blob: b24fdb42068813bff2c30fec2584ca9535670272 [file] [log] [blame]
// Copyright (c) 2021, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h" // Needed here to get TARGET_ARCH_RISCV.
#if defined(TARGET_ARCH_RISCV32) || defined(TARGET_ARCH_RISCV64)
#include "vm/compiler/backend/il.h"
#include "vm/compiler/backend/flow_graph.h"
#include "vm/compiler/backend/flow_graph_compiler.h"
#include "vm/compiler/backend/locations.h"
#include "vm/compiler/backend/locations_helpers.h"
#include "vm/compiler/backend/range_analysis.h"
#include "vm/compiler/ffi/native_calling_convention.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/dart_entry.h"
#include "vm/instructions.h"
#include "vm/object_store.h"
#include "vm/parser.h"
#include "vm/simulator.h"
#include "vm/stack_frame.h"
#include "vm/stub_code.h"
#include "vm/symbols.h"
#include "vm/type_testing_stubs.h"
#define __ (compiler->assembler())->
#define Z (compiler->zone())
namespace dart {
// Generic summary for call instructions that have all arguments pushed
// on the stack and return the result in a fixed register A0 (or FA0 if
// the return type is double).
LocationSummary* Instruction::MakeCallSummary(Zone* zone,
const Instruction* instr,
LocationSummary* locs) {
ASSERT(locs == nullptr || locs->always_calls());
LocationSummary* result =
((locs == nullptr)
? (new (zone) LocationSummary(zone, 0, 0, LocationSummary::kCall))
: locs);
const auto representation = instr->representation();
switch (representation) {
case kTagged:
result->set_out(
0, Location::RegisterLocation(CallingConventions::kReturnReg));
break;
case kUnboxedInt64:
#if XLEN == 32
result->set_out(
0, Location::Pair(
Location::RegisterLocation(CallingConventions::kReturnReg),
Location::RegisterLocation(
CallingConventions::kSecondReturnReg)));
#else
result->set_out(
0, Location::RegisterLocation(CallingConventions::kReturnReg));
#endif
break;
case kUnboxedDouble:
result->set_out(
0, Location::FpuRegisterLocation(CallingConventions::kReturnFpuReg));
break;
default:
UNREACHABLE();
break;
}
return result;
}
LocationSummary* LoadIndexedUnsafeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
switch (representation()) {
case kTagged:
locs->set_out(0, Location::RequiresRegister());
break;
case kUnboxedInt64:
#if XLEN == 32
locs->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
locs->set_out(0, Location::RequiresRegister());
#endif
break;
case kUnboxedDouble:
locs->set_out(0, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
break;
}
return locs;
}
void LoadIndexedUnsafeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(RequiredInputRepresentation(0) == kTagged); // It is a Smi.
ASSERT(kSmiTag == 0);
ASSERT(kSmiTagSize == 1);
const Register index = locs()->in(0).reg();
switch (representation()) {
case kTagged: {
const auto out = locs()->out(0).reg();
__ slli(TMP, index, kWordSizeLog2 - kSmiTagSize);
__ add(TMP, TMP, base_reg());
__ LoadFromOffset(out, TMP, offset());
break;
}
case kUnboxedInt64: {
#if XLEN == 32
const auto out_lo = locs()->out(0).AsPairLocation()->At(0).reg();
const auto out_hi = locs()->out(0).AsPairLocation()->At(1).reg();
__ slli(TMP, index, kWordSizeLog2 - kSmiTagSize);
__ add(TMP, TMP, base_reg());
__ LoadFromOffset(out_lo, TMP, offset());
__ LoadFromOffset(out_hi, TMP, offset() + compiler::target::kWordSize);
#else
const auto out = locs()->out(0).reg();
__ slli(TMP, index, kWordSizeLog2 - kSmiTagSize);
__ add(TMP, TMP, base_reg());
__ LoadFromOffset(out, TMP, offset());
#endif
break;
}
case kUnboxedDouble: {
const auto out = locs()->out(0).fpu_reg();
__ slli(TMP, index, kWordSizeLog2 - kSmiTagSize);
__ add(TMP, TMP, base_reg());
__ LoadDFromOffset(out, TMP, offset());
break;
}
default:
UNREACHABLE();
break;
}
}
DEFINE_BACKEND(StoreIndexedUnsafe,
(NoLocation, Register index, Register value)) {
ASSERT(instr->RequiredInputRepresentation(
StoreIndexedUnsafeInstr::kIndexPos) == kTagged); // It is a Smi.
__ slli(TMP, index, compiler::target::kWordSizeLog2 - kSmiTagSize);
__ add(TMP, TMP, instr->base_reg());
__ sx(value, compiler::Address(TMP, instr->offset()));
ASSERT(kSmiTag == 0);
}
DEFINE_BACKEND(TailCall,
(NoLocation,
Fixed<Register, ARGS_DESC_REG>,
Temp<Register> temp)) {
compiler->EmitTailCallToStub(instr->code());
// Even though the TailCallInstr will be the last instruction in a basic
// block, the flow graph compiler will emit native code for other blocks after
// the one containing this instruction and needs to be able to use the pool.
// (The `LeaveDartFrame` above disables usages of the pool.)
__ set_constant_pool_allowed(true);
}
LocationSummary* MemoryCopyInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 5;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(kSrcPos, Location::WritableRegister());
locs->set_in(kDestPos, Location::WritableRegister());
locs->set_in(kSrcStartPos, Location::RequiresRegister());
locs->set_in(kDestStartPos, Location::RequiresRegister());
locs->set_in(kLengthPos, Location::WritableRegister());
return locs;
}
void MemoryCopyInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register src_reg = locs()->in(kSrcPos).reg();
const Register dest_reg = locs()->in(kDestPos).reg();
const Register src_start_reg = locs()->in(kSrcStartPos).reg();
const Register dest_start_reg = locs()->in(kDestStartPos).reg();
const Register length_reg = locs()->in(kLengthPos).reg();
EmitComputeStartPointer(compiler, src_cid_, src_start(), src_reg,
src_start_reg);
EmitComputeStartPointer(compiler, dest_cid_, dest_start(), dest_reg,
dest_start_reg);
compiler::Label loop, done;
// Untag length and skip copy if length is zero.
__ SmiUntag(length_reg);
__ beqz(length_reg, &done);
__ Bind(&loop);
switch (element_size_) {
case 1:
__ lb(TMP, compiler::Address(src_reg));
__ addi(src_reg, src_reg, 1);
__ sb(TMP, compiler::Address(dest_reg));
__ addi(dest_reg, dest_reg, 1);
break;
case 2:
__ lh(TMP, compiler::Address(src_reg));
__ addi(src_reg, src_reg, 2);
__ sh(TMP, compiler::Address(dest_reg));
__ addi(dest_reg, dest_reg, 2);
break;
case 4:
__ lw(TMP, compiler::Address(src_reg));
__ addi(src_reg, src_reg, 4);
__ sw(TMP, compiler::Address(dest_reg));
__ addi(dest_reg, dest_reg, 4);
break;
case 8:
#if XLEN == 32
__ lw(TMP, compiler::Address(src_reg, 0));
__ lw(TMP2, compiler::Address(src_reg, 4));
__ addi(src_reg, src_reg, 16);
__ sw(TMP, compiler::Address(dest_reg, 0));
__ sw(TMP2, compiler::Address(dest_reg, 4));
__ addi(dest_reg, dest_reg, 16);
#else
__ ld(TMP, compiler::Address(src_reg));
__ addi(src_reg, src_reg, 8);
__ sd(TMP, compiler::Address(dest_reg));
__ addi(dest_reg, dest_reg, 8);
#endif
break;
case 16:
#if XLEN == 32
__ lw(TMP, compiler::Address(src_reg, 0));
__ lw(TMP2, compiler::Address(src_reg, 4));
__ sw(TMP, compiler::Address(dest_reg, 0));
__ sw(TMP2, compiler::Address(dest_reg, 4));
__ lw(TMP, compiler::Address(src_reg, 8));
__ lw(TMP2, compiler::Address(src_reg, 12));
__ addi(src_reg, src_reg, 16);
__ sw(TMP, compiler::Address(dest_reg, 8));
__ sw(TMP2, compiler::Address(dest_reg, 12));
__ addi(dest_reg, dest_reg, 16);
#elif XLEN == 64
__ ld(TMP, compiler::Address(src_reg, 0));
__ ld(TMP2, compiler::Address(src_reg, 8));
__ addi(src_reg, src_reg, 16);
__ sd(TMP, compiler::Address(dest_reg, 0));
__ sd(TMP2, compiler::Address(dest_reg, 8));
__ addi(dest_reg, dest_reg, 16);
#elif XLEN == 128
__ lq(TMP, compiler::Address(src_reg));
__ addi(src_reg, src_reg, 16);
__ sq(TMP, compiler::Address(dest_reg));
__ addi(dest_reg, dest_reg, 16);
#endif
break;
}
__ subi(length_reg, length_reg, 1);
__ bnez(length_reg, &loop);
__ Bind(&done);
}
void MemoryCopyInstr::EmitComputeStartPointer(FlowGraphCompiler* compiler,
classid_t array_cid,
Value* start,
Register array_reg,
Register start_reg) {
if (IsTypedDataBaseClassId(array_cid)) {
__ lx(array_reg,
compiler::FieldAddress(array_reg,
compiler::target::PointerBase::data_offset()));
} else {
switch (array_cid) {
case kOneByteStringCid:
__ addi(
array_reg, array_reg,
compiler::target::OneByteString::data_offset() - kHeapObjectTag);
break;
case kTwoByteStringCid:
__ addi(
array_reg, array_reg,
compiler::target::OneByteString::data_offset() - kHeapObjectTag);
break;
case kExternalOneByteStringCid:
__ lx(array_reg,
compiler::FieldAddress(array_reg,
compiler::target::ExternalOneByteString::
external_data_offset()));
break;
case kExternalTwoByteStringCid:
__ lx(array_reg,
compiler::FieldAddress(array_reg,
compiler::target::ExternalTwoByteString::
external_data_offset()));
break;
default:
UNREACHABLE();
break;
}
}
intptr_t shift = Utils::ShiftForPowerOfTwo(element_size_) - 1;
if (shift < 0) {
__ srai(TMP, start_reg, -shift);
__ add(array_reg, array_reg, TMP);
} else if (shift == 0) {
__ add(array_reg, array_reg, start_reg);
} else {
__ slli(TMP, start_reg, shift);
__ add(array_reg, array_reg, TMP);
}
}
LocationSummary* PushArgumentInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (representation() == kUnboxedDouble) {
locs->set_in(0, Location::RequiresFpuRegister());
} else if (representation() == kUnboxedInt64) {
#if XLEN == 32
locs->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
locs->set_in(0, Location::RequiresRegister());
#endif
} else {
locs->set_in(0, LocationAnyOrConstant(value()));
}
return locs;
}
void PushArgumentInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// In SSA mode, we need an explicit push. Nothing to do in non-SSA mode
// where arguments are pushed by their definitions.
if (compiler->is_optimizing()) {
if (previous()->IsPushArgument()) {
// Already generated.
return;
}
// Count the arguments first so we can update SP once instead of using
// separate pushes.
