|  | // Copyright (c) 2011, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  |  | 
|  | part of dart._internal; | 
|  |  | 
|  | /** | 
|  | * Dual-Pivot Quicksort algorithm. | 
|  | * | 
|  | * This class implements the dual-pivot quicksort algorithm as presented in | 
|  | * Vladimir Yaroslavskiy's paper. | 
|  | * | 
|  | * Some improvements have been copied from Android's implementation. | 
|  | */ | 
|  | class Sort { | 
|  | // When a list has less then [:_INSERTION_SORT_THRESHOLD:] elements it will | 
|  | // be sorted by an insertion sort. | 
|  | static const int _INSERTION_SORT_THRESHOLD = 32; | 
|  |  | 
|  | /** | 
|  | * Sorts all elements of the given list [:a:] according to the given | 
|  | * [:compare:] function. | 
|  | * | 
|  | * The [:compare:] function takes two arguments [:x:] and [:y:] and returns | 
|  | *  -1 if [:x < y:], | 
|  | *   0 if [:x == y:], and | 
|  | *   1 if [:x > y:]. | 
|  | * | 
|  | * The function's behavior must be consistent. It must not return different | 
|  | * results for the same values. | 
|  | */ | 
|  | static void sort<E>(List<E> a, int compare(E a, E b)) { | 
|  | _doSort(a, 0, a.length - 1, compare); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Sorts all elements in the range [:from:] (inclusive) to [:to:] (exclusive) | 
|  | * of the given list [:a:]. | 
|  | * | 
|  | * If the given range is invalid an "OutOfRange" error is raised. | 
|  | * TODO(floitsch): do we want an error? | 
|  | * | 
|  | * See [:sort:] for requirements of the [:compare:] function. | 
|  | */ | 
|  | static void sortRange<E>(List<E> a, int from, int to, int compare(E a, E b)) { | 
|  | if ((from < 0) || (to > a.length) || (to < from)) { | 
|  | throw "OutOfRange"; | 
|  | } | 
|  | _doSort(a, from, to - 1, compare); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Sorts the list in the interval [:left:] to [:right:] (both inclusive). | 
|  | */ | 
|  | static void _doSort<E>( | 
|  | List<E> a, int left, int right, int compare(E a, E b)) { | 
|  | if ((right - left) <= _INSERTION_SORT_THRESHOLD) { | 
|  | _insertionSort(a, left, right, compare); | 
|  | } else { | 
|  | _dualPivotQuicksort(a, left, right, compare); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void _insertionSort<E>( | 
|  | List<E> a, int left, int right, int compare(E a, E b)) { | 
|  | for (int i = left + 1; i <= right; i++) { | 
|  | var el = a[i]; | 
|  | int j = i; | 
|  | while ((j > left) && (compare(a[j - 1], el) > 0)) { | 
|  | a[j] = a[j - 1]; | 
|  | j--; | 
|  | } | 
|  | a[j] = el; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void _dualPivotQuicksort<E>( | 
|  | List<E> a, int left, int right, int compare(E a, E b)) { | 
|  | assert(right - left > _INSERTION_SORT_THRESHOLD); | 
|  |  | 
|  | // Compute the two pivots by looking at 5 elements. | 
|  | int sixth = (right - left + 1) ~/ 6; | 
|  | int index1 = left + sixth; | 
|  | int index5 = right - sixth; | 
|  | int index3 = (left + right) ~/ 2; // The midpoint. | 
|  | int index2 = index3 - sixth; | 
|  | int index4 = index3 + sixth; | 
|  |  | 
|  | var el1 = a[index1]; | 
|  | var el2 = a[index2]; | 
|  | var el3 = a[index3]; | 
|  | var el4 = a[index4]; | 
|  | var el5 = a[index5]; | 
|  |  | 
|  | // Sort the selected 5 elements using a sorting network. | 
|  | if (compare(el1, el2) > 0) { | 
|  | var t = el1; | 
|  | el1 = el2; | 
|  | el2 = t; | 
|  | } | 
|  | if (compare(el4, el5) > 0) { | 
|  | var t = el4; | 
|  | el4 = el5; | 
|  | el5 = t; | 
|  | } | 
|  | if (compare(el1, el3) > 0) { | 
|  | var t = el1; | 
|  | el1 = el3; | 
|  | el3 = t; | 
|  | } | 
|  | if (compare(el2, el3) > 0) { | 
|  | var t = el2; | 
|  | el2 = el3; | 
|  | el3 = t; | 
|  | } | 
|  | if (compare(el1, el4) > 0) { | 
|  | var t = el1; | 
|  | el1 = el4; | 
|  | el4 = t; | 
|  | } | 
|  | if (compare(el3, el4) > 0) { | 
|  | var t = el3; | 
|  | el3 = el4; | 
|  | el4 = t; | 
|  | } | 
|  | if (compare(el2, el5) > 0) { | 
|  | var t = el2; | 
|  | el2 = el5; | 
|  | el5 = t; | 
|  | } | 
|  | if (compare(el2, el3) > 0) { | 
|  | var t = el2; | 
|  | el2 = el3; | 
|  | el3 = t; | 
|  | } | 
