(&monomorphic); |
| |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ lx(CODE_REG, |
| Address(THR, target::Thread::fix_callers_target_code_offset())); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value and preserve arguments descriptor. |
| __ PushRegister(S4); |
| __ PushRegister(ZR); |
| __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
| // Get Code object result and restore arguments descriptor array. |
| __ PopRegister(CODE_REG); |
| __ PopRegister(S4); |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ LoadFieldFromOffset(TMP, CODE_REG, target::Code::entry_point_offset()); |
| __ jr(TMP); |
| |
| __ Bind(&monomorphic); |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ lx(CODE_REG, |
| Address(THR, target::Thread::fix_callers_target_code_offset())); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ PushRegister(ZR); // Result slot. |
| __ PushRegister(A0); // Preserve receiver. |
| __ PushRegister(S5); // Old cache value (also 2nd return value). |
| __ CallRuntime(kFixCallersTargetMonomorphicRuntimeEntry, 2); |
| __ PopRegister(S5); // Get target cache object. |
| __ PopRegister(A0); // Restore receiver. |
| __ PopRegister(CODE_REG); // Get target Code object. |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ LoadFieldFromOffset( |
| TMP, CODE_REG, |
| target::Code::entry_point_offset(CodeEntryKind::kMonomorphic)); |
| __ jr(TMP); |
| } |
| |
| // Called from object allocate instruction when the allocation stub has been |
| // disabled. |
| void StubCodeCompiler::GenerateFixAllocationStubTargetStub( |
| Assembler* assembler) { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ lx(CODE_REG, |
| Address(THR, target::Thread::fix_allocation_stub_code_offset())); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ PushRegister(ZR); |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| // Get Code object result. |
| __ PopRegister(CODE_REG); |
| // Remove the stub frame. |
| __ LeaveStubFrame(); |
| // Jump to the dart function. |
| __ LoadFieldFromOffset(TMP, CODE_REG, target::Code::entry_point_offset()); |
| __ jr(TMP); |
| } |
| |
| // Input parameters: |
| // T2: smi-tagged argument count, may be zero. |
| // FP[target::frame_layout.param_end_from_fp + 1]: last argument. |
| static void PushArrayOfArguments(Assembler* assembler) { |
| COMPILE_ASSERT(AllocateArrayABI::kLengthReg == T2); |
| COMPILE_ASSERT(AllocateArrayABI::kTypeArgumentsReg == T1); |
| |
| // Allocate array to store arguments of caller. |
| __ LoadObject(T1, NullObject()); |
| // T1: null element type for raw Array. |
| // T2: smi-tagged argument count, may be zero. |
| __ JumpAndLink(StubCodeAllocateArray()); |
| // A0: newly allocated array. |
| // T2: smi-tagged argument count, may be zero (was preserved by the stub). |
| __ PushRegister(A0); // Array is in A0 and on top of stack. |
| __ SmiUntag(T2); |
| __ slli(T1, T2, target::kWordSizeLog2); |
| __ add(T1, T1, FP); |
| __ AddImmediate(T1, |
| target::frame_layout.param_end_from_fp * target::kWordSize); |
| __ AddImmediate(T3, A0, target::Array::data_offset() - kHeapObjectTag); |
| // T1: address of first argument on stack. |
| // T3: address of first argument in array. |
| |
| Label loop, loop_exit; |
| __ Bind(&loop); |
| __ beqz(T2, &loop_exit); |
| __ lx(T6, Address(T1, 0)); |
| __ addi(T1, T1, -target::kWordSize); |
| __ StoreCompressedIntoObject(A0, Address(T3, 0), T6); |
| __ addi(T3, T3, target::kCompressedWordSize); |
| __ addi(T2, T2, -1); |
| __ j(&loop); |
| __ Bind(&loop_exit); |
| } |
| |
| // Used by eager and lazy deoptimization. Preserve result in RAX if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after TagAndPushPP() below: |
| // +------------------+ |
| // | Saved PP | <- PP |
| // +------------------+ |
| // | PC marker | <- TOS |
| // +------------------+ |
| // | Saved FP | <- FP of stub |
| // +------------------+ |
| // | return-address | (deoptimization point) |
| // +------------------+ |
| // | Saved CODE_REG | |
| // +------------------+ |
| // | ... | <- SP of optimized frame |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| DeoptStubKind kind) { |
| // DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_result_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - A0); |
| const intptr_t saved_exception_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - A0); |
| const intptr_t saved_stacktrace_slot_from_fp = |
| target::frame_layout.first_local_from_fp + 1 - |
| (kNumberOfCpuRegisters - A1); |
| // Result in A0 is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| __ subi(SP, SP, kNumberOfCpuRegisters * target::kWordSize); |
| for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) { |
| const Register r = static_cast<Register>(i); |
| if (r == CODE_REG) { |
| // Save the original value of CODE_REG pushed before invoking this stub |
| // instead of the value used to call this stub. |
| COMPILE_ASSERT(TMP > CODE_REG); // TMP saved first |
| __ lx(TMP, Address(FP, 2 * target::kWordSize)); |
| __ sx(TMP, Address(SP, i * target::kWordSize)); |
| } else { |
| __ sx(r, Address(SP, i * target::kWordSize)); |
| } |
| } |
| |
| __ subi(SP, SP, kNumberOfFpuRegisters * kFpuRegisterSize); |
| for (intptr_t i = kNumberOfFpuRegisters - 1; i >= 0; i--) { |
| FRegister freg = static_cast<FRegister>(i); |
| __ fsd(freg, Address(SP, i * kFpuRegisterSize)); |
| } |
| |
| __ mv(A0, SP); // Pass address of saved registers block. |
| bool is_lazy = |
| (kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow); |
| __ li(A1, is_lazy ? 1 : 0); |
| __ ReserveAlignedFrameSpace(0); |
| __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2); |
| // Result (A0) is stack-size (FP - SP) in bytes. |
| |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into T1 temporarily. |
| __ LoadFromOffset(T1, FP, saved_result_slot_from_fp * target::kWordSize); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into T1 temporarily. |
| __ LoadFromOffset(T1, FP, saved_exception_slot_from_fp * target::kWordSize); |
| __ LoadFromOffset(T2, FP, |
| saved_stacktrace_slot_from_fp * target::kWordSize); |
| } |
| |
| // There is a Dart Frame on the stack. We must restore PP and leave frame. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ sub(SP, FP, A0); |
| |
| // DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| if (kind == kLazyDeoptFromReturn) { |
| __ PushRegister(T1); // Preserve result as first local. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ PushRegister(T1); // Preserve exception as first local. |
| __ PushRegister(T2); // Preserve stacktrace as second local. |
| } |
| __ ReserveAlignedFrameSpace(0); |
| __ mv(A0, FP); // Pass last FP as parameter in R0. |
| __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); |
| if (kind == kLazyDeoptFromReturn) { |
| // Restore result into T1. |
| __ LoadFromOffset( |
| T1, FP, target::frame_layout.first_local_from_fp * target::kWordSize); |
| } else if (kind == kLazyDeoptFromThrow) { |
| // Restore result into T1. |
| __ LoadFromOffset( |
| T1, FP, target::frame_layout.first_local_from_fp * target::kWordSize); |
| __ LoadFromOffset( |
| T2, FP, |
| (target::frame_layout.first_local_from_fp - 1) * target::kWordSize); |
| } |
| // Code above cannot cause GC. |
| // There is a Dart Frame on the stack. We must restore PP and leave frame. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| // Enter stub frame with loading PP. The caller's PP is not materialized yet. |
| __ EnterStubFrame(); |
| if (kind == kLazyDeoptFromReturn) { |
| __ PushRegister(T1); // Preserve result, it will be GC-d here. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ PushRegister(T1); // Preserve exception, it will be GC-d here. |
| __ PushRegister(T2); // Preserve stacktrace, it will be GC-d here. |
| } |
| |
| __ PushRegister(ZR); // Space for the result. |
| __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
| // Result tells stub how many bytes to remove from the expression stack |
| // of the bottom-most frame. They were used as materialization arguments. |
| __ PopRegister(T2); |
| __ SmiUntag(T2); |
| if (kind == kLazyDeoptFromReturn) { |
| __ PopRegister(A0); // Restore result. |
| } else if (kind == kLazyDeoptFromThrow) { |
| __ PopRegister(A1); // Restore stacktrace. |
| __ PopRegister(A0); // Restore exception. |
| } |
| __ LeaveStubFrame(); |
| // Remove materialization arguments. |
| __ add(SP, SP, T2); |
| // The caller is responsible for emitting the return instruction. |
| } |
| |
| // A0: result, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub( |
| Assembler* assembler) { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ LoadImmediate(TMP, kZapCodeReg); |
| __ PushRegister(TMP); |
| // Return address for "call" to deopt stub. |
| __ LoadImmediate(RA, kZapReturnAddress); |
| __ lx(CODE_REG, |
| Address(THR, target::Thread::lazy_deopt_from_return_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn); |
| __ ret(); |
| } |
| |
| // A0: exception, must be preserved |
| // A1: stacktrace, must be preserved |
| void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub( |
| Assembler* assembler) { |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ LoadImmediate(TMP, kZapCodeReg); |
| __ PushRegister(TMP); |
| // Return address for "call" to deopt stub. |
| __ LoadImmediate(RA, kZapReturnAddress); |
| __ lx(CODE_REG, |
