| // Copyright (c) 2017, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/compiler/call_specializer.h" |
| |
| #include "vm/compiler/backend/flow_graph_compiler.h" |
| #include "vm/compiler/backend/inliner.h" |
| #include "vm/compiler/cha.h" |
| #include "vm/compiler/compiler_state.h" |
| #include "vm/cpu.h" |
| |
| namespace dart { |
| |
| // Quick access to the current isolate and zone. |
| #define IG (isolate_group()) |
| #define Z (zone()) |
| |
| static void RefineUseTypes(Definition* instr) { |
| CompileType* new_type = instr->Type(); |
| for (Value::Iterator it(instr->input_use_list()); !it.Done(); it.Advance()) { |
| it.Current()->RefineReachingType(new_type); |
| } |
| } |
| |
| static bool ShouldInlineSimd() { |
| return FlowGraphCompiler::SupportsUnboxedSimd128(); |
| } |
| |
| static bool CanUnboxDouble() { |
| return FlowGraphCompiler::SupportsUnboxedDoubles(); |
| } |
| |
| static bool CanConvertInt64ToDouble() { |
| return FlowGraphCompiler::CanConvertInt64ToDouble(); |
| } |
| |
| static bool IsNumberCid(intptr_t cid) { |
| return (cid == kSmiCid) || (cid == kDoubleCid); |
| } |
| |
| static bool ShouldSpecializeForDouble(const BinaryFeedback& binary_feedback) { |
| // Don't specialize for double if we can't unbox them. |
| if (!CanUnboxDouble()) { |
| return false; |
| } |
| |
| // Unboxed double operation can't handle case of two smis. |
| if (binary_feedback.IncludesOperands(kSmiCid)) { |
| return false; |
| } |
| |
| // Check that the call site has seen only smis and doubles. |
| return binary_feedback.OperandsAreSmiOrDouble(); |
| } |
| |
| // Optimize instance calls using ICData. |
| void CallSpecializer::ApplyICData() { |
| VisitBlocks(); |
| } |
| |
| // Optimize instance calls using cid. This is called after optimizer |
| // converted instance calls to instructions. Any remaining |
| // instance calls are either megamorphic calls, cannot be optimized or |
| // have no runtime type feedback collected. |
| // Attempts to convert an instance call (IC call) using propagated class-ids, |
| // e.g., receiver class id, guarded-cid, or by guessing cid-s. |
| void CallSpecializer::ApplyClassIds() { |
| ASSERT(current_iterator_ == NULL); |
| for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| !block_it.Done(); block_it.Advance()) { |
| thread()->CheckForSafepoint(); |
| ForwardInstructionIterator it(block_it.Current()); |
| current_iterator_ = ⁢ |
| for (; !it.Done(); it.Advance()) { |
| Instruction* instr = it.Current(); |
| if (instr->IsInstanceCall()) { |
| InstanceCallInstr* call = instr->AsInstanceCall(); |
| if (call->HasICData()) { |
| if (TryCreateICData(call)) { |
| VisitInstanceCall(call); |
| } |
| } |
| } else if (auto static_call = instr->AsStaticCall()) { |
| // If TFA devirtualized instance calls to static calls we also want to |
| // process them here. |
| VisitStaticCall(static_call); |
| } else if (instr->IsPolymorphicInstanceCall()) { |
| SpecializePolymorphicInstanceCall(instr->AsPolymorphicInstanceCall()); |
| } |
| } |
| current_iterator_ = NULL; |
| } |
| } |
| |
| bool CallSpecializer::TryCreateICData(InstanceCallInstr* call) { |
| ASSERT(call->HasICData()); |
| |
| if (call->Targets().length() > 0) { |
| // This occurs when an instance call has too many checks, will be converted |
| // to megamorphic call. |
| return false; |
| } |
| |
| const intptr_t receiver_index = call->FirstArgIndex(); |
| GrowableArray<intptr_t> class_ids(call->ic_data()->NumArgsTested()); |
| ASSERT(call->ic_data()->NumArgsTested() <= |
| call->ArgumentCountWithoutTypeArgs()); |
| for (intptr_t i = 0; i < call->ic_data()->NumArgsTested(); i++) { |
| class_ids.Add(call->ArgumentValueAt(receiver_index + i)->Type()->ToCid()); |
| } |
| |
| const Token::Kind op_kind = call->token_kind(); |
| if (FLAG_guess_icdata_cid && !CompilerState::Current().is_aot()) { |
| if (Token::IsRelationalOperator(op_kind) || |
| Token::IsEqualityOperator(op_kind) || |
| Token::IsBinaryOperator(op_kind)) { |
| // Guess cid: if one of the inputs is a number assume that the other |
| // is a number of same type, unless the interface target tells us this |
| // is impossible. |
| if (call->CanReceiverBeSmiBasedOnInterfaceTarget(zone())) { |
| const intptr_t cid_0 = class_ids[0]; |
| const intptr_t cid_1 = class_ids[1]; |
| if ((cid_0 == kDynamicCid) && (IsNumberCid(cid_1))) { |
| class_ids[0] = cid_1; |
| } else if (IsNumberCid(cid_0) && (cid_1 == kDynamicCid)) { |
| class_ids[1] = cid_0; |
| } |
| } |
| } |
| } |
| |
| bool all_cids_known = true; |
| for (intptr_t i = 0; i < class_ids.length(); i++) { |
| if (class_ids[i] == kDynamicCid) { |
| // Not all cid-s known. |
| all_cids_known = false; |
| break; |
| } |
| } |
| |
| if (all_cids_known) { |
| const intptr_t receiver_cid = class_ids[0]; |
| if (receiver_cid == kSentinelCid) { |
| // Unreachable call. |
| return false; |
| } |
| const Class& receiver_class = |
| Class::Handle(Z, IG->class_table()->At(receiver_cid)); |
| if (!receiver_class.is_finalized()) { |
| // Do not eagerly finalize classes. ResolveDynamicForReceiverClass can |
| // cause class finalization, since callee's receiver class may not be |
| // finalized yet. |
| return false; |
| } |
| const Function& function = Function::Handle( |
| Z, call->ResolveForReceiverClass(receiver_class, /*allow_add=*/false)); |
| if (function.IsNull()) { |
| return false; |
| } |
| ASSERT(!function.IsInvokeFieldDispatcher()); |
| |
| // Update the CallTargets attached to the instruction with our speculative |
| // target. The next round of CallSpecializer::VisitInstanceCall will make |
| // use of this. |
| call->SetTargets(CallTargets::CreateMonomorphic(Z, class_ids[0], function)); |
| if (class_ids.length() == 2) { |
| call->SetBinaryFeedback( |
| BinaryFeedback::CreateMonomorphic(Z, class_ids[0], class_ids[1])); |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void CallSpecializer::SpecializePolymorphicInstanceCall( |
| PolymorphicInstanceCallInstr* call) { |
| if (!FLAG_polymorphic_with_deopt) { |
| // Specialization adds receiver checks which can lead to deoptimization. |
| return; |
| } |
| |
| const intptr_t receiver_cid = call->Receiver()->Type()->ToCid(); |
| if (receiver_cid == kDynamicCid) { |
| return; // No information about receiver was infered. |
| } |
| |
| const ICData& ic_data = *call->ic_data(); |
| |
| const CallTargets* targets = |
| FlowGraphCompiler::ResolveCallTargetsForReceiverCid( |
| receiver_cid, String::Handle(zone(), ic_data.target_name()), |
| Array::Handle(zone(), ic_data.arguments_descriptor())); |
| if (targets == NULL) { |
| // No specialization. |
| return; |
| } |
| |
| ASSERT(targets->HasSingleTarget()); |
| const Function& target = targets->FirstTarget(); |
| StaticCallInstr* specialized = |
| StaticCallInstr::FromCall(Z, call, target, targets->AggregateCallCount()); |
| call->ReplaceWith(specialized, current_iterator()); |
| } |
| |
| void CallSpecializer::ReplaceCallWithResult(Definition* call, |
| Instruction* replacement, |
| Definition* result) { |
| ASSERT(!call->HasPushArguments()); |
| if (result == nullptr) { |
| ASSERT(replacement->IsDefinition()); |
| call->ReplaceWith(replacement->AsDefinition(), current_iterator()); |
| } else { |
| call->ReplaceWithResult(replacement, result, current_iterator()); |
| } |
| } |
| |
| void CallSpecializer::ReplaceCall(Definition* call, Definition* replacement) { |
| ReplaceCallWithResult(call, replacement, nullptr); |
| } |
| |
| void CallSpecializer::AddCheckSmi(Definition* to_check, |
| intptr_t deopt_id, |
| Environment* deopt_environment, |
| Instruction* insert_before) { |
| // TODO(alexmarkov): check reaching type instead of definition type |
| if (to_check->Type()->ToCid() != kSmiCid) { |
| InsertBefore(insert_before, |
| new (Z) CheckSmiInstr(new (Z) Value(to_check), deopt_id, |
| insert_before->source()), |
| deopt_environment, FlowGraph::kEffect); |
| } |
| } |
| |
| void CallSpecializer::AddCheckClass(Definition* to_check, |
| const Cids& cids, |
