| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_MIPS. |
| #if defined(TARGET_ARCH_MIPS) |
| |
| #include "vm/intrinsifier.h" |
| |
| #include "vm/assembler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/object.h" |
| #include "vm/object_store.h" |
| #include "vm/regexp_assembler.h" |
| #include "vm/symbols.h" |
| |
| namespace dart { |
| |
| DECLARE_FLAG(bool, enable_type_checks); |
| |
| #define __ assembler-> |
| |
| |
| intptr_t Intrinsifier::ParameterSlotFromSp() { return -1; } |
| |
| |
| static intptr_t ComputeObjectArrayTypeArgumentsOffset() { |
| const Library& core_lib = Library::Handle(Library::CoreLibrary()); |
| const Class& cls = Class::Handle( |
| core_lib.LookupClassAllowPrivate(Symbols::_List())); |
| ASSERT(!cls.IsNull()); |
| ASSERT(cls.NumTypeArguments() == 1); |
| const intptr_t field_offset = cls.type_arguments_field_offset(); |
| ASSERT(field_offset != Class::kNoTypeArguments); |
| return field_offset; |
| } |
| |
| |
| // Intrinsify only for Smi value and index. Non-smi values need a store buffer |
| // update. Array length is always a Smi. |
| void Intrinsifier::ObjectArraySetIndexed(Assembler* assembler) { |
| Label fall_through; |
| |
| if (Isolate::Current()->TypeChecksEnabled()) { |
| const intptr_t type_args_field_offset = |
| ComputeObjectArrayTypeArgumentsOffset(); |
| // Inline simple tests (Smi, null), fallthrough if not positive. |
| Label checked_ok; |
| __ lw(T2, Address(SP, 0 * kWordSize)); // Value. |
| |
| // Null value is valid for any type. |
| __ LoadImmediate(T7, reinterpret_cast<int32_t>(Object::null())); |
| __ beq(T2, T7, &checked_ok); |
| |
| __ lw(T1, Address(SP, 2 * kWordSize)); // Array. |
| __ lw(T1, FieldAddress(T1, type_args_field_offset)); |
| |
| // T1: Type arguments of array. |
| __ beq(T1, T7, &checked_ok); |
| |
| // Check if it's dynamic. |
| // Get type at index 0. |
| __ lw(T0, FieldAddress(T1, TypeArguments::type_at_offset(0))); |
| __ BranchEqual(T0, Type::ZoneHandle(Type::DynamicType()), &checked_ok); |
| |
| // Check for int and num. |
| __ andi(CMPRES1, T2, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, &fall_through); // Non-smi value. |
| |
| __ BranchEqual(T0, Type::ZoneHandle(Type::IntType()), &checked_ok); |
| __ BranchNotEqual(T0, Type::ZoneHandle(Type::Number()), &fall_through); |
| __ Bind(&checked_ok); |
| } |
| __ lw(T1, Address(SP, 1 * kWordSize)); // Index. |
| __ andi(CMPRES1, T1, Immediate(kSmiTagMask)); |
| // Index not Smi. |
| __ bne(CMPRES1, ZR, &fall_through); |
| |
| __ lw(T0, Address(SP, 2 * kWordSize)); // Array. |
| // Range check. |
| __ lw(T3, FieldAddress(T0, Array::length_offset())); // Array length. |
| // Runtime throws exception. |
| __ BranchUnsignedGreaterEqual(T1, T3, &fall_through); |
| |
| // Note that T1 is Smi, i.e, times 2. |
| ASSERT(kSmiTagShift == 1); |
| __ lw(T2, Address(SP, 0 * kWordSize)); // Value. |
| __ sll(T1, T1, 1); // T1 is Smi. |
| __ addu(T1, T0, T1); |
| __ StoreIntoObject(T0, |
| FieldAddress(T1, Array::data_offset()), |
| T2); |
| // Caller is responsible for preserving the value if necessary. |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Allocate a GrowableObjectArray using the backing array specified. |
| // On stack: type argument (+1), data (+0). |
| void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) { |
| // The newly allocated object is returned in V0. |
| const intptr_t kTypeArgumentsOffset = 1 * kWordSize; |
| const intptr_t kArrayOffset = 0 * kWordSize; |
| Label fall_through; |
| |
| // Try allocating in new space. |
| const Class& cls = Class::Handle( |
| Isolate::Current()->object_store()->growable_object_array_class()); |
| __ TryAllocate(cls, &fall_through, V0, T1); |
| |
| // Store backing array object in growable array object. |
| __ lw(T1, Address(SP, kArrayOffset)); // Data argument. |
| // V0 is new, no barrier needed. |
| __ StoreIntoObjectNoBarrier( |
| V0, |
| FieldAddress(V0, GrowableObjectArray::data_offset()), |
| T1); |
| |
| // V0: new growable array object start as a tagged pointer. |
| // Store the type argument field in the growable array object. |
| __ lw(T1, Address(SP, kTypeArgumentsOffset)); // Type argument. |
| __ StoreIntoObjectNoBarrier( |
| V0, |
| FieldAddress(V0, GrowableObjectArray::type_arguments_offset()), |
| T1); |
| // Set the length field in the growable array object to 0. |
| __ Ret(); // Returns the newly allocated object in V0. |
| __ delay_slot()->sw(ZR, |
| FieldAddress(V0, GrowableObjectArray::length_offset())); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Add an element to growable array if it doesn't need to grow, otherwise |
| // call into regular code. |
| // On stack: growable array (+1), value (+0). |
| void Intrinsifier::GrowableArray_add(Assembler* assembler) { |
| // In checked mode we need to type-check the incoming argument. |
| if (Isolate::Current()->TypeChecksEnabled()) return; |
| Label fall_through; |
| __ lw(T0, Address(SP, 1 * kWordSize)); // Array. |
| __ lw(T1, FieldAddress(T0, GrowableObjectArray::length_offset())); |
| // T1: length. |
| __ lw(T2, FieldAddress(T0, GrowableObjectArray::data_offset())); |
| // T2: data. |
| __ lw(T3, FieldAddress(T2, Array::length_offset())); |
| // Compare length with capacity. |
| // T3: capacity. |
| __ beq(T1, T3, &fall_through); // Must grow data. |
| const int32_t value_one = reinterpret_cast<int32_t>(Smi::New(1)); |
| // len = len + 1; |
| __ addiu(T3, T1, Immediate(value_one)); |
| __ sw(T3, FieldAddress(T0, GrowableObjectArray::length_offset())); |
| __ lw(T0, Address(SP, 0 * kWordSize)); // Value. |
| ASSERT(kSmiTagShift == 1); |
| __ sll(T1, T1, 1); |
| __ addu(T1, T2, T1); |
| __ StoreIntoObject(T2, |
| FieldAddress(T1, Array::data_offset()), |
| T0); |
| __ LoadImmediate(T7, reinterpret_cast<int32_t>(Object::null())); |
| __ Ret(); |
| __ delay_slot()->mov(V0, T7); |
| __ Bind(&fall_through); |
| } |
| |
| |
| #define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \ |
| Label fall_through; \ |
| const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \ |
| __ lw(T2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
| /* Check that length is a positive Smi. */ \ |
| /* T2: requested array length argument. */ \ |
| __ andi(CMPRES1, T2, Immediate(kSmiTagMask)); \ |
| __ bne(CMPRES1, ZR, &fall_through); \ |
| __ BranchSignedLess(T2, Immediate(0), &fall_through); \ |
| __ SmiUntag(T2); \ |
| /* Check for maximum allowed length. */ \ |
| /* T2: untagged array length. */ \ |
| __ BranchSignedGreater(T2, Immediate(max_len), &fall_through); \ |
| __ sll(T2, T2, scale_shift); \ |
| const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \ |
| __ AddImmediate(T2, fixed_size); \ |
| __ LoadImmediate(TMP, -kObjectAlignment); \ |
| __ and_(T2, T2, TMP); \ |
| Heap* heap = Isolate::Current()->heap(); \ |
| Heap::Space space = heap->SpaceForAllocation(cid); \ |
| __ LoadImmediate(V0, heap->TopAddress(space)); \ |
| __ lw(V0, Address(V0, 0)); \ |
| \ |
| /* T2: allocation size. */ \ |
| __ AdduDetectOverflow(T1, V0, T2, CMPRES1); \ |
| __ bltz(CMPRES1, &fall_through); \ |
| \ |
| /* Check if the allocation fits into the remaining space. */ \ |
| /* V0: potential new object start. */ \ |
| /* T1: potential next object start. */ \ |
| /* T2: allocation size. */ \ |
| __ LoadImmediate(T3, heap->EndAddress(space)); \ |
| __ lw(T3, Address(T3, 0)); \ |
| __ BranchUnsignedGreaterEqual(T1, T3, &fall_through); \ |
| \ |
| /* Successfully allocated the object(s), now update top to point to */ \ |
| /* next object start and initialize the object. */ \ |
| __ LoadImmediate(T3, heap->TopAddress(space)); \ |
| __ sw(T1, Address(T3, 0)); \ |
| __ AddImmediate(V0, kHeapObjectTag); \ |
| __ UpdateAllocationStatsWithSize(cid, T2, T4, space); \ |
| /* Initialize the tags. */ \ |
| /* V0: new object start as a tagged pointer. */ \ |
| /* T1: new object end address. */ \ |