| Address(THR, target::Thread::lazy_deopt_from_throw_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateDeoptimizeStub(Assembler* assembler) { |
| __ PushRegister(CODE_REG); |
| __ lx(CODE_REG, Address(THR, target::Thread::deoptimize_stub_offset())); |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| __ ret(); |
| } |
| |
| // S5: ICData/MegamorphicCache |
| static void GenerateNoSuchMethodDispatcherBody(Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| __ lx(S4, |
| FieldAddress(S5, target::CallSiteData::arguments_descriptor_offset())); |
| |
| // Load the receiver. |
| __ LoadCompressedSmiFieldFromOffset( |
| T2, S4, target::ArgumentsDescriptor::size_offset()); |
| __ slli(TMP, T2, target::kWordSizeLog2 - 1); // T2 is Smi. |
| __ add(TMP, TMP, FP); |
| __ LoadFromOffset(A0, TMP, |
| target::frame_layout.param_end_from_fp * target::kWordSize); |
| __ PushRegister(ZR); // Result slot. |
| __ PushRegister(A0); // Receiver. |
| __ PushRegister(S5); // ICData/MegamorphicCache. |
| __ PushRegister(S4); // Arguments descriptor. |
| |
| // Adjust arguments count. |
| __ LoadCompressedSmiFieldFromOffset( |
| T3, S4, target::ArgumentsDescriptor::type_args_len_offset()); |
| Label args_count_ok; |
| __ beqz(T3, &args_count_ok, Assembler::kNearJump); |
| // Include the type arguments. |
| __ addi(T2, T2, target::ToRawSmi(1)); |
| __ Bind(&args_count_ok); |
| |
| // T2: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs); |
| __ Drop(4); |
| __ PopRegister(A0); // Return value. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| static void GenerateDispatcherCode(Assembler* assembler, |
| Label* call_target_function) { |
| __ Comment("NoSuchMethodDispatch"); |
| // When lazily generated invocation dispatchers are disabled, the |
| // miss-handler may return null. |
| __ bne(T0, NULL_REG, call_target_function); |
| |
| GenerateNoSuchMethodDispatcherBody(assembler); |
| } |
| |
| // Input: |
| // S4 - arguments descriptor |
| // S5 - icdata/megamorphic_cache |
| void StubCodeCompiler::GenerateNoSuchMethodDispatcherStub( |
| Assembler* assembler) { |
| GenerateNoSuchMethodDispatcherBody(assembler); |
| } |
| |
| // Called for inline allocation of arrays. |
| // Input registers (preserved): |
| // RA: return address. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // AllocateArrayABI::kTypeArgumentsReg: type arguments of array. |
| // Output registers: |
| // AllocateArrayABI::kResultReg: newly allocated array. |
| // Clobbered: |
| // T3, T4, T5 |
| void StubCodeCompiler::GenerateAllocateArrayStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize( |
| // (array_length * kCompressedWordSize) + target::Array::header_size()). |
| // Check that length is a Smi. |
| __ BranchIfNotSmi(AllocateArrayABI::kLengthReg, &slow_case); |
| |
| // Check length >= 0 && length <= kMaxNewSpaceElements |
| const intptr_t max_len = |
| target::ToRawSmi(target::Array::kMaxNewSpaceElements); |
| __ CompareImmediate(AllocateArrayABI::kLengthReg, max_len, kObjectBytes); |
| __ BranchIf(HI, &slow_case); |
| |
| const intptr_t cid = kArrayCid; |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kArrayCid, T4, &slow_case)); |
| |
| // Calculate and align allocation size. |
| // Load new object start and calculate next object start. |
| // AllocateArrayABI::kTypeArgumentsReg: type arguments of array. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| __ lx(AllocateArrayABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| intptr_t fixed_size_plus_alignment_padding = |
| target::Array::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| // AllocateArrayABI::kLengthReg is Smi. |
| __ slli(T3, AllocateArrayABI::kLengthReg, |
| target::kWordSizeLog2 - kSmiTagSize); |
| __ AddImmediate(T3, fixed_size_plus_alignment_padding); |
| __ andi(T3, T3, ~(target::ObjectAlignment::kObjectAlignment - 1)); |
| // AllocateArrayABI::kResultReg: potential new object start. |
| // T3: object size in bytes. |
| __ add(T4, AllocateArrayABI::kResultReg, T3); |
| // Branch if unsigned overflow. |
| __ bltu(T4, AllocateArrayABI::kResultReg, &slow_case); |
| |
| // Check if the allocation fits into the remaining space. |
| // AllocateArrayABI::kResultReg: potential new object start. |
| // AllocateArrayABI::kTypeArgumentsReg: type arguments of array. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // T3: array size. |
| // T4: potential next object start. |
| __ LoadFromOffset(TMP, THR, target::Thread::end_offset()); |
| __ bgeu(T4, TMP, &slow_case); // Branch if unsigned higher or equal. |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| // AllocateArrayABI::kResultReg: potential new object start. |
| // T3: array size. |
| // T4: potential next object start. |
| __ sx(T4, Address(THR, target::Thread::top_offset())); |
| __ addi(AllocateArrayABI::kResultReg, AllocateArrayABI::kResultReg, |
| kHeapObjectTag); |
| |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // AllocateArrayABI::kTypeArgumentsReg: type arguments of array. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // R3: array size. |
| // R7: new object end address. |
| |
| // Store the type argument field. |
| __ StoreCompressedIntoObjectOffsetNoBarrier( |
| AllocateArrayABI::kResultReg, target::Array::type_arguments_offset(), |
| AllocateArrayABI::kTypeArgumentsReg); |
| |
| // Set the length field. |
| __ StoreCompressedIntoObjectOffsetNoBarrier(AllocateArrayABI::kResultReg, |
| target::Array::length_offset(), |
| AllocateArrayABI::kLengthReg); |
| |
| // Calculate the size tag. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| // T3: array size. |
| // T4: new object end address. |
| const intptr_t shift = target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2; |
| __ li(T5, 0); |
| __ CompareImmediate(T3, target::UntaggedObject::kSizeTagMaxSizeTag); |
| compiler::Label zero_tag; |
| __ BranchIf(UNSIGNED_GREATER, &zero_tag); |
| __ slli(T5, T3, shift); |
| __ Bind(&zero_tag); |
| |
| // Get the class index and insert it into the tags. |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(cid, /*instance_size=*/0); |
| |
| __ OrImmediate(T5, T5, tags); |
| __ StoreFieldToOffset(T5, AllocateArrayABI::kResultReg, |
| target::Array::tags_offset()); |
| |
| // Initialize all array elements to raw_null. |
| // AllocateArrayABI::kResultReg: new object start as a tagged pointer. |
| // R7: new object end address. |
| // AllocateArrayABI::kLengthReg: array length as Smi. |
| __ AddImmediate(T3, AllocateArrayABI::kResultReg, |
| target::Array::data_offset() - kHeapObjectTag); |
| // R3: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| Label loop, done; |
| __ Bind(&loop); |
| // TODO(cshapiro): StoreIntoObjectNoBarrier |
| __ bgeu(T3, T4, &done); |
| __ sx(NULL_REG, Address(T3, 0)); |
| __ sx(NULL_REG, Address(T3, target::kCompressedWordSize)); |
| __ AddImmediate(T3, 2 * target::kCompressedWordSize); |
| __ j(&loop); // Loop until T3 == T4. |
| __ Bind(&done); |
| |
| // Done allocating and initializing the array. |
| // AllocateArrayABI::kResultReg: new object. |
| // AllocateArrayABI::kLengthReg: array length as Smi (preserved). |
| __ ret(); |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| __ subi(SP, SP, 3 * target::kWordSize); |
| __ sx(ZR, Address(SP, 2 * target::kWordSize)); // Result slot. |
| __ sx(AllocateArrayABI::kLengthReg, Address(SP, 1 * target::kWordSize)); |
| __ sx(AllocateArrayABI::kTypeArgumentsReg, |
| Address(SP, 0 * target::kWordSize)); |
| __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
| __ lx(AllocateArrayABI::kTypeArgumentsReg, |
| Address(SP, 0 * target::kWordSize)); |
| __ lx(AllocateArrayABI::kLengthReg, Address(SP, 1 * target::kWordSize)); |
| __ lx(AllocateArrayABI::kResultReg, Address(SP, 2 * target::kWordSize)); |
| __ addi(SP, SP, 3 * target::kWordSize); |
| __ LeaveStubFrame(); |
| |
| // Write-barrier elimination might be enabled for this array (depending on the |
| // array length). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| ASSERT(AllocateArrayABI::kResultReg == A0); |
| EnsureIsNewOrRemembered(assembler); |
| |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateMintSharedWithFPURegsStub( |
| Assembler* assembler) { |
| // For test purpose call allocation stub without inline allocation attempt. |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| __ TryAllocate(compiler::MintClass(), &slow_case, Assembler::kNearJump, |
| AllocateMintABI::kResultReg, AllocateMintABI::kTempReg); |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| COMPILE_ASSERT(AllocateMintABI::kResultReg == |
| SharedSlowPathStubABI::kResultReg); |
| GenerateSharedStub(assembler, /*save_fpu_registers=*/true, |
| &kAllocateMintRuntimeEntry, |
| target::Thread::allocate_mint_with_fpu_regs_stub_offset(), |
| /*allow_return=*/true, |
| /*store_runtime_result_in_result_register=*/true); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateMintSharedWithoutFPURegsStub( |
| Assembler* assembler) { |
| // For test purpose call allocation stub without inline allocation attempt. |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| __ TryAllocate(compiler::MintClass(), &slow_case, Assembler::kNearJump, |
| AllocateMintABI::kResultReg, AllocateMintABI::kTempReg); |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| COMPILE_ASSERT(AllocateMintABI::kResultReg == |