| intptr_t deopt_id, |
| Environment* deopt_environment, |
| Instruction* insert_before) { |
| // Type propagation has not run yet, we cannot eliminate the check. |
| Instruction* check = flow_graph_->CreateCheckClass(to_check, cids, deopt_id, |
| insert_before->source()); |
| InsertBefore(insert_before, check, deopt_environment, FlowGraph::kEffect); |
| } |
| |
| void CallSpecializer::AddChecksForArgNr(InstanceCallInstr* call, |
| Definition* argument, |
| int argument_number) { |
| const Cids* cids = |
| Cids::CreateForArgument(zone(), call->BinaryFeedback(), argument_number); |
| AddCheckClass(argument, *cids, call->deopt_id(), call->env(), call); |
| } |
| |
| void CallSpecializer::AddCheckNull(Value* to_check, |
| const String& function_name, |
| intptr_t deopt_id, |
| Environment* deopt_environment, |
| Instruction* insert_before) { |
| if (to_check->Type()->is_nullable()) { |
| CheckNullInstr* check_null = |
| new (Z) CheckNullInstr(to_check->CopyWithType(Z), function_name, |
| deopt_id, insert_before->source()); |
| if (FLAG_trace_strong_mode_types) { |
| THR_Print("[Strong mode] Inserted %s\n", check_null->ToCString()); |
| } |
| InsertBefore(insert_before, check_null, deopt_environment, |
| FlowGraph::kEffect); |
| } |
| } |
| |
| bool CallSpecializer::TryReplaceWithIndexedOp(InstanceCallInstr* call) { |
| if (call->Targets().IsMonomorphic()) { |
| return FlowGraphInliner::TryReplaceInstanceCallWithInline( |
| flow_graph_, current_iterator(), call, speculative_policy_); |
| } |
| return false; |
| } |
| |
| // Return true if d is a string of length one (a constant or result from |
| // from string-from-char-code instruction. |
| static bool IsLengthOneString(Definition* d) { |
| if (d->IsConstant()) { |
| const Object& obj = d->AsConstant()->value(); |
| if (obj.IsString()) { |
| return String::Cast(obj).Length() == 1; |
| } else { |
| return false; |
| } |
| } else { |
| return d->IsOneByteStringFromCharCode(); |
| } |
| } |
| |
| // Returns true if the string comparison was converted into char-code |
| // comparison. Conversion is only possible for strings of length one. |
| // E.g., detect str[x] == "x"; and use an integer comparison of char-codes. |
| bool CallSpecializer::TryStringLengthOneEquality(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| ASSERT(call->BinaryFeedback().OperandsAre(kOneByteStringCid)); |
| // Check that left and right are length one strings (either string constants |
| // or results of string-from-char-code. |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| Value* left_val = NULL; |
| Definition* to_remove_left = NULL; |
| if (IsLengthOneString(right)) { |
| // Swap, since we know that both arguments are strings |
| Definition* temp = left; |
| left = right; |
| right = temp; |
| } |
| if (IsLengthOneString(left)) { |
| // Optimize if left is a string with length one (either constant or |
| // result of string-from-char-code. |
| if (left->IsConstant()) { |
| ConstantInstr* left_const = left->AsConstant(); |
| const String& str = String::Cast(left_const->value()); |
| ASSERT(str.Length() == 1); |
| ConstantInstr* char_code_left = flow_graph()->GetConstant( |
| Smi::ZoneHandle(Z, Smi::New(static_cast<intptr_t>(str.CharAt(0))))); |
| left_val = new (Z) Value(char_code_left); |
| } else if (left->IsOneByteStringFromCharCode()) { |
| // Use input of string-from-charcode as left value. |
| OneByteStringFromCharCodeInstr* instr = |
| left->AsOneByteStringFromCharCode(); |
| left_val = new (Z) Value(instr->char_code()->definition()); |
| to_remove_left = instr; |
| } else { |
| // IsLengthOneString(left) should have been false. |
| UNREACHABLE(); |
| } |
| |
| Definition* to_remove_right = NULL; |
| Value* right_val = NULL; |
| if (right->IsOneByteStringFromCharCode()) { |
| // Skip string-from-char-code, and use its input as right value. |
| OneByteStringFromCharCodeInstr* right_instr = |
| right->AsOneByteStringFromCharCode(); |
| right_val = new (Z) Value(right_instr->char_code()->definition()); |
| to_remove_right = right_instr; |
| } else { |
| AddChecksForArgNr(call, right, /* arg_number = */ 1); |
| // String-to-char-code instructions returns -1 (illegal charcode) if |
| // string is not of length one. |
| StringToCharCodeInstr* char_code_right = new (Z) |
| StringToCharCodeInstr(new (Z) Value(right), kOneByteStringCid); |
| InsertBefore(call, char_code_right, call->env(), FlowGraph::kValue); |
| right_val = new (Z) Value(char_code_right); |
| } |
| |
| // Comparing char-codes instead of strings. |
| EqualityCompareInstr* comp = |
| new (Z) EqualityCompareInstr(call->source(), op_kind, left_val, |
| right_val, kSmiCid, call->deopt_id()); |
| ReplaceCall(call, comp); |
| |
| // Remove dead instructions. |
| if ((to_remove_left != NULL) && |
| (to_remove_left->input_use_list() == NULL)) { |
| to_remove_left->ReplaceUsesWith(flow_graph()->constant_null()); |
| to_remove_left->RemoveFromGraph(); |
| } |
| if ((to_remove_right != NULL) && |
| (to_remove_right->input_use_list() == NULL)) { |
| to_remove_right->ReplaceUsesWith(flow_graph()->constant_null()); |
| to_remove_right->RemoveFromGraph(); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| static bool SmiFitsInDouble() { |
| return compiler::target::kSmiBits < 53; |
| } |
| |
| bool CallSpecializer::TryReplaceWithEqualityOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| const BinaryFeedback& binary_feedback = call->BinaryFeedback(); |
| |
| ASSERT(call->type_args_len() == 0); |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* const left = call->ArgumentAt(0); |
| Definition* const right = call->ArgumentAt(1); |
| |
| intptr_t cid = kIllegalCid; |
| if (binary_feedback.OperandsAre(kOneByteStringCid)) { |
| return TryStringLengthOneEquality(call, op_kind); |
| } else if (binary_feedback.OperandsAre(kSmiCid)) { |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(left), call->deopt_id(), |
| call->source()), |
| call->env(), FlowGraph::kEffect); |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(right), call->deopt_id(), |
| call->source()), |
| call->env(), FlowGraph::kEffect); |
| cid = kSmiCid; |
| } else if (binary_feedback.OperandsAreSmiOrMint()) { |
| cid = kMintCid; |
| } else if (binary_feedback.OperandsAreSmiOrDouble() && CanUnboxDouble()) { |
| // Use double comparison. |
| if (SmiFitsInDouble()) { |
| cid = kDoubleCid; |
| } else { |
| if (binary_feedback.IncludesOperands(kSmiCid)) { |
| // We cannot use double comparison on two smis. Need polymorphic |
| // call. |
| return false; |
| } else { |
| InsertBefore( |
| call, |
| new (Z) CheckEitherNonSmiInstr( |
| new (Z) Value(left), new (Z) Value(right), call->deopt_id()), |
| call->env(), FlowGraph::kEffect); |
| cid = kDoubleCid; |
| } |
| } |
| } else { |
| // Check if ICDData contains checks with Smi/Null combinations. In that case |
| // we can still emit the optimized Smi equality operation but need to add |
| // checks for null or Smi. |
| if (binary_feedback.OperandsAreSmiOrNull()) { |
| AddChecksForArgNr(call, left, /* arg_number = */ 0); |
| AddChecksForArgNr(call, right, /* arg_number = */ 1); |
| |
| cid = kSmiCid; |
| } else { |
| // Shortcut for equality with null. |
| // TODO(vegorov): this optimization is not speculative and should |
| // be hoisted out of this function. |
| ConstantInstr* right_const = right->AsConstant(); |
| ConstantInstr* left_const = left->AsConstant(); |
| if ((right_const != NULL && right_const->value().IsNull()) || |
| (left_const != NULL && left_const->value().IsNull())) { |
| StrictCompareInstr* comp = new (Z) |
| StrictCompareInstr(call->source(), Token::kEQ_STRICT, |
| new (Z) Value(left), new (Z) Value(right), |
| /* number_check = */ false, DeoptId::kNone); |
| ReplaceCall(call, comp); |
| return true; |
| } |
| return false; |
| } |
| } |
| ASSERT(cid != kIllegalCid); |
| EqualityCompareInstr* comp = |
| new (Z) EqualityCompareInstr(call->source(), op_kind, new (Z) Value(left), |
| new (Z) Value(right), cid, call->deopt_id()); |
