blob: 08b2cce017636124deb9ad92aac0831603ec9fd0 [file] [log] [blame]
// Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
library fasta.parser.type_info_impl;
import '../../scanner/token.dart' show Token;
import '../fasta_codes.dart' as fasta;
import '../util/link.dart' show Link;
import 'identifier_context.dart' show IdentifierContext;
import 'member_kind.dart' show MemberKind;
import 'listener.dart' show Listener;
import 'parser.dart' show Parser;
import 'type_info.dart';
import 'util.dart' show optional;
/// See documentation on the [noTypeInfo] const.
class NoTypeInfo implements TypeInfo {
const NoTypeInfo();
@override
bool get couldBeExpression => false;
@override
Token ensureTypeNotVoid(Token token, Parser parser) {
parser.reportRecoverableErrorWithToken(
token.next, fasta.templateExpectedType);
insertSyntheticIdentifierAfter(token, parser);
return simpleTypeInfo.parseType(token, parser);
}
@override
Token ensureTypeOrVoid(Token token, Parser parser) =>
ensureTypeNotVoid(token, parser);
@override
Token parseTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseType(Token token, Parser parser) {
parser.listener.handleNoType(token);
return token;
}
@override
Token skipType(Token token) {
return token;
}
}
/// See documentation on the [prefixedTypeInfo] const.
class PrefixedTypeInfo implements TypeInfo {
const PrefixedTypeInfo();
@override
bool get couldBeExpression => true;
@override
Token ensureTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token ensureTypeOrVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseType(Token token, Parser parser) {
Token start = token = token.next;
assert(token.isKeywordOrIdentifier);
Listener listener = parser.listener;
listener.handleIdentifier(token, IdentifierContext.prefixedTypeReference);
Token period = token = token.next;
assert(optional('.', token));
token = token.next;
assert(token.isKeywordOrIdentifier);
listener.handleIdentifier(
token, IdentifierContext.typeReferenceContinuation);
listener.handleQualified(period);
listener.handleNoTypeArguments(token.next);
listener.handleType(start, token.next);
return token;
}
@override
Token skipType(Token token) {
return token.next.next.next;
}
}
/// See documentation on the [simpleTypeArgumentsInfo] const.
class SimpleTypeArgumentsInfo implements TypeInfo {
const SimpleTypeArgumentsInfo();
@override
bool get couldBeExpression => false;
@override
Token ensureTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token ensureTypeOrVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseType(Token token, Parser parser) {
Token start = token = token.next;
assert(token.isKeywordOrIdentifier);
Listener listener = parser.listener;
listener.handleIdentifier(token, IdentifierContext.typeReference);
Token begin = token = token.next;
assert(optional('<', token));
listener.beginTypeArguments(token);
token = simpleTypeInfo.parseTypeNotVoid(token, parser);
token = token.next;
assert(optional('>', token));
assert(begin.endGroup == token);
listener.endTypeArguments(1, begin, token);
listener.handleType(start, token.next);
return token;
}
@override
Token skipType(Token token) {
return token.next.next.endGroup;
}
}
/// See documentation on the [simpleTypeInfo] const.
class SimpleTypeInfo implements TypeInfo {
const SimpleTypeInfo();
@override
bool get couldBeExpression => true;
@override
Token ensureTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token ensureTypeOrVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseType(Token token, Parser parser) {
token = token.next;
assert(token.isKeywordOrIdentifier);
Listener listener = parser.listener;
listener.handleIdentifier(token, IdentifierContext.typeReference);
listener.handleNoTypeArguments(token.next);
listener.handleType(token, token.next);
return token;
}
@override
Token skipType(Token token) {
return token.next;
}
}
/// See documentation on the [voidTypeInfo] const.
class VoidTypeInfo implements TypeInfo {
const VoidTypeInfo();
@override
bool get couldBeExpression => false;
@override
Token ensureTypeNotVoid(Token token, Parser parser) {
// Report an error, then parse `void` as if it were a type name.