| SharedSlowPathStubABI::kResultReg); |
| GenerateSharedStub( |
| assembler, /*save_fpu_registers=*/false, &kAllocateMintRuntimeEntry, |
| target::Thread::allocate_mint_without_fpu_regs_stub_offset(), |
| /*allow_return=*/true, |
| /*store_runtime_result_in_result_register=*/true); |
| } |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // RA : points to return address. |
| // A0 : target code or entry point (in bare instructions mode). |
| // A1 : arguments descriptor array. |
| // A2 : arguments array. |
| // A3 : current thread. |
| // Beware! TMP == A3 |
| void StubCodeCompiler::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| __ Comment("InvokeDartCodeStub"); |
| |
| __ PushRegister(RA); // Marker for the profiler. |
| __ EnterFrame(0); |
| |
| // Push code object to PC marker slot. |
| __ lx(TMP2, Address(A3, target::Thread::invoke_dart_code_stub_offset())); |
| __ PushRegister(TMP2); |
| |
| #if defined(USING_SHADOW_CALL_STACK) |
| #error Unimplemented |
| #endif |
| |
| // TODO(riscv): Consider using only volatile FPU registers in Dart code so we |
| // don't need to save the preserved FPU registers here. |
| __ PushNativeCalleeSavedRegisters(); |
| |
| // Set up THR, which caches the current thread in Dart code. |
| if (THR != A3) { |
| __ mv(THR, A3); |
| } |
| |
| // Refresh pinned registers values (inc. write barrier mask and null object). |
| __ RestorePinnedRegisters(); |
| |
| // Save the current VMTag on the stack. |
| __ LoadFromOffset(TMP, THR, target::Thread::vm_tag_offset()); |
| __ PushRegister(TMP); |
| |
| // Save top resource and top exit frame info. Use R6 as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ LoadFromOffset(TMP, THR, target::Thread::top_resource_offset()); |
| __ StoreToOffset(ZR, THR, target::Thread::top_resource_offset()); |
| __ PushRegister(TMP); |
| |
| __ LoadFromOffset(TMP, THR, target::Thread::exit_through_ffi_offset()); |
| __ StoreToOffset(ZR, THR, target::Thread::exit_through_ffi_offset()); |
| __ PushRegister(TMP); |
| |
| __ LoadFromOffset(TMP, THR, target::Thread::top_exit_frame_info_offset()); |
| __ StoreToOffset(ZR, THR, target::Thread::top_exit_frame_info_offset()); |
| __ PushRegister(TMP); |
| // target::frame_layout.exit_link_slot_from_entry_fp must be kept in sync |
| // with the code below. |
| #if XLEN == 32 |
| ASSERT_EQUAL(target::frame_layout.exit_link_slot_from_entry_fp, -40); |
| #elif XLEN == 64 |
| ASSERT_EQUAL(target::frame_layout.exit_link_slot_from_entry_fp, -28); |
| #endif |
| |
| // Mark that the thread is executing Dart code. Do this after initializing the |
| // exit link for the profiler. |
| __ LoadImmediate(TMP, VMTag::kDartTagId); |
| __ StoreToOffset(TMP, THR, target::Thread::vm_tag_offset()); |
| |
| // Load arguments descriptor array, which is passed to Dart code. |
| __ LoadFromOffset(ARGS_DESC_REG, A1, VMHandles::kOffsetOfRawPtrInHandle); |
| |
| // Load number of arguments into T5 and adjust count for type arguments. |
| __ LoadFieldFromOffset(T5, ARGS_DESC_REG, |
| target::ArgumentsDescriptor::count_offset()); |
| __ LoadFieldFromOffset(T3, ARGS_DESC_REG, |
| target::ArgumentsDescriptor::type_args_len_offset()); |
| __ SmiUntag(T5); |
| // Include the type arguments. |
| __ snez(T3, T3); // T3 <- T3 == 0 ? 0 : 1 |
| __ add(T5, T5, T3); |
| |
| // Compute address of 'arguments array' data area into A2. |
| __ LoadFromOffset(A2, A2, VMHandles::kOffsetOfRawPtrInHandle); |
| __ AddImmediate(A2, target::Array::data_offset() - kHeapObjectTag); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ beqz(T5, &done_push_arguments); // check if there are arguments. |
| __ LoadImmediate(T2, 0); |
| __ Bind(&push_arguments); |
| __ lx(T3, Address(A2, 0)); |
| __ PushRegister(T3); |
| __ addi(T2, T2, 1); |
| __ addi(A2, A2, target::kWordSize); |
| __ blt(T2, T5, &push_arguments, compiler::Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| if (FLAG_precompiled_mode) { |
| __ SetupGlobalPoolAndDispatchTable(); |
| __ mv(CODE_REG, ZR); // GC-safe value into CODE_REG. |
| } else { |
| // We now load the pool pointer(PP) with a GC safe value as we are about to |
| // invoke dart code. We don't need a real object pool here. |
| __ li(PP, 1); // PP is untagged, callee will tag and spill PP. |
| __ lx(CODE_REG, Address(A0, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ lx(A0, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
| } |
| |
| // Call the Dart code entrypoint. |
| __ jalr(A0); // ARGS_DESC_REG is the arguments descriptor array. |
| __ Comment("InvokeDartCodeStub return"); |
| |
| // Get rid of arguments pushed on the stack. |
| __ addi( |
| SP, FP, |
| target::frame_layout.exit_link_slot_from_entry_fp * target::kWordSize); |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. Uses R6 as a temporary register for this. |
| __ PopRegister(TMP); |
| __ StoreToOffset(TMP, THR, target::Thread::top_exit_frame_info_offset()); |
| __ PopRegister(TMP); |
| __ StoreToOffset(TMP, THR, target::Thread::exit_through_ffi_offset()); |
| __ PopRegister(TMP); |
| __ StoreToOffset(TMP, THR, target::Thread::top_resource_offset()); |
| |
| // Restore the current VMTag from the stack. |
| __ PopRegister(TMP); |
| __ StoreToOffset(TMP, THR, target::Thread::vm_tag_offset()); |
| |
| __ PopNativeCalleeSavedRegisters(); |
| |
| // Restore the frame pointer and C stack pointer and return. |
| __ LeaveFrame(); |
| __ Drop(1); |
| __ ret(); |
| } |
| |
| // Helper to generate space allocation of context stub. |
| // This does not initialise the fields of the context. |
| // Input: |
| // T1: number of context variables. |
| // Output: |
| // A0: new allocated Context object. |
| // Clobbered: |
| // T2, T3, T4, TMP |
| static void GenerateAllocateContextSpaceStub(Assembler* assembler, |
| Label* slow_case) { |
| // First compute the rounded instance size. |
| // R1: number of context variables. |
| intptr_t fixed_size_plus_alignment_padding = |
| target::Context::header_size() + |
| target::ObjectAlignment::kObjectAlignment - 1; |
| __ slli(T2, T1, kCompressedWordSizeLog2); |
| __ AddImmediate(T2, fixed_size_plus_alignment_padding); |
| __ andi(T2, T2, ~(target::ObjectAlignment::kObjectAlignment - 1)); |
| |
| NOT_IN_PRODUCT(__ MaybeTraceAllocation(kContextCid, T4, slow_case)); |
| // Now allocate the object. |
| // T1: number of context variables. |
| // T2: object size. |
| __ lx(A0, Address(THR, target::Thread::top_offset())); |
| __ add(T3, T2, A0); |
| // Check if the allocation fits into the remaining space. |
| // A0: potential new object. |
| // T1: number of context variables. |
| // T2: object size. |
| // T3: potential next object start. |
| __ lx(TMP, Address(THR, target::Thread::end_offset())); |
| __ CompareRegisters(T3, TMP); |
| __ BranchIf(CS, slow_case); // Branch if unsigned higher or equal. |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // A0: new object. |
| // T1: number of context variables. |
| // T2: object size. |
| // T3: next object start. |
| __ sx(T3, Address(THR, target::Thread::top_offset())); |
| __ addi(A0, A0, kHeapObjectTag); |
| |
| // Calculate the size tag. |
| // A0: new object. |
| // T1: number of context variables. |
| // T2: object size. |
| const intptr_t shift = target::UntaggedObject::kTagBitsSizeTagPos - |
| target::ObjectAlignment::kObjectAlignmentLog2; |
| __ li(T3, 0); |
| __ CompareImmediate(T2, target::UntaggedObject::kSizeTagMaxSizeTag); |
| // If no size tag overflow, shift R2 left, else set R2 to zero. |
| compiler::Label zero_tag; |
| __ BranchIf(HI, &zero_tag); |
| __ slli(T3, T2, shift); |
| __ Bind(&zero_tag); |
| |
| // Get the class index and insert it into the tags. |
| // T3: size and bit tags. |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(kContextCid, /*instance_size=*/0); |
| |
| __ OrImmediate(T3, T3, tags); |
| __ StoreFieldToOffset(T3, A0, target::Object::tags_offset()); |
| |
| // Setup up number of context variables field. |
| // A0: new object. |
| // T1: number of context variables as integer value (not object). |
| __ StoreFieldToOffset(T1, A0, target::Context::num_variables_offset(), |
| kFourBytes); |
| } |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // T1: number of context variables. |
| // Output: |
| // A0: new allocated Context object. |
| void StubCodeCompiler::GenerateAllocateContextStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| GenerateAllocateContextSpaceStub(assembler, &slow_case); |
| |
| // Setup the parent field. |
| // A0: new object. |
| // T1: number of context variables. |
| __ StoreCompressedIntoObjectOffset(A0, target::Context::parent_offset(), |
| NULL_REG); |
| |
| // Initialize the context variables. |
| // A0: new object. |
| // T1: number of context variables. |
| { |
| Label loop, done; |
| __ AddImmediate(T3, A0, |
| target::Context::variable_offset(0) - kHeapObjectTag); |
| __ Bind(&loop); |
| __ subi(T1, T1, 1); |
| __ bltz(T1, &done); |
| __ sx(NULL_REG, Address(T3, 0)); |
| __ addi(T3, T3, target::kCompressedWordSize); |
| __ j(&loop); |
| __ Bind(&done); |
| } |
| |
| // Done allocating and initializing the context. |
| // A0: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ SmiTag(T1); |
| __ PushObject(NullObject()); |
| __ PushRegister(T1); |
| __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
| __ Drop(1); // Pop number of context variables argument. |