| ReplaceCall(call, comp); |
| return true; |
| } |
| |
| bool CallSpecializer::TryReplaceWithRelationalOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| ASSERT(call->type_args_len() == 0); |
| ASSERT(call->ArgumentCount() == 2); |
| |
| const BinaryFeedback& binary_feedback = call->BinaryFeedback(); |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| |
| intptr_t cid = kIllegalCid; |
| if (binary_feedback.OperandsAre(kSmiCid)) { |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(left), call->deopt_id(), |
| call->source()), |
| call->env(), FlowGraph::kEffect); |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(right), call->deopt_id(), |
| call->source()), |
| call->env(), FlowGraph::kEffect); |
| cid = kSmiCid; |
| } else if (binary_feedback.OperandsAreSmiOrMint()) { |
| cid = kMintCid; |
| } else if (binary_feedback.OperandsAreSmiOrDouble() && CanUnboxDouble()) { |
| // Use double comparison. |
| if (SmiFitsInDouble()) { |
| cid = kDoubleCid; |
| } else { |
| if (binary_feedback.IncludesOperands(kSmiCid)) { |
| // We cannot use double comparison on two smis. Need polymorphic |
| // call. |
| return false; |
| } else { |
| InsertBefore( |
| call, |
| new (Z) CheckEitherNonSmiInstr( |
| new (Z) Value(left), new (Z) Value(right), call->deopt_id()), |
| call->env(), FlowGraph::kEffect); |
| cid = kDoubleCid; |
| } |
| } |
| } else { |
| return false; |
| } |
| ASSERT(cid != kIllegalCid); |
| RelationalOpInstr* comp = |
| new (Z) RelationalOpInstr(call->source(), op_kind, new (Z) Value(left), |
| new (Z) Value(right), cid, call->deopt_id()); |
| ReplaceCall(call, comp); |
| return true; |
| } |
| |
| bool CallSpecializer::TryReplaceWithBinaryOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| intptr_t operands_type = kIllegalCid; |
| ASSERT(call->HasICData()); |
| const BinaryFeedback& binary_feedback = call->BinaryFeedback(); |
| switch (op_kind) { |
| case Token::kADD: |
| case Token::kSUB: |
| case Token::kMUL: |
| if (binary_feedback.OperandsAre(kSmiCid)) { |
| // Don't generate smi code if the IC data is marked because |
| // of an overflow. |
| operands_type = |
| call->ic_data()->HasDeoptReason(ICData::kDeoptBinarySmiOp) |
| ? kMintCid |
| : kSmiCid; |
| } else if (binary_feedback.OperandsAreSmiOrMint()) { |
| // Don't generate mint code if the IC data is marked because of an |
| // overflow. |
| if (call->ic_data()->HasDeoptReason(ICData::kDeoptBinaryInt64Op)) |
| return false; |
| operands_type = kMintCid; |
| } else if (ShouldSpecializeForDouble(binary_feedback)) { |
| operands_type = kDoubleCid; |
| } else if (binary_feedback.OperandsAre(kFloat32x4Cid)) { |
| operands_type = kFloat32x4Cid; |
| } else if (binary_feedback.OperandsAre(kInt32x4Cid)) { |
| ASSERT(op_kind != Token::kMUL); // Int32x4 doesn't have a multiply op. |
| operands_type = kInt32x4Cid; |
| } else if (binary_feedback.OperandsAre(kFloat64x2Cid)) { |
| operands_type = kFloat64x2Cid; |
| } else { |
| return false; |
| } |
| break; |
| case Token::kDIV: |
| if (ShouldSpecializeForDouble(binary_feedback) || |
| binary_feedback.OperandsAre(kSmiCid)) { |
| operands_type = kDoubleCid; |
| } else if (binary_feedback.OperandsAre(kFloat32x4Cid)) { |
| operands_type = kFloat32x4Cid; |
| } else if (binary_feedback.OperandsAre(kFloat64x2Cid)) { |
| operands_type = kFloat64x2Cid; |
| } else { |
| return false; |
| } |
| break; |
| case Token::kBIT_AND: |
| case Token::kBIT_OR: |
| case Token::kBIT_XOR: |
| if (binary_feedback.OperandsAre(kSmiCid)) { |
| operands_type = kSmiCid; |
| } else if (binary_feedback.OperandsAreSmiOrMint()) { |
| operands_type = kMintCid; |
| } else if (binary_feedback.OperandsAre(kInt32x4Cid)) { |
| operands_type = kInt32x4Cid; |
| } else { |
| return false; |
| } |
| break; |
| case Token::kSHL: |
| case Token::kSHR: |
| case Token::kUSHR: |
| if (binary_feedback.OperandsAre(kSmiCid)) { |
| // Left shift may overflow from smi into mint. |
| // Don't generate smi code if the IC data is marked because |
| // of an overflow. |
| if (call->ic_data()->HasDeoptReason(ICData::kDeoptBinaryInt64Op)) { |
| return false; |
| } |
| operands_type = |
| call->ic_data()->HasDeoptReason(ICData::kDeoptBinarySmiOp) |
| ? kMintCid |
| : kSmiCid; |
| } else if (binary_feedback.OperandsAreSmiOrMint() && |
| binary_feedback.ArgumentIs(kSmiCid)) { |
| // Don't generate mint code if the IC data is marked because of an |
| // overflow. |
| if (call->ic_data()->HasDeoptReason(ICData::kDeoptBinaryInt64Op)) { |
| return false; |
| } |
| // Check for smi/mint << smi or smi/mint >> smi. |
| operands_type = kMintCid; |
| } else { |
| return false; |
| } |
| break; |
| case Token::kMOD: |
| case Token::kTRUNCDIV: |
| if (binary_feedback.OperandsAre(kSmiCid)) { |
| if (call->ic_data()->HasDeoptReason(ICData::kDeoptBinarySmiOp)) { |
| return false; |
| } |
| operands_type = kSmiCid; |
| } else { |
| return false; |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| ASSERT(call->type_args_len() == 0); |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* left = call->ArgumentAt(0); |
| Definition* right = call->ArgumentAt(1); |
| if (operands_type == kDoubleCid) { |
| if (!CanUnboxDouble()) { |
| return false; |
| } |
| // Check that either left or right are not a smi. Result of a |
| // binary operation with two smis is a smi not a double, except '/' which |
| // returns a double for two smis. |
| if (op_kind != Token::kDIV) { |
| InsertBefore( |
| call, |
| new (Z) CheckEitherNonSmiInstr( |
| new (Z) Value(left), new (Z) Value(right), call->deopt_id()), |
| call->env(), FlowGraph::kEffect); |
| } |
| |
| BinaryDoubleOpInstr* double_bin_op = new (Z) |
| BinaryDoubleOpInstr(op_kind, new (Z) Value(left), new (Z) Value(right), |
| call->deopt_id(), call->source()); |
| ReplaceCall(call, double_bin_op); |
| } else if (operands_type == kMintCid) { |
| if ((op_kind == Token::kSHL) || (op_kind == Token::kSHR) || |
| (op_kind == Token::kUSHR)) { |
| SpeculativeShiftInt64OpInstr* shift_op = new (Z) |
| SpeculativeShiftInt64OpInstr(op_kind, new (Z) Value(left), |
| new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, shift_op); |
| } else { |
| BinaryInt64OpInstr* bin_op = new (Z) BinaryInt64OpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, bin_op); |
| } |
| } else if ((operands_type == kFloat32x4Cid) || |
| (operands_type == kInt32x4Cid) || |
| (operands_type == kFloat64x2Cid)) { |
| return InlineSimdBinaryOp(call, operands_type, op_kind); |
| } else if (op_kind == Token::kMOD) { |
| ASSERT(operands_type == kSmiCid); |
| if (right->IsConstant()) { |
| const Object& obj = right->AsConstant()->value(); |
| if (obj.IsSmi() && Utils::IsPowerOfTwo(Smi::Cast(obj).Value())) { |
| // Insert smi check and attach a copy of the original environment |
| // because the smi operation can still deoptimize. |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(left), |
| call->deopt_id(), call->source()), |
| call->env(), FlowGraph::kEffect); |
| ConstantInstr* constant = flow_graph()->GetConstant( |
| Smi::Handle(Z, Smi::New(Smi::Cast(obj).Value() - 1))); |
| BinarySmiOpInstr* bin_op = |
| new (Z) BinarySmiOpInstr(Token::kBIT_AND, new (Z) Value(left), |
| new (Z) Value(constant), call->deopt_id()); |
| ReplaceCall(call, bin_op); |
| return true; |
| } |
| } |
| // Insert two smi checks and attach a copy of the original |
| // environment because the smi operation can still deoptimize. |
| AddCheckSmi(left, call->deopt_id(), call->env(), call); |
| AddCheckSmi(right, call->deopt_id(), call->env(), call); |
| BinarySmiOpInstr* bin_op = new (Z) BinarySmiOpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, bin_op); |
| } else { |
| ASSERT(operands_type == kSmiCid); |
| // Insert two smi checks and attach a copy of the original |
| // environment because the smi operation can still deoptimize. |
| AddCheckSmi(left, call->deopt_id(), call->env(), call); |
| AddCheckSmi(right, call->deopt_id(), call->env(), call); |
| if (left->IsConstant() && |
| ((op_kind == Token::kADD) || (op_kind == Token::kMUL))) { |