intptr_t size = 0;
for (PushArgumentInstr* push_arg = this; push_arg != nullptr;
push_arg = push_arg->next()->AsPushArgument()) {
const Location value = push_arg->locs()->in(0);
if (value.IsRegister()) {
size += compiler::target::kWordSize;
#if XLEN == 32
} else if (value.IsPairLocation()) {
size += 2 * compiler::target::kWordSize;
#endif
} else if (value.IsConstant()) {
size += compiler::target::kWordSize;
} else if (value.IsFpuRegister()) {
size += sizeof(double);
} else if (value.IsStackSlot()) {
size += compiler::target::kWordSize;
} else {
UNREACHABLE();
}
}
__ subi(SP, SP, size);
intptr_t offset = size;
for (PushArgumentInstr* push_arg = this; push_arg != nullptr;
push_arg = push_arg->next()->AsPushArgument()) {
const Location value = push_arg->locs()->in(0);
if (value.IsRegister()) {
offset -= compiler::target::kWordSize;
__ StoreToOffset(value.reg(), SP, offset);
#if XLEN == 32
} else if (value.IsPairLocation()) {
offset -= compiler::target::kWordSize;
__ StoreToOffset(value.AsPairLocation()->At(1).reg(), SP, offset);
offset -= compiler::target::kWordSize;
__ StoreToOffset(value.AsPairLocation()->At(0).reg(), SP, offset);
#endif
} else if (value.IsConstant()) {
const Object& constant = value.constant();
Register reg;
if (constant.IsNull()) {
reg = NULL_REG;
} else if (constant.IsSmi() && Smi::Cast(constant).Value() == 0) {
reg = ZR;
} else {
reg = TMP;
__ LoadObject(TMP, constant);
}
offset -= compiler::target::kWordSize;
__ StoreToOffset(reg, SP, offset);
} else if (value.IsFpuRegister()) {
offset -= sizeof(double);
__ StoreDToOffset(value.fpu_reg(), SP, offset);
} else if (value.IsStackSlot()) {
const intptr_t value_offset = value.ToStackSlotOffset();
__ LoadFromOffset(TMP, value.base_reg(), value_offset);
offset -= compiler::target::kWordSize;
__ StoreToOffset(TMP, SP, offset);
} else {
UNREACHABLE();
}
}
ASSERT(offset == 0);
}
}
LocationSummary* ReturnInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
switch (representation()) {
case kTagged:
locs->set_in(0,
Location::RegisterLocation(CallingConventions::kReturnReg));
break;
case kUnboxedInt64:
#if XLEN == 32
locs->set_in(
0, Location::Pair(
Location::RegisterLocation(CallingConventions::kReturnReg),
Location::RegisterLocation(
CallingConventions::kSecondReturnReg)));
#else
locs->set_in(0,
Location::RegisterLocation(CallingConventions::kReturnReg));
#endif
break;
case kUnboxedDouble:
locs->set_in(
0, Location::FpuRegisterLocation(CallingConventions::kReturnFpuReg));
break;
default:
UNREACHABLE();
break;
}
return locs;
}
// Attempt optimized compilation at return instruction instead of at the entry.
// The entry needs to be patchable, no inlined objects are allowed in the area
// that will be overwritten by the patch instructions: a branch macro sequence.
void ReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (locs()->in(0).IsRegister()) {
const Register result = locs()->in(0).reg();
ASSERT(result == CallingConventions::kReturnReg);
} else if (locs()->in(0).IsPairLocation()) {
const Register result_lo = locs()->in(0).AsPairLocation()->At(0).reg();
const Register result_hi = locs()->in(0).AsPairLocation()->At(1).reg();
ASSERT(result_lo == CallingConventions::kReturnReg);
ASSERT(result_hi == CallingConventions::kSecondReturnReg);
} else {
ASSERT(locs()->in(0).IsFpuRegister());
const FpuRegister result = locs()->in(0).fpu_reg();
ASSERT(result == CallingConventions::kReturnFpuReg);
}
if (!compiler->flow_graph().graph_entry()->NeedsFrame()) {
__ ret();
return;
}
#if defined(DEBUG)
compiler::Label stack_ok;
__ Comment("Stack Check");
const intptr_t fp_sp_dist =
(compiler::target::frame_layout.first_local_from_fp + 1 -
compiler->StackSize()) *
kWordSize;
ASSERT(fp_sp_dist <= 0);
__ sub(TMP, SP, FP);
__ CompareImmediate(TMP, fp_sp_dist);
__ BranchIf(EQ, &stack_ok, compiler::Assembler::kNearJump);
__ ebreak();
__ Bind(&stack_ok);
#endif
ASSERT(__ constant_pool_allowed());
if (yield_index() != UntaggedPcDescriptors::kInvalidYieldIndex) {
compiler->EmitYieldPositionMetadata(source(), yield_index());
}
__ LeaveDartFrame(); // Disallows constant pool use.
__ ret();
// This ReturnInstr may be emitted out of order by the optimizer. The next
// block may be a target expecting a properly set constant pool pointer.
__ set_constant_pool_allowed(true);
}
// Detect pattern when one value is zero and another is a power of 2.
static bool IsPowerOfTwoKind(intptr_t v1, intptr_t v2) {
return (Utils::IsPowerOfTwo(v1) && (v2 == 0)) ||
(Utils::IsPowerOfTwo(v2) && (v1 == 0));
}
LocationSummary* IfThenElseInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
return comparison()->locs();
}
void IfThenElseInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
Location left = locs()->in(0);
Location right = locs()->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
// Emit comparison code. This must not overwrite the result register.
// IfThenElseInstr::Supports() should prevent EmitComparisonCode from using
// the labels or returning an invalid condition.
BranchLabels labels = {NULL, NULL, NULL};
Condition true_condition = comparison()->EmitComparisonCode(compiler, labels);
ASSERT(true_condition != kInvalidCondition);
const bool is_power_of_two_kind = IsPowerOfTwoKind(if_true_, if_false_);
intptr_t true_value = if_true_;
intptr_t false_value = if_false_;
if (is_power_of_two_kind) {
if (true_value == 0) {
// We need to have zero in result on true_condition.
true_condition = InvertCondition(true_condition);
}
} else {
if (true_value == 0) {
// Swap values so that false_value is zero.
intptr_t temp = true_value;
true_value = false_value;
false_value = temp;
} else {
true_condition = InvertCondition(true_condition);
}
}
__ SetIf(true_condition, result);
if (is_power_of_two_kind) {
const intptr_t shift =
Utils::ShiftForPowerOfTwo(Utils::Maximum(true_value, false_value));
__ slli(result, result, shift + kSmiTagSize);
} else {
__ subi(result, result, 1);
const int64_t val = Smi::RawValue(true_value) - Smi::RawValue(false_value);
__ AndImmediate(result, result, val);
if (false_value != 0) {
__ AddImmediate(result, Smi::RawValue(false_value));
}
}
}
LocationSummary* ClosureCallInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(T0)); // Function.
return MakeCallSummary(zone, this, summary);
}
void ClosureCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Load arguments descriptor in S4.
const intptr_t argument_count = ArgumentCount(); // Includes type args.
const Array& arguments_descriptor =
Array::ZoneHandle(Z, GetArgumentsDescriptor());
__ LoadObject(ARGS_DESC_REG, arguments_descriptor);
ASSERT(locs()->in(0).reg() == T0);
if (FLAG_precompiled_mode) {
// T0: Closure with a cached entry point.
__ LoadFieldFromOffset(A1, T0,
compiler::target::Closure::entry_point_offset());
} else {
// T0: Function.
__ LoadCompressedFieldFromOffset(CODE_REG, T0,
compiler::target::Function::code_offset());
// Closure functions only have one entry point.
__ LoadFieldFromOffset(A1, T0,
compiler::target::Function::entry_point_offset());
}
// T0: Function (argument to lazy compile stub)
// S4: Arguments descriptor array.
// A1: instructions entry point.
if (!FLAG_precompiled_mode) {
// S5: Smi 0 (no IC data; the lazy-compile stub expects a GC-safe value).
__ LoadImmediate(IC_DATA_REG, 0);
}
__ jalr(A1);
compiler->EmitCallsiteMetadata(source(), deopt_id(),
UntaggedPcDescriptors::kOther, locs(), env());
__ Drop(argument_count);
}
LocationSummary* LoadLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 0, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
__ LoadFromOffset(result, FP,
compiler::target::FrameOffsetInBytesForVariable(&local()));
// TODO(riscv): Using an SP-relative address instead of an FP-relative
// address would allow for compressed instructions.
}
LocationSummary* StoreLocalInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 1, Location::SameAsFirstInput(),
LocationSummary::kNoCall);
}
void StoreLocalInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
ASSERT(result == value); // Assert that register assignment is correct.
__ StoreToOffset(value, FP,
compiler::target::FrameOffsetInBytesForVariable(&local()));
// TODO(riscv): Using an SP-relative address instead of an FP-relative
// address would allow for compressed instructions.
}
LocationSummary* ConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 0, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void ConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The register allocator drops constant definitions that have no uses.
if (!locs()->out(0).IsInvalid()) {
const Register result = locs()->out(0).reg();
__ LoadObject(result, value());
}
}
void ConstantInstr::EmitMoveToLocation(FlowGraphCompiler* compiler,
const Location& destination,
Register tmp,
intptr_t pair_index) {
if (destination.IsRegister()) {
if (RepresentationUtils::IsUnboxedInteger(representation())) {
int64_t v;
const bool ok = compiler::HasIntegerValue(value_, &v);
RELEASE_ASSERT(ok);
if (value_.IsSmi() && RepresentationUtils::IsUnsigned(representation())) {
// If the value is negative, then the sign bit was preserved during
// Smi untagging, which means the resulting value may be unexpected.
ASSERT(v >= 0);
}
#if XLEN == 32
__ LoadImmediate(destination.reg(), pair_index == 0
? Utils::Low32Bits(v)
: Utils::High32Bits(v));
#else
ASSERT(pair_index == 0); // No pair representation needed on 64-bit.
__ LoadImmediate(destination.reg(), v);
#endif
} else {
ASSERT(representation() == kTagged);
__ LoadObject(destination.reg(), value_);
}
} else if (destination.IsFpuRegister()) {
const FRegister dst = destination.fpu_reg();
__ LoadDImmediate(dst, Double::Cast(value_).value());
} else if (destination.IsDoubleStackSlot()) {
__ LoadDImmediate(FTMP, Double::Cast(value_).value());
const intptr_t dest_offset = destination.ToStackSlotOffset();
__ StoreDToOffset(FTMP, destination.base_reg(), dest_offset);
} else {
ASSERT(destination.IsStackSlot());
ASSERT(tmp != kNoRegister);
const intptr_t dest_offset = destination.ToStackSlotOffset();
if (RepresentationUtils::IsUnboxedInteger(representation())) {
int64_t v;
const bool ok = compiler::HasIntegerValue(value_, &v);
RELEASE_ASSERT(ok);
#if XLEN == 32
__ LoadImmediate(
tmp, pair_index == 0 ? Utils::Low32Bits(v) : Utils::High32Bits(v));
#else
ASSERT(pair_index == 0); // No pair representation needed on 64-bit.
__ LoadImmediate(tmp, v);
#endif
} else {
ASSERT(representation() == kTagged);
if (value_.IsNull()) {
tmp = NULL_REG;
} else if (value_.IsSmi() && Smi::Cast(value_).Value() == 0) {
tmp = ZR;
} else {
__ LoadObject(tmp, value_);
}
}
__ StoreToOffset(tmp, destination.base_reg(), dest_offset);
}
}
LocationSummary* UnboxedConstantInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const bool is_unboxed_int =
RepresentationUtils::IsUnboxedInteger(representation());
ASSERT(!is_unboxed_int || RepresentationUtils::ValueSize(representation()) <=
compiler::target::kWordSize);
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = is_unboxed_int ? 0 : 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (is_unboxed_int) {
locs->set_out(0, Location::RequiresRegister());
} else {
switch (representation()) {
case kUnboxedDouble:
locs->set_out(0, Location::RequiresFpuRegister());
locs->set_temp(0, Location::RequiresRegister());
break;
default:
UNREACHABLE();
break;
}
}
return locs;
}
void UnboxedConstantInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!locs()->out(0).IsInvalid()) {
const Register scratch =
RepresentationUtils::IsUnboxedInteger(representation())
? kNoRegister
: locs()->temp(0).reg();
EmitMoveToLocation(compiler, locs()->out(0), scratch);
}
}
LocationSummary* AssertAssignableInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
auto const dst_type_loc =
LocationFixedRegisterOrConstant(dst_type(), TypeTestABI::kDstTypeReg);
// We want to prevent spilling of the inputs (e.g. function/instantiator tav),
// since TTS preserves them. So we make this a `kNoCall` summary,
// even though most other registers can be modified by the stub. To tell the
// register allocator about it, we reserve all the other registers as
// temporary registers.