| __ PopRegister(A0); // Pop the new context object. |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| // A0: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| // Called for clone of contexts. |
| // Input: |
| // T5: context variable to clone. |
| // Output: |
| // A0: new allocated Context object. |
| void StubCodeCompiler::GenerateCloneContextStub(Assembler* assembler) { |
| if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
| Label slow_case; |
| |
| // Load num. variable (int32) in the existing context. |
| __ lw(T1, FieldAddress(T5, target::Context::num_variables_offset())); |
| |
| GenerateAllocateContextSpaceStub(assembler, &slow_case); |
| |
| // Load parent in the existing context. |
| __ LoadCompressed(T3, FieldAddress(T5, target::Context::parent_offset())); |
| // Setup the parent field. |
| // A0: new context. |
| __ StoreCompressedIntoObjectNoBarrier( |
| A0, FieldAddress(A0, target::Context::parent_offset()), T3); |
| |
| // Clone the context variables. |
| // A0: new context. |
| // T1: number of context variables. |
| { |
| Label loop, done; |
| // T3: Variable array address, new context. |
| __ AddImmediate(T3, A0, |
| target::Context::variable_offset(0) - kHeapObjectTag); |
| // T4: Variable array address, old context. |
| __ AddImmediate(T4, T5, |
| target::Context::variable_offset(0) - kHeapObjectTag); |
| |
| __ Bind(&loop); |
| __ subi(T1, T1, 1); |
| __ bltz(T1, &done); |
| __ lx(T5, Address(T4, 0)); |
| __ addi(T4, T4, target::kCompressedWordSize); |
| __ sx(T5, Address(T3, 0)); |
| __ addi(T3, T3, target::kCompressedWordSize); |
| __ j(&loop); |
| |
| __ Bind(&done); |
| } |
| |
| // Done allocating and initializing the context. |
| // A0: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| |
| __ EnterStubFrame(); |
| |
| __ subi(SP, SP, 2 * target::kWordSize); |
| __ sx(NULL_REG, Address(SP, 1 * target::kWordSize)); // Result slot. |
| __ sx(T5, Address(SP, 0 * target::kWordSize)); // Context argument. |
| __ CallRuntime(kCloneContextRuntimeEntry, 1); |
| __ lx(A0, Address(SP, 1 * target::kWordSize)); // Context result. |
| __ subi(SP, SP, 2 * target::kWordSize); |
| |
| // Write-barrier elimination might be enabled for this context (depending on |
| // the size). To be sure we will check if the allocated object is in old |
| // space and if so call a leaf runtime to add it to the remembered set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| // A0: new object |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierWrappersStub(Assembler* assembler) { |
| for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
| if ((kDartAvailableCpuRegs & (1 << i)) == 0) continue; |
| |
| Register reg = static_cast<Register>(i); |
| intptr_t start = __ CodeSize(); |
| __ addi(SP, SP, -3 * target::kWordSize); |
| __ sx(RA, Address(SP, 2 * target::kWordSize)); |
| __ sx(TMP, Address(SP, 1 * target::kWordSize)); |
| __ sx(kWriteBarrierObjectReg, Address(SP, 0 * target::kWordSize)); |
| __ mv(kWriteBarrierObjectReg, reg); |
| __ Call(Address(THR, target::Thread::write_barrier_entry_point_offset())); |
| __ lx(kWriteBarrierObjectReg, Address(SP, 0 * target::kWordSize)); |
| __ lx(TMP, Address(SP, 1 * target::kWordSize)); |
| __ lx(RA, Address(SP, 2 * target::kWordSize)); |
| __ addi(SP, SP, 3 * target::kWordSize); |
| __ jr(TMP); // Return. |
| intptr_t end = __ CodeSize(); |
| ASSERT_EQUAL(end - start, kStoreBufferWrapperSize); |
| } |
| } |
| |
| // Helper stub to implement Assembler::StoreIntoObject/Array. |
| // Input parameters: |
| // A0: Object (old) |
| // A1: Value (old or new) |
| // A6: Slot |
| // If A1 is new, add A0 to the store buffer. Otherwise A1 is old, mark A1 |
| // and add it to the mark list. |
| COMPILE_ASSERT(kWriteBarrierObjectReg == A0); |
| COMPILE_ASSERT(kWriteBarrierValueReg == A1); |
| COMPILE_ASSERT(kWriteBarrierSlotReg == A6); |
| static void GenerateWriteBarrierStubHelper(Assembler* assembler, |
| Address stub_code, |
| bool cards) { |
| Label add_to_mark_stack, remember_card, lost_race; |
| __ andi(TMP2, A1, 1 << target::ObjectAlignment::kNewObjectBitPosition); |
| __ beqz(TMP2, &add_to_mark_stack); |
| |
| if (cards) { |
| __ lbu(TMP2, FieldAddress(A0, target::Object::tags_offset())); |
| __ andi(TMP2, TMP2, 1 << target::UntaggedObject::kCardRememberedBit); |
| __ bnez(TMP2, &remember_card); |
| } else { |
| #if defined(DEBUG) |
| Label ok; |
| __ lbu(TMP2, FieldAddress(A0, target::Object::tags_offset())); |
| __ andi(TMP2, TMP2, 1 << target::UntaggedObject::kCardRememberedBit); |
| __ beqz(TMP2, &ok, Assembler::kNearJump); |
| __ Stop("Wrong barrier!"); |
| __ Bind(&ok); |
| #endif |
| } |
| |
| // Spill T2, T3, T4. |
| __ subi(SP, SP, 3 * target::kWordSize); |
| __ sx(T2, Address(SP, 2 * target::kWordSize)); |
| __ sx(T3, Address(SP, 1 * target::kWordSize)); |
| __ sx(T4, Address(SP, 0 * target::kWordSize)); |
| |
| // Atomically clear kOldAndNotRememberedBit. |
| // TODO(riscv): Use amoand instead of lr/sc. |
| ASSERT(target::Object::tags_offset() == 0); |
| __ subi(T3, A0, kHeapObjectTag); |
| // T3: Untagged address of header word (lr/sc do not support offsets). |
| Label retry; |
| __ Bind(&retry); |
| __ lr(T2, Address(T3, 0)); |
| __ andi(TMP2, T2, 1 << target::UntaggedObject::kOldAndNotRememberedBit); |
| __ beqz(TMP2, &lost_race); |
| __ andi(T2, T2, ~(1 << target::UntaggedObject::kOldAndNotRememberedBit)); |
| __ sc(T4, T2, Address(T3, 0)); |
| __ bnez(T4, &retry); |
| |
| // Load the StoreBuffer block out of the thread. Then load top_ out of the |
| // StoreBufferBlock and add the address to the pointers_. |
| __ LoadFromOffset(T4, THR, target::Thread::store_buffer_block_offset()); |
| __ LoadFromOffset(T2, T4, target::StoreBufferBlock::top_offset(), |
| kUnsignedFourBytes); |
| __ slli(T3, T2, target::kWordSizeLog2); |
| __ add(T3, T4, T3); |
| __ StoreToOffset(A0, T3, target::StoreBufferBlock::pointers_offset()); |
| |
| // Increment top_ and check for overflow. |
| // T2: top_. |
| // T4: StoreBufferBlock. |
| Label overflow; |
| __ addi(T2, T2, 1); |
| __ StoreToOffset(T2, T4, target::StoreBufferBlock::top_offset(), |
| kUnsignedFourBytes); |
| __ CompareImmediate(T2, target::StoreBufferBlock::kSize); |
| // Restore values. |
| __ BranchIf(EQ, &overflow); |
| |
| // Restore T2, T3, T4. |
| __ lx(T4, Address(SP, 0 * target::kWordSize)); |
| __ lx(T3, Address(SP, 1 * target::kWordSize)); |
| __ lx(T2, Address(SP, 2 * target::kWordSize)); |
| __ addi(SP, SP, 3 * target::kWordSize); |
| __ ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&overflow); |
| // Restore T2, T3, T4. |
| __ lx(T4, Address(SP, 0 * target::kWordSize)); |
| __ lx(T3, Address(SP, 1 * target::kWordSize)); |
| __ lx(T2, Address(SP, 2 * target::kWordSize)); |
| __ addi(SP, SP, 3 * target::kWordSize); |
| { |
| Assembler::CallRuntimeScope scope(assembler, |
| kStoreBufferBlockProcessRuntimeEntry, |
| /*frame_size=*/0, stub_code); |
| __ mv(A0, THR); |
| scope.Call(/*argument_count=*/1); |
| } |
| __ ret(); |
| |
| __ Bind(&add_to_mark_stack); |
| // Spill T2, T3, T4. |
| __ subi(SP, SP, 3 * target::kWordSize); |
| __ sx(T2, Address(SP, 2 * target::kWordSize)); |
| __ sx(T3, Address(SP, 1 * target::kWordSize)); |
| __ sx(T4, Address(SP, 0 * target::kWordSize)); |
| |
| // Atomically clear kOldAndNotMarkedBit. |
| // TODO(riscv): Use amoand instead of lr/sc. |
| Label marking_retry, marking_overflow; |
| ASSERT(target::Object::tags_offset() == 0); |
| __ subi(T3, A1, kHeapObjectTag); |
| // T3: Untagged address of header word (lr/sc do not support offsets). |
| __ Bind(&marking_retry); |
| __ lr(T2, Address(T3, 0)); |
| __ andi(TMP2, T2, 1 << target::UntaggedObject::kOldAndNotMarkedBit); |
| __ beqz(TMP2, &lost_race); |
| __ andi(T2, T2, ~(1 << target::UntaggedObject::kOldAndNotMarkedBit)); |
| __ sc(T4, T2, Address(T3, 0)); |
| __ bnez(T4, &marking_retry); |
| |
| __ LoadFromOffset(T4, THR, target::Thread::marking_stack_block_offset()); |
| __ LoadFromOffset(T2, T4, target::MarkingStackBlock::top_offset(), |
| kUnsignedFourBytes); |
| __ slli(T3, T2, target::kWordSizeLog2); |
| __ add(T3, T4, T3); |
| __ StoreToOffset(A1, T3, target::MarkingStackBlock::pointers_offset()); |
| __ addi(T2, T2, 1); |
| __ StoreToOffset(T2, T4, target::MarkingStackBlock::top_offset(), |
| kUnsignedFourBytes); |
| __ CompareImmediate(T2, target::MarkingStackBlock::kSize); |
| __ BranchIf(EQ, &marking_overflow); |
| // Restore T2, T3, T4. |
| __ lx(T4, Address(SP, 0 * target::kWordSize)); |
| __ lx(T3, Address(SP, 1 * target::kWordSize)); |
| __ lx(T2, Address(SP, 2 * target::kWordSize)); |
| __ addi(SP, SP, 3 * target::kWordSize); |
| __ ret(); |
| |
| __ Bind(&marking_overflow); |
| // Restore T2, T3, T4. |
| __ lx(T4, Address(SP, 0 * target::kWordSize)); |
| __ lx(T3, Address(SP, 1 * target::kWordSize)); |
| __ lx(T2, Address(SP, 2 * target::kWordSize)); |
| __ addi(SP, SP, 3 * target::kWordSize); |
| { |
| Assembler::CallRuntimeScope scope(assembler, |
| kMarkingStackBlockProcessRuntimeEntry, |
| /*frame_size=*/0, stub_code); |
| __ mv(A0, THR); |
| scope.Call(/*argument_count=*/1); |
| } |
| __ ret(); |
| |
| __ Bind(&lost_race); |
| // Restore T2, T3, T4. |
| __ lx(T4, Address(SP, 0 * target::kWordSize)); |
| __ lx(T3, Address(SP, 1 * target::kWordSize)); |
| __ lx(T2, Address(SP, 2 * target::kWordSize)); |
| __ addi(SP, SP, 3 * target::kWordSize); |