| // Constant should be on the right side. |
| Definition* temp = left; |
| left = right; |
| right = temp; |
| } |
| BinarySmiOpInstr* bin_op = new (Z) BinarySmiOpInstr( |
| op_kind, new (Z) Value(left), new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, bin_op); |
| } |
| return true; |
| } |
| |
| bool CallSpecializer::TryReplaceWithUnaryOp(InstanceCallInstr* call, |
| Token::Kind op_kind) { |
| ASSERT(call->type_args_len() == 0); |
| ASSERT(call->ArgumentCount() == 1); |
| Definition* input = call->ArgumentAt(0); |
| Definition* unary_op = NULL; |
| if (call->Targets().ReceiverIs(kSmiCid)) { |
| InsertBefore(call, |
| new (Z) CheckSmiInstr(new (Z) Value(input), call->deopt_id(), |
| call->source()), |
| call->env(), FlowGraph::kEffect); |
| unary_op = new (Z) |
| UnarySmiOpInstr(op_kind, new (Z) Value(input), call->deopt_id()); |
| } else if ((op_kind == Token::kBIT_NOT) && |
| call->Targets().ReceiverIsSmiOrMint()) { |
| unary_op = new (Z) |
| UnaryInt64OpInstr(op_kind, new (Z) Value(input), call->deopt_id()); |
| } else if (call->Targets().ReceiverIs(kDoubleCid) && |
| (op_kind == Token::kNEGATE) && CanUnboxDouble()) { |
| AddReceiverCheck(call); |
| unary_op = new (Z) UnaryDoubleOpInstr(Token::kNEGATE, new (Z) Value(input), |
| call->deopt_id()); |
| } else { |
| return false; |
| } |
| ASSERT(unary_op != NULL); |
| ReplaceCall(call, unary_op); |
| return true; |
| } |
| |
| bool CallSpecializer::TryInlineImplicitInstanceGetter(InstanceCallInstr* call) { |
| const CallTargets& targets = call->Targets(); |
| ASSERT(targets.HasSingleTarget()); |
| |
| // Inline implicit instance getter. |
| Field& field = Field::ZoneHandle(Z, targets.FirstTarget().accessor_field()); |
| ASSERT(!field.IsNull()); |
| if (field.needs_load_guard()) { |
| return false; |
| } |
| if (should_clone_fields_) { |
| field = field.CloneFromOriginal(); |
| } |
| |
| switch (flow_graph()->CheckForInstanceCall( |
| call, UntaggedFunction::kImplicitGetter)) { |
| case FlowGraph::ToCheck::kCheckNull: |
| AddCheckNull(call->Receiver(), call->function_name(), call->deopt_id(), |
| call->env(), call); |
| break; |
| case FlowGraph::ToCheck::kCheckCid: |
| if (CompilerState::Current().is_aot()) { |
| return false; // AOT cannot class check |
| } |
| AddReceiverCheck(call); |
| break; |
| case FlowGraph::ToCheck::kNoCheck: |
| break; |
| } |
| InlineImplicitInstanceGetter(call, field); |
| return true; |
| } |
| |
| void CallSpecializer::InlineImplicitInstanceGetter(Definition* call, |
| const Field& field) { |
| ASSERT(field.is_instance()); |
| Definition* receiver = call->ArgumentAt(0); |
| |
| const bool calls_initializer = field.NeedsInitializationCheckOnLoad(); |
| const Slot& slot = Slot::Get(field, &flow_graph()->parsed_function()); |
| LoadFieldInstr* load = new (Z) LoadFieldInstr( |
| new (Z) Value(receiver), slot, call->source(), calls_initializer, |
| calls_initializer ? call->deopt_id() : DeoptId::kNone); |
| |
| // Note that this is a case of LoadField -> InstanceCall lazy deopt. |
| // Which means that we don't need to remove arguments from the environment |
| // because normal getter call expects receiver pushed (unlike the case |
| // of LoadField -> LoadField deoptimization handled by |
| // FlowGraph::AttachEnvironment). |
| if (!calls_initializer) { |
| // If we don't call initializer then we don't need an environment. |
| call->RemoveEnvironment(); |
| } |
| ReplaceCall(call, load); |
| |
| if (load->slot().nullable_cid() != kDynamicCid) { |
| // Reset value types if we know concrete cid. |
| for (Value::Iterator it(load->input_use_list()); !it.Done(); it.Advance()) { |
| it.Current()->SetReachingType(nullptr); |
| } |
| } |
| } |
| |
| bool CallSpecializer::TryInlineInstanceSetter(InstanceCallInstr* instr) { |
| const CallTargets& targets = instr->Targets(); |
| if (!targets.HasSingleTarget()) { |
| // Polymorphic sites are inlined like normal method calls by conventional |
| // inlining. |
| return false; |
| } |
| const Function& target = targets.FirstTarget(); |
| if (target.kind() != UntaggedFunction::kImplicitSetter) { |
| // Non-implicit setter are inlined like normal method calls. |
| return false; |
| } |
| if (!CompilerState::Current().is_aot() && !target.WasCompiled()) { |
| return false; |
| } |
| Field& field = Field::ZoneHandle(Z, target.accessor_field()); |
| ASSERT(!field.IsNull()); |
| if (should_clone_fields_) { |
| field = field.CloneFromOriginal(); |
| } |
| |
| switch (flow_graph()->CheckForInstanceCall( |
| instr, UntaggedFunction::kImplicitSetter)) { |
| case FlowGraph::ToCheck::kCheckNull: |
| AddCheckNull(instr->Receiver(), instr->function_name(), instr->deopt_id(), |
| instr->env(), instr); |
| break; |
| case FlowGraph::ToCheck::kCheckCid: |
| if (CompilerState::Current().is_aot()) { |
| return false; // AOT cannot class check |
| } |
| AddReceiverCheck(instr); |
| break; |
| case FlowGraph::ToCheck::kNoCheck: |
| break; |
| } |
| |
| // True if we can use unchecked entry into the setter. |
| bool is_unchecked_call = false; |
| if (!CompilerState::Current().is_aot()) { |
| if (targets.IsMonomorphic() && targets.MonomorphicExactness().IsExact()) { |
| if (targets.MonomorphicExactness().IsTriviallyExact()) { |
| flow_graph()->AddExactnessGuard(instr, |
| targets.MonomorphicReceiverCid()); |
| } |
| is_unchecked_call = true; |
| } |
| } |
| |
| if (IG->use_field_guards()) { |
| if (field.guarded_cid() != kDynamicCid) { |
| InsertSpeculativeBefore( |
| instr, |
| new (Z) GuardFieldClassInstr(new (Z) Value(instr->ArgumentAt(1)), |
| field, instr->deopt_id()), |
| instr->env(), FlowGraph::kEffect); |
| } |
| |
| if (field.needs_length_check()) { |
| InsertSpeculativeBefore( |
| instr, |
| new (Z) GuardFieldLengthInstr(new (Z) Value(instr->ArgumentAt(1)), |
| field, instr->deopt_id()), |
| instr->env(), FlowGraph::kEffect); |
| } |
| |
| if (field.static_type_exactness_state().NeedsFieldGuard()) { |
| InsertSpeculativeBefore( |
| instr, |
| new (Z) GuardFieldTypeInstr(new (Z) Value(instr->ArgumentAt(1)), |
| field, instr->deopt_id()), |
| instr->env(), FlowGraph::kEffect); |
| } |
| } |
| |
| // Build an AssertAssignable if necessary. |
| const AbstractType& dst_type = AbstractType::ZoneHandle(zone(), field.type()); |
| if (!dst_type.IsTopTypeForSubtyping()) { |
| // Compute if we need to type check the value. Always type check if |
| // at a dynamic invocation. |
| bool needs_check = true; |
| if (!instr->interface_target().IsNull()) { |
| if (field.is_covariant()) { |
| // Always type check covariant fields. |
| needs_check = true; |
| } else if (field.is_generic_covariant_impl()) { |
| // If field is generic covariant then we don't need to check it |
| // if the invocation was marked as unchecked (e.g. receiver of |
| // the invocation is also the receiver of the surrounding method). |
| // Note: we can't use flow_graph()->IsReceiver() for this optimization |
| // because strong mode only gives static guarantees at the AST level |
| // not at the SSA level. |
| needs_check = !(is_unchecked_call || |
| (instr->entry_kind() == Code::EntryKind::kUnchecked)); |
| } else { |
| // The rest of the stores are checked statically (we are not at |
| // a dynamic invocation). |
| needs_check = false; |
| } |
| } |
| |
| if (needs_check) { |
| Definition* instantiator_type_args = flow_graph_->constant_null(); |
| Definition* function_type_args = flow_graph_->constant_null(); |
| if (!dst_type.IsInstantiated()) { |
| const Class& owner = Class::Handle(Z, field.Owner()); |
| if (owner.NumTypeArguments() > 0) { |
| instantiator_type_args = new (Z) LoadFieldInstr( |
| new (Z) Value(instr->ArgumentAt(0)), |
| Slot::GetTypeArgumentsSlotFor(thread(), owner), instr->source()); |
| InsertSpeculativeBefore(instr, instantiator_type_args, instr->env(), |
| FlowGraph::kValue); |
| } |
| } |
| |
| auto assert_assignable = new (Z) AssertAssignableInstr( |
| instr->source(), new (Z) Value(instr->ArgumentAt(1)), |
| new (Z) Value(flow_graph_->GetConstant(dst_type)), |