// TODO(http://dartbug.com/32788): Simplify this.
const intptr_t kNonChangeableInputRegs =
(1 << TypeTestABI::kInstanceReg) |
((dst_type_loc.IsRegister() ? 1 : 0) << TypeTestABI::kDstTypeReg) |
(1 << TypeTestABI::kInstantiatorTypeArgumentsReg) |
(1 << TypeTestABI::kFunctionTypeArgumentsReg);
const intptr_t kNumInputs = 4;
// We invoke a stub that can potentially clobber any CPU register
// but can only clobber FPU registers on the slow path when
// entering runtime. ARM64 ABI only guarantees that lower
// 64-bits of an V registers are preserved so we block all
// of them except for FpuTMP.
const intptr_t kCpuRegistersToPreserve =
kDartAvailableCpuRegs & ~kNonChangeableInputRegs;
const intptr_t kFpuRegistersToPreserve =
Utils::NBitMask<intptr_t>(kNumberOfFpuRegisters) & ~(1l << FpuTMP);
const intptr_t kNumTemps = (Utils::CountOneBits32(kCpuRegistersToPreserve) +
Utils::CountOneBits32(kFpuRegistersToPreserve));
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallCalleeSafe);
summary->set_in(kInstancePos,
Location::RegisterLocation(TypeTestABI::kInstanceReg));
summary->set_in(kDstTypePos, dst_type_loc);
summary->set_in(
kInstantiatorTAVPos,
Location::RegisterLocation(TypeTestABI::kInstantiatorTypeArgumentsReg));
summary->set_in(kFunctionTAVPos, Location::RegisterLocation(
TypeTestABI::kFunctionTypeArgumentsReg));
summary->set_out(0, Location::SameAsFirstInput());
// Let's reserve all registers except for the input ones.
intptr_t next_temp = 0;
for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) {
const bool should_preserve = ((1 << i) & kCpuRegistersToPreserve) != 0;
if (should_preserve) {
summary->set_temp(next_temp++,
Location::RegisterLocation(static_cast<Register>(i)));
}
}
for (intptr_t i = 0; i < kNumberOfFpuRegisters; i++) {
const bool should_preserve = ((1l << i) & kFpuRegistersToPreserve) != 0;
if (should_preserve) {
summary->set_temp(next_temp++, Location::FpuRegisterLocation(
static_cast<FpuRegister>(i)));
}
}
return summary;
}
void AssertBooleanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->always_calls());
auto object_store = compiler->isolate_group()->object_store();
const auto& assert_boolean_stub =
Code::ZoneHandle(compiler->zone(), object_store->assert_boolean_stub());
compiler::Label done;
__ andi(TMP, AssertBooleanABI::kObjectReg, 1 << kBoolVsNullBitPosition);
__ bnez(TMP, &done, compiler::Assembler::kNearJump);
compiler->GenerateStubCall(source(), assert_boolean_stub,
/*kind=*/UntaggedPcDescriptors::kOther, locs(),
deopt_id(), env());
__ Bind(&done);
}
static Condition TokenKindToIntCondition(Token::Kind kind) {
switch (kind) {
case Token::kEQ:
return EQ;
case Token::kNE:
return NE;
case Token::kLT:
return LT;
case Token::kGT:
return GT;
case Token::kLTE:
return LE;
case Token::kGTE:
return GE;
default:
UNREACHABLE();
return VS;
}
}
static Condition FlipCondition(Condition condition) {
switch (condition) {
case EQ:
return EQ;
case NE:
return NE;
case LT:
return GT;
case LE:
return GE;
case GT:
return LT;
case GE:
return LE;
case CC:
return HI;
case LS:
return CS;
case HI:
return CC;
case CS:
return LS;
default:
UNREACHABLE();
return EQ;
}
}
static void EmitBranchOnCondition(
FlowGraphCompiler* compiler,
Condition true_condition,
BranchLabels labels,
compiler::Assembler::JumpDistance jump_distance =
compiler::Assembler::kFarJump) {
if (labels.fall_through == labels.false_label) {
// If the next block is the false successor we will fall through to it.
__ BranchIf(true_condition, labels.true_label, jump_distance);
} else {
// If the next block is not the false successor we will branch to it.
Condition false_condition = InvertCondition(true_condition);
__ BranchIf(false_condition, labels.false_label, jump_distance);
// Fall through or jump to the true successor.
if (labels.fall_through != labels.true_label) {
__ j(labels.true_label, jump_distance);
}
}
}
static Condition EmitSmiComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchLabels labels) {
Location left = locs->in(0);
Location right = locs->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToIntCondition(kind);
if (left.IsConstant() || right.IsConstant()) {
// Ensure constant is on the right.
if (left.IsConstant()) {
Location tmp = right;
right = left;
left = tmp;
true_condition = FlipCondition(true_condition);
}
__ CompareObject(left.reg(), right.constant());
} else {
__ CompareObjectRegisters(left.reg(), right.reg());
}
return true_condition;
}
#if XLEN == 32
static Condition EmitUnboxedMintEqualityOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind) {
ASSERT(Token::IsEqualityOperator(kind));
PairLocation* left_pair = locs->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* right_pair = locs->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
__ xor_(TMP, left_lo, right_lo);
__ xor_(TMP2, left_hi, right_hi);
__ or_(TMP, TMP, TMP2);
__ CompareImmediate(TMP, 0);
if (kind == Token::kEQ) {
return EQUAL;
} else if (kind == Token::kNE) {
return NOT_EQUAL;
}
UNREACHABLE();
}
static Condition EmitUnboxedMintComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchLabels labels) {
PairLocation* left_pair = locs->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* right_pair = locs->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
switch (kind) {
case Token::kEQ:
__ bne(left_lo, right_lo, labels.false_label);
__ CompareRegisters(left_hi, right_hi);
return EQUAL;
case Token::kNE:
__ bne(left_lo, right_lo, labels.true_label);
__ CompareRegisters(left_hi, right_hi);
return NOT_EQUAL;
case Token::kLT:
__ blt(left_hi, right_hi, labels.true_label);
__ bgt(left_hi, right_hi, labels.false_label);
__ CompareRegisters(left_lo, right_lo);
return UNSIGNED_LESS;
case Token::kGT:
__ bgt(left_hi, right_hi, labels.true_label);
__ blt(left_hi, right_hi, labels.false_label);
__ CompareRegisters(left_lo, right_lo);
return UNSIGNED_GREATER;
case Token::kLTE:
__ blt(left_hi, right_hi, labels.true_label);
__ bgt(left_hi, right_hi, labels.false_label);
__ CompareRegisters(left_lo, right_lo);
return UNSIGNED_LESS_EQUAL;
case Token::kGTE:
__ bgt(left_hi, right_hi, labels.true_label);
__ blt(left_hi, right_hi, labels.false_label);
__ CompareRegisters(left_lo, right_lo);
return UNSIGNED_GREATER_EQUAL;
default:
UNREACHABLE();
}
}
#else
// Similar to ComparisonInstr::EmitComparisonCode, may either:
// - emit comparison code and return a valid condition in which case the
// caller is expected to emit a branch to the true label based on that
// condition (or a branch to the false label on the opposite condition).
// - emit comparison code with a branch directly to the labels and return
// kInvalidCondition.
static Condition EmitInt64ComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchLabels labels) {
Location left = locs->in(0);
Location right = locs->in(1);
ASSERT(!left.IsConstant() || !right.IsConstant());
Condition true_condition = TokenKindToIntCondition(kind);
if (left.IsConstant() || right.IsConstant()) {
// Ensure constant is on the right.
ConstantInstr* constant = nullptr;
if (left.IsConstant()) {
constant = left.constant_instruction();
Location tmp = right;
right = left;
left = tmp;
true_condition = FlipCondition(true_condition);
} else {
constant = right.constant_instruction();
}
if (RepresentationUtils::IsUnboxedInteger(constant->representation())) {
int64_t value;
const bool ok = compiler::HasIntegerValue(constant->value(), &value);
RELEASE_ASSERT(ok);
__ CompareImmediate(left.reg(), value);
} else {
UNREACHABLE();
}
} else {
__ CompareRegisters(left.reg(), right.reg());
}
return true_condition;
}
#endif
static Condition EmitNullAwareInt64ComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
Token::Kind kind,
BranchLabels labels) {
ASSERT((kind == Token::kEQ) || (kind == Token::kNE));
const Register left = locs->in(0).reg();
const Register right = locs->in(1).reg();
const Condition true_condition = TokenKindToIntCondition(kind);
compiler::Label* equal_result =
(true_condition == EQ) ? labels.true_label : labels.false_label;
compiler::Label* not_equal_result =
(true_condition == EQ) ? labels.false_label : labels.true_label;
// Check if operands have the same value. If they don't, then they could
// be equal only if both of them are Mints with the same value.
__ CompareObjectRegisters(left, right);
__ BranchIf(EQ, equal_result);
__ and_(TMP, left, right);
__ BranchIfSmi(TMP, not_equal_result);
__ CompareClassId(left, kMintCid, TMP);
__ BranchIf(NE, not_equal_result);
__ CompareClassId(right, kMintCid, TMP);
__ BranchIf(NE, not_equal_result);
#if XLEN == 32
__ LoadFieldFromOffset(TMP, left, compiler::target::Mint::value_offset());
__ LoadFieldFromOffset(TMP2, right, compiler::target::Mint::value_offset());
__ bne(TMP, TMP2, not_equal_result);
__ LoadFieldFromOffset(
TMP, left,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
__ LoadFieldFromOffset(
TMP2, right,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
#else
__ LoadFieldFromOffset(TMP, left, Mint::value_offset());
__ LoadFieldFromOffset(TMP2, right, Mint::value_offset());
#endif
__ CompareRegisters(TMP, TMP2);
return true_condition;
}
LocationSummary* EqualityCompareInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (is_null_aware()) {
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
#if XLEN == 32
if (operation_cid() == kMintCid) {
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
locs->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
#endif
if (operation_cid() == kDoubleCid) {
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresFpuRegister());
locs->set_in(1, Location::RequiresFpuRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (is_null_aware()) {
locs->set_in(0, Location::RequiresRegister());
locs->set_in(1, Location::RequiresRegister());
} else {
locs->set_in(0, LocationRegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
// Only right can be a stack slot.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: LocationRegisterOrConstant(right()));
}
locs->set_out(0, Location::RequiresRegister());
return locs;
}
UNREACHABLE();
return NULL;
}
static Condition EmitDoubleComparisonOp(FlowGraphCompiler* compiler,
LocationSummary* locs,
BranchLabels labels,
Token::Kind kind) {
const FRegister left = locs->in(0).fpu_reg();
const FRegister right = locs->in(1).fpu_reg();
// TODO(riscv): Check if this does want we want for comparisons involving NaN.
switch (kind) {
case Token::kEQ:
__ feqd(TMP, left, right);
__ CompareImmediate(TMP, 0);
return NE;
case Token::kNE:
__ feqd(TMP, left, right);
__ CompareImmediate(TMP, 0);
return EQ;
case Token::kLT:
__ fltd(TMP, left, right);
__ CompareImmediate(TMP, 0);
return NE;
case Token::kGT:
__ fltd(TMP, right, left);
__ CompareImmediate(TMP, 0);
return NE;
case Token::kLTE:
__ fled(TMP, left, right);
__ CompareImmediate(TMP, 0);
return NE;
case Token::kGTE:
__ fled(TMP, right, left);
__ CompareImmediate(TMP, 0);
return NE;
default:
UNREACHABLE();
}
}
Condition EqualityCompareInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (is_null_aware()) {
ASSERT(operation_cid() == kMintCid);
return EmitNullAwareInt64ComparisonOp(compiler, locs(), kind(), labels);
}
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, locs(), kind(), labels);
} else if (operation_cid() == kMintCid) {
#if XLEN == 32
return EmitUnboxedMintEqualityOp(compiler, locs(), kind());
#else
return EmitInt64ComparisonOp(compiler, locs(), kind(), labels);
#endif
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, locs(), labels, kind());
}
}
LocationSummary* TestSmiInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
locs->set_in(1, LocationRegisterOrConstant(right()));
return locs;
}
Condition TestSmiInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
const Register left = locs()->in(0).reg();
Location right = locs()->in(1);
if (right.IsConstant()) {
ASSERT(right.constant().IsSmi());
const intx_t imm = static_cast<intx_t>(right.constant().ptr());
__ TestImmediate(left, imm);
} else {
__ TestRegisters(left, right.reg());
}
Condition true_condition = (kind() == Token::kNE) ? NE : EQ;
return true_condition;
}
LocationSummary* TestCidsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition TestCidsInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
ASSERT((kind() == Token::kIS) || (kind() == Token::kISNOT));
const Register val_reg = locs()->in(0).reg();
const Register cid_reg = locs()->temp(0).reg();
compiler::Label* deopt =
CanDeoptimize()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptTestCids,
licm_hoisted_ ? ICData::kHoisted : 0)
: NULL;
const intptr_t true_result = (kind() == Token::kIS) ? 1 : 0;
const ZoneGrowableArray<intptr_t>& data = cid_results();
ASSERT(data[0] == kSmiCid);
bool result = data[1] == true_result;
__ BranchIfSmi(val_reg, result ? labels.true_label : labels.false_label);
__ LoadClassId(cid_reg, val_reg);
for (intptr_t i = 2; i < data.length(); i += 2) {
const intptr_t test_cid = data[i];
ASSERT(test_cid != kSmiCid);
result = data[i + 1] == true_result;
__ CompareImmediate(cid_reg, test_cid);
__ BranchIf(EQ, result ? labels.true_label : labels.false_label);
}
// No match found, deoptimize or default action.