| __ ret(); |
| |
| if (cards) { |
| Label remember_card_slow; |
| |
| // Get card table. |
| __ Bind(&remember_card); |
| __ AndImmediate(TMP, A0, target::kOldPageMask); // OldPage. |
| __ lx(TMP, |
| Address(TMP, target::OldPage::card_table_offset())); // Card table. |
| __ beqz(TMP, &remember_card_slow); |
| |
| // Dirty the card. |
| __ AndImmediate(TMP, A0, target::kOldPageMask); // OldPage. |
| __ sub(A6, A6, TMP); // Offset in page. |
| __ lx(TMP, |
| Address(TMP, target::OldPage::card_table_offset())); // Card table. |
| __ srli(A6, A6, target::OldPage::kBytesPerCardLog2); |
| __ add(TMP, TMP, A6); // Card address. |
| __ sb(A0, Address(TMP, 0)); // Low byte of A0 is non-zero from object tag. |
| __ ret(); |
| |
| // Card table not yet allocated. |
| __ Bind(&remember_card_slow); |
| { |
| Assembler::CallRuntimeScope scope(assembler, kRememberCardRuntimeEntry, |
| /*frame_size=*/0, stub_code); |
| __ mv(A0, A0); // Arg0 = Object |
| __ mv(A1, A6); // Arg1 = Slot |
| scope.Call(/*argument_count=*/2); |
| } |
| __ ret(); |
| } |
| } |
| |
| void StubCodeCompiler::GenerateWriteBarrierStub(Assembler* assembler) { |
| GenerateWriteBarrierStubHelper( |
| assembler, Address(THR, target::Thread::write_barrier_code_offset()), |
| false); |
| } |
| |
| void StubCodeCompiler::GenerateArrayWriteBarrierStub(Assembler* assembler) { |
| GenerateWriteBarrierStubHelper( |
| assembler, |
| Address(THR, target::Thread::array_write_barrier_code_offset()), true); |
| } |
| |
| static void GenerateAllocateObjectHelper(Assembler* assembler, |
| bool is_cls_parameterized) { |
| const Register kTagsReg = AllocateObjectABI::kTagsReg; |
| |
| { |
| Label slow_case; |
| |
| const Register kNewTopReg = T3; |
| |
| // Bump allocation. |
| { |
| const Register kInstanceSizeReg = T4; |
| const Register kEndReg = T5; |
| |
| __ ExtractInstanceSizeFromTags(kInstanceSizeReg, kTagsReg); |
| |
| // Load two words from Thread::top: top and end. |
| // AllocateObjectABI::kResultReg: potential next object start. |
| __ lx(AllocateObjectABI::kResultReg, |
| Address(THR, target::Thread::top_offset())); |
| __ lx(kEndReg, Address(THR, target::Thread::end_offset())); |
| |
| __ add(kNewTopReg, AllocateObjectABI::kResultReg, kInstanceSizeReg); |
| |
| __ CompareRegisters(kEndReg, kNewTopReg); |
| __ BranchIf(UNSIGNED_LESS_EQUAL, &slow_case); |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and store the class in the class field of object. |
| __ sx(kNewTopReg, Address(THR, target::Thread::top_offset())); |
| } // kInstanceSizeReg = R4, kEndReg = R5 |
| |
| // Tags. |
| __ sx(kTagsReg, Address(AllocateObjectABI::kResultReg, |
| target::Object::tags_offset())); |
| |
| // Initialize the remaining words of the object. |
| { |
| const Register kFieldReg = T4; |
| |
| __ AddImmediate(kFieldReg, AllocateObjectABI::kResultReg, |
| target::Instance::first_field_offset()); |
| Label done, init_loop; |
| __ Bind(&init_loop); |
| __ CompareRegisters(kFieldReg, kNewTopReg); |
| __ BranchIf(UNSIGNED_GREATER_EQUAL, &done); |
| __ sx(NULL_REG, Address(kFieldReg, 0)); |
| __ addi(kFieldReg, kFieldReg, target::kCompressedWordSize); |
| __ j(&init_loop); |
| |
| __ Bind(&done); |
| } // kFieldReg = T4 |
| |
| if (is_cls_parameterized) { |
| Label not_parameterized_case; |
| |
| const Register kClsIdReg = T4; |
| const Register kTypeOffsetReg = T5; |
| |
| __ ExtractClassIdFromTags(kClsIdReg, kTagsReg); |
| |
| // Load class' type_arguments_field offset in words. |
| __ LoadClassById(kTypeOffsetReg, kClsIdReg); |
| __ lw( |
| kTypeOffsetReg, |
| FieldAddress(kTypeOffsetReg, |
| target::Class:: |
| host_type_arguments_field_offset_in_words_offset())); |
| |
| // Set the type arguments in the new object. |
| __ slli(kTypeOffsetReg, kTypeOffsetReg, target::kWordSizeLog2); |
| __ add(kTypeOffsetReg, kTypeOffsetReg, AllocateObjectABI::kResultReg); |
| __ sx(AllocateObjectABI::kTypeArgumentsReg, Address(kTypeOffsetReg, 0)); |
| |
| __ Bind(¬_parameterized_case); |
| } // kClsIdReg = R4, kTypeOffestReg = R5 |
| |
| __ AddImmediate(AllocateObjectABI::kResultReg, |
| AllocateObjectABI::kResultReg, kHeapObjectTag); |
| |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } // kNewTopReg = R3 |
| |
| // Fall back on slow case: |
| if (!is_cls_parameterized) { |
| __ mv(AllocateObjectABI::kTypeArgumentsReg, NULL_REG); |
| } |
| // Tail call to generic allocation stub. |
| __ lx( |
| TMP, |
| Address(THR, target::Thread::allocate_object_slow_entry_point_offset())); |
| __ jr(TMP); |
| } |
| |
| // Called for inline allocation of objects (any class). |
| void StubCodeCompiler::GenerateAllocateObjectStub(Assembler* assembler) { |
| GenerateAllocateObjectHelper(assembler, /*is_cls_parameterized=*/false); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectParameterizedStub( |
| Assembler* assembler) { |
| GenerateAllocateObjectHelper(assembler, /*is_cls_parameterized=*/true); |
| } |
| |
| void StubCodeCompiler::GenerateAllocateObjectSlowStub(Assembler* assembler) { |
| if (!FLAG_precompiled_mode) { |
| __ lx(CODE_REG, |
| Address(THR, target::Thread::call_to_runtime_stub_offset())); |
| } |
| |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| |
| __ ExtractClassIdFromTags(AllocateObjectABI::kTagsReg, |
| AllocateObjectABI::kTagsReg); |
| __ LoadClassById(A0, AllocateObjectABI::kTagsReg); |
| |
| __ subi(SP, SP, 3 * target::kWordSize); |
| __ sx(ZR, Address(SP, 2 * target::kWordSize)); // Result slot. |
| __ sx(A0, Address(SP, 1 * target::kWordSize)); // Arg0: Class object. |
| __ sx(AllocateObjectABI::kTypeArgumentsReg, |
| Address(SP, 0 * target::kWordSize)); // Arg1: Type args or null. |
| __ CallRuntime(kAllocateObjectRuntimeEntry, 2); |
| __ lx(AllocateObjectABI::kResultReg, Address(SP, 2 * target::kWordSize)); |
| __ addi(SP, SP, 3 * target::kWordSize); |
| |
| // Write-barrier elimination is enabled for [cls] and we therefore need to |
| // ensure that the object is in new-space or has remembered bit set. |
| EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
| |
| __ LeaveStubFrame(); |
| |
| __ ret(); |
| } |
| |
| // Called for inline allocation of objects. |
| void StubCodeCompiler::GenerateAllocationStubForClass( |
| Assembler* assembler, |
| UnresolvedPcRelativeCalls* unresolved_calls, |
| const Class& cls, |
| const Code& allocate_object, |
| const Code& allocat_object_parametrized) { |
| classid_t cls_id = target::Class::GetId(cls); |
| ASSERT(cls_id != kIllegalCid); |
| |
| RELEASE_ASSERT(AllocateObjectInstr::WillAllocateNewOrRemembered(cls)); |
| |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0; |
| ASSERT(!is_cls_parameterized || target::Class::TypeArgumentsFieldOffset( |
| cls) != target::Class::kNoTypeArguments); |
| |
| const intptr_t instance_size = target::Class::GetInstanceSize(cls); |
| ASSERT(instance_size > 0); |
| RELEASE_ASSERT(target::Heap::IsAllocatableInNewSpace(instance_size)); |
| |
| const uword tags = |
| target::MakeTagWordForNewSpaceObject(cls_id, instance_size); |
| |
| // Note: Keep in sync with helper function. |
| const Register kTagsReg = AllocateObjectABI::kTagsReg; |
| ASSERT(kTagsReg != AllocateObjectABI::kTypeArgumentsReg); |
| |
| __ LoadImmediate(kTagsReg, tags); |
| |
| if (!FLAG_use_slow_path && FLAG_inline_alloc && |
| !target::Class::TraceAllocation(cls) && |
| target::SizeFitsInSizeTag(instance_size)) { |
| if (is_cls_parameterized) { |
| // TODO(41974): Assign all allocation stubs to the root loading unit? |
| if (false && |
| !IsSameObject(NullObject(), |
| CastHandle<Object>(allocat_object_parametrized))) { |
| __ GenerateUnRelocatedPcRelativeTailCall(); |
| unresolved_calls->Add(new UnresolvedPcRelativeCall( |
| __ CodeSize(), allocat_object_parametrized, /*is_tail_call=*/true)); |
| } else { |
| __ lx(TMP, |
| Address(THR, |
| target::Thread:: |
| allocate_object_parameterized_entry_point_offset())); |
| __ jr(TMP); |
| } |
| } else { |
| // TODO(41974): Assign all allocation stubs to the root loading unit? |
| if (false && |
| !IsSameObject(NullObject(), CastHandle<Object>(allocate_object))) { |
| __ GenerateUnRelocatedPcRelativeTailCall(); |
| unresolved_calls->Add(new UnresolvedPcRelativeCall( |
| __ CodeSize(), allocate_object, /*is_tail_call=*/true)); |
| } else { |
| __ lx( |
| TMP, |
| Address(THR, target::Thread::allocate_object_entry_point_offset())); |
| __ jr(TMP); |
| } |
| } |
| } else { |
| if (!is_cls_parameterized) { |
| __ LoadObject(AllocateObjectABI::kTypeArgumentsReg, NullObject()); |
| } |
| __ lx(TMP, |
| Address(THR, |
| target::Thread::allocate_object_slow_entry_point_offset())); |
| __ jr(TMP); |
| } |
| } |
| |
| // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
| // from the entry code of a dart function after an error in passed argument |
| // name or number is detected. |
| // Input parameters: |
| // RA : return address. |
| // SP : address of last argument. |
| // S4: arguments descriptor array. |
| void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub( |
| Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ LoadCompressedSmiFieldFromOffset( |
| T2, S4, target::ArgumentsDescriptor::size_offset()); |
| __ slli(TMP, T2, target::kWordSizeLog2 - 1); // T2 is Smi |
| __ add(TMP, TMP, FP); |
| __ LoadFromOffset(A0, TMP, |
| target::frame_layout.param_end_from_fp * target::kWordSize); |
| |
| // Load the function. |