parser.reportRecoverableError(token.next, fasta.messageInvalidVoid);
return simpleTypeInfo.parseTypeNotVoid(token, parser);
}
@override
Token ensureTypeOrVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseTypeNotVoid(Token token, Parser parser) =>
ensureTypeNotVoid(token, parser);
@override
Token parseType(Token token, Parser parser) {
token = token.next;
parser.listener.handleVoidKeyword(token);
return token;
}
@override
Token skipType(Token token) {
return token.next;
}
}
bool looksLikeName(Token token) =>
token.isIdentifier || optional('this', token);
Token skipTypeArguments(Token token) {
assert(optional('<', token));
Token endGroup = token.endGroup;
// The scanner sets the endGroup in situations like this: C<T && T>U;
// Scan the type arguments to assert there are no operators.
// TODO(danrubel) Fix the scanner and remove this code.
if (endGroup != null) {
token = token.next;
while (token != endGroup) {
if (token.isOperator) {
String value = token.stringValue;
if (!identical(value, '<') &&
!identical(value, '>') &&
!identical(value, '>>')) {
return null;
}
}
token = token.next;
}
}
return endGroup;
}
/// Instances of [ComplexTypeInfo] are returned by [computeType] to represent
/// type references that cannot be represented by the constants above.
class ComplexTypeInfo implements TypeInfo {
/// The first token in the type reference.
final Token start;
/// The last token in the type reference.
Token end;
/// Non-null if type arguments were seen during analysis.
Token typeArguments;
/// The tokens before the start of type variables of function types seen
/// during analysis. Notice that the tokens in this list might precede
/// either `'<'` or `'('` as not all function types have type parameters.
Link<Token> typeVariableStarters = const Link<Token>();
/// If the receiver represents a generalized function type then this indicates
/// whether it has a return type, otherwise this is `null`.
bool gftHasReturnType;
ComplexTypeInfo(Token beforeStart) : this.start = beforeStart.next;
@override
bool get couldBeExpression => false;
@override
Token ensureTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token ensureTypeOrVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseTypeNotVoid(Token token, Parser parser) =>
parseType(token, parser);
@override
Token parseType(Token token, Parser parser) {
assert(identical(token.next, start));
for (Link<Token> t = typeVariableStarters; t.isNotEmpty; t = t.tail) {
parser.parseTypeVariablesOpt(t.head);
parser.listener.beginFunctionType(start);
}
if (gftHasReturnType == false) {
// A function type without return type.
// Push the non-existing return type first. The loop below will
// generate the full type.
noTypeInfo.parseTypeNotVoid(token, parser);
} else {
Token start = token.next;
if (optional('void', start)) {
token = voidTypeInfo.parseType(token, parser);
} else {
if (!optional('.', start.next)) {
token =
parser.ensureIdentifier(token, IdentifierContext.typeReference);
} else {
token = parser.ensureIdentifier(
token, IdentifierContext.prefixedTypeReference);
token = parser.parseQualifiedRest(
token, IdentifierContext.typeReferenceContinuation);
}
token = parser.parseTypeArgumentsOpt(token);
parser.listener.handleType(start, token.next);
}
}
for (Link<Token> t = typeVariableStarters; t.isNotEmpty; t = t.tail) {
token = token.next;
assert(optional('Function', token));
Token functionToken = token;
if (optional("<", token.next)) {
// Skip type parameters, they were parsed above.
token = token.next.endGroup;
}
token = parser.parseFormalParametersRequiredOpt(
token, MemberKind.GeneralizedFunctionType);
parser.listener.endFunctionType(functionToken, token.next);
}
// There are two situations in which the [token] != [end]:
// Valid code: identifier `<` identifier `<` identifier `>>`
// where `>>` is replaced by two tokens.