if (deopt == NULL) {
// If the cid is not in the list, jump to the opposite label from the cids
// that are in the list. These must be all the same (see asserts in the
// constructor).
compiler::Label* target = result ? labels.false_label : labels.true_label;
if (target != labels.fall_through) {
__ j(target);
}
} else {
__ j(deopt);
}
// Dummy result as this method already did the jump, there's no need
// for the caller to branch on a condition.
return kInvalidCondition;
}
LocationSummary* RelationalOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
#if XLEN == 32
if (operation_cid() == kMintCid) {
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
locs->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
#endif
if (operation_cid() == kDoubleCid) {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
if (operation_cid() == kSmiCid || operation_cid() == kMintCid) {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, LocationRegisterOrConstant(left()));
// Only one input can be a constant operand. The case of two constant
// operands should be handled by constant propagation.
summary->set_in(1, summary->in(0).IsConstant()
? Location::RequiresRegister()
: LocationRegisterOrConstant(right()));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
return NULL;
}
Condition RelationalOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
if (operation_cid() == kSmiCid) {
return EmitSmiComparisonOp(compiler, locs(), kind(), labels);
} else if (operation_cid() == kMintCid) {
#if XLEN == 32
return EmitUnboxedMintComparisonOp(compiler, locs(), kind(), labels);
#else
return EmitInt64ComparisonOp(compiler, locs(), kind(), labels);
#endif
} else {
ASSERT(operation_cid() == kDoubleCid);
return EmitDoubleComparisonOp(compiler, locs(), labels, kind());
}
}
void NativeCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
SetupNative();
const Register result = locs()->out(0).reg();
// All arguments are already @SP due to preceding PushArgument()s.
ASSERT(ArgumentCount() ==
function().NumParameters() + (function().IsGeneric() ? 1 : 0));
// Push the result place holder initialized to NULL.
__ PushObject(Object::null_object());
// Pass a pointer to the first argument in R2.
__ AddImmediate(T2, SP, ArgumentCount() * kWordSize);
// Compute the effective address. When running under the simulator,
// this is a redirection address that forces the simulator to call
// into the runtime system.
uword entry;
const intptr_t argc_tag = NativeArguments::ComputeArgcTag(function());
const Code* stub;
if (link_lazily()) {
stub = &StubCode::CallBootstrapNative();
entry = NativeEntry::LinkNativeCallEntry();
} else {
entry = reinterpret_cast<uword>(native_c_function());
if (is_bootstrap_native()) {
stub = &StubCode::CallBootstrapNative();
} else if (is_auto_scope()) {
stub = &StubCode::CallAutoScopeNative();
} else {
stub = &StubCode::CallNoScopeNative();
}
}
__ LoadImmediate(T1, argc_tag);
compiler::ExternalLabel label(entry);
__ LoadNativeEntry(T5, &label,
link_lazily() ? ObjectPool::Patchability::kPatchable
: ObjectPool::Patchability::kNotPatchable);
if (link_lazily()) {
compiler->GeneratePatchableCall(source(), *stub,
UntaggedPcDescriptors::kOther, locs());
} else {
// We can never lazy-deopt here because natives are never optimized.
ASSERT(!compiler->is_optimizing());
compiler->GenerateNonLazyDeoptableStubCall(
source(), *stub, UntaggedPcDescriptors::kOther, locs());
}
__ lx(result, compiler::Address(SP, 0));
__ Drop(ArgumentCount() + 1); // Drop the arguments and result.
}
#define R(r) (1 << r)
LocationSummary* FfiCallInstr::MakeLocationSummary(Zone* zone,
bool is_optimizing) const {
LocationSummary* summary = MakeLocationSummaryInternal(
zone, is_optimizing,
(R(CallingConventions::kSecondNonArgumentRegister) |
R(CallingConventions::kFfiAnyNonAbiRegister) | R(CALLEE_SAVED_TEMP2)));
// A3/A4/A5 are unavailable in normal register allocation because they are
// assigned to TMP/TMP2/PP. This assignment is important for reducing code
// size. We can't just override the normal blockage of these registers because
// they may be used by other instructions between the argument's definition
// and its use in FfiCallInstr.
// Note that A3/A4/A5 might be not be the 3rd/4th/5th input because of mixed
// integer and floating-point arguments.
for (intptr_t i = 0; i < summary->input_count(); i++) {
if (!summary->in(i).IsRegister()) continue;
if (summary->in(i).reg() == A3) {
summary->set_in(i, Location::RegisterLocation(T3));
} else if (summary->in(i).reg() == A4) {
summary->set_in(i, Location::RegisterLocation(T4));
} else if (summary->in(i).reg() == A5) {
summary->set_in(i, Location::RegisterLocation(T5));
}
}
return summary;
}
#undef R
void FfiCallInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Beware! Do not use CODE_REG/TMP/TMP2/PP within FfiCallInstr as they are
// assigned to A2/A3/A4/A5, which may be in use as argument registers.
__ set_constant_pool_allowed(false);
for (intptr_t i = 0; i < locs()->input_count(); i++) {
if (!locs()->in(i).IsRegister()) continue;
if (locs()->in(i).reg() == T3) {
__ mv(A3, T3);
} else if (locs()->in(i).reg() == T4) {
__ mv(A4, T4);
} else if (locs()->in(i).reg() == T5) {
__ mv(A5, T5);
}
}
const Register target = locs()->in(TargetAddressIndex()).reg();
// The temps are indexed according to their register number.
const Register temp1 = locs()->temp(0).reg();
// For regular calls, this holds the FP for rebasing the original locations
// during EmitParamMoves.
// For leaf calls, this holds the SP used to restore the pre-aligned SP after
// the call.
const Register saved_fp_or_sp = locs()->temp(1).reg();
const Register temp2 = locs()->temp(2).reg();
ASSERT(temp1 != target);
ASSERT(temp2 != target);
ASSERT(temp1 != saved_fp_or_sp);
ASSERT(temp2 != saved_fp_or_sp);
ASSERT(saved_fp_or_sp != target);
// Ensure these are callee-saved register and are preserved across the call.
ASSERT(IsCalleeSavedRegister(saved_fp_or_sp));
// Other temps don't need to be preserved.
__ mv(saved_fp_or_sp, is_leaf_ ? SPREG : FPREG);
if (!is_leaf_) {
// We need to create a dummy "exit frame".
// This is EnterDartFrame without accessing A2=CODE_REG or A5=PP.
if (FLAG_precompiled_mode) {
__ subi(SP, SP, 2 * compiler::target::kWordSize);
__ sx(RA, compiler::Address(SP, 1 * compiler::target::kWordSize));
__ sx(FP, compiler::Address(SP, 0 * compiler::target::kWordSize));
__ addi(FP, SP, 2 * compiler::target::kWordSize);
} else {
__ subi(SP, SP, 4 * compiler::target::kWordSize);
__ sx(RA, compiler::Address(SP, 3 * compiler::target::kWordSize));
__ sx(FP, compiler::Address(SP, 2 * compiler::target::kWordSize));
__ sx(NULL_REG, compiler::Address(SP, 1 * compiler::target::kWordSize));
__ sx(NULL_REG, compiler::Address(SP, 0 * compiler::target::kWordSize));
__ addi(FP, SP, 4 * compiler::target::kWordSize);
}
}
// Reserve space for the arguments that go on the stack (if any), then align.
__ ReserveAlignedFrameSpace(marshaller_.RequiredStackSpaceInBytes());
EmitParamMoves(compiler, is_leaf_ ? FPREG : saved_fp_or_sp, temp1, temp2);
if (compiler::Assembler::EmittingComments()) {
__ Comment(is_leaf_ ? "Leaf Call" : "Call");
}
if (is_leaf_) {
#if !defined(PRODUCT)
// Set the thread object's top_exit_frame_info and VMTag to enable the
// profiler to determine that thread is no longer executing Dart code.
__ StoreToOffset(FPREG, THR,
compiler::target::Thread::top_exit_frame_info_offset());
__ StoreToOffset(target, THR, compiler::target::Thread::vm_tag_offset());
#endif
__ jalr(target);
#if !defined(PRODUCT)
__ LoadImmediate(temp1, compiler::target::Thread::vm_tag_dart_id());
__ StoreToOffset(temp1, THR, compiler::target::Thread::vm_tag_offset());
__ StoreToOffset(ZR, THR,
compiler::target::Thread::top_exit_frame_info_offset());
#endif
} else {
// We need to copy a dummy return address up into the dummy stack frame so
// the stack walker will know which safepoint to use.
//
// AUIPC loads relative to itself.
compiler->EmitCallsiteMetadata(source(), deopt_id(),
UntaggedPcDescriptors::Kind::kOther, locs(),
env());
__ auipc(temp1, 0);
__ StoreToOffset(temp1, FPREG, kSavedCallerPcSlotFromFp * kWordSize);
if (CanExecuteGeneratedCodeInSafepoint()) {
// Update information in the thread object and enter a safepoint.
__ LoadImmediate(temp1, compiler::target::Thread::exit_through_ffi());
__ TransitionGeneratedToNative(target, FPREG, temp1,
/*enter_safepoint=*/true);
__ jalr(target);
// Update information in the thread object and leave the safepoint.
__ TransitionNativeToGenerated(temp1, /*leave_safepoint=*/true);
} else {
// We cannot trust that this code will be executable within a safepoint.
// Therefore we delegate the responsibility of entering/exiting the
// safepoint to a stub which in the VM isolate's heap, which will never
// lose execute permission.
__ lx(temp1,
compiler::Address(
THR, compiler::target::Thread::
call_native_through_safepoint_entry_point_offset()));
// Calls T0 and clobbers R19 (along with volatile registers).
ASSERT(target == T0);
__ jalr(temp1);
}
// Refresh pinned registers values (inc. write barrier mask and null
// object).
__ RestorePinnedRegisters();
}
EmitReturnMoves(compiler, temp1, temp2);
if (is_leaf_) {
// Restore the pre-aligned SP.
__ mv(SPREG, saved_fp_or_sp);
} else {
__ LeaveDartFrame();
// Restore the global object pool after returning from runtime (old space is
// moving, so the GOP could have been relocated).
if (FLAG_precompiled_mode) {
__ SetupGlobalPoolAndDispatchTable();
}
}
// PP is a volatile register, so it must be restored even for leaf FFI calls.
__ RestorePoolPointer();
__ set_constant_pool_allowed(true);
}
// Keep in sync with NativeEntryInstr::EmitNativeCode.
void NativeReturnInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
EmitReturnMoves(compiler);
__ LeaveDartFrame();
// The dummy return address is in RA, no need to pop it as on Intel.
// These can be anything besides the return registers (A0, A1) and THR (S1).
const Register vm_tag_reg = T2;
const Register old_exit_frame_reg = T3;
const Register old_exit_through_ffi_reg = T4;
const Register tmp = T5;
__ PopRegisterPair(old_exit_frame_reg, old_exit_through_ffi_reg);
// Restore top_resource.
__ PopRegisterPair(tmp, vm_tag_reg);
__ StoreToOffset(tmp, THR, compiler::target::Thread::top_resource_offset());
// Reset the exit frame info to old_exit_frame_reg *before* entering the
// safepoint.