| new (Z) Value(instantiator_type_args), |
| new (Z) Value(function_type_args), |
| String::ZoneHandle(zone(), field.name()), instr->deopt_id()); |
| InsertSpeculativeBefore(instr, assert_assignable, instr->env(), |
| FlowGraph::kEffect); |
| } |
| } |
| |
| // Field guard was detached. |
| ASSERT(instr->FirstArgIndex() == 0); |
| StoreInstanceFieldInstr* store = new (Z) StoreInstanceFieldInstr( |
| field, new (Z) Value(instr->ArgumentAt(0)), |
| new (Z) Value(instr->ArgumentAt(1)), kEmitStoreBarrier, instr->source(), |
| &flow_graph()->parsed_function()); |
| |
| // Discard the environment from the original instruction because the store |
| // can't deoptimize. |
| instr->RemoveEnvironment(); |
| ReplaceCallWithResult(instr, store, flow_graph()->constant_null()); |
| return true; |
| } |
| |
| bool CallSpecializer::InlineSimdBinaryOp(InstanceCallInstr* call, |
| intptr_t cid, |
| Token::Kind op_kind) { |
| if (!ShouldInlineSimd()) { |
| return false; |
| } |
| ASSERT(call->type_args_len() == 0); |
| ASSERT(call->ArgumentCount() == 2); |
| Definition* const left = call->ArgumentAt(0); |
| Definition* const right = call->ArgumentAt(1); |
| // Type check left and right. |
| AddChecksForArgNr(call, left, /* arg_number = */ 0); |
| AddChecksForArgNr(call, right, /* arg_number = */ 1); |
| // Replace call. |
| SimdOpInstr* op = SimdOpInstr::Create( |
| SimdOpInstr::KindForOperator(cid, op_kind), new (Z) Value(left), |
| new (Z) Value(right), call->deopt_id()); |
| ReplaceCall(call, op); |
| |
| return true; |
| } |
| |
| // Only unique implicit instance getters can be currently handled. |
| bool CallSpecializer::TryInlineInstanceGetter(InstanceCallInstr* call) { |
| const CallTargets& targets = call->Targets(); |
| if (!targets.HasSingleTarget()) { |
| // Polymorphic sites are inlined like normal methods by conventional |
| // inlining in FlowGraphInliner. |
| return false; |
| } |
| const Function& target = targets.FirstTarget(); |
| if (target.kind() != UntaggedFunction::kImplicitGetter) { |
| // Non-implicit getters are inlined like normal methods by conventional |
| // inlining in FlowGraphInliner. |
| return false; |
| } |
| if (!CompilerState::Current().is_aot() && !target.WasCompiled()) { |
| return false; |
| } |
| return TryInlineImplicitInstanceGetter(call); |
| } |
| |
| // Inline only simple, frequently called core library methods. |
| bool CallSpecializer::TryInlineInstanceMethod(InstanceCallInstr* call) { |
| const CallTargets& targets = call->Targets(); |
| if (!targets.IsMonomorphic()) { |
| // No type feedback collected or multiple receivers/targets found. |
| return false; |
| } |
| |
| const Function& target = targets.FirstTarget(); |
| intptr_t receiver_cid = targets.MonomorphicReceiverCid(); |
| MethodRecognizer::Kind recognized_kind = target.recognized_kind(); |
| |
| if (CanUnboxDouble() && |
| (recognized_kind == MethodRecognizer::kIntegerToDouble)) { |
| if (receiver_cid == kSmiCid) { |
| AddReceiverCheck(call); |
| ReplaceCall(call, |
| new (Z) SmiToDoubleInstr(new (Z) Value(call->ArgumentAt(0)), |
| call->source())); |
| return true; |
| } else if ((receiver_cid == kMintCid) && CanConvertInt64ToDouble()) { |
| AddReceiverCheck(call); |
| ReplaceCall(call, |
| new (Z) Int64ToDoubleInstr(new (Z) Value(call->ArgumentAt(0)), |
| call->deopt_id())); |
| return true; |
| } |
| } |
| |
| if (receiver_cid == kDoubleCid) { |
| if (!CanUnboxDouble()) { |
| return false; |
| } |
| switch (recognized_kind) { |
| case MethodRecognizer::kDoubleToInteger: { |
| AddReceiverCheck(call); |
| ASSERT(call->HasICData()); |
| const ICData& ic_data = *call->ic_data(); |
| Definition* input = call->ArgumentAt(0); |
| Definition* d2i_instr = NULL; |
| if (ic_data.HasDeoptReason(ICData::kDeoptDoubleToSmi)) { |
| // Do not repeatedly deoptimize because result didn't fit into Smi. |
| d2i_instr = new (Z) DoubleToIntegerInstr( |
| new (Z) Value(input), recognized_kind, call->deopt_id()); |
| } else { |
| // Optimistically assume result fits into Smi. |
| d2i_instr = |
| new (Z) DoubleToSmiInstr(new (Z) Value(input), call->deopt_id()); |
| } |
| ReplaceCall(call, d2i_instr); |
| return true; |
| } |
| default: |
| break; |
| } |
| } |
| |
| return FlowGraphInliner::TryReplaceInstanceCallWithInline( |
| flow_graph_, current_iterator(), call, speculative_policy_); |
| } |
| |
| // If type tests specified by 'ic_data' do not depend on type arguments, |
| // return mapping cid->result in 'results' (i : cid; i + 1: result). |
| // If all tests yield the same result, return it otherwise return Bool::null. |
| // If no mapping is possible, 'results' has less than |
| // (ic_data.NumberOfChecks() * 2) entries |
| // An instance-of test returning all same results can be converted to a class |
| // check. |
| BoolPtr CallSpecializer::InstanceOfAsBool( |
| const ICData& ic_data, |
| const AbstractType& type, |
| ZoneGrowableArray<intptr_t>* results) const { |
| ASSERT(results->is_empty()); |
| ASSERT(ic_data.NumArgsTested() == 1); // Unary checks only. |
| if (type.IsFunctionType() || type.IsDartFunctionType() || |
| !type.IsInstantiated()) { |
| return Bool::null(); |
| } |
| const Class& type_class = Class::Handle(Z, type.type_class()); |
| const intptr_t num_type_args = type_class.NumTypeArguments(); |
| if (num_type_args > 0) { |
| // Only raw types can be directly compared, thus disregarding type |
| // arguments. |
| const intptr_t num_type_params = type_class.NumTypeParameters(); |
| const intptr_t from_index = num_type_args - num_type_params; |
| const TypeArguments& type_arguments = |
| TypeArguments::Handle(Z, type.arguments()); |
| const bool is_raw_type = type_arguments.IsNull() || |
| type_arguments.IsRaw(from_index, num_type_params); |
| if (!is_raw_type) { |
| // Unknown result. |
| return Bool::null(); |
| } |
| } |
| |
| const ClassTable& class_table = *IG->class_table(); |
| Bool& prev = Bool::Handle(Z); |
| Class& cls = Class::Handle(Z); |
| |
| bool results_differ = false; |
| const intptr_t number_of_checks = ic_data.NumberOfChecks(); |
| for (int i = 0; i < number_of_checks; i++) { |
| cls = class_table.At(ic_data.GetReceiverClassIdAt(i)); |
| if (cls.NumTypeArguments() > 0) { |
| return Bool::null(); |
| } |
| bool is_subtype = false; |
| if (cls.IsNullClass()) { |
| // 'null' is an instance of Null, Object*, Never*, void, and dynamic. |
| // In addition, 'null' is an instance of any nullable type. |
| // It is also an instance of FutureOr<T> if it is an instance of T. |
| const AbstractType& unwrapped_type = |
| AbstractType::Handle(type.UnwrapFutureOr()); |
| ASSERT(unwrapped_type.IsInstantiated()); |
| is_subtype = unwrapped_type.IsTopTypeForInstanceOf() || |
| unwrapped_type.IsNullable() || |
| (unwrapped_type.IsLegacy() && unwrapped_type.IsNeverType()); |
| } else { |
| is_subtype = |
| Class::IsSubtypeOf(cls, Object::null_type_arguments(), |
| Nullability::kNonNullable, type, Heap::kOld); |
| } |
| results->Add(cls.id()); |
| results->Add(static_cast<intptr_t>(is_subtype)); |
| if (prev.IsNull()) { |
| prev = Bool::Get(is_subtype).ptr(); |
| } else { |
| if (is_subtype != prev.value()) { |
| results_differ = true; |
| } |
| } |
| } |
| return results_differ ? Bool::null() : prev.ptr(); |
| } |
| |
| // Returns true if checking against this type is a direct class id comparison. |
| bool CallSpecializer::TypeCheckAsClassEquality(const AbstractType& type) { |
| ASSERT(type.IsFinalized()); |
| // Requires CHA. |
| if (!type.IsInstantiated()) return false; |
| // Function types have different type checking rules. |
| if (type.IsFunctionType()) return false; |
| const Class& type_class = Class::Handle(type.type_class()); |
| // Could be an interface check? |
| if (CHA::IsImplemented(type_class)) return false; |
| // Check if there are subclasses. |
| if (CHA::HasSubclasses(type_class)) { |
| return false; |
| } |
| |
| // Private classes cannot be subclassed by later loaded libs. |
| if (!type_class.IsPrivate()) { |