|  | if (compare(el4, el5) > 0) { | 
|  | var t = el4; | 
|  | el4 = el5; | 
|  | el5 = t; | 
|  | } | 
|  |  | 
|  | var pivot1 = el2; | 
|  | var pivot2 = el4; | 
|  |  | 
|  | // el2 and el4 have been saved in the pivot variables. They will be written | 
|  | // back, once the partitioning is finished. | 
|  | a[index1] = el1; | 
|  | a[index3] = el3; | 
|  | a[index5] = el5; | 
|  |  | 
|  | a[index2] = a[left]; | 
|  | a[index4] = a[right]; | 
|  |  | 
|  | int less = left + 1; // First element in the middle partition. | 
|  | int great = right - 1; // Last element in the middle partition. | 
|  |  | 
|  | bool pivots_are_equal = (compare(pivot1, pivot2) == 0); | 
|  | if (pivots_are_equal) { | 
|  | var pivot = pivot1; | 
|  | // Degenerated case where the partitioning becomes a Dutch national flag | 
|  | // problem. | 
|  | // | 
|  | // [ |  < pivot  | == pivot | unpartitioned | > pivot  | ] | 
|  | //  ^             ^          ^             ^            ^ | 
|  | // left         less         k           great         right | 
|  | // | 
|  | // a[left] and a[right] are undefined and are filled after the | 
|  | // partitioning. | 
|  | // | 
|  | // Invariants: | 
|  | //   1) for x in ]left, less[ : x < pivot. | 
|  | //   2) for x in [less, k[ : x == pivot. | 
|  | //   3) for x in ]great, right[ : x > pivot. | 
|  | for (int k = less; k <= great; k++) { | 
|  | var ak = a[k]; | 
|  | int comp = compare(ak, pivot); | 
|  | if (comp == 0) continue; | 
|  | if (comp < 0) { | 
|  | if (k != less) { | 
|  | a[k] = a[less]; | 
|  | a[less] = ak; | 
|  | } | 
|  | less++; | 
|  | } else { | 
|  | // comp > 0. | 
|  | // | 
|  | // Find the first element <= pivot in the range [k - 1, great] and | 
|  | // put [:ak:] there. We know that such an element must exist: | 
|  | // When k == less, then el3 (which is equal to pivot) lies in the | 
|  | // interval. Otherwise a[k - 1] == pivot and the search stops at k-1. | 
|  | // Note that in the latter case invariant 2 will be violated for a | 
|  | // short amount of time. The invariant will be restored when the | 
|  | // pivots are put into their final positions. | 
|  | while (true) { | 
|  | comp = compare(a[great], pivot); | 
|  | if (comp > 0) { | 
|  | great--; | 
|  | // This is the only location in the while-loop where a new | 
|  | // iteration is started. | 
|  | continue; | 
|  | } else if (comp < 0) { | 
|  | // Triple exchange. | 
|  | a[k] = a[less]; | 
|  | a[less++] = a[great]; | 
|  | a[great--] = ak; | 
|  | break; | 
|  | } else { | 
|  | // comp == 0; | 
|  | a[k] = a[great]; | 
|  | a[great--] = ak; | 
|  | // Note: if great < k then we will exit the outer loop and fix | 
|  | // invariant 2 (which we just violated). | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | // We partition the list into three parts: | 
|  | //  1. < pivot1 | 
|  | //  2. >= pivot1 && <= pivot2 | 
|  | //  3. > pivot2 | 
|  | // | 
|  | // During the loop we have: | 
|  | // [ | < pivot1 | >= pivot1 && <= pivot2 | unpartitioned  | > pivot2  | ] | 
|  | //  ^            ^                        ^              ^             ^ | 
|  | // left         less                     k              great        right | 
|  | // | 
|  | // a[left] and a[right] are undefined and are filled after the | 
|  | // partitioning. | 
|  | // | 
|  | // Invariants: | 
|  | //   1. for x in ]left, less[ : x < pivot1 | 
|  | //   2. for x in [less, k[ : pivot1 <= x && x <= pivot2 | 
|  | //   3. for x in ]great, right[ : x > pivot2 | 
|  | for (int k = less; k <= great; k++) { | 
|  | var ak = a[k]; | 
|  | int comp_pivot1 = compare(ak, pivot1); | 
|  | if (comp_pivot1 < 0) { | 
|  | if (k != less) { | 
|  | a[k] = a[less]; | 
|  | a[less] = ak; | 
|  | } | 
|  | less++; | 
|  | } else { | 
|  | int comp_pivot2 = compare(ak, pivot2); | 
|  | if (comp_pivot2 > 0) { | 
|  | while (true) { | 
|  | int comp = compare(a[great], pivot2); | 
|  | if (comp > 0) { | 
|  | great--; | 
|  | if (great < k) break; | 
|  | // This is the only location inside the loop where a new | 
|  | // iteration is started. | 
|  | continue; | 
|  | } else { | 
|  | // a[great] <= pivot2. | 