| __ LoadCompressedFieldFromOffset(TMP, A0, target::Closure::function_offset()); |
| |
| __ PushRegister(ZR); // Result slot. |
| __ PushRegister(A0); // Receiver. |
| __ PushRegister(TMP); // Function |
| __ PushRegister(S4); // Arguments descriptor. |
| |
| // Adjust arguments count. |
| __ LoadCompressedSmiFieldFromOffset( |
| T3, S4, target::ArgumentsDescriptor::type_args_len_offset()); |
| Label args_count_ok; |
| __ beqz(T3, &args_count_ok, Assembler::kNearJump); |
| // Include the type arguments. |
| __ addi(T2, T2, target::ToRawSmi(1)); |
| __ Bind(&args_count_ok); |
| |
| // T2: Smi-tagged arguments array length. |
| PushArrayOfArguments(assembler); |
| |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs); |
| // noSuchMethod on closures always throws an error, so it will never return. |
| __ ebreak(); |
| } |
| |
| // A6: function object. |
| // S5: inline cache data object. |
| // Cannot use function object from ICData as it may be the inlined |
| // function and not the top-scope function. |
| void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement( |
| Assembler* assembler) { |
| if (FLAG_precompiled_mode) { |
| __ Breakpoint(); |
| return; |
| } |
| if (FLAG_trace_optimized_ic_calls) { |
| __ Stop("Unimplemented"); |
| } |
| __ LoadFieldFromOffset(TMP, A6, target::Function::usage_counter_offset(), |
| kFourBytes); |
| __ addi(TMP, TMP, 1); |
| __ StoreFieldToOffset(TMP, A6, target::Function::usage_counter_offset(), |
| kFourBytes); |
| } |
| |
| // Loads function into 'func_reg'. |
| void StubCodeCompiler::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register func_reg) { |
| if (FLAG_precompiled_mode) { |
| __ trap(); |
| return; |
| } |
| if (FLAG_optimization_counter_threshold >= 0) { |
| __ Comment("Increment function counter"); |
| __ LoadFieldFromOffset(func_reg, IC_DATA_REG, |
| target::ICData::owner_offset()); |
| __ LoadFieldFromOffset( |
| A1, func_reg, target::Function::usage_counter_offset(), kFourBytes); |
| __ AddImmediate(A1, 1); |
| __ StoreFieldToOffset(A1, func_reg, |
| target::Function::usage_counter_offset(), kFourBytes); |
| } |
| } |
| |
| // Note: S5 must be preserved. |
| // Attempt a quick Smi operation for known operations ('kind'). The ICData |
| // must have been primed with a Smi/Smi check that will be used for counting |
| // the invocations. |
| static void EmitFastSmiOp(Assembler* assembler, |
| Token::Kind kind, |
| intptr_t num_args, |
| Label* not_smi_or_overflow) { |
| __ Comment("Fast Smi op"); |
| __ lx(A0, Address(SP, +1 * target::kWordSize)); // Left. |
| __ lx(A1, Address(SP, +0 * target::kWordSize)); // Right. |
| __ or_(TMP2, A0, A1); |
| __ andi(TMP2, TMP2, kSmiTagMask); |
| __ bnez(TMP2, not_smi_or_overflow); |
| switch (kind) { |
| case Token::kADD: { |
| __ AddBranchOverflow(A0, A0, A1, not_smi_or_overflow); |
| break; |
| } |
| case Token::kLT: { |
| // TODO(riscv): Bit tricks with stl and NULL_REG. |
| Label load_true, done; |
| __ blt(A0, A1, &load_true, compiler::Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ j(&done, Assembler::kNearJump); |
| __ Bind(&load_true); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ Bind(&done); |
| break; |
| } |
| case Token::kEQ: { |
| // TODO(riscv): Bit tricks with stl and NULL_REG. |
| Label load_true, done; |
| __ beq(A0, A1, &load_true, Assembler::kNearJump); |
| __ LoadObject(A0, CastHandle<Object>(FalseObject())); |
| __ j(&done, Assembler::kNearJump); |
| __ Bind(&load_true); |
| __ LoadObject(A0, CastHandle<Object>(TrueObject())); |
| __ Bind(&done); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| |
| // S5: IC data object (preserved). |
| __ LoadFieldFromOffset(A6, IC_DATA_REG, target::ICData::entries_offset()); |
| // R6: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(A6, target::Array::data_offset() - kHeapObjectTag); |
| // R6: points directly to the first ic data array element. |
| #if defined(DEBUG) |
| // Check that first entry is for Smi/Smi. |
| Label error, ok; |
| const intptr_t imm_smi_cid = target::ToRawSmi(kSmiCid); |
| __ LoadCompressedSmiFromOffset(TMP, A6, 0); |
| __ CompareImmediate(TMP, imm_smi_cid); |
| __ BranchIf(NE, &error); |
| __ LoadCompressedSmiFromOffset(TMP, A6, target::kCompressedWordSize); |
| __ CompareImmediate(TMP, imm_smi_cid); |
| __ BranchIf(EQ, &ok); |
| __ Bind(&error); |
| __ Stop("Incorrect IC data"); |
| __ Bind(&ok); |
| #endif |
| if (FLAG_optimization_counter_threshold >= 0) { |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kCompressedWordSize; |
| // Update counter, ignore overflow. |
| __ LoadCompressedSmiFromOffset(A1, A6, count_offset); |
| __ addi(A1, A1, target::ToRawSmi(1)); |
| __ StoreToOffset(A1, A6, count_offset); |
| } |
| |
| __ ret(); |
| } |
| |
| // Saves the offset of the target entry-point (from the Function) into T6. |
| // |
| // Must be the first code generated, since any code before will be skipped in |
| // the unchecked entry-point. |
| static void GenerateRecordEntryPoint(Assembler* assembler) { |
| Label done; |
| __ LoadImmediate(T6, target::Function::entry_point_offset() - kHeapObjectTag); |
| __ j(&done, Assembler::kNearJump); |
| __ BindUncheckedEntryPoint(); |
| __ LoadImmediate( |
| T6, target::Function::entry_point_offset(CodeEntryKind::kUnchecked) - |
| kHeapObjectTag); |
| __ Bind(&done); |
| } |
| |
| // Generate inline cache check for 'num_args'. |
| // A0: receiver (if instance call) |
| // S5: ICData |
| // RA: return address |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub( |
| Assembler* assembler, |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| Optimized optimized, |
| CallType type, |
| Exactness exactness) { |
| const bool save_entry_point = kind == Token::kILLEGAL; |
| if (FLAG_precompiled_mode) { |
| __ Breakpoint(); |
| return; |
| } |
| |
| if (save_entry_point) { |
| GenerateRecordEntryPoint(assembler); |
| // T6: untagged entry point offset |
| } |
| |
| if (optimized == kOptimized) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| } else { |
| GenerateUsageCounterIncrement(assembler, /*scratch=*/T0); |
| } |
| |
| ASSERT(exactness == kIgnoreExactness); // Unimplemented. |
| ASSERT(num_args == 1 || num_args == 2); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ LoadFromOffset(TMP, IC_DATA_REG, |
| target::ICData::state_bits_offset() - kHeapObjectTag, |
| kUnsignedFourBytes); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andi(TMP, TMP, target::ICData::NumArgsTestedMask()); |
| __ CompareImmediate(TMP2, num_args); |
| __ BranchIf(EQ, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| #if !defined(PRODUCT) |
| Label stepping, done_stepping; |
| if (optimized == kUnoptimized) { |
| __ Comment("Check single stepping"); |
| __ LoadIsolate(TMP); |
| __ LoadFromOffset(TMP, TMP, target::Isolate::single_step_offset(), |
| kUnsignedByte); |
| __ bnez(TMP, &stepping); |
| __ Bind(&done_stepping); |
| } |
| #endif |
| |
| Label not_smi_or_overflow; |
| if (kind != Token::kILLEGAL) { |
| EmitFastSmiOp(assembler, kind, num_args, ¬_smi_or_overflow); |
| } |
| __ Bind(¬_smi_or_overflow); |
| |
| __ Comment("Extract ICData initial values and receiver cid"); |
| // S5: IC data object (preserved). |
| __ LoadFieldFromOffset(A1, IC_DATA_REG, target::ICData::entries_offset()); |
| // A1: ic_data_array with check entries: classes and target functions. |
| __ AddImmediate(A1, target::Array::data_offset() - kHeapObjectTag); |
| // A1: points directly to the first ic data array element. |
| |
| if (type == kInstanceCall) { |
| __ LoadTaggedClassIdMayBeSmi(T1, A0); |
| __ LoadFieldFromOffset(ARGS_DESC_REG, IC_DATA_REG, |
| target::CallSiteData::arguments_descriptor_offset()); |
| if (num_args == 2) { |
| __ LoadCompressedSmiFieldFromOffset( |
| A7, ARGS_DESC_REG, target::ArgumentsDescriptor::count_offset()); |
| __ slli(A7, A7, target::kWordSizeLog2 - kSmiTagSize); |
| __ add(A7, SP, A7); |
| __ lx(A6, Address(A7, -2 * target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(T2, A6); |
| } |
| } else { |
| __ LoadFieldFromOffset(ARGS_DESC_REG, IC_DATA_REG, |
| target::CallSiteData::arguments_descriptor_offset()); |
| __ LoadCompressedSmiFieldFromOffset( |
| A7, ARGS_DESC_REG, target::ArgumentsDescriptor::count_offset()); |
| __ slli(A7, A7, target::kWordSizeLog2 - kSmiTagSize); |
| __ add(A7, A7, SP); |
| __ lx(A6, Address(A7, -1 * target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(T1, A6); |
| if (num_args == 2) { |
| __ lx(A6, Address(A7, -2 * target::kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(T2, A6); |
| } |
| } |
| // T1: first argument class ID as Smi. |
| // T2: second argument class ID as Smi. |
| // S4: args descriptor |
| |
| // We unroll the generic one that is generated once more than the others. |
| const bool optimize = kind == Token::kILLEGAL; |
| |
| // Loop that checks if there is an IC data match. |
| Label loop, found, miss; |
| __ Comment("ICData loop"); |
| |
| __ Bind(&loop); |
| for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) { |
| Label update; |
| |
| __ LoadCompressedSmiFromOffset(A7, A1, 0); |
| if (num_args == 1) { |
| __ beq(A7, T1, &found); // Class id match? |
| } else { |
| __ bne(A7, T1, &update); // Continue. |
| __ LoadCompressedSmiFromOffset(A7, A1, target::kCompressedWordSize); |
| __ beq(A7, T2, &found); // Class id match? |
| } |
| __ Bind(&update); |