| /* T2: allocation size. */ \ |
| { \ |
| Label size_tag_overflow, done; \ |
| __ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag), \ |
| &size_tag_overflow); \ |
| __ b(&done); \ |
| __ delay_slot()->sll(T2, T2, \ |
| RawObject::kSizeTagPos - kObjectAlignmentLog2); \ |
| \ |
| __ Bind(&size_tag_overflow); \ |
| __ mov(T2, ZR); \ |
| __ Bind(&done); \ |
| \ |
| /* Get the class index and insert it into the tags. */ \ |
| __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); \ |
| __ or_(T2, T2, TMP); \ |
| __ sw(T2, FieldAddress(V0, type_name::tags_offset())); /* Tags. */ \ |
| } \ |
| /* Set the length field. */ \ |
| /* V0: new object start as a tagged pointer. */ \ |
| /* T1: new object end address. */ \ |
| __ lw(T2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
| __ StoreIntoObjectNoBarrier(V0, \ |
| FieldAddress(V0, type_name::length_offset()), \ |
| T2); \ |
| /* Initialize all array elements to 0. */ \ |
| /* V0: new object start as a tagged pointer. */ \ |
| /* T1: new object end address. */ \ |
| /* T2: iterator which initially points to the start of the variable */ \ |
| /* data area to be initialized. */ \ |
| __ AddImmediate(T2, V0, sizeof(Raw##type_name) - 1); \ |
| Label done, init_loop; \ |
| __ Bind(&init_loop); \ |
| __ BranchUnsignedGreaterEqual(T2, T1, &done); \ |
| __ sw(ZR, Address(T2, 0)); \ |
| __ b(&init_loop); \ |
| __ delay_slot()->addiu(T2, T2, Immediate(kWordSize)); \ |
| __ Bind(&done); \ |
| \ |
| __ Ret(); \ |
| __ Bind(&fall_through); \ |
| |
| |
| static int GetScaleFactor(intptr_t size) { |
| switch (size) { |
| case 1: return 0; |
| case 2: return 1; |
| case 4: return 2; |
| case 8: return 3; |
| case 16: return 4; |
| } |
| UNREACHABLE(); |
| return -1; |
| } |
| |
| |
| #define TYPED_DATA_ALLOCATOR(clazz) \ |
| void Intrinsifier::TypedData_##clazz##_new(Assembler* assembler) { \ |
| intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
| intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
| int shift = GetScaleFactor(size); \ |
| TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \ |
| } \ |
| void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \ |
| intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
| intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
| int shift = GetScaleFactor(size); \ |
| TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \ |
| } |
| CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
| #undef TYPED_DATA_ALLOCATOR |
| |
| |
| // Loads args from stack into T0 and T1 |
| // Tests if they are smis, jumps to label not_smi if not. |
| static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(T1, Address(SP, 1 * kWordSize)); |
| __ or_(CMPRES1, T0, T1); |
| __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, not_smi); |
| return; |
| } |
| |
| |
| void Intrinsifier::Integer_addFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); // Checks two Smis. |
| __ AdduDetectOverflow(V0, T0, T1, CMPRES1); // Add. |
| __ bltz(CMPRES1, &fall_through); // Fall through on overflow. |
| __ Ret(); // Nothing in branch delay slot. |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_add(Assembler* assembler) { |
| Integer_addFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_subFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ SubuDetectOverflow(V0, T0, T1, CMPRES1); // Subtract. |
| __ bltz(CMPRES1, &fall_through); // Fall through on overflow. |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_sub(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ SubuDetectOverflow(V0, T1, T0, CMPRES1); // Subtract. |
| __ bltz(CMPRES1, &fall_through); // Fall through on overflow. |
| __ Ret(); // Nothing in branch delay slot. |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); // checks two smis |
| __ SmiUntag(T0); // untags T0. only want result shifted by one |
| |
| __ mult(T0, T1); // HI:LO <- T0 * T1. |
| __ mflo(V0); // V0 <- LO. |
| __ mfhi(T2); // T2 <- HI. |
| __ sra(T3, V0, 31); // T3 <- V0 >> 31. |
| __ bne(T2, T3, &fall_through); // Fall through on overflow. |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_mul(Assembler* assembler) { |
| Integer_mulFromInteger(assembler); |
| } |
| |
| |
| // Optimizations: |
| // - result is 0 if: |
| // - left is 0 |
| // - left equals right |
| // - result is left if |
| // - left > 0 && left < right |
| // T1: Tagged left (dividend). |
| // T0: Tagged right (divisor). |
| // Returns: |
| // V0: Untagged fallthrough result (remainder to be adjusted), or |
| // V0: Tagged return result (remainder). |
| static void EmitRemainderOperation(Assembler* assembler) { |
| Label return_zero, modulo; |
| const Register left = T1; |
| const Register right = T0; |
| const Register result = V0; |
| |
| __ beq(left, ZR, &return_zero); |
| __ beq(left, right, &return_zero); |
| |
| __ bltz(left, &modulo); |
| // left is positive. |
| __ BranchSignedGreaterEqual(left, right, &modulo); |
| // left is less than right. return left. |
| __ Ret(); |
| __ delay_slot()->mov(result, left); |
| |
| __ Bind(&return_zero); |
| __ Ret(); |
| __ delay_slot()->mov(result, ZR); |
| |
| __ Bind(&modulo); |
| __ SmiUntag(right); |
| __ SmiUntag(left); |
| __ div(left, right); // Divide, remainder goes in HI. |
| __ mfhi(result); // result <- HI. |
| return; |
| } |
| |
| |
| // Implementation: |
| // res = left % right; |
| // if (res < 0) { |
| // if (right < 0) { |
| // res = res - right; |
| // } else { |
| // res = res + right; |
| // } |
| // } |
| void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) { |
| Label fall_through, subtract; |
| // Test arguments for smi. |
| __ lw(T1, Address(SP, 0 * kWordSize)); |
| __ lw(T0, Address(SP, 1 * kWordSize)); |
| __ or_(CMPRES1, T0, T1); |
| __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, &fall_through); |
| // T1: Tagged left (dividend). |
| // T0: Tagged right (divisor). |
| // Check if modulo by zero -> exception thrown in main function. |
| __ beq(T0, ZR, &fall_through); |
| EmitRemainderOperation(assembler); |
| // Untagged right in T0. Untagged remainder result in V0. |
| |
| Label done; |
| __ bgez(V0, &done); |
| __ bltz(T0, &subtract); |
| __ addu(V0, V0, T0); |
| __ Ret(); |
| __ delay_slot()->SmiTag(V0); |
| |
| __ Bind(&subtract); |
| __ subu(V0, V0, T0); |
| __ Ret(); |
| __ delay_slot()->SmiTag(V0); |
| |
| __ Bind(&done); |
| __ Ret(); |
| __ delay_slot()->SmiTag(V0); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_truncDivide(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ beq(T0, ZR, &fall_through); // If b is 0, fall through. |
| |
| __ SmiUntag(T0); |
| __ SmiUntag(T1); |
| __ div(T1, T0); // LO <- T1 / T0 |
| __ mflo(V0); // V0 <- LO |
| // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
| // cannot tag the result. |
| __ BranchEqual(V0, Immediate(0x40000000), &fall_through); |
| __ Ret(); |
| __ delay_slot()->SmiTag(V0); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_negate(Assembler* assembler) { |
| Label fall_through; |
| |
| __ lw(T0, Address(SP, + 0 * kWordSize)); // Grabs first argument. |
| __ andi(CMPRES1, T0, Immediate(kSmiTagMask)); // Test for Smi. |
| __ bne(CMPRES1, ZR, &fall_through); // Fall through if not a Smi. |
| __ SubuDetectOverflow(V0, ZR, T0, CMPRES1); |
| __ bltz(CMPRES1, &fall_through); // There was overflow. |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis. |
| __ Ret(); |
| __ delay_slot()->and_(V0, T0, T1); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitAnd(Assembler* assembler) { |
| Integer_bitAndFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis. |
| __ Ret(); |
| __ delay_slot()->or_(V0, T0, T1); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitOr(Assembler* assembler) { |
| Integer_bitOrFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis. |
| __ Ret(); |
| __ delay_slot()->xor_(V0, T0, T1); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitXor(Assembler* assembler) { |