//
// If we were called by a trampoline, it will enter the safepoint on our
// behalf.
__ TransitionGeneratedToNative(
vm_tag_reg, old_exit_frame_reg, old_exit_through_ffi_reg,
/*enter_safepoint=*/!NativeCallbackTrampolines::Enabled());
__ PopNativeCalleeSavedRegisters();
// Leave the entry frame.
__ LeaveFrame();
// Leave the dummy frame holding the pushed arguments.
__ LeaveFrame();
__ Ret();
// For following blocks.
__ set_constant_pool_allowed(true);
}
// Keep in sync with NativeReturnInstr::EmitNativeCode and ComputeInnerLRState.
void NativeEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// Constant pool cannot be used until we enter the actual Dart frame.
__ set_constant_pool_allowed(false);
__ Bind(compiler->GetJumpLabel(this));
// Create a dummy frame holding the pushed arguments. This simplifies
// NativeReturnInstr::EmitNativeCode.
__ EnterFrame(0);
// Save the argument registers, in reverse order.
SaveArguments(compiler);
// Enter the entry frame. NativeParameterInstr expects this frame has size
// -exit_link_slot_from_entry_fp, verified below.
__ EnterFrame(0);
// Save a space for the code object.
__ PushImmediate(0);
__ PushNativeCalleeSavedRegisters();
// Load the thread object. If we were called by a trampoline, the thread is
// already loaded.
if (FLAG_precompiled_mode) {
compiler->LoadBSSEntry(BSS::Relocation::DRT_GetThreadForNativeCallback, A1,
A0);
} else if (!NativeCallbackTrampolines::Enabled()) {
// In JIT mode, we can just paste the address of the runtime entry into the
// generated code directly. This is not a problem since we don't save
// callbacks into JIT snapshots.
__ LoadImmediate(
A1, reinterpret_cast<int64_t>(DLRT_GetThreadForNativeCallback));
}
if (!NativeCallbackTrampolines::Enabled()) {
// Create another frame to align the frame before continuing in "native"
// code.
__ EnterFrame(0);
__ ReserveAlignedFrameSpace(0);
__ LoadImmediate(A0, callback_id_);
__ jalr(A1);
__ mv(THR, A0);
__ LeaveFrame();
}
#if defined(USING_SHADOW_CALL_STACK)
#error Unimplemented
#endif
// Refresh pinned registers values (inc. write barrier mask and null object).
__ RestorePinnedRegisters();
// Save the current VMTag on the stack.
__ LoadFromOffset(TMP, THR, compiler::target::Thread::vm_tag_offset());
// Save the top resource.
__ LoadFromOffset(A0, THR, compiler::target::Thread::top_resource_offset());
__ PushRegisterPair(A0, TMP);
__ StoreToOffset(ZR, THR, compiler::target::Thread::top_resource_offset());
__ LoadFromOffset(A0, THR,
compiler::target::Thread::exit_through_ffi_offset());
__ PushRegister(A0);
// Save the top exit frame info. We don't set it to 0 yet:
// TransitionNativeToGenerated will handle that.
__ LoadFromOffset(A0, THR,
compiler::target::Thread::top_exit_frame_info_offset());
__ PushRegister(A0);
// In debug mode, verify that we've pushed the top exit frame info at the
// correct offset from FP.
__ EmitEntryFrameVerification();
// Either DLRT_GetThreadForNativeCallback or the callback trampoline (caller)
// will leave the safepoint for us.
__ TransitionNativeToGenerated(A0, /*exit_safepoint=*/false);
// Now that the safepoint has ended, we can touch Dart objects without
// handles.
// Load the code object.
__ LoadFromOffset(A0, THR, compiler::target::Thread::callback_code_offset());
__ LoadCompressedFieldFromOffset(
A0, A0, compiler::target::GrowableObjectArray::data_offset());
__ LoadCompressedFieldFromOffset(
CODE_REG, A0,
compiler::target::Array::data_offset() +
callback_id_ * compiler::target::kCompressedWordSize);
// Put the code object in the reserved slot.
__ StoreToOffset(CODE_REG, FPREG,
kPcMarkerSlotFromFp * compiler::target::kWordSize);
if (FLAG_precompiled_mode) {
__ SetupGlobalPoolAndDispatchTable();
} else {
// We now load the pool pointer (PP) with a GC safe value as we are about to
// invoke dart code. We don't need a real object pool here.
// Smi zero does not work because ARM64 assumes PP to be untagged.
__ LoadObject(PP, compiler::NullObject());
}
// Load a GC-safe value for the arguments descriptor (unused but tagged).
__ mv(ARGS_DESC_REG, ZR);
// Load a dummy return address which suggests that we are inside of
// InvokeDartCodeStub. This is how the stack walker detects an entry frame.
__ LoadFromOffset(RA, THR,
compiler::target::Thread::invoke_dart_code_stub_offset());
__ LoadFieldFromOffset(RA, RA, compiler::target::Code::entry_point_offset());
FunctionEntryInstr::EmitNativeCode(compiler);
}
LocationSummary* OneByteStringFromCharCodeInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
// TODO(fschneider): Allow immediate operands for the char code.
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void OneByteStringFromCharCodeInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
ASSERT(compiler->is_optimizing());
const Register char_code = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ lx(result,
compiler::Address(THR, Thread::predefined_symbols_address_offset()));
__ slli(TMP, char_code, kWordSizeLog2 - kSmiTagSize);
__ add(result, result, TMP);
__ lx(result, compiler::Address(
result, Symbols::kNullCharCodeSymbolOffset * kWordSize));
}
LocationSummary* StringToCharCodeInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void StringToCharCodeInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(cid_ == kOneByteStringCid);
Register str = locs()->in(0).reg();
Register result = locs()->out(0).reg();
compiler::Label is_one, done;
__ LoadCompressedSmi(result,
compiler::FieldAddress(str, String::length_offset()));
__ CompareImmediate(result, Smi::RawValue(1));
__ BranchIf(EQUAL, &is_one, compiler::Assembler::kNearJump);
__ li(result, Smi::RawValue(-1));
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&is_one);
__ lbu(result, compiler::FieldAddress(str, OneByteString::data_offset()));
__ SmiTag(result);
__ Bind(&done);
}
LocationSummary* Utf8ScanInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 5;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::Any()); // decoder
summary->set_in(1, Location::WritableRegister()); // bytes
summary->set_in(2, Location::WritableRegister()); // start
summary->set_in(3, Location::WritableRegister()); // end
summary->set_in(4, Location::WritableRegister()); // table
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void Utf8ScanInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register bytes_reg = locs()->in(1).reg();
const Register start_reg = locs()->in(2).reg();
const Register end_reg = locs()->in(3).reg();
const Register table_reg = locs()->in(4).reg();
const Register size_reg = locs()->out(0).reg();
const Register bytes_ptr_reg = start_reg;
const Register bytes_end_reg = end_reg;
const Register flags_reg = bytes_reg;
const Register temp_reg = TMP;
const Register decoder_temp_reg = start_reg;
const Register flags_temp_reg = end_reg;
static const intptr_t kSizeMask = 0x03;
static const intptr_t kFlagsMask = 0x3C;
compiler::Label loop, loop_in;
// Address of input bytes.
__ LoadFieldFromOffset(bytes_reg, bytes_reg,
compiler::target::PointerBase::data_offset());
// Table.
__ AddImmediate(
table_reg, table_reg,
compiler::target::OneByteString::data_offset() - kHeapObjectTag);
// Pointers to start and end.
__ add(bytes_ptr_reg, bytes_reg, start_reg);
__ add(bytes_end_reg, bytes_reg, end_reg);
// Initialize size and flags.
__ li(size_reg, 0);
__ li(flags_reg, 0);
__ j(&loop_in, compiler::Assembler::kNearJump);
__ Bind(&loop);
// Read byte and increment pointer.
__ lbu(temp_reg, compiler::Address(bytes_ptr_reg, 0));
__ addi(bytes_ptr_reg, bytes_ptr_reg, 1);
// Update size and flags based on byte value.
__ add(temp_reg, table_reg, temp_reg);
__ lbu(temp_reg, compiler::Address(temp_reg));
__ or_(flags_reg, flags_reg, temp_reg);
__ andi(temp_reg, temp_reg, kSizeMask);
__ add(size_reg, size_reg, temp_reg);
// Stop if end is reached.
__ Bind(&loop_in);
__ bltu(bytes_ptr_reg, bytes_end_reg, &loop, compiler::Assembler::kNearJump);
// Write flags to field.
__ AndImmediate(flags_reg, flags_reg, kFlagsMask);
if (!IsScanFlagsUnboxed()) {
__ SmiTag(flags_reg);
}
Register decoder_reg;
const Location decoder_location = locs()->in(0);
if (decoder_location.IsStackSlot()) {
__ lx(decoder_temp_reg, LocationToStackSlotAddress(decoder_location));
decoder_reg = decoder_temp_reg;
} else {
decoder_reg = decoder_location.reg();
}
const auto scan_flags_field_offset = scan_flags_field_.offset_in_bytes();
if (scan_flags_field_.is_compressed() && !IsScanFlagsUnboxed()) {
UNIMPLEMENTED();
} else {
__ LoadFieldFromOffset(flags_temp_reg, decoder_reg,
scan_flags_field_offset);
__ or_(flags_temp_reg, flags_temp_reg, flags_reg);
__ StoreFieldToOffset(flags_temp_reg, decoder_reg, scan_flags_field_offset);
}
}
LocationSummary* LoadUntaggedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
return LocationSummary::Make(zone, kNumInputs, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void LoadUntaggedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register obj = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
if (object()->definition()->representation() == kUntagged) {
__ LoadFromOffset(result, obj, offset());
} else {
ASSERT(object()->definition()->representation() == kTagged);
__ LoadFieldFromOffset(result, obj, offset());
}
}
static bool CanBeImmediateIndex(Value* value, intptr_t cid, bool is_external) {
ConstantInstr* constant = value->definition()->AsConstant();
if ((constant == NULL) || !constant->value().IsSmi()) {
return false;
}
const int64_t index = Smi::Cast(constant->value()).AsInt64Value();
const intptr_t scale = Instance::ElementSizeFor(cid);
const int64_t offset =
index * scale +
(is_external ? 0 : (Instance::DataOffsetFor(cid) - kHeapObjectTag));
if (IsITypeImm(offset)) {
ASSERT(IsSTypeImm(offset));
return true;
}
return false;
}
LocationSummary* LoadIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (CanBeImmediateIndex(index(), class_id(), IsExternal())) {
locs->set_in(1, Location::Constant(index()->definition()->AsConstant()));
} else {
locs->set_in(1, Location::RequiresRegister());
}
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
locs->set_out(0, Location::RequiresFpuRegister());
#if XLEN == 32
} else if (representation() == kUnboxedInt64) {
ASSERT(class_id() == kTypedDataInt64ArrayCid ||
class_id() == kTypedDataUint64ArrayCid);
locs->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#endif
} else {
locs->set_out(0, Location::RequiresRegister());
}
return locs;
}
void LoadIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
compiler::Address element_address(TMP); // Bad address.
element_address = index.IsRegister()
? __ ElementAddressForRegIndex(
IsExternal(), class_id(), index_scale(),
index_unboxed_, array, index.reg(), TMP)
: __ ElementAddressForIntIndex(
IsExternal(), class_id(), index_scale(), array,
Smi::Cast(index.constant()).Value());
if ((representation() == kUnboxedDouble) ||
(representation() == kUnboxedFloat32x4) ||
(representation() == kUnboxedInt32x4) ||
(representation() == kUnboxedFloat64x2)) {
const FRegister result = locs()->out(0).fpu_reg();
switch (class_id()) {
case kTypedDataFloat32ArrayCid:
// Load single precision float.
__ flw(result, element_address);
break;
case kTypedDataFloat64ArrayCid:
// Load double precision float.