| |
| const intptr_t entry_size = target::ICData::TestEntryLengthFor( |
| num_args, exactness == kCheckExactness) * |
| target::kCompressedWordSize; |
| __ AddImmediate(A1, entry_size); // Next entry. |
| |
| __ CompareImmediate(A7, target::ToRawSmi(kIllegalCid)); // Done? |
| if (unroll == 0) { |
| __ BranchIf(NE, &loop); |
| } else { |
| __ BranchIf(EQ, &miss); |
| } |
| } |
| |
| __ Bind(&miss); |
| __ Comment("IC miss"); |
| |
| // Compute address of arguments. |
| __ LoadCompressedSmiFieldFromOffset( |
| A7, ARGS_DESC_REG, target::ArgumentsDescriptor::count_offset()); |
| __ slli(A7, A7, target::kWordSizeLog2 - kSmiTagSize); |
| __ add(A7, A7, SP); |
| __ subi(A7, A7, 1 * target::kWordSize); |
| |
| // A7: address of receiver |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Preserve IC data object and arguments descriptor array and |
| // setup space on stack for result (target code object). |
| __ PushRegister(ARGS_DESC_REG); // Preserve arguments descriptor array. |
| __ PushRegister(IC_DATA_REG); // Preserve IC Data. |
| if (save_entry_point) { |
| __ SmiTag(T6); |
| __ PushRegister(T6); |
| } |
| // Setup space on stack for the result (target code object). |
| __ PushRegister(ZR); |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ LoadFromOffset(TMP, A7, -target::kWordSize * i); |
| __ PushRegister(TMP); |
| } |
| // Pass IC data object. |
| __ PushRegister(IC_DATA_REG); |
| __ CallRuntime(handle_ic_miss, num_args + 1); |
| // Remove the call arguments pushed earlier, including the IC data object. |
| __ Drop(num_args + 1); |
| // Pop returned function object into R0. |
| // Restore arguments descriptor array and IC data array. |
| __ PopRegister(T0); // Pop returned function object into T0. |
| if (save_entry_point) { |
| __ PopRegister(T6); |
| __ SmiUntag(T6); |
| } |
| __ PopRegister(IC_DATA_REG); // Restore IC Data. |
| __ PopRegister(ARGS_DESC_REG); // Restore arguments descriptor array. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| Label call_target_function; |
| if (!FLAG_lazy_dispatchers) { |
| GenerateDispatcherCode(assembler, &call_target_function); |
| } else { |
| __ j(&call_target_function); |
| } |
| |
| __ Bind(&found); |
| __ Comment("Update caller's counter"); |
| // A1: pointer to an IC data check group. |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(num_args) * target::kCompressedWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(num_args) * target::kCompressedWordSize; |
| __ LoadCompressedFromOffset(T0, A1, target_offset); |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Update counter, ignore overflow. |
| __ LoadCompressedSmiFromOffset(TMP, A1, count_offset); |
| __ addi(TMP, TMP, target::ToRawSmi(1)); |
| __ StoreToOffset(TMP, A1, count_offset); |
| } |
| |
| __ Comment("Call target"); |
| __ Bind(&call_target_function); |
| // T0: target function. |
| __ LoadCompressedFieldFromOffset(CODE_REG, T0, |
| target::Function::code_offset()); |
| if (save_entry_point) { |
| __ add(A7, T0, T6); |
| __ lx(A7, Address(A7, 0)); |
| } else { |
| __ LoadFieldFromOffset(A7, T0, target::Function::entry_point_offset()); |
| } |
| __ jr(A7); // T0: Function, argument to lazy compile stub. |
| |
| #if !defined(PRODUCT) |
| if (optimized == kUnoptimized) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| if (type == kInstanceCall) { |
| __ PushRegister(A0); // Preserve receiver. |
| } |
| if (save_entry_point) { |
| __ SmiTag(T6); |
| __ PushRegister(T6); |
| } |
| __ PushRegister(IC_DATA_REG); // Preserve IC data. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ PopRegister(IC_DATA_REG); |
| if (save_entry_point) { |
| __ PopRegister(T6); |
| __ SmiUntag(T6); |
| } |
| if (type == kInstanceCall) { |
| __ PopRegister(A0); |
| } |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ j(&done_stepping); |
| } |
| #endif |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub( |
| Assembler* assembler) { |
| __ Stop("Unimplemented"); |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateSmiAddInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateSmiLessInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateSmiEqualInlineCacheStub(Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ, |
| kUnoptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // A6: Function |
| // RA: return address |
| void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // A6: Function |
| // RA: return address |
| void StubCodeCompiler:: |
| GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub( |
| Assembler* assembler) { |
| __ Stop("Unimplemented"); |
| } |
| |
| // A0: receiver |
| // S5: ICData |
| // A6: Function |
| // RA: return address |
| void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kOptimized, kInstanceCall, kIgnoreExactness); |
| } |
| |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateRecordEntryPoint(assembler); |
| GenerateUsageCounterIncrement(assembler, /* scratch */ T0); |
| |
| #if defined(DEBUG) |
| { |
| Label ok; |
| // Check that the IC data array has NumArgsTested() == 0. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ LoadFromOffset(TMP, IC_DATA_REG, |
| target::ICData::state_bits_offset() - kHeapObjectTag, |
| kUnsignedFourBytes); |
| ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andi(TMP, TMP, target::ICData::NumArgsTestedMask()); |
| __ CompareImmediate(TMP, 0); |
| __ BranchIf(EQ, &ok); |
| __ Stop("Incorrect IC data for unoptimized static call"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| // Check single stepping. |
| #if !defined(PRODUCT) |
| Label stepping, done_stepping; |
| __ LoadIsolate(TMP); |
| __ LoadFromOffset(TMP, TMP, target::Isolate::single_step_offset(), |
| kUnsignedByte); |
| __ bnez(TMP, &stepping, Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| #endif |
| |
| // T5: IC data object (preserved). |
| __ LoadFieldFromOffset(A0, IC_DATA_REG, target::ICData::entries_offset()); |
| // A0: ic_data_array with entries: target functions and count. |
| __ AddImmediate(A0, target::Array::data_offset() - kHeapObjectTag); |
| // A0: points directly to the first ic data array element. |
| const intptr_t target_offset = |
| target::ICData::TargetIndexFor(0) * target::kCompressedWordSize; |
| const intptr_t count_offset = |
| target::ICData::CountIndexFor(0) * target::kCompressedWordSize; |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Increment count for this call, ignore overflow. |
| __ LoadCompressedSmiFromOffset(TMP, A0, count_offset); |
| __ addi(TMP, TMP, target::ToRawSmi(1)); |
| __ StoreToOffset(TMP, A0, count_offset); |
| } |
| |
| // Load arguments descriptor into T4. |
| __ LoadFieldFromOffset(ARGS_DESC_REG, IC_DATA_REG, |
| target::CallSiteData::arguments_descriptor_offset()); |
| |
| // Get function and call it, if possible. |
| __ LoadCompressedFromOffset(T0, A0, target_offset); |
| __ LoadCompressedFieldFromOffset(CODE_REG, T0, |
| target::Function::code_offset()); |
| __ add(A0, T0, T6); |
| __ lx(TMP, Address(A0, 0)); |
| __ jr(TMP); // T0: Function, argument to lazy compile stub. |
| |
| #if !defined(PRODUCT) |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ PushRegister(IC_DATA_REG); // Preserve IC data. |
| __ SmiTag(T6); |
| __ PushRegister(T6); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ PopRegister(T6); |
| __ SmiUntag(T6); |
| __ PopRegister(IC_DATA_REG); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ j(&done_stepping); |
| #endif |
| } |
| |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ T0); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 1, kStaticCallMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // S5: ICData |
| // RA: return address |
| void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, /* scratch */ T0); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
| kUnoptimized, kStaticCall, kIgnoreExactness); |
| } |
| |
| // Stub for compiling a function and jumping to the compiled code. |
| // S4: Arguments descriptor. |
| // T0: Function. |
| void StubCodeCompiler::GenerateLazyCompileStub(Assembler* assembler) { |
| // Preserve arg desc. |
| __ EnterStubFrame(); |
| __ PushRegister(ARGS_DESC_REG); // Save arg. desc. |
| __ PushRegister(T0); // Pass function. |
| __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
| __ PopRegister(T0); // Restore argument. |
| __ PopRegister(ARGS_DESC_REG); // Restore arg desc. |
| __ LeaveStubFrame(); |
| |
| __ LoadCompressedFieldFromOffset(CODE_REG, T0, |
| target::Function::code_offset()); |
| __ LoadFieldFromOffset(TMP, T0, target::Function::entry_point_offset()); |
| __ jr(TMP); |
| } |
| |
| // A0: Receiver |
| // S5: ICData |
| void StubCodeCompiler::GenerateICCallBreakpointStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ subi(SP, SP, 3 * target::kWordSize); |
| __ sx(A0, Address(SP, 2 * target::kWordSize)); // Preserve receiver. |
| __ sx(S5, Address(SP, 1 * target::kWordSize)); // Preserve IC data. |
| __ sx(ZR, Address(SP, 0 * target::kWordSize)); // Space for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ lx(CODE_REG, Address(SP, 0 * target::kWordSize)); // Original stub. |
| __ lx(S5, Address(SP, 1 * target::kWordSize)); // Restore IC data. |
| __ lx(A0, Address(SP, 2 * target::kWordSize)); // Restore receiver. |
| __ LeaveStubFrame(); |
| __ LoadFieldFromOffset(TMP, CODE_REG, target::Code::entry_point_offset()); |