| Integer_bitXorFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_shl(Assembler* assembler) { |
| ASSERT(kSmiTagShift == 1); |
| ASSERT(kSmiTag == 0); |
| Label fall_through, overflow; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ BranchUnsignedGreater( |
| T0, Immediate(Smi::RawValue(Smi::kBits)), &fall_through); |
| __ SmiUntag(T0); |
| |
| // Check for overflow by shifting left and shifting back arithmetically. |
| // If the result is different from the original, there was overflow. |
| __ sllv(TMP, T1, T0); |
| __ srav(CMPRES1, TMP, T0); |
| __ bne(CMPRES1, T1, &overflow); |
| |
| // No overflow, result in V0. |
| __ Ret(); |
| __ delay_slot()->sllv(V0, T1, T0); |
| |
| __ Bind(&overflow); |
| // Arguments are Smi but the shift produced an overflow to Mint. |
| __ bltz(T1, &fall_through); |
| __ SmiUntag(T1); |
| |
| // Pull off high bits that will be shifted off of T1 by making a mask |
| // ((1 << T0) - 1), shifting it to the right, masking T1, then shifting back. |
| // high bits = (((1 << T0) - 1) << (32 - T0)) & T1) >> (32 - T0) |
| // lo bits = T1 << T0 |
| __ LoadImmediate(T3, 1); |
| __ sllv(T3, T3, T0); // T3 <- T3 << T0 |
| __ addiu(T3, T3, Immediate(-1)); // T3 <- T3 - 1 |
| __ subu(T4, ZR, T0); // T4 <- -T0 |
| __ addiu(T4, T4, Immediate(32)); // T4 <- 32 - T0 |
| __ sllv(T3, T3, T4); // T3 <- T3 << T4 |
| __ and_(T3, T3, T1); // T3 <- T3 & T1 |
| __ srlv(T3, T3, T4); // T3 <- T3 >> T4 |
| // Now T3 has the bits that fall off of T1 on a left shift. |
| __ sllv(T0, T1, T0); // T0 gets low bits. |
| |
| const Class& mint_class = Class::Handle( |
| Isolate::Current()->object_store()->mint_class()); |
| __ TryAllocate(mint_class, &fall_through, V0, T1); |
| |
| __ sw(T0, FieldAddress(V0, Mint::value_offset())); |
| __ Ret(); |
| __ delay_slot()->sw(T3, FieldAddress(V0, Mint::value_offset() + kWordSize)); |
| __ Bind(&fall_through); |
| } |
| |
| |
| static void Get64SmiOrMint(Assembler* assembler, |
| Register res_hi, |
| Register res_lo, |
| Register reg, |
| Label* not_smi_or_mint) { |
| Label not_smi, done; |
| __ andi(CMPRES1, reg, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, ¬_smi); |
| __ SmiUntag(reg); |
| |
| // Sign extend to 64 bit |
| __ mov(res_lo, reg); |
| __ b(&done); |
| __ delay_slot()->sra(res_hi, reg, 31); |
| |
| __ Bind(¬_smi); |
| __ LoadClassId(CMPRES1, reg); |
| __ BranchNotEqual(CMPRES1, Immediate(kMintCid), not_smi_or_mint); |
| |
| // Mint. |
| __ lw(res_lo, FieldAddress(reg, Mint::value_offset())); |
| __ lw(res_hi, FieldAddress(reg, Mint::value_offset() + kWordSize)); |
| __ Bind(&done); |
| return; |
| } |
| |
| |
| static void CompareIntegers(Assembler* assembler, RelationOperator rel_op) { |
| Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through; |
| TestBothArgumentsSmis(assembler, &try_mint_smi); |
| // T0 contains the right argument. T1 contains left argument |
| |
| switch (rel_op) { |
| case LT: __ BranchSignedLess(T1, T0, &is_true); break; |
| case LE: __ BranchSignedLessEqual(T1, T0, &is_true); break; |
| case GT: __ BranchSignedGreater(T1, T0, &is_true); break; |
| case GE: __ BranchSignedGreaterEqual(T1, T0, &is_true); break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| __ Bind(&is_false); |
| __ LoadObject(V0, Bool::False()); |
| __ Ret(); |
| __ Bind(&is_true); |
| __ LoadObject(V0, Bool::True()); |
| __ Ret(); |
| |
| __ Bind(&try_mint_smi); |
| // Get left as 64 bit integer. |
| Get64SmiOrMint(assembler, T3, T2, T1, &fall_through); |
| // Get right as 64 bit integer. |
| Get64SmiOrMint(assembler, T5, T4, T0, &fall_through); |
| // T3: left high. |
| // T2: left low. |
| // T5: right high. |
| // T4: right low. |
| |
| // 64-bit comparison |
| switch (rel_op) { |
| case LT: |
| case LE: { |
| // Compare left hi, right high. |
| __ BranchSignedGreater(T3, T5, &is_false); |
| __ BranchSignedLess(T3, T5, &is_true); |
| // Compare left lo, right lo. |
| if (rel_op == LT) { |
| __ BranchUnsignedGreaterEqual(T2, T4, &is_false); |
| } else { |
| __ BranchUnsignedGreater(T2, T4, &is_false); |
| } |
| break; |
| } |
| case GT: |
| case GE: { |
| // Compare left hi, right high. |
| __ BranchSignedLess(T3, T5, &is_false); |
| __ BranchSignedGreater(T3, T5, &is_true); |
| // Compare left lo, right lo. |
| if (rel_op == GT) { |
| __ BranchUnsignedLessEqual(T2, T4, &is_false); |
| } else { |
| __ BranchUnsignedLess(T2, T4, &is_false); |
| } |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| // Else is true. |
| __ b(&is_true); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) { |
| CompareIntegers(assembler, LT); |
| } |
| |
| |
| void Intrinsifier::Integer_lessThan(Assembler* assembler) { |
| CompareIntegers(assembler, LT); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterThan(Assembler* assembler) { |
| CompareIntegers(assembler, GT); |
| } |
| |
| |
| void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) { |
| CompareIntegers(assembler, LE); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) { |
| CompareIntegers(assembler, GE); |
| } |
| |
| |
| // This is called for Smi, Mint and Bigint receivers. The right argument |
| // can be Smi, Mint, Bigint or double. |
| void Intrinsifier::Integer_equalToInteger(Assembler* assembler) { |
| Label fall_through, true_label, check_for_mint; |
| // For integer receiver '===' check first. |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(T1, Address(SP, 1 * kWordSize)); |
| __ beq(T0, T1, &true_label); |
| |
| __ or_(T2, T0, T1); |
| __ andi(CMPRES1, T2, Immediate(kSmiTagMask)); |
| // If T0 or T1 is not a smi do Mint checks. |
| __ bne(CMPRES1, ZR, &check_for_mint); |
| |
| // Both arguments are smi, '===' is good enough. |
| __ LoadObject(V0, Bool::False()); |
| __ Ret(); |
| __ Bind(&true_label); |
| __ LoadObject(V0, Bool::True()); |
| __ Ret(); |
| |
| // At least one of the arguments was not Smi. |
| Label receiver_not_smi; |
| __ Bind(&check_for_mint); |
| |
| __ andi(CMPRES1, T1, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, &receiver_not_smi); // Check receiver. |
| |
| // Left (receiver) is Smi, return false if right is not Double. |
| // Note that an instance of Mint or Bigint never contains a value that can be |
| // represented by Smi. |
| |
| __ LoadClassId(CMPRES1, T0); |
| __ BranchEqual(CMPRES1, Immediate(kDoubleCid), &fall_through); |
| __ LoadObject(V0, Bool::False()); // Smi == Mint -> false. |
| __ Ret(); |
| |
| __ Bind(&receiver_not_smi); |
| // T1:: receiver. |
| |
| __ LoadClassId(CMPRES1, T1); |
| __ BranchNotEqual(CMPRES1, Immediate(kMintCid), &fall_through); |
| // Receiver is Mint, return false if right is Smi. |
| __ andi(CMPRES1, T0, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, &fall_through); |
| __ LoadObject(V0, Bool::False()); |
| __ Ret(); |
| // TODO(srdjan): Implement Mint == Mint comparison. |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_equal(Assembler* assembler) { |
| Integer_equalToInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_sar(Assembler* assembler) { |
| Label fall_through; |
| |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // Shift amount in T0. Value to shift in T1. |
| |
| __ SmiUntag(T0); |
| __ bltz(T0, &fall_through); |
| |
| __ LoadImmediate(T2, 0x1F); |
| __ slt(CMPRES1, T2, T0); // CMPRES1 <- 0x1F < T0 ? 1 : 0 |
| __ movn(T0, T2, CMPRES1); // T0 <- 0x1F < T0 ? 0x1F : T0 |
| |
| __ SmiUntag(T1); |
| __ srav(V0, T1, T0); |
| __ Ret(); |
| __ delay_slot()->SmiTag(V0); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Smi_bitNegate(Assembler* assembler) { |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ nor(V0, T0, ZR); |
| __ Ret(); |
| __ delay_slot()->addiu(V0, V0, Immediate(-1)); // Remove inverted smi-tag. |
| } |
| |
| |
| void Intrinsifier::Smi_bitLength(Assembler* assembler) { |
| // TODO(sra): Implement. |
| } |
| |
| |