// Invalid code: identifier `<` identifier identifier `>`
// where a synthetic `>` is inserted between the identifiers.
assert(identical(token, end) || optional('>', token));
// During recovery, [token] may be a synthetic that was inserted in the
// middle of the type reference. In this situation, return [end] so that it
// matches [skipType], and so that the next token to be parsed is correct.
return token.isSynthetic ? end : token;
}
@override
Token skipType(Token token) {
return end;
}
/// Given `Function` non-identifier, compute the type
/// and return the receiver or one of the [TypeInfo] constants.
TypeInfo computeNoTypeGFT(bool required) {
assert(optional('Function', start));
computeRest(start, required);
if (gftHasReturnType == null) {
return required ? simpleTypeInfo : noTypeInfo;
}
assert(end != null);
return this;
}
/// Given void `Function` non-identifier, compute the type
/// and return the receiver or one of the [TypeInfo] constants.
TypeInfo computeVoidGFT(bool required) {
assert(optional('void', start));
assert(optional('Function', start.next));
computeRest(start.next, required);
if (gftHasReturnType == null) {
return voidTypeInfo;
}
assert(end != null);
return this;
}
/// Given a builtin, return the receiver so that parseType will report
/// an error for the builtin used as a type.
TypeInfo computeBuiltinAsType(bool required) {
assert(start.type.isBuiltIn);
end = start;
Token token = start.next;
if (optional('<', token)) {
typeArguments = token;
token = skipTypeArguments(typeArguments);
if (token == null) {
token = typeArguments;
typeArguments = null;
} else {
end = token;
}
}
computeRest(token, required);
assert(end != null);
return this;
}
/// Given identifier `Function` non-identifier, compute the type
/// and return the receiver or one of the [TypeInfo] constants.
TypeInfo computeIdentifierGFT(bool required) {
assert(isValidTypeReference(start));
assert(optional('Function', start.next));
computeRest(start.next, required);
if (gftHasReturnType == null) {
return simpleTypeInfo;
}
assert(end != null);
return this;
}
/// Given identifier `<` ... `>`, compute the type
/// and return the receiver or one of the [TypeInfo] constants.
TypeInfo computeSimpleWithTypeArguments(bool required) {
assert(isValidTypeReference(start));
typeArguments = start.next;
assert(optional('<', typeArguments));
Token token = skipTypeArguments(typeArguments);
if (token == null) {
return required ? simpleTypeInfo : noTypeInfo;
}
end = token;
computeRest(token.next, required);
if (!required && !looksLikeName(end.next) && gftHasReturnType == null) {
return noTypeInfo;
}
assert(end != null);
return this;
}
/// Given identifier `.` identifier, compute the type
/// and return the receiver or one of the [TypeInfo] constants.
TypeInfo computePrefixedType(bool required) {
assert(isValidTypeReference(start));
Token token = start.next;
assert(optional('.', token));
token = token.next;
assert(isValidTypeReference(token));
end = token;
token = token.next;
if (optional('<', token)) {
typeArguments = token;
token = skipTypeArguments(token);
if (token == null) {
return required ? prefixedTypeInfo : noTypeInfo;
}
end = token;
token = token.next;
}
computeRest(token, required);
if (!required && !looksLikeName(end.next) && gftHasReturnType == null) {
return noTypeInfo;
}
assert(end != null);
return this;
}
void computeRest(Token token, bool required) {
while (optional('Function', token)) {
Token typeVariableStart = token;
token = token.next;
if (optional('<', token)) {
token = token.endGroup;
if (token == null) {
break; // Not a function type.
}
assert(optional('>', token) || optional('>>', token));
token = token.next;
}
if (!optional('(', token)) {
break; // Not a function type.
}
token = token.endGroup;
if (token == null) {
break; // Not a function type.
}
if (!required && !token.next.isIdentifier) {
break; // `Function` used as the name in a function declaration.
}
assert(optional(')', token));
gftHasReturnType ??= typeVariableStart != start;
typeVariableStarters = typeVariableStarters.prepend(typeVariableStart);
end = token;
token = token.next;
}
}
}