| // In AOT mode we can't use CHA deoptimizations. |
| ASSERT(!CompilerState::Current().is_aot() || !FLAG_use_cha_deopt); |
| if (FLAG_use_cha_deopt || isolate_group()->all_classes_finalized()) { |
| if (FLAG_trace_cha) { |
| THR_Print( |
| " **(CHA) Typecheck as class equality since no " |
| "subclasses: %s\n", |
| type_class.ToCString()); |
| } |
| if (FLAG_use_cha_deopt) { |
| thread()->compiler_state().cha().AddToGuardedClasses( |
| type_class, /*subclass_count=*/0); |
| } |
| } else { |
| return false; |
| } |
| } |
| const intptr_t num_type_args = type_class.NumTypeArguments(); |
| if (num_type_args > 0) { |
| // Only raw types can be directly compared, thus disregarding type |
| // arguments. |
| const intptr_t num_type_params = type_class.NumTypeParameters(); |
| const intptr_t from_index = num_type_args - num_type_params; |
| const TypeArguments& type_arguments = |
| TypeArguments::Handle(type.arguments()); |
| const bool is_raw_type = type_arguments.IsNull() || |
| type_arguments.IsRaw(from_index, num_type_params); |
| if (!is_raw_type) { |
| return false; |
| } |
| } |
| if (type.IsNullable() || type.IsTopTypeForInstanceOf() || |
| type.IsNeverType()) { |
| // A class id check is not sufficient, since a null instance also satisfies |
| // the test against a nullable type. |
| // TODO(regis): Add a null check in addition to the class id check? |
| return false; |
| } |
| return true; |
| } |
| |
| bool CallSpecializer::TryReplaceInstanceOfWithRangeCheck( |
| InstanceCallInstr* call, |
| const AbstractType& type) { |
| // TODO(dartbug.com/30632) does this optimization make sense in JIT? |
| return false; |
| } |
| |
| bool CallSpecializer::TryOptimizeInstanceOfUsingStaticTypes( |
| InstanceCallInstr* call, |
| const AbstractType& type) { |
| ASSERT(Token::IsTypeTestOperator(call->token_kind())); |
| if (!type.IsInstantiated()) { |
| return false; |
| } |
| |
| Value* left_value = call->Receiver(); |
| if (left_value->Type()->IsInstanceOf(type)) { |
| ConstantInstr* replacement = flow_graph()->GetConstant(Bool::True()); |
| call->ReplaceUsesWith(replacement); |
| ASSERT(current_iterator()->Current() == call); |
| current_iterator()->RemoveCurrentFromGraph(); |
| return true; |
| } |
| |
| // The goal is to emit code that will determine the result of 'x is type' |
| // depending solely on the fact that x == null or not. |
| // Checking whether the receiver is null can only help if the tested type is |
| // non-nullable or legacy (including Never*) or the Null type. |
| // Also, testing receiver for null cannot help with FutureOr. |
| if ((type.IsNullable() && !type.IsNullType()) || type.IsFutureOrType()) { |
| return false; |
| } |
| |
| // If type is Null or Never*, or the static type of the receiver is a |
| // subtype of the tested type, replace 'receiver is type' with |
| // - 'receiver == null' if type is Null or Never*, |
| // - 'receiver != null' otherwise. |
| if (type.IsNullType() || (type.IsNeverType() && type.IsLegacy()) || |
| left_value->Type()->IsSubtypeOf(type)) { |
| Definition* replacement = new (Z) StrictCompareInstr( |
| call->source(), |
| (type.IsNullType() || (type.IsNeverType() && type.IsLegacy())) |
| ? Token::kEQ_STRICT |
| : Token::kNE_STRICT, |
| left_value->CopyWithType(Z), |
| new (Z) Value(flow_graph()->constant_null()), |
| /* number_check = */ false, DeoptId::kNone); |
| if (FLAG_trace_strong_mode_types) { |
| THR_Print("[Strong mode] replacing %s with %s (%s < %s)\n", |
| call->ToCString(), replacement->ToCString(), |
| left_value->Type()->ToAbstractType()->ToCString(), |
| type.ToCString()); |
| } |
| ReplaceCall(call, replacement); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void CallSpecializer::ReplaceWithInstanceOf(InstanceCallInstr* call) { |
| ASSERT(Token::IsTypeTestOperator(call->token_kind())); |
| Definition* left = call->ArgumentAt(0); |
| Definition* instantiator_type_args = NULL; |
| Definition* function_type_args = NULL; |
| AbstractType& type = AbstractType::ZoneHandle(Z); |
| ASSERT(call->type_args_len() == 0); |
| if (call->ArgumentCount() == 2) { |
| instantiator_type_args = flow_graph()->constant_null(); |
| function_type_args = flow_graph()->constant_null(); |
| ASSERT(call->MatchesCoreName(Symbols::_simpleInstanceOf())); |
| type = AbstractType::Cast(call->ArgumentAt(1)->AsConstant()->value()).ptr(); |
| } else { |
| ASSERT(call->ArgumentCount() == 4); |
| instantiator_type_args = call->ArgumentAt(1); |
| function_type_args = call->ArgumentAt(2); |
| type = AbstractType::Cast(call->ArgumentAt(3)->AsConstant()->value()).ptr(); |
| } |
| |
| if (TryOptimizeInstanceOfUsingStaticTypes(call, type)) { |
| return; |
| } |
| |
| if (TypeCheckAsClassEquality(type)) { |
| LoadClassIdInstr* left_cid = new (Z) LoadClassIdInstr(new (Z) Value(left)); |
| InsertBefore(call, left_cid, NULL, FlowGraph::kValue); |
| const intptr_t type_cid = Class::Handle(Z, type.type_class()).id(); |
| ConstantInstr* cid = |
| flow_graph()->GetConstant(Smi::Handle(Z, Smi::New(type_cid))); |
| |
| StrictCompareInstr* check_cid = new (Z) StrictCompareInstr( |
| call->source(), Token::kEQ_STRICT, new (Z) Value(left_cid), |
| new (Z) Value(cid), /* number_check = */ false, DeoptId::kNone); |
| ReplaceCall(call, check_cid); |
| return; |
| } |
| |
| if (TryReplaceInstanceOfWithRangeCheck(call, type)) { |
| return; |
| } |
| |
| const ICData& unary_checks = |
| ICData::ZoneHandle(Z, call->ic_data()->AsUnaryClassChecks()); |
| const intptr_t number_of_checks = unary_checks.NumberOfChecks(); |
| if (number_of_checks > 0 && number_of_checks <= FLAG_max_polymorphic_checks) { |
| ZoneGrowableArray<intptr_t>* results = |
| new (Z) ZoneGrowableArray<intptr_t>(number_of_checks * 2); |
| const Bool& as_bool = |
| Bool::ZoneHandle(Z, InstanceOfAsBool(unary_checks, type, results)); |
| if (as_bool.IsNull() || CompilerState::Current().is_aot()) { |
| if (results->length() == number_of_checks * 2) { |
| const bool can_deopt = SpecializeTestCidsForNumericTypes(results, type); |
| if (can_deopt && |
| !speculative_policy_->IsAllowedForInlining(call->deopt_id())) { |
| // Guard against repeated speculative inlining. |
| return; |
| } |
| TestCidsInstr* test_cids = new (Z) TestCidsInstr( |
| call->source(), Token::kIS, new (Z) Value(left), *results, |
| can_deopt ? call->deopt_id() : DeoptId::kNone); |
| // Remove type. |
| ReplaceCall(call, test_cids); |
| return; |
| } |
| } else { |
| // One result only. |
| AddReceiverCheck(call); |
| ConstantInstr* bool_const = flow_graph()->GetConstant(as_bool); |
| ASSERT(!call->HasPushArguments()); |
| call->ReplaceUsesWith(bool_const); |
| ASSERT(current_iterator()->Current() == call); |
| current_iterator()->RemoveCurrentFromGraph(); |
| return; |
| } |
| } |
| |
| InstanceOfInstr* instance_of = new (Z) InstanceOfInstr( |
| call->source(), new (Z) Value(left), |
| new (Z) Value(instantiator_type_args), new (Z) Value(function_type_args), |
| type, call->deopt_id()); |
| ReplaceCall(call, instance_of); |
| } |
| |
| void CallSpecializer::VisitStaticCall(StaticCallInstr* call) { |
| if (FlowGraphInliner::TryReplaceStaticCallWithInline( |
| flow_graph_, current_iterator(), call, speculative_policy_)) { |
| return; |
| } |
| |
| if (speculative_policy_->IsAllowedForInlining(call->deopt_id())) { |
| // Only if speculative inlining is enabled. |
| |
| MethodRecognizer::Kind recognized_kind = call->function().recognized_kind(); |
| const CallTargets& targets = call->Targets(); |
| const BinaryFeedback& binary_feedback = call->BinaryFeedback(); |
| |
| switch (recognized_kind) { |
| case MethodRecognizer::kMathMin: |
| case MethodRecognizer::kMathMax: { |
| // We can handle only monomorphic min/max call sites with both arguments |
| // being either doubles or smis. |
| if (CanUnboxDouble() && targets.IsMonomorphic() && |
| (call->FirstArgIndex() == 0)) { |
| intptr_t result_cid = kIllegalCid; |
| if (binary_feedback.IncludesOperands(kDoubleCid)) { |
| result_cid = kDoubleCid; |
| } else if (binary_feedback.IncludesOperands(kSmiCid)) { |