| void Intrinsifier::Bigint_absAdd(Assembler* assembler) { |
| // static void _absAdd(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| // T2 = used, T3 = digits |
| __ lw(T2, Address(SP, 3 * kWordSize)); |
| __ lw(T3, Address(SP, 4 * kWordSize)); |
| // T3 = &digits[0] |
| __ addiu(T3, T3, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // T4 = a_used, T5 = a_digits |
| __ lw(T4, Address(SP, 1 * kWordSize)); |
| __ lw(T5, Address(SP, 2 * kWordSize)); |
| // T5 = &a_digits[0] |
| __ addiu(T5, T5, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // T6 = r_digits |
| __ lw(T6, Address(SP, 0 * kWordSize)); |
| // T6 = &r_digits[0] |
| __ addiu(T6, T6, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // V0 = &digits[a_used >> 1], a_used is Smi. |
| __ sll(V0, T4, 1); |
| __ addu(V0, V0, T3); |
| |
| // V1 = &digits[used >> 1], used is Smi. |
| __ sll(V1, T2, 1); |
| __ addu(V1, V1, T3); |
| |
| // T2 = carry in = 0. |
| __ mov(T2, ZR); |
| Label add_loop; |
| __ Bind(&add_loop); |
| // Loop a_used times, a_used > 0. |
| __ lw(T0, Address(T3, 0)); // T0 = x. |
| __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit)); |
| __ lw(T1, Address(T5, 0)); // T1 = y. |
| __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit)); |
| __ addu(T1, T0, T1); // T1 = x + y. |
| __ sltu(T4, T1, T0); // T4 = carry out of x + y. |
| __ addu(T0, T1, T2); // T0 = x + y + carry in. |
| __ sltu(T2, T0, T1); // T2 = carry out of (x + y) + carry in. |
| __ or_(T2, T2, T4); // T2 = carry out of x + y + carry in. |
| __ sw(T0, Address(T6, 0)); |
| __ bne(T3, V0, &add_loop); |
| __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit)); |
| |
| Label last_carry; |
| __ beq(T3, V1, &last_carry); |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop used - a_used times, used - a_used > 0. |
| __ lw(T0, Address(T3, 0)); // T0 = x. |
| __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit)); |
| __ addu(T1, T0, T2); // T1 = x + carry in. |
| __ sltu(T2, T1, T0); // T2 = carry out of x + carry in. |
| __ sw(T1, Address(T6, 0)); |
| __ bne(T3, V1, &carry_loop); |
| __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit)); |
| |
| __ Bind(&last_carry); |
| __ sw(T2, Address(T6, 0)); |
| |
| // Returning Object::null() is not required, since this method is private. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_absSub(Assembler* assembler) { |
| // static void _absSub(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| // T2 = used, T3 = digits |
| __ lw(T2, Address(SP, 3 * kWordSize)); |
| __ lw(T3, Address(SP, 4 * kWordSize)); |
| // T3 = &digits[0] |
| __ addiu(T3, T3, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // T4 = a_used, T5 = a_digits |
| __ lw(T4, Address(SP, 1 * kWordSize)); |
| __ lw(T5, Address(SP, 2 * kWordSize)); |
| // T5 = &a_digits[0] |
| __ addiu(T5, T5, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // T6 = r_digits |
| __ lw(T6, Address(SP, 0 * kWordSize)); |
| // T6 = &r_digits[0] |
| __ addiu(T6, T6, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // V0 = &digits[a_used >> 1], a_used is Smi. |
| __ sll(V0, T4, 1); |
| __ addu(V0, V0, T3); |
| |
| // V1 = &digits[used >> 1], used is Smi. |
| __ sll(V1, T2, 1); |
| __ addu(V1, V1, T3); |
| |
| // T2 = borrow in = 0. |
| __ mov(T2, ZR); |
| Label sub_loop; |
| __ Bind(&sub_loop); |
| // Loop a_used times, a_used > 0. |
| __ lw(T0, Address(T3, 0)); // T0 = x. |
| __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit)); |
| __ lw(T1, Address(T5, 0)); // T1 = y. |
| __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit)); |
| __ subu(T1, T0, T1); // T1 = x - y. |
| __ sltu(T4, T0, T1); // T4 = borrow out of x - y. |
| __ subu(T0, T1, T2); // T0 = x - y - borrow in. |
| __ sltu(T2, T1, T0); // T2 = borrow out of (x - y) - borrow in. |
| __ or_(T2, T2, T4); // T2 = borrow out of x - y - borrow in. |
| __ sw(T0, Address(T6, 0)); |
| __ bne(T3, V0, &sub_loop); |
| __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit)); |
| |
| Label done; |
| __ beq(T3, V1, &done); |
| |
| Label borrow_loop; |
| __ Bind(&borrow_loop); |
| // Loop used - a_used times, used - a_used > 0. |
| __ lw(T0, Address(T3, 0)); // T0 = x. |
| __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit)); |
| __ subu(T1, T0, T2); // T1 = x - borrow in. |
| __ sltu(T2, T0, T1); // T2 = borrow out of x - borrow in. |
| __ sw(T1, Address(T6, 0)); |
| __ bne(T3, V1, &borrow_loop); |
| __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit)); |
| |
| __ Bind(&done); |
| // Returning Object::null() is not required, since this method is private. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_mulAdd(Assembler* assembler) { |
| // Pseudo code: |
| // static int _mulAdd(Uint32List x_digits, int xi, |
| // Uint32List m_digits, int i, |
| // Uint32List a_digits, int j, int n) { |
| // uint32_t x = x_digits[xi >> 1]; // xi is Smi. |
| // if (x == 0 || n == 0) { |
| // return 1; |
| // } |
| // uint32_t* mip = &m_digits[i >> 1]; // i is Smi. |
| // uint32_t* ajp = &a_digits[j >> 1]; // j is Smi. |
| // uint32_t c = 0; |
| // SmiUntag(n); |
| // do { |
| // uint32_t mi = *mip++; |
| // uint32_t aj = *ajp; |
| // uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit. |
| // *ajp++ = low32(t); |
| // c = high32(t); |
| // } while (--n > 0); |
| // while (c != 0) { |
| // uint64_t t = *ajp + c; |
| // *ajp++ = low32(t); |
| // c = high32(t); // c == 0 or 1. |
| // } |
| // return 1; |
| // } |
| |
| Label done; |
| // T3 = x, no_op if x == 0 |
| __ lw(T0, Address(SP, 5 * kWordSize)); // T0 = xi as Smi. |
| __ lw(T1, Address(SP, 6 * kWordSize)); // T1 = x_digits. |
| __ sll(T0, T0, 1); |
| __ addu(T1, T0, T1); |
| __ lw(T3, FieldAddress(T1, TypedData::data_offset())); |
| __ beq(T3, ZR, &done); |
| |
| // T6 = SmiUntag(n), no_op if n == 0 |
| __ lw(T6, Address(SP, 0 * kWordSize)); |
| __ SmiUntag(T6); |
| __ beq(T6, ZR, &done); |
| __ delay_slot()->addiu(T6, T6, Immediate(-1)); // ... while (n-- > 0). |
| |
| // T4 = mip = &m_digits[i >> 1] |
| __ lw(T0, Address(SP, 3 * kWordSize)); // T0 = i as Smi. |
| __ lw(T1, Address(SP, 4 * kWordSize)); // T1 = m_digits. |
| __ sll(T0, T0, 1); |
| __ addu(T1, T0, T1); |
| __ addiu(T4, T1, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // T5 = ajp = &a_digits[j >> 1] |
| __ lw(T0, Address(SP, 1 * kWordSize)); // T0 = j as Smi. |
| __ lw(T1, Address(SP, 2 * kWordSize)); // T1 = a_digits. |
| __ sll(T0, T0, 1); |
| __ addu(T1, T0, T1); |
| __ addiu(T5, T1, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // T1 = c = 0 |
| __ mov(T1, ZR); |
| |
| Label muladd_loop; |
| __ Bind(&muladd_loop); |
| // x: T3 |
| // mip: T4 |
| // ajp: T5 |
| // c: T1 |
| // n-1: T6 |
| |
| // uint32_t mi = *mip++ |
| __ lw(T2, Address(T4, 0)); |
| |
| // uint32_t aj = *ajp |
| __ lw(T0, Address(T5, 0)); |
| |
| // uint64_t t = x*mi + aj + c |
| __ multu(T2, T3); // HI:LO = x*mi. |
| __ addiu(T4, T4, Immediate(Bigint::kBytesPerDigit)); |
| __ mflo(V0); |
| __ mfhi(V1); |
| __ addu(V0, V0, T0); // V0 = low32(x*mi) + aj. |
| __ sltu(T7, V0, T0); // T7 = carry out of low32(x*mi) + aj. |
| __ addu(V1, V1, T7); // V1:V0 = x*mi + aj. |
| __ addu(T0, V0, T1); // T0 = low32(x*mi + aj) + c. |
| __ sltu(T7, T0, T1); // T7 = carry out of low32(x*mi + aj) + c. |
| __ addu(T1, V1, T7); // T1 = c = high32(x*mi + aj + c). |
| |
| // *ajp++ = low32(t) = T0 |
| __ sw(T0, Address(T5, 0)); |
| __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit)); |
| |
| // while (n-- > 0) |
| __ bgtz(T6, &muladd_loop); |
| __ delay_slot()->addiu(T6, T6, Immediate(-1)); // --n |
| |
| __ beq(T1, ZR, &done); |
| |
| // *ajp++ += c |
| __ lw(T0, Address(T5, 0)); |
| __ addu(T0, T0, T1); |
| __ sltu(T1, T0, T1); |
| __ sw(T0, Address(T5, 0)); |
| __ beq(T1, ZR, &done); |
| __ delay_slot()->addiu(T5, T5, Immediate(Bigint::kBytesPerDigit)); |
| |
| Label propagate_carry_loop; |
| __ Bind(&propagate_carry_loop); |