|  | comp = compare(a[great], pivot1); | 
|  | if (comp < 0) { | 
|  | // Triple exchange. | 
|  | a[k] = a[less]; | 
|  | a[less++] = a[great]; | 
|  | a[great--] = ak; | 
|  | } else { | 
|  | // a[great] >= pivot1. | 
|  | a[k] = a[great]; | 
|  | a[great--] = ak; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Move pivots into their final positions. | 
|  | // We shrunk the list from both sides (a[left] and a[right] have | 
|  | // meaningless values in them) and now we move elements from the first | 
|  | // and third partition into these locations so that we can store the | 
|  | // pivots. | 
|  | a[left] = a[less - 1]; | 
|  | a[less - 1] = pivot1; | 
|  | a[right] = a[great + 1]; | 
|  | a[great + 1] = pivot2; | 
|  |  | 
|  | // The list is now partitioned into three partitions: | 
|  | // [ < pivot1   | >= pivot1 && <= pivot2   |  > pivot2   ] | 
|  | //  ^            ^                        ^             ^ | 
|  | // left         less                     great        right | 
|  |  | 
|  | // Recursive descent. (Don't include the pivot values.) | 
|  | _doSort(a, left, less - 2, compare); | 
|  | _doSort(a, great + 2, right, compare); | 
|  |  | 
|  | if (pivots_are_equal) { | 
|  | // All elements in the second partition are equal to the pivot. No | 
|  | // need to sort them. | 
|  | return; | 
|  | } | 
|  |  | 
|  | // In theory it should be enough to call _doSort recursively on the second | 
|  | // partition. | 
|  | // The Android source however removes the pivot elements from the recursive | 
|  | // call if the second partition is too large (more than 2/3 of the list). | 
|  | if (less < index1 && great > index5) { | 
|  | while (compare(a[less], pivot1) == 0) { | 
|  | less++; | 
|  | } | 
|  | while (compare(a[great], pivot2) == 0) { | 
|  | great--; | 
|  | } | 
|  |  | 
|  | // Copy paste of the previous 3-way partitioning with adaptions. | 
|  | // | 
|  | // We partition the list into three parts: | 
|  | //  1. == pivot1 | 
|  | //  2. > pivot1 && < pivot2 | 
|  | //  3. == pivot2 | 
|  | // | 
|  | // During the loop we have: | 
|  | // [ == pivot1 | > pivot1 && < pivot2 | unpartitioned  | == pivot2 ] | 
|  | //              ^                      ^              ^ | 
|  | //            less                     k              great | 
|  | // | 
|  | // Invariants: | 
|  | //   1. for x in [ *, less[ : x == pivot1 | 
|  | //   2. for x in [less, k[ : pivot1 < x && x < pivot2 | 
|  | //   3. for x in ]great, * ] : x == pivot2 | 
|  | for (int k = less; k <= great; k++) { | 
|  | var ak = a[k]; | 
|  | int comp_pivot1 = compare(ak, pivot1); | 
|  | if (comp_pivot1 == 0) { | 
|  | if (k != less) { | 
|  | a[k] = a[less]; | 
|  | a[less] = ak; | 
|  | } | 
|  | less++; | 
|  | } else { | 
|  | int comp_pivot2 = compare(ak, pivot2); | 
|  | if (comp_pivot2 == 0) { | 
|  | while (true) { | 
|  | int comp = compare(a[great], pivot2); | 
|  | if (comp == 0) { | 
|  | great--; | 
|  | if (great < k) break; | 
|  | // This is the only location inside the loop where a new | 
|  | // iteration is started. | 
|  | continue; | 
|  | } else { | 
|  | // a[great] < pivot2. | 
|  | comp = compare(a[great], pivot1); | 
|  | if (comp < 0) { | 
|  | // Triple exchange. | 
|  | a[k] = a[less]; | 
|  | a[less++] = a[great]; | 
|  | a[great--] = ak; | 
|  | } else { | 
|  | // a[great] == pivot1. | 
|  | a[k] = a[great]; | 
|  | a[great--] = ak; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // The second partition has now been cleared of pivot elements and looks | 
|  | // as follows: | 
|  | // [  *  |  > pivot1 && < pivot2  | * ] | 
|  | //        ^                      ^ | 
|  | //       less                  great | 
|  | // Sort the second partition using recursive descent. | 
|  | _doSort(a, less, great, compare); | 
|  | } else { | 
|  | // The second partition looks as follows: | 
|  | // [  *  |  >= pivot1 && <= pivot2  | * ] | 
|  | //        ^                        ^ | 
|  | //       less                    great | 
|  | // Simply sort it by recursive descent. | 
|  | _doSort(a, less, great, compare); | 
|  | } | 
|  | } | 
|  | } |