| result_cid = kSmiCid; |
| } |
| if (result_cid != kIllegalCid) { |
| MathMinMaxInstr* min_max = new (Z) MathMinMaxInstr( |
| recognized_kind, new (Z) Value(call->ArgumentAt(0)), |
| new (Z) Value(call->ArgumentAt(1)), call->deopt_id(), |
| result_cid); |
| const Cids* cids = Cids::CreateMonomorphic(Z, result_cid); |
| AddCheckClass(min_max->left()->definition(), *cids, |
| call->deopt_id(), call->env(), call); |
| AddCheckClass(min_max->right()->definition(), *cids, |
| call->deopt_id(), call->env(), call); |
| ReplaceCall(call, min_max); |
| return; |
| } |
| } |
| break; |
| } |
| case MethodRecognizer::kDoubleFromInteger: { |
| if (call->HasICData() && targets.IsMonomorphic() && |
| (call->FirstArgIndex() == 0)) { |
| if (CanUnboxDouble()) { |
| if (binary_feedback.ArgumentIs(kSmiCid)) { |
| Definition* arg = call->ArgumentAt(1); |
| AddCheckSmi(arg, call->deopt_id(), call->env(), call); |
| ReplaceCall(call, new (Z) SmiToDoubleInstr(new (Z) Value(arg), |
| call->source())); |
| return; |
| } else if (binary_feedback.ArgumentIs(kMintCid) && |
| CanConvertInt64ToDouble()) { |
| Definition* arg = call->ArgumentAt(1); |
| ReplaceCall(call, new (Z) Int64ToDoubleInstr(new (Z) Value(arg), |
| call->deopt_id())); |
| return; |
| } |
| } |
| } |
| break; |
| } |
| |
| default: |
| break; |
| } |
| } |
| |
| if (TryOptimizeStaticCallUsingStaticTypes(call)) { |
| return; |
| } |
| } |
| |
| void CallSpecializer::VisitLoadCodeUnits(LoadCodeUnitsInstr* instr) { |
| // TODO(zerny): Use kUnboxedUint32 once it is fully supported/optimized. |
| #if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_ARM) |
| if (!instr->can_pack_into_smi()) instr->set_representation(kUnboxedInt64); |
| #endif |
| } |
| |
| static bool CidTestResultsContains(const ZoneGrowableArray<intptr_t>& results, |
| intptr_t test_cid) { |
| for (intptr_t i = 0; i < results.length(); i += 2) { |
| if (results[i] == test_cid) return true; |
| } |
| return false; |
| } |
| |
| static void TryAddTest(ZoneGrowableArray<intptr_t>* results, |
| intptr_t test_cid, |
| bool result) { |
| if (!CidTestResultsContains(*results, test_cid)) { |
| results->Add(test_cid); |
| results->Add(static_cast<intptr_t>(result)); |
| } |
| } |
| |
| // Used when we only need the positive result because we return false by |
| // default. |
| static void PurgeNegativeTestCidsEntries(ZoneGrowableArray<intptr_t>* results) { |
| // We can't purge the Smi entry at the beginning since it is used in the |
| // Smi check before the Cid is loaded. |
| int dest = 2; |
| for (intptr_t i = 2; i < results->length(); i += 2) { |
| if (results->At(i + 1) != 0) { |
| (*results)[dest++] = results->At(i); |
| (*results)[dest++] = results->At(i + 1); |
| } |
| } |
| results->SetLength(dest); |
| } |
| |
| bool CallSpecializer::SpecializeTestCidsForNumericTypes( |
| ZoneGrowableArray<intptr_t>* results, |
| const AbstractType& type) { |
| ASSERT(results->length() >= 2); // At least on entry. |
| const ClassTable& class_table = *IsolateGroup::Current()->class_table(); |
| if ((*results)[0] != kSmiCid) { |
| const Class& smi_class = Class::Handle(class_table.At(kSmiCid)); |
| const bool smi_is_subtype = |
| Class::IsSubtypeOf(smi_class, Object::null_type_arguments(), |
| Nullability::kNonNullable, type, Heap::kOld); |
| results->Add((*results)[results->length() - 2]); |
| results->Add((*results)[results->length() - 2]); |
| for (intptr_t i = results->length() - 3; i > 1; --i) { |
| (*results)[i] = (*results)[i - 2]; |
| } |
| (*results)[0] = kSmiCid; |
| (*results)[1] = static_cast<intptr_t>(smi_is_subtype); |
| } |
| |
| ASSERT(type.IsInstantiated()); |
| ASSERT(results->length() >= 2); |
| if (type.IsSmiType()) { |
| ASSERT((*results)[0] == kSmiCid); |
| PurgeNegativeTestCidsEntries(results); |
| return false; |
| } else if (type.IsIntType()) { |
| ASSERT((*results)[0] == kSmiCid); |
| TryAddTest(results, kMintCid, true); |
| // Cannot deoptimize since all tests returning true have been added. |
| PurgeNegativeTestCidsEntries(results); |
| return false; |
| } else if (type.IsNumberType()) { |
| ASSERT((*results)[0] == kSmiCid); |
| TryAddTest(results, kMintCid, true); |
| TryAddTest(results, kDoubleCid, true); |
| PurgeNegativeTestCidsEntries(results); |
| return false; |
| } else if (type.IsDoubleType()) { |
| ASSERT((*results)[0] == kSmiCid); |
| TryAddTest(results, kDoubleCid, true); |
| PurgeNegativeTestCidsEntries(results); |
| return false; |
| } |
| return true; // May deoptimize since we have not identified all 'true' tests. |
| } |
| |
| void TypedDataSpecializer::Optimize(FlowGraph* flow_graph) { |
| TypedDataSpecializer optimizer(flow_graph); |
| optimizer.VisitBlocks(); |
| } |
| |
| void TypedDataSpecializer::EnsureIsInitialized() { |
| if (initialized_) return; |
| |
| initialized_ = true; |
| |
| int_type_ = Type::IntType(); |
| double_type_ = Type::Double(); |
| |
| const auto& typed_data = Library::Handle( |
| Z, Library::LookupLibrary(thread_, Symbols::DartTypedData())); |
| |
| auto& td_class = Class::Handle(Z); |
| auto& direct_implementors = GrowableObjectArray::Handle(Z); |
| SafepointReadRwLocker ml(thread_, thread_->isolate_group()->program_lock()); |
| |
| #define INIT_HANDLE(iface, member_name, type, cid) \ |
| td_class = typed_data.LookupClass(Symbols::iface()); \ |
| ASSERT(!td_class.IsNull()); \ |
| direct_implementors = td_class.direct_implementors(); \ |
| if (!HasThirdPartyImplementor(direct_implementors)) { \ |
| member_name = td_class.RareType(); \ |
| } |
| |
| PUBLIC_TYPED_DATA_CLASS_LIST(INIT_HANDLE) |
| #undef INIT_HANDLE |
| } |
| |
| bool TypedDataSpecializer::HasThirdPartyImplementor( |
| const GrowableObjectArray& direct_implementors) { |
| // Check if there are non internal/external/view implementors. |
| for (intptr_t i = 0; i < direct_implementors.Length(); ++i) { |
| implementor_ ^= direct_implementors.At(i); |
| |
| // We only consider [implementor_] a 3rd party implementor if it was |
| // finalized by the class finalizer, since only then can we have concrete |
| // instances of the [implementor_]. |
| if (implementor_.is_finalized()) { |
| const classid_t cid = implementor_.id(); |
| if (!IsTypedDataClassId(cid) && !IsTypedDataViewClassId(cid) && |
| !IsExternalTypedDataClassId(cid)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| void TypedDataSpecializer::VisitInstanceCall(InstanceCallInstr* call) { |
| TryInlineCall(call); |
| } |
| |
| void TypedDataSpecializer::VisitStaticCall(StaticCallInstr* call) { |
| const Function& function = call->function(); |
| if (!function.is_static()) { |
| ASSERT(call->ArgumentCount() > 0); |
| TryInlineCall(call); |
| } |
| } |
| |
| void TypedDataSpecializer::TryInlineCall(TemplateDartCall<0>* call) { |
| const bool is_length_getter = call->Selector() == Symbols::GetLength().ptr(); |
| const bool is_index_get = call->Selector() == Symbols::IndexToken().ptr(); |
| const bool is_index_set = |
| call->Selector() == Symbols::AssignIndexToken().ptr(); |
| |
| if (is_length_getter || is_index_get || is_index_set) { |
| EnsureIsInitialized(); |
| |
| const intptr_t receiver_index = call->FirstArgIndex(); |
| |
| CompileType* receiver_type = |
| call->ArgumentValueAt(receiver_index + 0)->Type(); |
| |
| CompileType* index_type = nullptr; |
| if (is_index_get || is_index_set) { |
| index_type = call->ArgumentValueAt(receiver_index + 1)->Type(); |
| } |
| |
| CompileType* value_type = nullptr; |
| if (is_index_set) { |
| value_type = call->ArgumentValueAt(receiver_index + 2)->Type(); |
| } |
| |
| auto& type_class = Class::Handle(zone_); |
| #define TRY_INLINE(iface, member_name, type, cid) \ |
| if (!member_name.IsNull()) { \ |
| const bool is_float_access = \ |
| cid == kTypedDataFloat32ArrayCid || cid == kTypedDataFloat64ArrayCid; \ |
| if (receiver_type->IsAssignableTo(member_name)) { \ |
| if (is_length_getter) { \ |
| type_class = member_name.type_class(); \ |
| ReplaceWithLengthGetter(call); \ |
| } else if (is_index_get) { \ |