__ fld(result, element_address);
break;
case kTypedDataFloat64x2ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
return;
}
switch (class_id()) {
case kTypedDataInt32ArrayCid: {
ASSERT(representation() == kUnboxedInt32);
const Register result = locs()->out(0).reg();
__ lw(result, element_address);
break;
}
case kTypedDataUint32ArrayCid: {
ASSERT(representation() == kUnboxedUint32);
const Register result = locs()->out(0).reg();
#if XLEN == 32
__ lw(result, element_address);
#else
__ lwu(result, element_address);
#endif
break;
}
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid: {
ASSERT(representation() == kUnboxedInt64);
#if XLEN == 32
ASSERT(locs()->out(0).IsPairLocation());
PairLocation* result_pair = locs()->out(0).AsPairLocation();
const Register result_lo = result_pair->At(0).reg();
const Register result_hi = result_pair->At(1).reg();
__ lw(result_lo, element_address);
__ lw(result_hi, compiler::Address(element_address.base(),
element_address.offset() + 4));
#else
const Register result = locs()->out(0).reg();
__ ld(result, element_address);
#endif
break;
}
case kTypedDataInt8ArrayCid: {
ASSERT(representation() == kUnboxedIntPtr);
ASSERT(index_scale() == 1);
const Register result = locs()->out(0).reg();
__ lb(result, element_address);
break;
}
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kExternalOneByteStringCid: {
ASSERT(representation() == kUnboxedIntPtr);
ASSERT(index_scale() == 1);
const Register result = locs()->out(0).reg();
__ lbu(result, element_address);
break;
}
case kTypedDataInt16ArrayCid: {
ASSERT(representation() == kUnboxedIntPtr);
const Register result = locs()->out(0).reg();
__ lh(result, element_address);
break;
}
case kTypedDataUint16ArrayCid:
case kTwoByteStringCid:
case kExternalTwoByteStringCid: {
ASSERT(representation() == kUnboxedIntPtr);
const Register result = locs()->out(0).reg();
__ lhu(result, element_address);
break;
}
default: {
ASSERT(representation() == kTagged);
ASSERT((class_id() == kArrayCid) || (class_id() == kImmutableArrayCid) ||
(class_id() == kTypeArgumentsCid));
const Register result = locs()->out(0).reg();
__ lx(result, element_address);
break;
}
}
}
LocationSummary* LoadCodeUnitsInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
#if XLEN == 32
if (representation() == kUnboxedInt64) {
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
} else {
ASSERT(representation() == kTagged);
summary->set_out(0, Location::RequiresRegister());
}
#else
summary->set_out(0, Location::RequiresRegister());
#endif
return summary;
}
void LoadCodeUnitsInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The string register points to the backing store for external strings.
const Register str = locs()->in(0).reg();
const Location index = locs()->in(1);
compiler::OperandSize sz = compiler::kByte;
#if XLEN == 32
if (representation() == kUnboxedInt64) {
ASSERT(compiler->is_optimizing());
ASSERT(locs()->out(0).IsPairLocation());
UNIMPLEMENTED();
}
#endif
Register result = locs()->out(0).reg();
switch (class_id()) {
case kOneByteStringCid:
case kExternalOneByteStringCid:
switch (element_count()) {
case 1:
sz = compiler::kUnsignedByte;
break;
case 2:
sz = compiler::kUnsignedTwoBytes;
break;
case 4:
sz = compiler::kUnsignedFourBytes;
break;
default:
UNREACHABLE();
}
break;
case kTwoByteStringCid:
case kExternalTwoByteStringCid:
switch (element_count()) {
case 1:
sz = compiler::kUnsignedTwoBytes;
break;
case 2:
sz = compiler::kUnsignedFourBytes;
break;
default:
UNREACHABLE();
}
break;
default:
UNREACHABLE();
break;
}
// Warning: element_address may use register TMP as base.
compiler::Address element_address = __ ElementAddressForRegIndexWithSize(
IsExternal(), class_id(), sz, index_scale(), /*index_unboxed=*/false, str,
index.reg(), TMP);
switch (sz) {
case compiler::kUnsignedByte:
__ lbu(result, element_address);
break;
case compiler::kUnsignedTwoBytes:
__ lhu(result, element_address);
break;
case compiler::kUnsignedFourBytes:
#if XLEN == 32
__ lw(result, element_address);
#else
__ lwu(result, element_address);
#endif
break;
default:
UNREACHABLE();
}
ASSERT(can_pack_into_smi());
__ SmiTag(result);
}
LocationSummary* StoreIndexedInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (CanBeImmediateIndex(index(), class_id(), IsExternal())) {
locs->set_in(1, Location::Constant(index()->definition()->AsConstant()));
} else {
locs->set_in(1, Location::RequiresRegister());
}
locs->set_temp(0, Location::RequiresRegister());
switch (class_id()) {
case kArrayCid:
locs->set_in(2, ShouldEmitStoreBarrier()
? Location::RegisterLocation(kWriteBarrierValueReg)
: LocationRegisterOrConstant(value()));
if (ShouldEmitStoreBarrier()) {
locs->set_in(0, Location::RegisterLocation(kWriteBarrierObjectReg));
locs->set_temp(0, Location::RegisterLocation(kWriteBarrierSlotReg));
}
break;
case kExternalTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ClampedArrayCid:
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kTypedDataUint8ClampedArrayCid:
case kOneByteStringCid:
case kTwoByteStringCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid:
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid:
locs->set_in(2, Location::RequiresRegister());
break;
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid:
#if XLEN == 32
locs->set_in(2, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
locs->set_in(2, Location::RequiresRegister());
#endif
break;
case kTypedDataFloat32ArrayCid:
case kTypedDataFloat64ArrayCid: // TODO(srdjan): Support Float64 constants.
locs->set_in(2, Location::RequiresFpuRegister());
break;
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid:
case kTypedDataFloat64x2ArrayCid:
locs->set_in(2, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
return NULL;
}
return locs;
}
void StoreIndexedInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
// The array register points to the backing store for external arrays.
const Register array = locs()->in(0).reg();
const Location index = locs()->in(1);
const Register temp = locs()->temp(0).reg();
compiler::Address element_address(TMP); // Bad address.
// Deal with a special case separately.
if (class_id() == kArrayCid && ShouldEmitStoreBarrier()) {
if (index.IsRegister()) {
__ ComputeElementAddressForRegIndex(temp, IsExternal(), class_id(),
index_scale(), index_unboxed_, array,
index.reg());
} else {
__ ComputeElementAddressForIntIndex(temp, IsExternal(), class_id(),
index_scale(), array,
Smi::Cast(index.constant()).Value());
}
const Register value = locs()->in(2).reg();
__ StoreIntoArray(array, temp, value, CanValueBeSmi());
return;
}
element_address = index.IsRegister()
? __ ElementAddressForRegIndex(
IsExternal(), class_id(), index_scale(),
index_unboxed_, array, index.reg(), temp)
: __ ElementAddressForIntIndex(
IsExternal(), class_id(), index_scale(), array,
Smi::Cast(index.constant()).Value());
switch (class_id()) {
case kArrayCid:
ASSERT(!ShouldEmitStoreBarrier()); // Specially treated above.
if (locs()->in(2).IsConstant()) {
const Object& constant = locs()->in(2).constant();
__ StoreIntoObjectNoBarrier(array, element_address, constant);
} else {
const Register value = locs()->in(2).reg();
__ StoreIntoObjectNoBarrier(array, element_address, value);
}
break;
case kTypedDataInt8ArrayCid:
case kTypedDataUint8ArrayCid:
case kExternalTypedDataUint8ArrayCid:
case kOneByteStringCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
__ LoadImmediate(TMP, static_cast<int8_t>(constant.Value()));
__ sb(TMP, element_address);
} else {
const Register value = locs()->in(2).reg();
__ sb(value, element_address);
}
break;
}
case kTypedDataUint8ClampedArrayCid:
case kExternalTypedDataUint8ClampedArrayCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
if (locs()->in(2).IsConstant()) {
const Smi& constant = Smi::Cast(locs()->in(2).constant());
intptr_t value = constant.Value();
// Clamp to 0x0 or 0xFF respectively.
if (value > 0xFF) {
value = 0xFF;
} else if (value < 0) {
value = 0;
}
__ LoadImmediate(TMP, static_cast<int8_t>(value));
__ sb(TMP, element_address);
} else {
const Register value = locs()->in(2).reg();
compiler::Label store_zero, store_ff, done;
__ blt(value, ZR, &store_zero, compiler::Assembler::kNearJump);
__ li(TMP, 0xFF);
__ bgt(value, TMP, &store_ff, compiler::Assembler::kNearJump);
__ sb(value, element_address);
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&store_zero);
__ mv(TMP, ZR);
__ Bind(&store_ff);
__ sb(TMP, element_address);
__ Bind(&done);
}
break;
}
case kTwoByteStringCid:
case kTypedDataInt16ArrayCid:
case kTypedDataUint16ArrayCid: {
ASSERT(RequiredInputRepresentation(2) == kUnboxedIntPtr);
const Register value = locs()->in(2).reg();
__ sh(value, element_address);
break;
}
case kTypedDataInt32ArrayCid:
case kTypedDataUint32ArrayCid: {
const Register value = locs()->in(2).reg();
__ sw(value, element_address);
break;
}
case kTypedDataInt64ArrayCid:
case kTypedDataUint64ArrayCid: {
#if XLEN >= 64
const Register value = locs()->in(2).reg();
__ sd(value, element_address);
#else
PairLocation* value_pair = locs()->in(2).AsPairLocation();
Register value_lo = value_pair->At(0).reg();
Register value_hi = value_pair->At(1).reg();
__ sw(value_lo, element_address);
__ sw(value_hi, compiler::Address(element_address.base(),
element_address.offset() + 4));
#endif
break;
}
case kTypedDataFloat32ArrayCid: {
const FRegister value_reg = locs()->in(2).fpu_reg();
__ fsw(value_reg, element_address);
break;
}
case kTypedDataFloat64ArrayCid: {
const FRegister value_reg = locs()->in(2).fpu_reg();
__ fsd(value_reg, element_address);
break;
}
case kTypedDataFloat64x2ArrayCid:
case kTypedDataInt32x4ArrayCid:
case kTypedDataFloat32x4ArrayCid: {
UNIMPLEMENTED();
break;
}
default:
UNREACHABLE();
}
}
static void LoadValueCid(FlowGraphCompiler* compiler,
Register value_cid_reg,
Register value_reg,
compiler::Label* value_is_smi = NULL) {
compiler::Label done;
if (value_is_smi == NULL) {
__ LoadImmediate(value_cid_reg, kSmiCid);
}
__ BranchIfSmi(value_reg, value_is_smi == NULL ? &done : value_is_smi);
__ LoadClassId(value_cid_reg, value_reg);
__ Bind(&done);
}
DEFINE_UNIMPLEMENTED_INSTRUCTION(GuardFieldTypeInstr)
DEFINE_UNIMPLEMENTED_INSTRUCTION(CheckConditionInstr)
LocationSummary* GuardFieldClassInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const bool emit_full_guard = !opt || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
emit_full_guard || ((value_cid == kDynamicCid) && (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
intptr_t num_temps = 0;
if (needs_value_cid_temp_reg) {
num_temps++;
}
if (needs_field_temp_reg) {
num_temps++;
}
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
for (intptr_t i = 0; i < num_temps; i++) {
summary->set_temp(i, Location::RequiresRegister());
}
return summary;
}
void GuardFieldClassInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(compiler::target::UntaggedObject::kClassIdTagSize == 16);
ASSERT(sizeof(UntaggedField::guarded_cid_) == 2);
ASSERT(sizeof(UntaggedField::is_nullable_) == 2);
const intptr_t value_cid = value()->Type()->ToCid();
const intptr_t field_cid = field().guarded_cid();
const intptr_t nullability = field().is_nullable() ? kNullCid : kIllegalCid;
if (field_cid == kDynamicCid) {
return; // Nothing to emit.
