| // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/compiler/frontend/flow_graph_builder.h" |
| |
| #include "vm/compiler/backend/branch_optimizer.h" |
| #include "vm/compiler/backend/flow_graph.h" |
| #include "vm/compiler/backend/il.h" |
| #include "vm/compiler/compiler_timings.h" |
| #include "vm/compiler/frontend/kernel_to_il.h" |
| #include "vm/object.h" |
| #include "vm/zone.h" |
| |
| namespace dart { |
| |
| // Quick access to the locally defined zone() method. |
| #define Z (zone()) |
| |
| // TODO(srdjan): Allow compiler to add constants as they are encountered in |
| // the compilation. |
| const double kCommonDoubleConstants[] = { |
| -1.0, -0.5, -0.1, 0.0, 0.1, 0.5, 1.0, 2.0, 4.0, 5.0, 10.0, 20.0, 30.0, 64.0, |
| 255.0, NAN, |
| // From dart:math |
| 2.718281828459045, 2.302585092994046, 0.6931471805599453, |
| 1.4426950408889634, 0.4342944819032518, 3.1415926535897932, |
| 0.7071067811865476, 1.4142135623730951}; |
| |
| uword FindDoubleConstant(double value) { |
| intptr_t len = sizeof(kCommonDoubleConstants) / sizeof(double); // NOLINT |
| for (intptr_t i = 0; i < len; i++) { |
| if (Utils::DoublesBitEqual(value, kCommonDoubleConstants[i])) { |
| return reinterpret_cast<uword>(&kCommonDoubleConstants[i]); |
| } |
| } |
| return 0; |
| } |
| |
| void InlineExitCollector::PrepareGraphs(FlowGraph* callee_graph) { |
| COMPILER_TIMINGS_TIMER_SCOPE(callee_graph->thread(), PrepareGraphs); |
| ASSERT(callee_graph->graph_entry()->SuccessorCount() == 1); |
| ASSERT(callee_graph->max_block_id() > caller_graph_->max_block_id()); |
| ASSERT(callee_graph->max_virtual_register_number() > |
| caller_graph_->max_virtual_register_number()); |
| |
| // Adjust the caller's maximum block id and current SSA temp index. |
| caller_graph_->set_max_block_id(callee_graph->max_block_id()); |
| caller_graph_->set_current_ssa_temp_index( |
| callee_graph->max_virtual_register_number()); |
| |
| // Attach the outer environment on each instruction in the callee graph. |
| ASSERT(call_->env() != NULL); |
| ASSERT(call_->deopt_id() != DeoptId::kNone); |
| |
| auto zone = callee_graph->zone(); |
| auto env = call_->env(); |
| |
| const intptr_t outer_deopt_id = call_->deopt_id(); |
| // Scale the edge weights by the call count for the inlined function. |
| double scale_factor = 1.0; |
| if (caller_graph_->graph_entry()->entry_count() != 0) { |
| scale_factor = |
| static_cast<double>(call_->CallCount()) / |
| static_cast<double>(caller_graph_->graph_entry()->entry_count()); |
| } |
| for (BlockIterator block_it = callee_graph->postorder_iterator(); |
| !block_it.Done(); block_it.Advance()) { |
| BlockEntryInstr* block = block_it.Current(); |
| if (block->IsTargetEntry()) { |
| block->AsTargetEntry()->adjust_edge_weight(scale_factor); |
| } |
| Instruction* instr = block; |
| if (block->env() != nullptr) { |
| env->DeepCopyToOuter(zone, block, outer_deopt_id); |
| } |
| for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| instr = it.Current(); |
| // TODO(zerny): Avoid creating unnecessary environments. Note that some |
| // optimizations need deoptimization info for non-deoptable instructions, |
| // eg, LICM on GOTOs. |
| if (instr->env() != nullptr) { |
| env->DeepCopyToOuter(zone, instr, outer_deopt_id); |
| } |
| } |
| if (instr->IsGoto()) { |
| instr->AsGoto()->adjust_edge_weight(scale_factor); |
| } |
| } |
| |
| RemoveUnreachableExits(callee_graph); |
| } |
| |
| void InlineExitCollector::AddExit(ReturnInstr* exit) { |
| Data data = {NULL, exit}; |
| exits_.Add(data); |
| } |
| |
| void InlineExitCollector::Union(const InlineExitCollector* other) { |
| // It doesn't make sense to combine different calls or calls from |
| // different graphs. |
| ASSERT(caller_graph_ == other->caller_graph_); |
| ASSERT(call_ == other->call_); |
| exits_.AddArray(other->exits_); |
| } |
| |