| __ lw(T0, Address(T5, 0)); |
| __ addiu(T0, T0, Immediate(1)); |
| __ sw(T0, Address(T5, 0)); |
| __ beq(T0, ZR, &propagate_carry_loop); |
| __ delay_slot()->addiu(T5, T5, Immediate(Bigint::kBytesPerDigit)); |
| |
| __ Bind(&done); |
| __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) { |
| // Pseudo code: |
| // static int _sqrAdd(Uint32List x_digits, int i, |
| // Uint32List a_digits, int used) { |
| // uint32_t* xip = &x_digits[i >> 1]; // i is Smi. |
| // uint32_t x = *xip++; |
| // if (x == 0) return 1; |
| // uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| // uint32_t aj = *ajp; |
| // uint64_t t = x*x + aj; |
| // *ajp++ = low32(t); |
| // uint64_t c = high32(t); |
| // int n = ((used - i) >> 1) - 1; // used and i are Smi. |
| // while (--n >= 0) { |
| // uint32_t xi = *xip++; |
| // uint32_t aj = *ajp; |
| // uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit. |
| // *ajp++ = low32(t); |
| // c = high64(t); // 33-bit. |
| // } |
| // uint32_t aj = *ajp; |
| // uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit. |
| // *ajp++ = low32(t); |
| // *ajp = high32(t); |
| // return 1; |
| // } |
| |
| // T4 = xip = &x_digits[i >> 1] |
| __ lw(T2, Address(SP, 2 * kWordSize)); // T2 = i as Smi. |
| __ lw(T3, Address(SP, 3 * kWordSize)); // T3 = x_digits. |
| __ sll(T0, T2, 1); |
| __ addu(T3, T0, T3); |
| __ addiu(T4, T3, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // T3 = x = *xip++, return if x == 0 |
| Label x_zero; |
| __ lw(T3, Address(T4, 0)); |
| __ beq(T3, ZR, &x_zero); |
| __ delay_slot()->addiu(T4, T4, Immediate(Bigint::kBytesPerDigit)); |
| |
| // T5 = ajp = &a_digits[i] |
| __ lw(T1, Address(SP, 1 * kWordSize)); // a_digits |
| __ sll(T0, T2, 2); // j == 2*i, i is Smi. |
| __ addu(T1, T0, T1); |
| __ addiu(T5, T1, Immediate(TypedData::data_offset() - kHeapObjectTag)); |
| |
| // T6:T0 = t = x*x + *ajp |
| __ lw(T0, Address(T5, 0)); // *ajp. |
| __ mthi(ZR); |
| __ mtlo(T0); |
| __ maddu(T3, T3); // HI:LO = T3*T3 + *ajp. |
| __ mfhi(T6); |
| __ mflo(T0); |
| |
| // *ajp++ = low32(t) = R0 |
| __ sw(T0, Address(T5, 0)); |
| __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit)); |
| |
| // T6 = low32(c) = high32(t) |
| // T7 = high32(c) = 0 |
| __ mov(T7, ZR); |
| |
| // int n = used - i - 1; while (--n >= 0) ... |
| __ lw(T0, Address(SP, 0 * kWordSize)); // used is Smi |
| __ subu(V0, T0, T2); |
| __ SmiUntag(V0); // V0 = used - i |
| // int n = used - i - 2; if (n >= 0) ... while (n-- > 0) |
| __ addiu(V0, V0, Immediate(-2)); |
| |
| Label loop, done; |
| __ bltz(V0, &done); |
| |
| __ Bind(&loop); |
| // x: T3 |
| // xip: T4 |
| // ajp: T5 |
| // c: T7:T6 |
| // t: A2:A1:A0 (not live at loop entry) |
| // n: V0 |
| |
| // uint32_t xi = *xip++ |
| __ lw(T2, Address(T4, 0)); |
| __ addiu(T4, T4, Immediate(Bigint::kBytesPerDigit)); |
| |
| // uint32_t aj = *ajp |
| __ lw(T0, Address(T5, 0)); |
| |
| // uint96_t t = T7:T6:T0 = 2*x*xi + aj + c |
| __ multu(T2, T3); |
| __ mfhi(A1); |
| __ mflo(A0); // A1:A0 = x*xi. |
| __ srl(A2, A1, 31); |
| __ sll(A1, A1, 1); |
| __ srl(T1, A0, 31); |
| __ or_(A1, A1, T1); |
| __ sll(A0, A0, 1); // A2:A1:A0 = 2*x*xi. |
| __ addu(A0, A0, T0); |
| __ sltu(T1, A0, T0); |
| __ addu(A1, A1, T1); // No carry out possible; A2:A1:A0 = 2*x*xi + aj. |
| __ addu(T0, A0, T6); |
| __ sltu(T1, T0, T6); |
| __ addu(T6, A1, T1); // No carry out; A2:T6:T0 = 2*x*xi + aj + low32(c). |
| __ addu(T6, T6, T7); // No carry out; A2:T6:T0 = 2*x*xi + aj + c. |
| __ mov(T7, A2); // T7:T6:T0 = 2*x*xi + aj + c. |
| |
| // *ajp++ = low32(t) = T0 |
| __ sw(T0, Address(T5, 0)); |
| __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit)); |
| |
| // while (n-- > 0) |
| __ bgtz(V0, &loop); |
| __ delay_slot()->addiu(V0, V0, Immediate(-1)); // --n |
| |
| __ Bind(&done); |
| // uint32_t aj = *ajp |
| __ lw(T0, Address(T5, 0)); |
| |
| // uint64_t t = aj + c |
| __ addu(T6, T6, T0); |
| __ sltu(T1, T6, T0); |
| __ addu(T7, T7, T1); |
| |
| // *ajp = low32(t) = T6 |
| // *(ajp + 1) = high32(t) = T7 |
| __ sw(T6, Address(T5, 0)); |
| __ sw(T7, Address(T5, Bigint::kBytesPerDigit)); |
| |
| __ Bind(&x_zero); |
| __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed. |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_estQuotientDigit(Assembler* assembler) { |
| // No unsigned 64-bit / 32-bit divide instruction. |
| } |
| |
| |
| void Intrinsifier::Montgomery_mulMod(Assembler* assembler) { |
| // Pseudo code: |
| // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| // uint32_t rho = args[_RHO]; // _RHO == 2. |
| // uint32_t d = digits[i >> 1]; // i is Smi. |
| // uint64_t t = rho*d; |
| // args[_MU] = t mod DIGIT_BASE; // _MU == 4. |
| // return 1; |
| // } |
| |
| // T4 = args |
| __ lw(T4, Address(SP, 2 * kWordSize)); // args |
| |
| // T3 = rho = args[2] |
| __ lw(T3, |
| FieldAddress(T4, TypedData::data_offset() + 2*Bigint::kBytesPerDigit)); |
| |
| // T2 = d = digits[i >> 1] |
| __ lw(T0, Address(SP, 0 * kWordSize)); // T0 = i as Smi. |
| __ lw(T1, Address(SP, 1 * kWordSize)); // T1 = digits. |
| __ sll(T0, T0, 1); |
| __ addu(T1, T0, T1); |
| __ lw(T2, FieldAddress(T1, TypedData::data_offset())); |
| |
| // HI:LO = t = rho*d |
| __ multu(T2, T3); |
| |
| // args[4] = t mod DIGIT_BASE = low32(t) |
| __ mflo(T0); |
| __ sw(T0, |
| FieldAddress(T4, TypedData::data_offset() + 4*Bigint::kBytesPerDigit)); |
| |
| __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed. |
| __ Ret(); |
| } |
| |
| |
| // Check if the last argument is a double, jump to label 'is_smi' if smi |
| // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| // Returns the last argument in T0. |
| static void TestLastArgumentIsDouble(Assembler* assembler, |
| Label* is_smi, |
| Label* not_double_smi) { |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ andi(CMPRES1, T0, Immediate(kSmiTagMask)); |
| __ beq(CMPRES1, ZR, is_smi); |
| __ LoadClassId(CMPRES1, T0); |
| __ BranchNotEqual(CMPRES1, Immediate(kDoubleCid), not_double_smi); |
| // Fall through with Double in T0. |
| } |
| |
| |
| // Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
| // type. Return true or false object in the register V0. Any NaN argument |
| // returns false. Any non-double arg1 causes control flow to fall through to the |
| // slow case (compiled method body). |
| static void CompareDoubles(Assembler* assembler, RelationOperator rel_op) { |
| Label is_smi, double_op, no_NaN, fall_through; |
| __ Comment("CompareDoubles Intrinsic"); |
| |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Both arguments are double, right operand is in T0. |
| __ LoadDFromOffset(D1, T0, Double::value_offset() - kHeapObjectTag); |
| __ Bind(&double_op); |
| __ lw(T0, Address(SP, 1 * kWordSize)); // Left argument. |
| __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag); |
| // Now, left is in D0, right is in D1. |
| |
| __ cund(D0, D1); // Check for NaN. |
| __ bc1f(&no_NaN); |
| __ LoadObject(V0, Bool::False()); // Return false if either is NaN. |
| __ Ret(); |
| __ Bind(&no_NaN); |
| |
| switch (rel_op) { |
| case EQ: __ ceqd(D0, D1); break; |
| case LT: __ coltd(D0, D1); break; |
| case LE: __ coled(D0, D1); break; |
| case GT: __ coltd(D1, D0); break; |
| case GE: __ coled(D1, D0); break; |
| default: { |
| // Only passing the above conditions to this function. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| Label is_true; |
| __ bc1t(&is_true); |
| __ LoadObject(V0, Bool::False()); |
| __ Ret(); |
| __ Bind(&is_true); |
| __ LoadObject(V0, Bool::True()); |
| __ Ret(); |
| |
| |
| __ Bind(&is_smi); |
| __ SmiUntag(T0); |
| __ mtc1(T0, STMP1); |
| __ cvtdw(D1, STMP1); |
| __ b(&double_op); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Double_greaterThan(Assembler* assembler) { |
| CompareDoubles(assembler, GT); |
| } |
| |
| |
| void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) { |
| CompareDoubles(assembler, GE); |