}
const bool emit_full_guard =
!compiler->is_optimizing() || (field_cid == kIllegalCid);
const bool needs_value_cid_temp_reg =
emit_full_guard || ((value_cid == kDynamicCid) && (field_cid != kSmiCid));
const bool needs_field_temp_reg = emit_full_guard;
const Register value_reg = locs()->in(0).reg();
const Register value_cid_reg =
needs_value_cid_temp_reg ? locs()->temp(0).reg() : kNoRegister;
const Register field_reg = needs_field_temp_reg
? locs()->temp(locs()->temp_count() - 1).reg()
: kNoRegister;
compiler::Label ok, fail_label;
compiler::Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
compiler::Label* fail = (deopt != NULL) ? deopt : &fail_label;
if (emit_full_guard) {
__ LoadObject(field_reg, Field::ZoneHandle((field().Original())));
compiler::FieldAddress field_cid_operand(field_reg,
Field::guarded_cid_offset());
compiler::FieldAddress field_nullability_operand(
field_reg, Field::is_nullable_offset());
if (value_cid == kDynamicCid) {
LoadValueCid(compiler, value_cid_reg, value_reg);
compiler::Label skip_length_check;
__ lhu(TMP, field_cid_operand);
__ CompareRegisters(value_cid_reg, TMP);
__ BranchIf(EQ, &ok);
__ lhu(TMP, field_nullability_operand);
__ CompareRegisters(value_cid_reg, TMP);
} else if (value_cid == kNullCid) {
__ lhu(value_cid_reg, field_nullability_operand);
__ CompareImmediate(value_cid_reg, value_cid);
} else {
compiler::Label skip_length_check;
__ lhu(value_cid_reg, field_cid_operand);
__ CompareImmediate(value_cid_reg, value_cid);
}
__ BranchIf(EQ, &ok);
// Check if the tracked state of the guarded field can be initialized
// inline. If the field needs length check we fall through to runtime
// which is responsible for computing offset of the length field
// based on the class id.
// Length guard will be emitted separately when needed via GuardFieldLength
// instruction after GuardFieldClass.
if (!field().needs_length_check()) {
// Uninitialized field can be handled inline. Check if the
// field is still unitialized.
__ lhu(TMP, field_cid_operand);
__ CompareImmediate(TMP, kIllegalCid);
__ BranchIf(NE, fail);
if (value_cid == kDynamicCid) {
__ sh(value_cid_reg, field_cid_operand);
__ sh(value_cid_reg, field_nullability_operand);
} else {
__ LoadImmediate(TMP, value_cid);
__ sh(TMP, field_cid_operand);
__ sh(TMP, field_nullability_operand);
}
__ j(&ok);
}
if (deopt == NULL) {
__ Bind(fail);
__ LoadFieldFromOffset(TMP, field_reg, Field::guarded_cid_offset(),
compiler::kUnsignedTwoBytes);
__ CompareImmediate(TMP, kDynamicCid);
__ BranchIf(EQ, &ok);
__ PushRegisterPair(value_reg, field_reg);
ASSERT(!compiler->is_optimizing()); // No deopt info needed.
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ j(fail);
}
} else {
ASSERT(compiler->is_optimizing());
ASSERT(deopt != NULL);
// Field guard class has been initialized and is known.
if (value_cid == kDynamicCid) {
// Value's class id is not known.
__ TestImmediate(value_reg, kSmiTagMask);
if (field_cid != kSmiCid) {
__ BranchIf(EQ, fail);
__ LoadClassId(value_cid_reg, value_reg);
__ CompareImmediate(value_cid_reg, field_cid);
}
if (field().is_nullable() && (field_cid != kNullCid)) {
__ BranchIf(EQ, &ok);
__ CompareObject(value_reg, Object::null_object());
}
__ BranchIf(NE, fail);
} else if (value_cid == field_cid) {
// This would normaly be caught by Canonicalize, but RemoveRedefinitions
// may sometimes produce the situation after the last Canonicalize pass.
} else {
// Both value's and field's class id is known.
ASSERT(value_cid != nullability);
__ j(fail);
}
}
__ Bind(&ok);
}
LocationSummary* GuardFieldLengthInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
if (!opt || (field().guarded_list_length() == Field::kUnknownFixedLength)) {
const intptr_t kNumTemps = 3;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We need temporaries for field object, length offset and expected length.
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
summary->set_temp(2, Location::RequiresRegister());
return summary;
} else {
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
UNREACHABLE();
}
void GuardFieldLengthInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (field().guarded_list_length() == Field::kNoFixedLength) {
return; // Nothing to emit.
}
compiler::Label* deopt =
compiler->is_optimizing()
? compiler->AddDeoptStub(deopt_id(), ICData::kDeoptGuardField)
: NULL;
const Register value_reg = locs()->in(0).reg();
if (!compiler->is_optimizing() ||
(field().guarded_list_length() == Field::kUnknownFixedLength)) {
const Register field_reg = locs()->temp(0).reg();
const Register offset_reg = locs()->temp(1).reg();
const Register length_reg = locs()->temp(2).reg();
compiler::Label ok;
__ LoadObject(field_reg, Field::ZoneHandle(field().Original()));
__ lb(offset_reg,
compiler::FieldAddress(
field_reg, Field::guarded_list_length_in_object_offset_offset()));
__ LoadCompressed(
length_reg,
compiler::FieldAddress(field_reg, Field::guarded_list_length_offset()));
__ bltz(offset_reg, &ok, compiler::Assembler::kNearJump);
// Load the length from the value. GuardFieldClass already verified that
// value's class matches guarded class id of the field.
// offset_reg contains offset already corrected by -kHeapObjectTag that is
// why we use Address instead of FieldAddress.
__ add(TMP, value_reg, offset_reg);
__ lx(TMP, compiler::Address(TMP, 0));
__ CompareObjectRegisters(length_reg, TMP);
if (deopt == NULL) {
__ BranchIf(EQ, &ok);
__ PushRegisterPair(value_reg, field_reg);
ASSERT(!compiler->is_optimizing()); // No deopt info needed.
__ CallRuntime(kUpdateFieldCidRuntimeEntry, 2);
__ Drop(2); // Drop the field and the value.
} else {
__ BranchIf(NE, deopt);
}
__ Bind(&ok);
} else {
ASSERT(compiler->is_optimizing());
ASSERT(field().guarded_list_length() >= 0);
ASSERT(field().guarded_list_length_in_object_offset() !=
Field::kUnknownLengthOffset);
__ lx(TMP, compiler::FieldAddress(
value_reg, field().guarded_list_length_in_object_offset()));
__ CompareImmediate(TMP, Smi::RawValue(field().guarded_list_length()));
__ BranchIf(NE, deopt);
}
}
static void EnsureMutableBox(FlowGraphCompiler* compiler,
StoreInstanceFieldInstr* instruction,
Register box_reg,
const Class& cls,
Register instance_reg,
intptr_t offset,
Register temp) {
compiler::Label done;
__ LoadCompressedFieldFromOffset(box_reg, instance_reg, offset);
__ CompareObject(box_reg, Object::null_object());
__ BranchIf(NE, &done);
BoxAllocationSlowPath::Allocate(compiler, instruction, cls, box_reg, temp);
__ MoveRegister(temp, box_reg);
__ StoreCompressedIntoObjectOffset(instance_reg, offset, temp,
compiler::Assembler::kValueIsNotSmi);
__ Bind(&done);
}
LocationSummary* StoreInstanceFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = (IsUnboxedDartFieldStore() && opt)
? (FLAG_precompiled_mode ? 0 : 2)
: (IsPotentialUnboxedDartFieldStore() ? 2 : 0);
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
(!FLAG_precompiled_mode &&
((IsUnboxedDartFieldStore() && opt && is_initialization()) ||
IsPotentialUnboxedDartFieldStore()))
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
summary->set_in(kInstancePos, Location::RequiresRegister());
if (slot().representation() != kTagged) {
ASSERT(RepresentationUtils::IsUnboxedInteger(slot().representation()));
const size_t value_size =
RepresentationUtils::ValueSize(slot().representation());
if (value_size <= compiler::target::kWordSize) {
summary->set_in(kValuePos, Location::RequiresRegister());
} else {
#if XLEN == 32
ASSERT(value_size <= 2 * compiler::target::kWordSize);
summary->set_in(kValuePos, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
UNREACHABLE();
#endif
}
} else if (IsUnboxedDartFieldStore() && opt) {
summary->set_in(kValuePos, Location::RequiresFpuRegister());
if (!FLAG_precompiled_mode) {
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
}
} else if (IsPotentialUnboxedDartFieldStore()) {
summary->set_in(kValuePos, ShouldEmitStoreBarrier()
? Location::WritableRegister()
: Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
} else {
summary->set_in(kValuePos,
ShouldEmitStoreBarrier()
? Location::RegisterLocation(kWriteBarrierValueReg)
: LocationRegisterOrConstant(value()));
}
return summary;
}
void StoreInstanceFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(compiler::target::UntaggedObject::kClassIdTagSize == 16);
ASSERT(sizeof(UntaggedField::guarded_cid_) == 2);
ASSERT(sizeof(UntaggedField::is_nullable_) == 2);
compiler::Label skip_store;
const Register instance_reg = locs()->in(kInstancePos).reg();
const intptr_t offset_in_bytes = OffsetInBytes();
ASSERT(offset_in_bytes > 0); // Field is finalized and points after header.
if (slot().representation() != kTagged) {
ASSERT(memory_order_ != compiler::AssemblerBase::kRelease);
auto const rep = slot().representation();
ASSERT(RepresentationUtils::IsUnboxedInteger(rep));
const size_t value_size = RepresentationUtils::ValueSize(rep);
__ Comment("NativeUnboxedStoreInstanceFieldInstr");
if (value_size <= compiler::target::kWordSize) {
const Register value = locs()->in(kValuePos).reg();
__ StoreFieldToOffset(value, instance_reg, offset_in_bytes,
RepresentationUtils::OperandSize(rep));
} else {
#if XLEN == 32
auto const in_pair = locs()->in(kValuePos).AsPairLocation();
const Register in_lo = in_pair->At(0).reg();
const Register in_hi = in_pair->At(1).reg();
const intptr_t offset_lo = OffsetInBytes() - kHeapObjectTag;
const intptr_t offset_hi = offset_lo + compiler::target::kWordSize;
__ StoreToOffset(in_lo, instance_reg, offset_lo);
__ StoreToOffset(in_hi, instance_reg, offset_hi);
#else
UNREACHABLE();
#endif
}
return;
}
if (IsUnboxedDartFieldStore() && compiler->is_optimizing()) {
ASSERT(memory_order_ != compiler::AssemblerBase::kRelease);
const FRegister value = locs()->in(kValuePos).fpu_reg();
const intptr_t cid = slot().field().UnboxedFieldCid();
if (FLAG_precompiled_mode) {
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleStoreInstanceFieldInstr");
__ StoreDFieldToOffset(value, instance_reg, offset_in_bytes);
return;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4StoreInstanceFieldInstr");
UNIMPLEMENTED();
return;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2StoreInstanceFieldInstr");
UNIMPLEMENTED();
return;
default:
UNREACHABLE();
}
}
const Register temp = locs()->temp(0).reg();
const Register temp2 = locs()->temp(1).reg();
if (is_initialization()) {
const Class* cls = NULL;
switch (cid) {
case kDoubleCid:
cls = &compiler->double_class();
break;
case kFloat32x4Cid:
cls = &compiler->float32x4_class();
break;
case kFloat64x2Cid:
cls = &compiler->float64x2_class();
break;
default:
UNREACHABLE();
}
BoxAllocationSlowPath::Allocate(compiler, this, *cls, temp, temp2);
__ MoveRegister(temp2, temp);
__ StoreCompressedIntoObjectOffset(instance_reg, offset_in_bytes, temp2,
compiler::Assembler::kValueIsNotSmi);
} else {
__ LoadCompressedFieldFromOffset(temp, instance_reg, offset_in_bytes);
}
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleStoreInstanceFieldInstr");
__ StoreDFieldToOffset(value, temp, Double::value_offset());
break;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4StoreInstanceFieldInstr");
UNIMPLEMENTED();
break;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2StoreInstanceFieldInstr");
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
return;
}
if (IsPotentialUnboxedDartFieldStore()) {
ASSERT(memory_order_ != compiler::AssemblerBase::kRelease);
const Register value_reg = locs()->in(kValuePos).reg();
const Register temp = locs()->temp(0).reg();
const Register temp2 = locs()->temp(1).reg();
if (ShouldEmitStoreBarrier()) {
// Value input is a writable register and should be manually preserved
// across allocation slow-path.
locs()->live_registers()->Add(locs()->in(kValuePos), kTagged);
}
compiler::Label store_pointer;
compiler::Label store_double;
compiler::Label store_float32x4;
compiler::Label store_float64x2;
__ LoadObject(temp, Field::ZoneHandle(Z, slot().field().Original()));
__ LoadFieldFromOffset(temp2, temp, Field::is_nullable_offset(),
compiler::kUnsignedTwoBytes);
__ CompareImmediate(temp2, kNullCid);
__ BranchIf(EQ, &store_pointer);
__ LoadFromOffset(temp2, temp, Field::kind_bits_offset() - kHeapObjectTag,
compiler::kUnsignedByte);
__ TestImmediate(temp2, 1 << Field::kUnboxingCandidateBit);
__ BranchIf(EQ, &store_pointer);
__ LoadFieldFromOffset(temp2, temp, Field::guarded_cid_offset(),
compiler::kUnsignedTwoBytes);
__ CompareImmediate(temp2, kDoubleCid);
__ BranchIf(EQ, &store_double);
// Fall through.