| __ jr(TMP); |
| #endif |
| } |
| |
| // S5: ICData |
| void StubCodeCompiler::GenerateUnoptStaticCallBreakpointStub( |
| Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ subi(SP, SP, 2 * target::kWordSize); |
| __ sx(S5, Address(SP, 1 * target::kWordSize)); // Preserve IC data. |
| __ sx(ZR, Address(SP, 0 * target::kWordSize)); // Space for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ lx(CODE_REG, Address(SP, 0 * target::kWordSize)); // Original stub. |
| __ lx(S5, Address(SP, 1 * target::kWordSize)); // Restore IC data. |
| __ LeaveStubFrame(); |
| __ LoadFieldFromOffset(TMP, CODE_REG, target::Code::entry_point_offset()); |
| __ jr(TMP); |
| #endif // defined(PRODUCT) |
| } |
| |
| void StubCodeCompiler::GenerateRuntimeCallBreakpointStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| __ EnterStubFrame(); |
| __ subi(SP, SP, 1 * target::kWordSize); |
| __ sx(ZR, Address(SP, 0 * target::kWordSize)); // Space for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ lx(CODE_REG, Address(SP, 0 * target::kWordSize)); |
| __ LeaveStubFrame(); |
| __ LoadFieldFromOffset(TMP, CODE_REG, target::Code::entry_point_offset()); |
| __ jr(TMP); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Called only from unoptimized code. All relevant registers have been saved. |
| void StubCodeCompiler::GenerateDebugStepCheckStub(Assembler* assembler) { |
| #if defined(PRODUCT) |
| __ Stop("No debugging in PRODUCT mode"); |
| #else |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(A1); |
| __ LoadFromOffset(A1, A1, target::Isolate::single_step_offset(), |
| kUnsignedByte); |
| __ bnez(A1, &stepping, compiler::Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| __ ret(); |
| |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ LeaveStubFrame(); |
| __ j(&done_stepping); |
| #endif // defined(PRODUCT) |
| } |
| |
| // Used to check class and type arguments. Arguments passed in registers: |
| // |
| // Inputs (mostly from TypeTestABI struct): |
| // - kSubtypeTestCacheReg: UntaggedSubtypeTestCache |
| // - kInstanceReg: instance to test against. |
| // - kDstTypeReg: destination type (for n>=3). |
| // - kInstantiatorTypeArgumentsReg: instantiator type arguments (for n=5). |
| // - kFunctionTypeArgumentsReg: function type arguments (for n=5). |
| // - RA: return address. |
| // |
| // All input registers are preserved except for kSubtypeTestCacheReg, which |
| // should be saved by the caller if needed. |
| // |
| // Result in SubtypeTestCacheABI::kResultReg: null -> not found, otherwise |
| // result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| ASSERT(n == 1 || n == 3 || n == 5 || n == 7); |
| |
| // Until we have the result, we use the result register to store the null |
| // value for quick access. This has the side benefit of initializing the |
| // result to null, so it only needs to be changed if found. |
| const Register kNullReg = TypeTestABI::kSubtypeTestCacheResultReg; |
| __ LoadObject(kNullReg, NullObject()); |
| |
| const Register kCacheArrayReg = TypeTestABI::kSubtypeTestCacheReg; |
| const Register kScratchReg = TypeTestABI::kScratchReg; |
| |
| // All of these must be distinct from TypeTestABI::kSubtypeTestCacheResultReg |
| // since it is used for kNullReg as well. |
| |
| // Loop initialization (moved up here to avoid having all dependent loads |
| // after each other). |
| |
| // We avoid a load-acquire barrier here by relying on the fact that all other |
| // loads from the array are data-dependent loads. |
| __ lx(kCacheArrayReg, FieldAddress(TypeTestABI::kSubtypeTestCacheReg, |
| target::SubtypeTestCache::cache_offset())); |
| __ AddImmediate(kCacheArrayReg, |
| target::Array::data_offset() - kHeapObjectTag); |
| |
| Label loop, not_closure; |
| if (n >= 5) { |
| __ LoadClassIdMayBeSmi(STCInternalRegs::kInstanceCidOrSignatureReg, |
| TypeTestABI::TypeTestABI::kInstanceReg); |
| } else { |
| __ LoadClassId(STCInternalRegs::kInstanceCidOrSignatureReg, |
| TypeTestABI::kInstanceReg); |
| } |
| __ CompareImmediate(STCInternalRegs::kInstanceCidOrSignatureReg, kClosureCid); |
| __ BranchIf(NE, ¬_closure); |
| |
| // Closure handling. |
| { |
| __ Comment("Closure"); |
| __ LoadCompressed(STCInternalRegs::kInstanceCidOrSignatureReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::function_offset())); |
| __ LoadCompressed(STCInternalRegs::kInstanceCidOrSignatureReg, |
| FieldAddress(STCInternalRegs::kInstanceCidOrSignatureReg, |
| target::Function::signature_offset())); |
| if (n >= 3) { |
| __ LoadCompressed( |
| STCInternalRegs::kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::instantiator_type_arguments_offset())); |
| if (n >= 7) { |
| __ LoadCompressed( |
| STCInternalRegs::kInstanceParentFunctionTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::function_type_arguments_offset())); |
| __ LoadCompressed( |
| STCInternalRegs::kInstanceDelayedFunctionTypeArgumentsReg, |
| FieldAddress(TypeTestABI::kInstanceReg, |
| target::Closure::delayed_type_arguments_offset())); |
| } |
| } |
| __ j(&loop); |
| } |
| |
| // Non-Closure handling. |
| { |
| __ Comment("Non-Closure"); |
| __ Bind(¬_closure); |
| if (n >= 3) { |
| Label has_no_type_arguments; |
| __ LoadClassById(kScratchReg, |
| STCInternalRegs::kInstanceCidOrSignatureReg); |
| __ mv(STCInternalRegs::kInstanceInstantiatorTypeArgumentsReg, kNullReg); |
| __ LoadFieldFromOffset( |
| kScratchReg, kScratchReg, |
| target::Class::host_type_arguments_field_offset_in_words_offset(), |
| kFourBytes); |
| __ CompareImmediate(kScratchReg, target::Class::kNoTypeArguments); |
| __ BranchIf(EQ, &has_no_type_arguments); |
| __ slli(kScratchReg, kScratchReg, kCompressedWordSizeLog2); |
| __ add(kScratchReg, kScratchReg, TypeTestABI::kInstanceReg); |
| __ LoadCompressed(STCInternalRegs::kInstanceInstantiatorTypeArgumentsReg, |
| FieldAddress(kScratchReg, 0)); |
| __ Bind(&has_no_type_arguments); |
| __ Comment("No type arguments"); |
| |
| if (n >= 7) { |
| __ mv(STCInternalRegs::kInstanceParentFunctionTypeArgumentsReg, |
| kNullReg); |
| __ mv(STCInternalRegs::kInstanceDelayedFunctionTypeArgumentsReg, |
| kNullReg); |
| } |
| } |
| __ SmiTag(STCInternalRegs::kInstanceCidOrSignatureReg); |
| } |
| |
| Label found, done, next_iteration; |
| |
| // Loop header |
| __ Bind(&loop); |
| __ Comment("Loop"); |
| __ LoadCompressed( |
| kScratchReg, |
| Address(kCacheArrayReg, |
| target::kCompressedWordSize * |
| target::SubtypeTestCache::kInstanceCidOrSignature)); |
| __ CompareObjectRegisters(kScratchReg, kNullReg); |
| __ BranchIf(EQ, &done); |
| __ CompareObjectRegisters(kScratchReg, |
| STCInternalRegs::kInstanceCidOrSignatureReg); |
| if (n == 1) { |
| __ BranchIf(EQ, &found); |
| } else { |
| __ BranchIf(NE, &next_iteration); |
| __ LoadCompressed(kScratchReg, |
| Address(kCacheArrayReg, |
| target::kCompressedWordSize * |
| target::SubtypeTestCache::kDestinationType)); |
| __ CompareRegisters(kScratchReg, TypeTestABI::kDstTypeReg); |
| __ BranchIf(NE, &next_iteration); |
| __ LoadCompressed( |
| kScratchReg, |
| Address(kCacheArrayReg, |
| target::kCompressedWordSize * |
| target::SubtypeTestCache::kInstanceTypeArguments)); |
| __ CompareRegisters(kScratchReg, |
| STCInternalRegs::kInstanceInstantiatorTypeArgumentsReg); |
| if (n == 3) { |
| __ BranchIf(EQ, &found); |
| } else { |
| __ BranchIf(NE, &next_iteration); |
| __ LoadCompressed( |
| kScratchReg, |
| Address(kCacheArrayReg, |
| target::kCompressedWordSize * |
| target::SubtypeTestCache::kInstantiatorTypeArguments)); |
| __ CompareRegisters(kScratchReg, |
| TypeTestABI::kInstantiatorTypeArgumentsReg); |
| __ BranchIf(NE, &next_iteration); |
| __ LoadCompressed( |
| kScratchReg, |
| Address(kCacheArrayReg, |
| target::kCompressedWordSize * |
| target::SubtypeTestCache::kFunctionTypeArguments)); |
| __ CompareRegisters(kScratchReg, TypeTestABI::kFunctionTypeArgumentsReg); |
| if (n == 5) { |
| __ BranchIf(EQ, &found); |
| } else { |
| ASSERT(n == 7); |
| __ BranchIf(NE, &next_iteration); |
| |
| __ LoadCompressed( |
| kScratchReg, Address(kCacheArrayReg, |
| target::kCompressedWordSize * |
| target::SubtypeTestCache:: |
| kInstanceParentFunctionTypeArguments)); |
| __ CompareRegisters( |
| kScratchReg, |
| STCInternalRegs::kInstanceParentFunctionTypeArgumentsReg); |
| __ BranchIf(NE, &next_iteration); |
| |
| __ LoadCompressed( |
| kScratchReg, |
| Address(kCacheArrayReg, |
| target::kCompressedWordSize * |
| target::SubtypeTestCache:: |
| kInstanceDelayedFunctionTypeArguments)); |
| __ CompareRegisters( |
| kScratchReg, |
| STCInternalRegs::kInstanceDelayedFunctionTypeArgumentsReg); |
| __ BranchIf(EQ, &found); |
| } |
| } |
| } |
| __ Bind(&next_iteration); |
| __ Comment("Next iteration"); |
| __ AddImmediate( |
| kCacheArrayReg, |
| target::kCompressedWordSize * target::SubtypeTestCache::kTestEntryLength); |
| __ j(&loop); |
| |
| __ Bind(&found); |
| __ Comment("Found"); |
| __ LoadCompressed( |
| TypeTestABI::kSubtypeTestCacheResultReg, |
| Address(kCacheArrayReg, target::kCompressedWordSize * |
| target::SubtypeTestCache::kTestResult)); |
| __ Bind(&done); |
| __ Comment("Done"); |
| __ ret(); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void StubCodeCompiler::GenerateSubtype3TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 3); |
| } |
| |
| // See comment on [GenerateSubtypeNTestCacheStub]. |
| void |