| } |
| |
| |
| void Intrinsifier::Double_lessThan(Assembler* assembler) { |
| CompareDoubles(assembler, LT); |
| } |
| |
| |
| void Intrinsifier::Double_equal(Assembler* assembler) { |
| CompareDoubles(assembler, EQ); |
| } |
| |
| |
| void Intrinsifier::Double_lessEqualThan(Assembler* assembler) { |
| CompareDoubles(assembler, LE); |
| } |
| |
| |
| // Expects left argument to be double (receiver). Right argument is unknown. |
| // Both arguments are on stack. |
| static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) { |
| Label fall_through; |
| |
| TestLastArgumentIsDouble(assembler, &fall_through, &fall_through); |
| // Both arguments are double, right operand is in T0. |
| __ lwc1(F2, FieldAddress(T0, Double::value_offset())); |
| __ lwc1(F3, FieldAddress(T0, Double::value_offset() + kWordSize)); |
| __ lw(T0, Address(SP, 1 * kWordSize)); // Left argument. |
| __ lwc1(F0, FieldAddress(T0, Double::value_offset())); |
| __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize)); |
| switch (kind) { |
| case Token::kADD: __ addd(D0, D0, D1); break; |
| case Token::kSUB: __ subd(D0, D0, D1); break; |
| case Token::kMUL: __ muld(D0, D0, D1); break; |
| case Token::kDIV: __ divd(D0, D0, D1); break; |
| default: UNREACHABLE(); |
| } |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, V0, T1); // Result register. |
| __ swc1(F0, FieldAddress(V0, Double::value_offset())); |
| __ Ret(); |
| __ delay_slot()->swc1(F1, |
| FieldAddress(V0, Double::value_offset() + kWordSize)); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Double_add(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kADD); |
| } |
| |
| |
| void Intrinsifier::Double_mul(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kMUL); |
| } |
| |
| |
| void Intrinsifier::Double_sub(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kSUB); |
| } |
| |
| |
| void Intrinsifier::Double_div(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kDIV); |
| } |
| |
| |
| // Left is double right is integer (Bigint, Mint or Smi) |
| void Intrinsifier::Double_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| // Only smis allowed. |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ andi(CMPRES1, T0, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, &fall_through); |
| |
| // Is Smi. |
| __ SmiUntag(T0); |
| __ mtc1(T0, F4); |
| __ cvtdw(D1, F4); |
| |
| __ lw(T0, Address(SP, 1 * kWordSize)); |
| __ lwc1(F0, FieldAddress(T0, Double::value_offset())); |
| __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize)); |
| __ muld(D0, D0, D1); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, V0, T1); // Result register. |
| __ swc1(F0, FieldAddress(V0, Double::value_offset())); |
| __ Ret(); |
| __ delay_slot()->swc1(F1, |
| FieldAddress(V0, Double::value_offset() + kWordSize)); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::DoubleFromInteger(Assembler* assembler) { |
| Label fall_through; |
| |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ andi(CMPRES1, T0, Immediate(kSmiTagMask)); |
| __ bne(T0, ZR, &fall_through); |
| |
| // Is Smi. |
| __ SmiUntag(T0); |
| __ mtc1(T0, F4); |
| __ cvtdw(D0, F4); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, V0, T1); // Result register. |
| __ swc1(F0, FieldAddress(V0, Double::value_offset())); |
| __ Ret(); |
| __ delay_slot()->swc1(F1, |
| FieldAddress(V0, Double::value_offset() + kWordSize)); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Double_getIsNaN(Assembler* assembler) { |
| Label is_true; |
| |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lwc1(F0, FieldAddress(T0, Double::value_offset())); |
| __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize)); |
| __ cund(D0, D0); // Check for NaN. |
| __ bc1t(&is_true); |
| __ LoadObject(V0, Bool::False()); // Return false if either is NaN. |
| __ Ret(); |
| __ Bind(&is_true); |
| __ LoadObject(V0, Bool::True()); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::Double_getIsNegative(Assembler* assembler) { |
| Label is_false, is_true, is_zero; |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag); |
| |
| __ cund(D0, D0); |
| __ bc1t(&is_false); // NaN -> false. |
| |
| __ LoadImmediate(D1, 0.0); |
| __ ceqd(D0, D1); |
| __ bc1t(&is_zero); // Check for negative zero. |
| |
| __ coled(D1, D0); |
| __ bc1t(&is_false); // >= 0 -> false. |
| |
| __ Bind(&is_true); |
| __ LoadObject(V0, Bool::True()); |
| __ Ret(); |
| |
| __ Bind(&is_false); |
| __ LoadObject(V0, Bool::False()); |
| __ Ret(); |
| |
| __ Bind(&is_zero); |
| // Check for negative zero by looking at the sign bit. |
| __ mfc1(T0, F1); // Moves bits 32...63 of D0 to T0. |
| __ srl(T0, T0, 31); // Get the sign bit down to bit 0 of T0. |
| __ andi(CMPRES1, T0, Immediate(1)); // Check if the bit is set. |
| __ bne(T0, ZR, &is_true); // Sign bit set. True. |
| __ b(&is_false); |
| } |
| |
| |
| void Intrinsifier::DoubleToInteger(Assembler* assembler) { |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag); |
| |
| __ cvtwd(F2, D0); |
| __ mfc1(V0, F2); |
| |
| // Overflow is signaled with minint. |
| Label fall_through; |
| // Check for overflow and that it fits into Smi. |
| __ LoadImmediate(TMP, 0xC0000000); |
| __ subu(CMPRES1, V0, TMP); |
| __ bltz(CMPRES1, &fall_through); |
| __ Ret(); |
| __ delay_slot()->SmiTag(V0); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::MathSqrt(Assembler* assembler) { |
| Label fall_through, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Argument is double and is in T0. |
| __ LoadDFromOffset(D1, T0, Double::value_offset() - kHeapObjectTag); |
| __ Bind(&double_op); |
| __ sqrtd(D0, D1); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, &fall_through, V0, T1); // Result register. |
| __ swc1(F0, FieldAddress(V0, Double::value_offset())); |
| __ Ret(); |
| __ delay_slot()->swc1(F1, |
| FieldAddress(V0, Double::value_offset() + kWordSize)); |
| |
| __ Bind(&is_smi); |
| __ SmiUntag(T0); |
| __ mtc1(T0, F2); |
| __ b(&double_op); |
| __ delay_slot()->cvtdw(D1, F2); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
| // _state[kSTATE_LO] = state & _MASK_32; |
| // _state[kSTATE_HI] = state >> 32; |
| void Intrinsifier::Random_nextState(Assembler* assembler) { |
| const Library& math_lib = Library::Handle(Library::MathLibrary()); |
| ASSERT(!math_lib.IsNull()); |
| const Class& random_class = Class::Handle( |
| math_lib.LookupClassAllowPrivate(Symbols::_Random())); |
| ASSERT(!random_class.IsNull()); |
| const Field& state_field = Field::ZoneHandle( |
| random_class.LookupInstanceField(Symbols::_state())); |
| ASSERT(!state_field.IsNull()); |
| const Field& random_A_field = Field::ZoneHandle( |
| random_class.LookupStaticField(Symbols::_A())); |
| ASSERT(!random_A_field.IsNull()); |
| ASSERT(random_A_field.is_const()); |
| const Instance& a_value = Instance::Handle(random_A_field.value()); |
| const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value(); |
| // 'a_int_value' is a mask. |
| ASSERT(Utils::IsUint(32, a_int_value)); |
| int32_t a_int32_value = static_cast<int32_t>(a_int_value); |
| |
| __ lw(T0, Address(SP, 0 * kWordSize)); // Receiver. |
| __ lw(T1, FieldAddress(T0, state_field.Offset())); // Field '_state'. |
| |
| // Addresses of _state[0] and _state[1]. |
| const intptr_t scale = Instance::ElementSizeFor(kTypedDataUint32ArrayCid); |
| const intptr_t offset = Instance::DataOffsetFor(kTypedDataUint32ArrayCid); |
| const Address& addr_0 = FieldAddress(T1, 0 * scale + offset); |
| const Address& addr_1 = FieldAddress(T1, 1 * scale + offset); |
| |
| __ LoadImmediate(T0, a_int32_value); |
| __ lw(T2, addr_0); |
| __ lw(T3, addr_1); |
| __ mtlo(T3); |
| __ mthi(ZR); // HI:LO <- ZR:T3 Zero extend T3 into HI. |
| // 64-bit multiply and accumulate into T6:T3. |
| __ maddu(T0, T2); // HI:LO <- HI:LO + T0 * T2. |
| __ mflo(T3); |
| __ mfhi(T6); |
| __ sw(T3, addr_0); |