| int InlineExitCollector::LowestBlockIdFirst(const Data* a, const Data* b) { |
| return (a->exit_block->block_id() - b->exit_block->block_id()); |
| } |
| |
| void InlineExitCollector::RemoveUnreachableExits(FlowGraph* callee_graph) { |
| const GrowableArray<BlockEntryInstr*>& postorder = callee_graph->postorder(); |
| int j = 0; |
| for (int i = 0; i < exits_.length(); ++i) { |
| BlockEntryInstr* block = exits_[i].exit_return->GetBlock(); |
| if ((block != NULL) && (0 <= block->postorder_number()) && |
| (block->postorder_number() < postorder.length()) && |
| (postorder[block->postorder_number()] == block)) { |
| if (i != j) { |
| exits_[j] = exits_[i]; |
| } |
| j++; |
| } |
| } |
| exits_.TruncateTo(j); |
| } |
| |
| void InlineExitCollector::SortExits() { |
| // Assign block entries here because we did not necessarily know them when |
| // the return exit was added to the array. |
| for (int i = 0; i < exits_.length(); ++i) { |
| exits_[i].exit_block = exits_[i].exit_return->GetBlock(); |
| } |
| exits_.Sort(LowestBlockIdFirst); |
| } |
| |
| Definition* InlineExitCollector::JoinReturns(BlockEntryInstr** exit_block, |
| Instruction** last_instruction, |
| intptr_t try_index) { |
| // First sort the list of exits by block id (caching return instruction |
| // block entries as a side effect). |
| SortExits(); |
| intptr_t num_exits = exits_.length(); |
| if (num_exits == 1) { |
| ReturnAt(0)->UnuseAllInputs(); |
| *exit_block = ExitBlockAt(0); |
| *last_instruction = LastInstructionAt(0); |
| return call_->HasUses() ? ValueAt(0)->definition() : NULL; |
| } else { |
| ASSERT(num_exits > 1); |
| // Create a join of the returns. |
| intptr_t join_id = caller_graph_->max_block_id() + 1; |
| caller_graph_->set_max_block_id(join_id); |
| JoinEntryInstr* join = new (Z) JoinEntryInstr( |
| join_id, try_index, CompilerState::Current().GetNextDeoptId()); |
| |
| // The dominator set of the join is the intersection of the dominator |
| // sets of all the predecessors. If we keep the dominator sets ordered |
| // by height in the dominator tree, we can also get the immediate |
| // dominator of the join node from the intersection. |
| // |
| // block_dominators is the dominator set for each block, ordered from |
| // the immediate dominator to the root of the dominator tree. This is |
| // the order we collect them in (adding at the end). |
| // |
| // join_dominators is the join's dominators ordered from the root of the |
| // dominator tree to the immediate dominator. This order supports |
| // removing during intersection by truncating the list. |
| GrowableArray<BlockEntryInstr*> block_dominators; |
| GrowableArray<BlockEntryInstr*> join_dominators; |
| for (intptr_t i = 0; i < num_exits; ++i) { |
| // Add the control-flow edge. |
| GotoInstr* goto_instr = |
| new (Z) GotoInstr(join, CompilerState::Current().GetNextDeoptId()); |
| goto_instr->InheritDeoptTarget(zone(), ReturnAt(i)); |
| LastInstructionAt(i)->LinkTo(goto_instr); |
| ExitBlockAt(i)->set_last_instruction(LastInstructionAt(i)->next()); |
| join->predecessors_.Add(ExitBlockAt(i)); |
| |
| // Collect the block's dominators. |
| block_dominators.Clear(); |
| BlockEntryInstr* dominator = ExitBlockAt(i)->dominator(); |
| while (dominator != NULL) { |
| block_dominators.Add(dominator); |
| dominator = dominator->dominator(); |
| } |
| |
| if (i == 0) { |
| // The initial dominator set is the first predecessor's dominator |
| // set. Reverse it. |
| for (intptr_t j = block_dominators.length() - 1; j >= 0; --j) { |
| join_dominators.Add(block_dominators[j]); |
| } |
| } else { |
| // Intersect the block's dominators with the join's dominators so far. |
| intptr_t last = block_dominators.length() - 1; |
| for (intptr_t j = 0; j < join_dominators.length(); ++j) { |
| intptr_t k = last - j; // Corresponding index in block_dominators. |
| if ((k < 0) || (join_dominators[j] != block_dominators[k])) { |
