blob: faa56a8cbcf5ff763f52659c5651353cc19e9d3b [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef VM_SCOPES_H_
#define VM_SCOPES_H_
#include "platform/assert.h"
#include "platform/globals.h"
#include "vm/allocation.h"
#include "vm/growable_array.h"
#include "vm/object.h"
#include "vm/raw_object.h"
#include "vm/symbols.h"
#include "vm/token.h"
namespace dart {
class LocalScope;
class LocalVariable : public ZoneAllocated {
public:
LocalVariable(intptr_t token_pos,
const String& name,
const AbstractType& type)
: token_pos_(token_pos),
name_(name),
owner_(NULL),
type_(type),
const_value_(NULL),
is_final_(false),
is_captured_(false),
is_invisible_(false),
is_captured_parameter_(false),
index_(LocalVariable::kUninitializedIndex) {
ASSERT(type.IsZoneHandle());
ASSERT(type.IsFinalized());
ASSERT(name.IsSymbol());
}
intptr_t token_pos() const { return token_pos_; }
const String& name() const { return name_; }
LocalScope* owner() const { return owner_; }
void set_owner(LocalScope* owner) {
ASSERT(owner_ == NULL);
owner_ = owner;
}
const AbstractType& type() const { return type_; }
bool is_final() const { return is_final_; }
void set_is_final() { is_final_ = true; }
bool is_captured() const { return is_captured_; }
void set_is_captured() { is_captured_ = true; }
bool HasIndex() const {
return index_ != kUninitializedIndex;
}
int index() const {
ASSERT(HasIndex());
return index_;
}
// Assign an index to a local.
void set_index(int index) {
ASSERT(index != kUninitializedIndex);
index_ = index;
}
void set_invisible(bool value) {
is_invisible_ = value;
}
bool is_invisible() const { return is_invisible_; }
bool is_captured_parameter() const { return is_captured_parameter_; }
void set_is_captured_parameter(bool value) {
is_captured_parameter_ = value;
}
bool IsConst() const {
return const_value_ != NULL;
}
void SetConstValue(const Instance& value) {
ASSERT(value.IsZoneHandle() || value.IsReadOnlyHandle());
const_value_ = &value;
}
const Instance* ConstValue() const {
ASSERT(IsConst());
return const_value_;
}
bool Equals(const LocalVariable& other) const;
// Map the frame index to a bit-vector index. Assumes the variable is
// allocated to the frame.
// var_count is the total number of stack-allocated variables including
// all parameters.
int BitIndexIn(intptr_t var_count) const;
private:
static const int kUninitializedIndex = INT_MIN;
const intptr_t token_pos_;
const String& name_;
LocalScope* owner_; // Local scope declaring this variable.
const AbstractType& type_; // Declaration type of local variable.
const Instance* const_value_; // NULL or compile-time const value.
bool is_final_; // If true, this variable is readonly.
bool is_captured_; // If true, this variable lives in the context, otherwise
// in the stack frame.
bool is_invisible_;
bool is_captured_parameter_;
int index_; // Allocation index in words relative to frame pointer (if not
// captured), or relative to the context pointer (if captured).
friend class LocalScope;
DISALLOW_COPY_AND_ASSIGN(LocalVariable);
};
class NameReference : public ZoneAllocated {
public:
NameReference(intptr_t token_pos, const String& name)
: token_pos_(token_pos),
name_(name) {
ASSERT(name.IsSymbol());
}
const String& name() const { return name_; }
intptr_t token_pos() const { return token_pos_; }
void set_token_pos(intptr_t value) { token_pos_ = value; }
private:
intptr_t token_pos_;
const String& name_;
};
class SourceLabel : public ZoneAllocated {
public:
enum Kind {
kFor,
kWhile,
kDoWhile,
kSwitch,
kCase,
kTry,
kCatch,
kForward,
kStatement // Any statement other than the above
};
SourceLabel(intptr_t token_pos, const String& name, Kind kind)
: token_pos_(token_pos),
name_(name),
owner_(NULL),
kind_(kind) {
ASSERT(name.IsSymbol());
}
static SourceLabel* New(intptr_t token_pos, String* name, Kind kind) {
if (name != NULL) {
return new SourceLabel(token_pos, *name, kind);
} else {
return new SourceLabel(token_pos,
Symbols::DefaultLabel(),
kind);
}
}
intptr_t token_pos() const { return token_pos_; }
const String& name() const { return name_; }
LocalScope* owner() const { return owner_; }
void set_owner(LocalScope* owner) {
ASSERT(owner_ == NULL);
owner_ = owner;
}
Kind kind() const { return kind_; }
// Returns the function level of the scope in which the label is defined.
int FunctionLevel() const;
void ResolveForwardReference() { kind_ = kCase; }
private:
const intptr_t token_pos_;
const String& name_;
LocalScope* owner_; // Local scope declaring this label.
Kind kind_;
DISALLOW_COPY_AND_ASSIGN(SourceLabel);
};
class LocalScope : public ZoneAllocated {
public:
LocalScope(LocalScope* parent, int function_level, int loop_level);
LocalScope* parent() const { return parent_; }
LocalScope* child() const { return child_; }
LocalScope* sibling() const { return sibling_; }
int function_level() const { return function_level_; }
int loop_level() const { return loop_level_; }
// Check if this scope is nested within the passed in scope.
bool IsNestedWithin(LocalScope* scope) const;
// The context level is only set in a scope that is either the owner scope of
// a captured variable or that is the owner scope of a context.
bool HasContextLevel() const {
return context_level_ != kUnitializedContextLevel;
}
int context_level() const {
ASSERT(HasContextLevel());
return context_level_;
}
void set_context_level(int context_level) {
ASSERT(!HasContextLevel());
ASSERT(context_level != kUnitializedContextLevel);
context_level_ = context_level;
}
intptr_t begin_token_pos() const { return begin_token_pos_; }
void set_begin_token_pos(intptr_t value) { begin_token_pos_ = value; }
intptr_t end_token_pos() const { return end_token_pos_; }
void set_end_token_pos(intptr_t value) { end_token_pos_ = value; }
// The number of variables allocated in the context and belonging to this
// scope and to its children at the same loop level.
int num_context_variables() const { return num_context_variables_; }
// Add a variable to the scope. Returns false if a variable with the
// same name is already present.
bool AddVariable(LocalVariable* variable);
// Insert a formal parameter variable to the scope at the given position,
// possibly in front of aliases already added with AddVariable.