| if (is_float_access && !FlowGraphCompiler::SupportsUnboxedDoubles()) { \ |
| return; \ |
| } \ |
| if (!index_type->IsNullableInt()) return; \ |
| type_class = member_name.type_class(); \ |
| ReplaceWithIndexGet(call, cid); \ |
| } else { \ |
| if (is_float_access && !FlowGraphCompiler::SupportsUnboxedDoubles()) { \ |
| return; \ |
| } \ |
| if (!index_type->IsNullableInt()) return; \ |
| if (!value_type->IsAssignableTo(type)) return; \ |
| type_class = member_name.type_class(); \ |
| ReplaceWithIndexSet(call, cid); \ |
| } \ |
| return; \ |
| } \ |
| } |
| PUBLIC_TYPED_DATA_CLASS_LIST(TRY_INLINE) |
| #undef INIT_HANDLE |
| } |
| } |
| |
| void TypedDataSpecializer::ReplaceWithLengthGetter(TemplateDartCall<0>* call) { |
| const intptr_t receiver_idx = call->FirstArgIndex(); |
| auto array = call->ArgumentAt(receiver_idx + 0); |
| |
| if (array->Type()->is_nullable()) { |
| AppendNullCheck(call, &array); |
| } |
| Definition* length = AppendLoadLength(call, array); |
| flow_graph_->ReplaceCurrentInstruction(current_iterator(), call, length); |
| RefineUseTypes(length); |
| } |
| |
| void TypedDataSpecializer::ReplaceWithIndexGet(TemplateDartCall<0>* call, |
| classid_t cid) { |
| const intptr_t receiver_idx = call->FirstArgIndex(); |
| auto array = call->ArgumentAt(receiver_idx + 0); |
| auto index = call->ArgumentAt(receiver_idx + 1); |
| |
| if (array->Type()->is_nullable()) { |
| AppendNullCheck(call, &array); |
| } |
| if (index->Type()->is_nullable()) { |
| AppendNullCheck(call, &index); |
| } |
| AppendBoundsCheck(call, array, &index); |
| Definition* value = AppendLoadIndexed(call, array, index, cid); |
| flow_graph_->ReplaceCurrentInstruction(current_iterator(), call, value); |
| RefineUseTypes(value); |
| } |
| |
| void TypedDataSpecializer::ReplaceWithIndexSet(TemplateDartCall<0>* call, |
| classid_t cid) { |
| const intptr_t receiver_idx = call->FirstArgIndex(); |
| auto array = call->ArgumentAt(receiver_idx + 0); |
| auto index = call->ArgumentAt(receiver_idx + 1); |
| auto value = call->ArgumentAt(receiver_idx + 2); |
| |
| if (array->Type()->is_nullable()) { |
| AppendNullCheck(call, &array); |
| } |
| if (index->Type()->is_nullable()) { |
| AppendNullCheck(call, &index); |
| } |
| if (value->Type()->is_nullable()) { |
| AppendNullCheck(call, &value); |
| } |
| AppendBoundsCheck(call, array, &index); |
| AppendStoreIndexed(call, array, index, value, cid); |
| |
| RELEASE_ASSERT(!call->HasUses()); |
| flow_graph_->ReplaceCurrentInstruction(current_iterator(), call, nullptr); |
| } |
| |
| void TypedDataSpecializer::AppendNullCheck(TemplateDartCall<0>* call, |
| Definition** value) { |
| auto check = |
| new (Z) CheckNullInstr(new (Z) Value(*value), Symbols::OptimizedOut(), |
| call->deopt_id(), call->source()); |
| flow_graph_->InsertBefore(call, check, call->env(), FlowGraph::kValue); |
| |
| // Use data dependency as control dependency. |
| *value = check; |
| } |
| |
| void TypedDataSpecializer::AppendBoundsCheck(TemplateDartCall<0>* call, |
| Definition* array, |
| Definition** index) { |
| auto length = new (Z) LoadFieldInstr( |
| new (Z) Value(array), Slot::TypedDataBase_length(), call->source()); |
| flow_graph_->InsertBefore(call, length, call->env(), FlowGraph::kValue); |
| |
| auto check = new (Z) GenericCheckBoundInstr( |
| new (Z) Value(length), new (Z) Value(*index), DeoptId::kNone); |
| flow_graph_->InsertBefore(call, check, call->env(), FlowGraph::kValue); |
| |
| // Use data dependency as control dependency. |
| *index = check; |
| } |
| |
| Definition* TypedDataSpecializer::AppendLoadLength(TemplateDartCall<0>* call, |
| Definition* array) { |
| auto length = new (Z) LoadFieldInstr( |
| new (Z) Value(array), Slot::TypedDataBase_length(), call->source()); |
| flow_graph_->InsertBefore(call, length, call->env(), FlowGraph::kValue); |
| return length; |
| } |
| |
| Definition* TypedDataSpecializer::AppendLoadIndexed(TemplateDartCall<0>* call, |
| Definition* array, |
| Definition* index, |
| classid_t cid) { |
| const intptr_t element_size = TypedDataBase::ElementSizeFor(cid); |
| const intptr_t index_scale = element_size; |
| |
| auto data = new (Z) LoadUntaggedInstr( |
| new (Z) Value(array), compiler::target::PointerBase::data_offset()); |
| flow_graph_->InsertBefore(call, data, call->env(), FlowGraph::kValue); |
| |
| Definition* load = new (Z) LoadIndexedInstr( |
| new (Z) Value(data), new (Z) Value(index), /*index_unboxed=*/false, |
| index_scale, cid, kAlignedAccess, DeoptId::kNone, call->source()); |
| flow_graph_->InsertBefore(call, load, call->env(), FlowGraph::kValue); |
| |
| if (cid == kTypedDataFloat32ArrayCid) { |
| load = new (Z) FloatToDoubleInstr(new (Z) Value(load), call->deopt_id()); |
| flow_graph_->InsertBefore(call, load, call->env(), FlowGraph::kValue); |
| } |
| |
| return load; |
| } |
| |
| void TypedDataSpecializer::AppendStoreIndexed(TemplateDartCall<0>* call, |
| Definition* array, |
| Definition* index, |
| Definition* value, |
| classid_t cid) { |
| const intptr_t element_size = TypedDataBase::ElementSizeFor(cid); |
| const intptr_t index_scale = element_size; |
| |
| const auto deopt_id = call->deopt_id(); |
| |
| switch (cid) { |
| case kTypedDataInt8ArrayCid: |
| case kTypedDataUint8ArrayCid: |
| case kTypedDataUint8ClampedArrayCid: |
| case kTypedDataInt16ArrayCid: |
| case kTypedDataUint16ArrayCid: |
| case kExternalTypedDataUint8ArrayCid: |
| case kExternalTypedDataUint8ClampedArrayCid: { |
| // Insert explicit unboxing instructions with truncation to avoid relying |
| // on [SelectRepresentations] which doesn't mark them as truncating. |
| value = UnboxInstr::Create(kUnboxedIntPtr, new (Z) Value(value), deopt_id, |
| Instruction::kNotSpeculative); |
| flow_graph_->InsertBefore(call, value, call->env(), FlowGraph::kValue); |
| break; |
| } |
| case kTypedDataInt32ArrayCid: { |
| // Insert explicit unboxing instructions with truncation to avoid relying |
| // on [SelectRepresentations] which doesn't mark them as truncating. |
| value = UnboxInstr::Create(kUnboxedInt32, new (Z) Value(value), deopt_id, |
| Instruction::kNotSpeculative); |
| flow_graph_->InsertBefore(call, value, call->env(), FlowGraph::kValue); |
| break; |
| } |
| case kTypedDataUint32ArrayCid: { |
| // Insert explicit unboxing instructions with truncation to avoid relying |
| // on [SelectRepresentations] which doesn't mark them as truncating. |
| value = UnboxInstr::Create(kUnboxedUint32, new (Z) Value(value), deopt_id, |
| Instruction::kNotSpeculative); |
| flow_graph_->InsertBefore(call, value, call->env(), FlowGraph::kValue); |
| break; |
| } |
| case kTypedDataInt64ArrayCid: |
| case kTypedDataUint64ArrayCid: { |
| // Insert explicit unboxing instructions with truncation to avoid relying |
| // on [SelectRepresentations] which doesn't mark them as truncating. |
| value = UnboxInstr::Create(kUnboxedInt64, new (Z) Value(value), |
| DeoptId::kNone, Instruction::kNotSpeculative); |
| flow_graph_->InsertBefore(call, value, call->env(), FlowGraph::kValue); |
| break; |
| } |
| case kTypedDataFloat32ArrayCid: { |
| value = new (Z) DoubleToFloatInstr(new (Z) Value(value), deopt_id, |
| Instruction::kNotSpeculative); |
| flow_graph_->InsertBefore(call, value, call->env(), FlowGraph::kValue); |
| break; |
| } |
| default: |
| break; |
| } |
| |
| auto data = new (Z) LoadUntaggedInstr( |
| new (Z) Value(array), compiler::target::PointerBase::data_offset()); |
| flow_graph_->InsertBefore(call, data, call->env(), FlowGraph::kValue); |
| |
| auto store = new (Z) StoreIndexedInstr( |
| new (Z) Value(data), new (Z) Value(index), new (Z) Value(value), |
| kNoStoreBarrier, /*index_unboxed=*/false, index_scale, cid, |
| kAlignedAccess, DeoptId::kNone, call->source(), |
| Instruction::kNotSpeculative); |
| flow_graph_->InsertBefore(call, store, call->env(), FlowGraph::kEffect); |
| } |
| |
| void CallSpecializer::ReplaceInstanceCallsWithDispatchTableCalls() { |
| // Only implemented for AOT. |
| } |
| |
| } // namespace dart |