| __ sw(T6, addr_1); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::ObjectEquals(Assembler* assembler) { |
| Label is_true; |
| |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(T1, Address(SP, 1 * kWordSize)); |
| __ beq(T0, T1, &is_true); |
| __ LoadObject(V0, Bool::False()); |
| __ Ret(); |
| __ Bind(&is_true); |
| __ LoadObject(V0, Bool::True()); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::String_getHashCode(Assembler* assembler) { |
| Label fall_through; |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(V0, FieldAddress(T0, String::hash_offset())); |
| __ beq(V0, ZR, &fall_through); |
| __ Ret(); |
| __ Bind(&fall_through); // Hash not yet computed. |
| } |
| |
| |
| void Intrinsifier::StringBaseCodeUnitAt(Assembler* assembler) { |
| Label fall_through, try_two_byte_string; |
| |
| __ lw(T1, Address(SP, 0 * kWordSize)); // Index. |
| __ lw(T0, Address(SP, 1 * kWordSize)); // String. |
| |
| // Checks. |
| __ andi(CMPRES1, T1, Immediate(kSmiTagMask)); |
| __ bne(T1, ZR, &fall_through); // Index is not a Smi. |
| __ lw(T2, FieldAddress(T0, String::length_offset())); // Range check. |
| // Runtime throws exception. |
| __ BranchUnsignedGreaterEqual(T1, T2, &fall_through); |
| __ LoadClassId(CMPRES1, T0); // Class ID check. |
| __ BranchNotEqual( |
| CMPRES1, Immediate(kOneByteStringCid), &try_two_byte_string); |
| |
| // Grab byte and return. |
| __ SmiUntag(T1); |
| __ addu(T2, T0, T1); |
| __ lbu(V0, FieldAddress(T2, OneByteString::data_offset())); |
| __ Ret(); |
| __ delay_slot()->SmiTag(V0); |
| |
| __ Bind(&try_two_byte_string); |
| __ BranchNotEqual(CMPRES1, Immediate(kTwoByteStringCid), &fall_through); |
| ASSERT(kSmiTagShift == 1); |
| __ addu(T2, T0, T1); |
| __ lhu(V0, FieldAddress(T2, TwoByteString::data_offset())); |
| __ Ret(); |
| __ delay_slot()->SmiTag(V0); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::StringBaseCharAt(Assembler* assembler) { |
| Label fall_through, try_two_byte_string; |
| |
| __ lw(T1, Address(SP, 0 * kWordSize)); // Index. |
| __ lw(T0, Address(SP, 1 * kWordSize)); // String. |
| |
| // Checks. |
| __ andi(CMPRES1, T1, Immediate(kSmiTagMask)); |
| __ bne(T1, ZR, &fall_through); // Index is not a Smi. |
| __ lw(T2, FieldAddress(T0, String::length_offset())); // Range check. |
| // Runtime throws exception. |
| __ BranchUnsignedGreaterEqual(T1, T2, &fall_through); |
| __ LoadClassId(CMPRES1, T0); // Class ID check. |
| __ BranchNotEqual( |
| CMPRES1, Immediate(kOneByteStringCid), &try_two_byte_string); |
| |
| // Grab byte and return. |
| __ SmiUntag(T1); |
| __ addu(T2, T0, T1); |
| __ lbu(T2, FieldAddress(T2, OneByteString::data_offset())); |
| __ BranchUnsignedGreaterEqual( |
| T2, Immediate(Symbols::kNumberOfOneCharCodeSymbols), &fall_through); |
| __ LoadImmediate( |
| V0, reinterpret_cast<uword>(Symbols::PredefinedAddress())); |
| __ AddImmediate(V0, Symbols::kNullCharCodeSymbolOffset * kWordSize); |
| __ sll(T2, T2, 2); |
| __ addu(T2, T2, V0); |
| __ Ret(); |
| __ delay_slot()->lw(V0, Address(T2)); |
| |
| __ Bind(&try_two_byte_string); |
| __ BranchNotEqual(CMPRES1, Immediate(kTwoByteStringCid), &fall_through); |
| ASSERT(kSmiTagShift == 1); |
| __ addu(T2, T0, T1); |
| __ lhu(T2, FieldAddress(T2, TwoByteString::data_offset())); |
| __ BranchUnsignedGreaterEqual( |
| T2, Immediate(Symbols::kNumberOfOneCharCodeSymbols), &fall_through); |
| __ LoadImmediate(V0, |
| reinterpret_cast<uword>(Symbols::PredefinedAddress())); |
| __ AddImmediate(V0, Symbols::kNullCharCodeSymbolOffset * kWordSize); |
| __ sll(T2, T2, 2); |
| __ addu(T2, T2, V0); |
| __ Ret(); |
| __ delay_slot()->lw(V0, Address(T2)); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) { |
| Label is_true; |
| |
| __ lw(T0, Address(SP, 0 * kWordSize)); |
| __ lw(T0, FieldAddress(T0, String::length_offset())); |
| |
| __ beq(T0, ZR, &is_true); |
| __ LoadObject(V0, Bool::False()); |
| __ Ret(); |
| __ Bind(&is_true); |
| __ LoadObject(V0, Bool::True()); |
| __ Ret(); |
| } |
| |
| |
| void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) { |
| Label no_hash; |
| |
| __ lw(T1, Address(SP, 0 * kWordSize)); |
| __ lw(V0, FieldAddress(T1, String::hash_offset())); |
| __ beq(V0, ZR, &no_hash); |
| __ Ret(); // Return if already computed. |
| __ Bind(&no_hash); |
| |
| __ lw(T2, FieldAddress(T1, String::length_offset())); |
| |
| Label done; |
| // If the string is empty, set the hash to 1, and return. |
| __ BranchEqual(T2, Immediate(Smi::RawValue(0)), &done); |
| __ delay_slot()->mov(V0, ZR); |
| |
| __ SmiUntag(T2); |
| __ AddImmediate(T3, T1, OneByteString::data_offset() - kHeapObjectTag); |
| __ addu(T4, T3, T2); |
| // V0: Hash code, untagged integer. |
| // T1: Instance of OneByteString. |
| // T2: String length, untagged integer. |
| // T3: String data start. |
| // T4: String data end. |
| |
| Label loop; |
| // Add to hash code: (hash_ is uint32) |
| // hash_ += ch; |
| // hash_ += hash_ << 10; |
| // hash_ ^= hash_ >> 6; |
| // Get one characters (ch). |
| __ Bind(&loop); |
| __ lbu(T5, Address(T3)); |
| // T5: ch. |
| __ addiu(T3, T3, Immediate(1)); |
| __ addu(V0, V0, T5); |
| __ sll(T6, V0, 10); |
| __ addu(V0, V0, T6); |
| __ srl(T6, V0, 6); |
| __ bne(T3, T4, &loop); |
| __ delay_slot()->xor_(V0, V0, T6); |
| |
| // Finalize. |
| // hash_ += hash_ << 3; |
| // hash_ ^= hash_ >> 11; |
| // hash_ += hash_ << 15; |
| __ sll(T6, V0, 3); |
| __ addu(V0, V0, T6); |
| __ srl(T6, V0, 11); |
| __ xor_(V0, V0, T6); |
| __ sll(T6, V0, 15); |
| __ addu(V0, V0, T6); |
| // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| __ LoadImmediate(T6, (static_cast<intptr_t>(1) << String::kHashBits) - 1); |
| __ and_(V0, V0, T6); |
| __ Bind(&done); |
| |
| __ LoadImmediate(T2, 1); |
| __ movz(V0, T2, V0); // If V0 is 0, set to 1. |
| __ SmiTag(V0); |
| |
| __ Ret(); |
| __ delay_slot()->sw(V0, FieldAddress(T1, String::hash_offset())); |
| } |
| |
| |
| // Allocates one-byte string of length 'end - start'. The content is not |
| // initialized. |
| // 'length-reg' (T2) contains tagged length. |
| // Returns new string as tagged pointer in V0. |
| static void TryAllocateOnebyteString(Assembler* assembler, |
| Label* ok, |
| Label* failure) { |
| const Register length_reg = T2; |
| |
| __ mov(T6, length_reg); // Save the length register. |
| __ SmiUntag(length_reg); |
| const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1; |
| __ AddImmediate(length_reg, fixed_size); |
| __ LoadImmediate(TMP, ~(kObjectAlignment - 1)); |
| __ and_(length_reg, length_reg, TMP); |
| |
| Isolate* isolate = Isolate::Current(); |
| Heap* heap = isolate->heap(); |
| const intptr_t cid = kOneByteStringCid; |
| Heap::Space space = heap->SpaceForAllocation(cid); |
| __ LoadImmediate(T3, heap->TopAddress(space)); |
| __ lw(V0, Address(T3, 0)); |
| |
| // length_reg: allocation size. |
| __ AdduDetectOverflow(T1, V0, length_reg, CMPRES1); |
| __ bltz(CMPRES1, failure); // Fail on overflow. |
| |
| // Check if the allocation fits into the remaining space. |
| // V0: potential new object start. |
| // T1: potential next object start. |
| // T2: allocation size. |
| // T3: heap->TopAddress(space). |
| __ LoadImmediate(T4, heap->EndAddress(space)); |
| __ lw(T4, Address(T4, 0)); |
| __ BranchUnsignedGreaterEqual(T1, T4, failure); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ sw(T1, Address(T3, 0)); |
| __ AddImmediate(V0, kHeapObjectTag); |
| |
| __ UpdateAllocationStatsWithSize(cid, T2, T3, space); |
| |
| // Initialize the tags. |
| // V0: new object start as a tagged pointer. |
| // T1: new object end address. |
| // T2: allocation size. |
| { |
| Label overflow, done; |
| const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2; |
| |
| __ BranchUnsignedGreater( |
| T2, Immediate(RawObject::SizeTag::kMaxSizeTag), &overflow); |
| __ b(&done); |
| __ delay_slot()->sll(T2, T2, shift); |
| __ Bind(&overflow); |