// Returns false if a variable with the same name is already present.
bool InsertParameterAt(intptr_t pos, LocalVariable* parameter);
// Add a label to the scope. Returns false if a label with the same name
// is already present.
bool AddLabel(SourceLabel* label);
// Lookup a variable in this scope only.
LocalVariable* LocalLookupVariable(const String& name) const;
// Lookup a label in this scope only.
SourceLabel* LocalLookupLabel(const String& name) const;
// Lookup a variable in this scope and its parents. If the variable
// is found in a parent scope and 'test_only' is not true, we insert
// aliases of the variable in the current and intermediate scopes up to
// the declaration scope in order to detect "used before declared" errors.
// We mark a variable as 'captured' when applicable.
LocalVariable* LookupVariable(const String& name, bool test_only);
// Lookup a label in this scope and its parents.
SourceLabel* LookupLabel(const String& name);
// Lookup the "innermost" label that labels a for, while, do, or switch
// statement.
SourceLabel* LookupInnermostLabel(Token::Kind jump_kind);
// Lookup scope of outer switch statement at same function level.
// Returns NULL if this scope is not embedded in a switch.
LocalScope* LookupSwitchScope();
// Looks up variable in this scope and mark as captured if applicable.
// Finds the variable even if it is marked invisible. Returns true if
// the variable was found, false if it was not found.
bool CaptureVariable(const String& name);
// Look for unresolved forward references to labels in this scope.
// If there are any, propagate the forward reference to the next
// outer scope of a switch statement. If there is no outer switch
// statement, return the first unresolved label found.
SourceLabel* CheckUnresolvedLabels();
// Accessing the variables in the scope.
intptr_t num_variables() const { return variables_.length(); }
LocalVariable* VariableAt(intptr_t index) const {
ASSERT((index >= 0) && (index < variables_.length()));
return variables_[index];
}
// Count the captured variables belonging to outer scopes and referenced in
// this local scope.
int NumCapturedVariables() const;
// Add a reference to the given name into this scope and the enclosing
// scopes that do not have a local variable declaration for this name
// already.
void AddReferencedName(intptr_t token_pos, const String& name);
intptr_t PreviousReferencePos(const String& name) const;
// Allocate both captured and non-captured variables declared in this scope
// and in its children scopes of the same function level. Allocating means
// assigning a frame slot index or a context slot index.
// Parameters to be allocated in the frame must all appear in the top scope
// and not in its children (we do not yet handle register parameters).
// Locals must be listed after parameters in top scope and in its children.
// Two locals in different sibling scopes may share the same frame slot.
// Return the index of the next available frame slot.
int AllocateVariables(int first_parameter_index,
int num_parameters,
int first_frame_index,
LocalScope* context_owner,
bool* found_captured_variables);
// Creates variable info for the scope and all its nested scopes.
// Must be called after AllocateVariables() has been called.
RawLocalVarDescriptors* GetVarDescriptors(const Function& func);
// Create a ContextScope object describing all captured variables referenced
// from this scope and belonging to outer scopes.
RawContextScope* PreserveOuterScope(int current_context_level) const;
// Recursively traverses all siblings and children and marks all variables as
// captured.
void RecursivelyCaptureAllVariables();
// Creates a LocalScope representing the outer scope of a local function to be
// compiled. This outer scope contains the variables captured by the function
// as specified by the given ContextScope, which was created during the
// compilation of the enclosing function.
static LocalScope* RestoreOuterScope(const ContextScope& context_scope);
// Create a ContextScope object which will capture "this" for an implicit
// closure object.
static RawContextScope* CreateImplicitClosureScope(const Function& func);
private:
struct VarDesc {
const String* name;
RawLocalVarDescriptors::VarInfo info;
};
// Allocate the variable in the current context, possibly updating the current
// context owner scope, if the variable is the first one to be allocated at
// this loop level.
// The variable may belong to this scope or to any of its children, but at the
// same loop level.
void AllocateContextVariable(LocalVariable* variable,
LocalScope** context_owner);
void CollectLocalVariables(GrowableArray<VarDesc>* vars, int16_t* scope_id);
NameReference* FindReference(const String& name) const;
static const int kUnitializedContextLevel = INT_MIN;
LocalScope* parent_;
LocalScope* child_;
LocalScope* sibling_;
int function_level_; // Reflects the nesting level of local functions.
int loop_level_; // Reflects the loop nesting level.
int context_level_; // Reflects the level of the runtime context.
int num_context_variables_; // Only set if this scope is a context owner.
intptr_t begin_token_pos_; // Token index of beginning of scope.
intptr_t end_token_pos_; // Token index of end of scope.
GrowableArray<LocalVariable*> variables_;
GrowableArray<SourceLabel*> labels_;
// List of names referenced in this scope and its children that
// are not resolved to local variables.
GrowableArray<NameReference*> referenced_;
DISALLOW_COPY_AND_ASSIGN(LocalScope);
};
} // namespace dart
#endif // VM_SCOPES_H_