| // We either exhausted the dominators for this block before |
| // exhausting the current intersection, or else we found a block |
| // on the path from the root of the tree that is not in common. |
| // I.e., there cannot be an empty set of dominators. |
| ASSERT(j > 0); |
| join_dominators.TruncateTo(j); |
| break; |
| } |
| } |
| } |
| } |
| // The immediate dominator of the join is the last one in the ordered |
| // intersection. |
| join_dominators.Last()->AddDominatedBlock(join); |
| *exit_block = join; |
| *last_instruction = join; |
| |
| // If the call has uses, create a phi of the returns. |
| if (call_->HasUses()) { |
| // Add a phi of the return values. |
| PhiInstr* phi = new (Z) PhiInstr(join, num_exits); |
| caller_graph_->AllocateSSAIndexes(phi); |
| phi->mark_alive(); |
| for (intptr_t i = 0; i < num_exits; ++i) { |
| ReturnAt(i)->RemoveEnvironment(); |
| phi->SetInputAt(i, ValueAt(i)); |
| } |
| join->InsertPhi(phi); |
| join->InheritDeoptTargetAfter(caller_graph_, call_, phi); |
| return phi; |
| } else { |
| // In the case that the result is unused, remove the return value uses |
| // from their definition's use list. |
| for (intptr_t i = 0; i < num_exits; ++i) { |
| ReturnAt(i)->UnuseAllInputs(); |
| } |
| join->InheritDeoptTargetAfter(caller_graph_, call_, NULL); |
| return NULL; |
| } |
| } |
| } |
| |
| void InlineExitCollector::ReplaceCall(BlockEntryInstr* callee_entry) { |
| ASSERT(call_->previous() != NULL); |
| ASSERT(call_->next() != NULL); |
| BlockEntryInstr* call_block = call_->GetBlock(); |
| |
| // Insert the callee graph into the caller graph. |
| BlockEntryInstr* callee_exit = NULL; |
| Instruction* callee_last_instruction = NULL; |
| |
| if (exits_.length() == 0) { |
| // Handle the case when there are no normal return exits from the callee |
| // (i.e. the callee unconditionally throws) by inserting an artificial |
| // branch (true === true). |
| // The true successor is the inlined body, the false successor |
| // goes to the rest of the caller graph. It is removed as unreachable code |
| // by the constant propagation. |
| TargetEntryInstr* false_block = new (Z) TargetEntryInstr( |
| caller_graph_->allocate_block_id(), call_block->try_index(), |
| CompilerState::Current().GetNextDeoptId()); |
| false_block->InheritDeoptTargetAfter(caller_graph_, call_, NULL); |
| false_block->LinkTo(call_->next()); |
| call_block->ReplaceAsPredecessorWith(false_block); |
| |
| ConstantInstr* true_const = caller_graph_->GetConstant(Bool::True()); |
| BranchInstr* branch = new (Z) BranchInstr( |
| new (Z) StrictCompareInstr(InstructionSource(), Token::kEQ_STRICT, |
| new (Z) Value(true_const), |
| new (Z) Value(true_const), false, |
| CompilerState::Current().GetNextDeoptId()), |
| CompilerState::Current().GetNextDeoptId()); // No number check. |
| branch->InheritDeoptTarget(zone(), call_); |
| |
| auto true_target = BranchSimplifier::ToTargetEntry(zone(), callee_entry); |
| callee_entry->ReplaceAsPredecessorWith(true_target); |
| |
| *branch->true_successor_address() = true_target; |
| *branch->false_successor_address() = false_block; |
| |
| call_->previous()->AppendInstruction(branch); |
| call_block->set_last_instruction(branch); |
| |
| // Replace uses of the return value with sentinel constant to maintain |
| // valid SSA form - even though the rest of the caller is unreachable. |
| call_->ReplaceUsesWith(caller_graph_->GetConstant(Object::sentinel())); |
| |
| // Update dominator tree. |
| for (intptr_t i = 0, n = callee_entry->dominated_blocks().length(); i < n; |
| i++) { |
| BlockEntryInstr* block = callee_entry->dominated_blocks()[i]; |
| true_target->AddDominatedBlock(block); |
| } |
| for (intptr_t i = 0, n = call_block->dominated_blocks().length(); i < n; |
| i++) { |
| BlockEntryInstr* block = call_block->dominated_blocks()[i]; |
| false_block->AddDominatedBlock(block); |