| __ mov(T2, ZR); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| // T2: size and bit tags. |
| __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); |
| __ or_(T2, T2, TMP); |
| __ sw(T2, FieldAddress(V0, String::tags_offset())); // Store tags. |
| } |
| |
| // Set the length field using the saved length (T6). |
| __ StoreIntoObjectNoBarrier(V0, |
| FieldAddress(V0, String::length_offset()), |
| T6); |
| // Clear hash. |
| __ b(ok); |
| __ delay_slot()->sw(ZR, FieldAddress(V0, String::hash_offset())); |
| } |
| |
| |
| // Arg0: OneByteString (receiver). |
| // Arg1: Start index as Smi. |
| // Arg2: End index as Smi. |
| // The indexes must be valid. |
| void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) { |
| const intptr_t kStringOffset = 2 * kWordSize; |
| const intptr_t kStartIndexOffset = 1 * kWordSize; |
| const intptr_t kEndIndexOffset = 0 * kWordSize; |
| Label fall_through, ok; |
| |
| __ lw(T2, Address(SP, kEndIndexOffset)); |
| __ lw(TMP, Address(SP, kStartIndexOffset)); |
| __ or_(CMPRES1, T2, TMP); |
| __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask)); |
| __ bne(CMPRES1, ZR, &fall_through); // 'start', 'end' not Smi. |
| |
| __ subu(T2, T2, TMP); |
| TryAllocateOnebyteString(assembler, &ok, &fall_through); |
| __ Bind(&ok); |
| // V0: new string as tagged pointer. |
| // Copy string. |
| __ lw(T3, Address(SP, kStringOffset)); |
| __ lw(T1, Address(SP, kStartIndexOffset)); |
| __ SmiUntag(T1); |
| __ addu(T3, T3, T1); |
| __ AddImmediate(T3, OneByteString::data_offset() - 1); |
| |
| // T3: Start address to copy from (untagged). |
| // T1: Untagged start index. |
| __ lw(T2, Address(SP, kEndIndexOffset)); |
| __ SmiUntag(T2); |
| __ subu(T2, T2, T1); |
| |
| // T3: Start address to copy from (untagged). |
| // T2: Untagged number of bytes to copy. |
| // V0: Tagged result string. |
| // T6: Pointer into T3. |
| // T7: Pointer into T0. |
| // T1: Scratch register. |
| Label loop, done; |
| __ beq(T2, ZR, &done); |
| __ mov(T6, T3); |
| __ mov(T7, V0); |
| |
| __ Bind(&loop); |
| __ lbu(T1, Address(T6, 0)); |
| __ AddImmediate(T6, 1); |
| __ addiu(T2, T2, Immediate(-1)); |
| __ sb(T1, FieldAddress(T7, OneByteString::data_offset())); |
| __ bgtz(T2, &loop); |
| __ delay_slot()->addiu(T7, T7, Immediate(1)); |
| |
| __ Bind(&done); |
| __ Ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::OneByteStringSetAt(Assembler* assembler) { |
| __ lw(T2, Address(SP, 0 * kWordSize)); // Value. |
| __ lw(T1, Address(SP, 1 * kWordSize)); // Index. |
| __ lw(T0, Address(SP, 2 * kWordSize)); // OneByteString. |
| __ SmiUntag(T1); |
| __ SmiUntag(T2); |
| __ addu(T3, T0, T1); |
| __ Ret(); |
| __ delay_slot()->sb(T2, FieldAddress(T3, OneByteString::data_offset())); |
| } |
| |
| |
| void Intrinsifier::OneByteString_allocate(Assembler* assembler) { |
| Label fall_through, ok; |
| |
| __ lw(T2, Address(SP, 0 * kWordSize)); // Length. |
| TryAllocateOnebyteString(assembler, &ok, &fall_through); |
| |
| __ Bind(&ok); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
| static void StringEquality(Assembler* assembler, intptr_t string_cid) { |
| Label fall_through, is_true, is_false, loop; |
| __ lw(T0, Address(SP, 1 * kWordSize)); // This. |
| __ lw(T1, Address(SP, 0 * kWordSize)); // Other. |
| |
| // Are identical? |
| __ beq(T0, T1, &is_true); |
| |
| // Is other OneByteString? |
| __ andi(CMPRES1, T1, Immediate(kSmiTagMask)); |
| __ beq(CMPRES1, ZR, &fall_through); // Other is Smi. |
| __ LoadClassId(CMPRES1, T1); // Class ID check. |
| __ BranchNotEqual(CMPRES1, Immediate(string_cid), &fall_through); |
| |
| // Have same length? |
| __ lw(T2, FieldAddress(T0, String::length_offset())); |
| __ lw(T3, FieldAddress(T1, String::length_offset())); |
| __ bne(T2, T3, &is_false); |
| |
| // Check contents, no fall-through possible. |
| ASSERT((string_cid == kOneByteStringCid) || |
| (string_cid == kTwoByteStringCid)); |
| __ SmiUntag(T2); |
| __ Bind(&loop); |
| __ AddImmediate(T2, -1); |
| __ BranchSignedLess(T2, Immediate(0), &is_true); |
| if (string_cid == kOneByteStringCid) { |
| __ lbu(V0, FieldAddress(T0, OneByteString::data_offset())); |
| __ lbu(V1, FieldAddress(T1, OneByteString::data_offset())); |
| __ AddImmediate(T0, 1); |
| __ AddImmediate(T1, 1); |
| } else if (string_cid == kTwoByteStringCid) { |
| __ lhu(V0, FieldAddress(T0, OneByteString::data_offset())); |
| __ lhu(V1, FieldAddress(T1, OneByteString::data_offset())); |
| __ AddImmediate(T0, 2); |
| __ AddImmediate(T1, 2); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| __ bne(V0, V1, &is_false); |
| __ b(&loop); |
| |
| __ Bind(&is_false); |
| __ LoadObject(V0, Bool::False()); |
| __ Ret(); |
| __ Bind(&is_true); |
| __ LoadObject(V0, Bool::True()); |
| __ Ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::OneByteString_equality(Assembler* assembler) { |
| StringEquality(assembler, kOneByteStringCid); |
| } |
| |
| |
| void Intrinsifier::TwoByteString_equality(Assembler* assembler) { |
| StringEquality(assembler, kTwoByteStringCid); |
| } |
| |
| |
| void Intrinsifier::JSRegExp_ExecuteMatch(Assembler* assembler) { |
| if (FLAG_use_jscre) { |
| return; |
| } |
| static const intptr_t kRegExpParamOffset = 2 * kWordSize; |
| static const intptr_t kStringParamOffset = 1 * kWordSize; |
| // start_index smi is located at 0. |
| |
| // Incoming registers: |
| // T0: Function. (Will be reloaded with the specialized matcher function.) |
| // S4: Arguments descriptor. (Will be preserved.) |
| // S5: Unknown. (Must be GC safe on tail call.) |
| |
| // Load the specialized function pointer into T0. Leverage the fact the |
| // string CIDs as well as stored function pointers are in sequence. |
| __ lw(T1, Address(SP, kRegExpParamOffset)); |
| __ lw(T3, Address(SP, kStringParamOffset)); |
| __ LoadClassId(T2, T3); |
| __ AddImmediate(T2, -kOneByteStringCid); |
| __ sll(T2, T2, kWordSizeLog2); |
| __ addu(T2, T2, T1); |
| __ lw(T0, FieldAddress(T2, JSRegExp::function_offset(kOneByteStringCid))); |
| |
| // Registers are now set up for the lazy compile stub. It expects the function |
| // in T0, the argument descriptor in S4, and IC-Data in S5. |
| static const intptr_t arg_count = RegExpMacroAssembler::kParamCount; |
| __ LoadObject(S4, Array::Handle(ArgumentsDescriptor::New(arg_count))); |
| __ mov(S5, ZR); |
| |
| // Tail-call the function. |
| __ lw(T3, FieldAddress(T0, Function::instructions_offset())); |
| __ AddImmediate(T3, Instructions::HeaderSize() - kHeapObjectTag); |
| __ jr(T3); |
| } |
| |
| |
| // On stack: user tag (+0). |
| void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) { |
| // T1: Isolate. |
| Isolate* isolate = Isolate::Current(); |
| __ LoadImmediate(T1, reinterpret_cast<uword>(isolate)); |
| // V0: Current user tag. |
| __ lw(V0, Address(T1, Isolate::current_tag_offset())); |
| // T2: UserTag. |
| __ lw(T2, Address(SP, + 0 * kWordSize)); |
| // Set Isolate::current_tag_. |
| __ sw(T2, Address(T1, Isolate::current_tag_offset())); |
| // T2: UserTag's tag. |
| __ lw(T2, FieldAddress(T2, UserTag::tag_offset())); |
| // Set Isolate::user_tag_. |
| __ sw(T2, Address(T1, Isolate::user_tag_offset())); |
| __ Ret(); |
| __ delay_slot()->sw(T2, Address(T1, Isolate::user_tag_offset())); |
| } |
| |
| |
| void Intrinsifier::UserTag_defaultTag(Assembler* assembler) { |
| Isolate* isolate = Isolate::Current(); |
| // V0: Address of default tag. |
| __ LoadImmediate(V0, |
| reinterpret_cast<uword>(isolate) + Isolate::default_tag_offset()); |
| __ Ret(); |
| __ delay_slot()->lw(V0, Address(V0, 0)); |
| } |
| |
| |
| void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) { |
| // V0: Isolate. |
| Isolate* isolate = Isolate::Current(); |
| __ LoadImmediate(V0, reinterpret_cast<uword>(isolate)); |
| // Set return value. |
| __ Ret(); |
| __ delay_slot()->lw(V0, Address(V0, Isolate::current_tag_offset())); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_MIPS |