| } |
| call_block->ClearDominatedBlocks(); |
| call_block->AddDominatedBlock(true_target); |
| call_block->AddDominatedBlock(false_block); |
| |
| } else { |
| Definition* callee_result = JoinReturns( |
| &callee_exit, &callee_last_instruction, call_block->try_index()); |
| if (callee_result != NULL) { |
| call_->ReplaceUsesWith(callee_result); |
| } |
| if (callee_last_instruction == callee_entry) { |
| // There are no instructions in the inlined function (e.g., it might be |
| // a return of a parameter or a return of a constant defined in the |
| // initial definitions). |
| call_->previous()->LinkTo(call_->next()); |
| } else { |
| call_->previous()->LinkTo(callee_entry->next()); |
| callee_last_instruction->LinkTo(call_->next()); |
| } |
| if (callee_exit != callee_entry) { |
| // In case of control flow, locally update the predecessors, phis and |
| // dominator tree. |
| // |
| // Pictorially, the graph structure is: |
| // |
| // Bc : call_block Bi : callee_entry |
| // before_call inlined_head |
| // call ... other blocks ... |
| // after_call Be : callee_exit |
| // inlined_foot |
| // And becomes: |
| // |
| // Bc : call_block |
| // before_call |
| // inlined_head |
| // ... other blocks ... |
| // Be : callee_exit |
| // inlined_foot |
| // after_call |
| // |
| // For successors of 'after_call', the call block (Bc) is replaced as a |
| // predecessor by the callee exit (Be). |
| call_block->ReplaceAsPredecessorWith(callee_exit); |
| // For successors of 'inlined_head', the callee entry (Bi) is replaced |
| // as a predecessor by the call block (Bc). |
| callee_entry->ReplaceAsPredecessorWith(call_block); |
| |
| // The callee exit is now the immediate dominator of blocks whose |
| // immediate dominator was the call block. |
| ASSERT(callee_exit->dominated_blocks().is_empty()); |
| for (intptr_t i = 0; i < call_block->dominated_blocks().length(); ++i) { |
| BlockEntryInstr* block = call_block->dominated_blocks()[i]; |
| callee_exit->AddDominatedBlock(block); |
| } |
| // The call block is now the immediate dominator of blocks whose |
| // immediate dominator was the callee entry. |
| call_block->ClearDominatedBlocks(); |
| for (intptr_t i = 0; i < callee_entry->dominated_blocks().length(); ++i) { |
| BlockEntryInstr* block = callee_entry->dominated_blocks()[i]; |
| call_block->AddDominatedBlock(block); |
| } |
| } |
| |
| // Callee entry in not in the graph anymore. Remove it from use lists. |
| callee_entry->UnuseAllInputs(); |
| } |
| // Neither call nor the graph entry (if present) are in the |
| // graph at this point. Remove them from use lists. |
| if (callee_entry->PredecessorCount() > 0) { |
| callee_entry->PredecessorAt(0)->AsGraphEntry()->UnuseAllInputs(); |
| } |
| call_->UnuseAllInputs(); |
| } |
| |
| bool SimpleInstanceOfType(const AbstractType& type) { |
| // Bail if the type is still uninstantiated at compile time. |
| if (!type.IsInstantiated()) return false; |
| |
| // Bail if the type is a function or a Dart Function type. |
| if (type.IsFunctionType() || type.IsDartFunctionType()) return false; |
| |
| ASSERT(type.HasTypeClass()); |
| const Class& type_class = Class::Handle(type.type_class()); |
| |
| // Bail if the type has any type parameters. |
| if (type_class.IsGeneric()) { |
| // If the interface type we check against is generic but has all-dynamic |
| // type arguments, then we can still use the _simpleInstanceOf |
| // implementation (see also runtime/lib/object.cc:Object_SimpleInstanceOf). |
| const auto& rare_type = AbstractType::Handle(type_class.RareType()); |
| // TODO(regis): Revisit the usage of TypeEquality::kSyntactical when |
| // implementing strong mode. |
| return rare_type.IsEquivalent(type, TypeEquality::kSyntactical); |
| } |
| |
| // Finally a simple class for instance of checking. |
| return true; |
| } |
| |
| } // namespace dart |