__ j(&store_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(kInstancePos));
locs()->live_registers()->Add(locs()->in(kValuePos));
}
{
__ Bind(&store_double);
EnsureMutableBox(compiler, this, temp, compiler->double_class(),
instance_reg, offset_in_bytes, temp2);
__ LoadDFieldFromOffset(FTMP, value_reg, Double::value_offset());
__ StoreDFieldToOffset(FTMP, temp, Double::value_offset());
__ j(&skip_store);
}
__ Bind(&store_pointer);
}
const bool compressed = slot().is_compressed();
if (ShouldEmitStoreBarrier()) {
const Register value_reg = locs()->in(kValuePos).reg();
if (!compressed) {
__ StoreIntoObjectOffset(instance_reg, offset_in_bytes, value_reg,
CanValueBeSmi(), memory_order_);
} else {
__ StoreCompressedIntoObjectOffset(instance_reg, offset_in_bytes,
value_reg, CanValueBeSmi(),
memory_order_);
}
} else {
if (locs()->in(kValuePos).IsConstant()) {
const auto& value = locs()->in(kValuePos).constant();
if (!compressed) {
__ StoreIntoObjectOffsetNoBarrier(instance_reg, offset_in_bytes, value,
memory_order_);
} else {
__ StoreCompressedIntoObjectOffsetNoBarrier(
instance_reg, offset_in_bytes, value, memory_order_);
}
} else {
const Register value_reg = locs()->in(kValuePos).reg();
if (!compressed) {
__ StoreIntoObjectOffsetNoBarrier(instance_reg, offset_in_bytes,
value_reg, memory_order_);
} else {
__ StoreCompressedIntoObjectOffsetNoBarrier(
instance_reg, offset_in_bytes, value_reg, memory_order_);
}
}
}
__ Bind(&skip_store);
}
LocationSummary* StoreStaticFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
return locs;
}
void StoreStaticFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
compiler->used_static_fields().Add(&field());
__ LoadFromOffset(TMP, THR,
compiler::target::Thread::field_table_values_offset());
// Note: static fields ids won't be changed by hot-reload.
__ StoreToOffset(value, TMP, compiler::target::FieldTable::OffsetOf(field()));
}
LocationSummary* InstanceOfInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 3;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(TypeTestABI::kInstanceReg));
summary->set_in(1, Location::RegisterLocation(
TypeTestABI::kInstantiatorTypeArgumentsReg));
summary->set_in(
2, Location::RegisterLocation(TypeTestABI::kFunctionTypeArgumentsReg));
summary->set_out(
0, Location::RegisterLocation(TypeTestABI::kInstanceOfResultReg));
return summary;
}
void InstanceOfInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == TypeTestABI::kInstanceReg);
ASSERT(locs()->in(1).reg() == TypeTestABI::kInstantiatorTypeArgumentsReg);
ASSERT(locs()->in(2).reg() == TypeTestABI::kFunctionTypeArgumentsReg);
compiler->GenerateInstanceOf(source(), deopt_id(), env(), type(), locs());
ASSERT(locs()->out(0).reg() == TypeTestABI::kInstanceOfResultReg);
}
LocationSummary* CreateArrayInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(kTypeArgumentsPos,
Location::RegisterLocation(AllocateArrayABI::kTypeArgumentsReg));
locs->set_in(kLengthPos,
Location::RegisterLocation(AllocateArrayABI::kLengthReg));
locs->set_out(0, Location::RegisterLocation(AllocateArrayABI::kResultReg));
return locs;
}
// Inlines array allocation for known constant values.
static void InlineArrayAllocation(FlowGraphCompiler* compiler,
intptr_t num_elements,
compiler::Label* slow_path,
compiler::Label* done) {
const int kInlineArraySize = 12; // Same as kInlineInstanceSize.
const intptr_t instance_size = Array::InstanceSize(num_elements);
__ TryAllocateArray(kArrayCid, instance_size, slow_path,
AllocateArrayABI::kResultReg, // instance
T3, // end address
T4, T5);
// AllocateArrayABI::kResultReg: new object start as a tagged pointer.
// R3: new object end address.
// Store the type argument field.
__ StoreCompressedIntoObjectNoBarrier(
AllocateArrayABI::kResultReg,
compiler::FieldAddress(AllocateArrayABI::kResultReg,
Array::type_arguments_offset()),
AllocateArrayABI::kTypeArgumentsReg);
// Set the length field.
__ StoreCompressedIntoObjectNoBarrier(
AllocateArrayABI::kResultReg,
compiler::FieldAddress(AllocateArrayABI::kResultReg,
Array::length_offset()),
AllocateArrayABI::kLengthReg);
// Initialize all array elements to raw_null.
// AllocateArrayABI::kResultReg: new object start as a tagged pointer.
// T3: new object end address.
// T5: iterator which initially points to the start of the variable
// data area to be initialized.
if (num_elements > 0) {
const intptr_t array_size = instance_size - sizeof(UntaggedArray);
__ AddImmediate(T5, AllocateArrayABI::kResultReg,
sizeof(UntaggedArray) - kHeapObjectTag);
if (array_size < (kInlineArraySize * kCompressedWordSize)) {
intptr_t current_offset = 0;
while (current_offset < array_size) {
__ StoreCompressedIntoObjectNoBarrier(
AllocateArrayABI::kResultReg, compiler::Address(T5, current_offset),
NULL_REG);
current_offset += kCompressedWordSize;
}
} else {
compiler::Label end_loop, init_loop;
__ Bind(&init_loop);
__ CompareRegisters(T5, T3);
__ BranchIf(CS, &end_loop, compiler::Assembler::kNearJump);
__ StoreCompressedIntoObjectNoBarrier(AllocateArrayABI::kResultReg,
compiler::Address(T5, 0), NULL_REG);
__ AddImmediate(T5, kCompressedWordSize);
__ j(&init_loop);
__ Bind(&end_loop);
}
}
__ j(done, compiler::Assembler::kNearJump);
}
void CreateArrayInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info();
if (type_usage_info != nullptr) {
const Class& list_class =
Class::Handle(compiler->isolate_group()->class_table()->At(kArrayCid));
RegisterTypeArgumentsUse(compiler->function(), type_usage_info, list_class,
type_arguments()->definition());
}
compiler::Label slow_path, done;
if (!FLAG_use_slow_path && FLAG_inline_alloc) {
if (compiler->is_optimizing() && !FLAG_precompiled_mode &&
num_elements()->BindsToConstant() &&
num_elements()->BoundConstant().IsSmi()) {
const intptr_t length =
Smi::Cast(num_elements()->BoundConstant()).Value();
if (Array::IsValidLength(length)) {
InlineArrayAllocation(compiler, length, &slow_path, &done);
}
}
}
__ Bind(&slow_path);
auto object_store = compiler->isolate_group()->object_store();
const auto& allocate_array_stub =
Code::ZoneHandle(compiler->zone(), object_store->allocate_array_stub());
compiler->GenerateStubCall(source(), allocate_array_stub,
UntaggedPcDescriptors::kOther, locs(), deopt_id(),
env());
__ Bind(&done);
}
LocationSummary* LoadFieldInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
LocationSummary* locs = nullptr;
if (slot().representation() != kTagged) {
ASSERT(!calls_initializer());
ASSERT(RepresentationUtils::IsUnboxedInteger(slot().representation()));
const size_t value_size =
RepresentationUtils::ValueSize(slot().representation());
const intptr_t kNumTemps = 0;
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (value_size <= compiler::target::kWordSize) {
locs->set_out(0, Location::RequiresRegister());
} else {
#if XLEN == 32
ASSERT(value_size <= 2 * compiler::target::kWordSize);
locs->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
UNREACHABLE();
#endif
}
} else if (IsUnboxedDartFieldLoad() && opt) {
ASSERT(!calls_initializer());
ASSERT(!slot().field().is_non_nullable_integer());
const intptr_t kNumTemps = FLAG_precompiled_mode ? 0 : 1;
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
if (!FLAG_precompiled_mode) {
locs->set_temp(0, Location::RequiresRegister());
}
locs->set_out(0, Location::RequiresFpuRegister());
} else if (IsPotentialUnboxedDartFieldLoad()) {
ASSERT(!calls_initializer());
const intptr_t kNumTemps = 1;
locs = new (zone) LocationSummary(zone, kNumInputs, kNumTemps,
LocationSummary::kCallOnSlowPath);
locs->set_in(0, Location::RequiresRegister());
locs->set_temp(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
} else if (calls_initializer()) {
if (throw_exception_on_initialization()) {
const bool using_shared_stub = UseSharedSlowPathStub(opt);
const intptr_t kNumTemps = using_shared_stub ? 1 : 0;
locs = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
using_shared_stub ? LocationSummary::kCallOnSharedSlowPath
: LocationSummary::kCallOnSlowPath);
if (using_shared_stub) {
locs->set_temp(0, Location::RegisterLocation(
LateInitializationErrorABI::kFieldReg));
}
locs->set_in(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
} else {
const intptr_t kNumTemps = 0;
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(
0, Location::RegisterLocation(InitInstanceFieldABI::kInstanceReg));
locs->set_out(
0, Location::RegisterLocation(InitInstanceFieldABI::kResultReg));
}
} else {
const intptr_t kNumTemps = 0;
locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, Location::RequiresRegister());
locs->set_out(0, Location::RequiresRegister());
}
return locs;
}
void LoadFieldInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(compiler::target::UntaggedObject::kClassIdTagSize == 16);
ASSERT(sizeof(UntaggedField::guarded_cid_) == 2);
ASSERT(sizeof(UntaggedField::is_nullable_) == 2);
const Register instance_reg = locs()->in(0).reg();
if (slot().representation() != kTagged) {
auto const rep = slot().representation();
const size_t value_size = RepresentationUtils::ValueSize(rep);
__ Comment("NativeUnboxedLoadFieldInstr");
if (value_size <= compiler::target::kWordSize) {
auto const result = locs()->out(0).reg();
__ LoadFieldFromOffset(result, instance_reg, OffsetInBytes(),
RepresentationUtils::OperandSize(rep));
} else {
#if XLEN == 32
auto const out_pair = locs()->out(0).AsPairLocation();
const Register out_lo = out_pair->At(0).reg();
const Register out_hi = out_pair->At(1).reg();
const intptr_t offset_lo = OffsetInBytes() - kHeapObjectTag;
const intptr_t offset_hi = offset_lo + compiler::target::kWordSize;
__ LoadFromOffset(out_lo, instance_reg, offset_lo);
__ LoadFromOffset(out_hi, instance_reg, offset_hi);
#else
UNREACHABLE();
#endif
}
return;
}
if (IsUnboxedDartFieldLoad() && compiler->is_optimizing()) {
const FRegister result = locs()->out(0).fpu_reg();
const intptr_t cid = slot().field().UnboxedFieldCid();
if (FLAG_precompiled_mode) {
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleLoadFieldInstr");
__ LoadDFieldFromOffset(result, instance_reg, OffsetInBytes());
return;
case kFloat32x4Cid:
__ Comment("UnboxedFloat32x4LoadFieldInstr");
UNIMPLEMENTED();
return;
case kFloat64x2Cid:
__ Comment("UnboxedFloat64x2LoadFieldInstr");
UNIMPLEMENTED();
return;
default:
UNREACHABLE();
}
}
const Register temp = locs()->temp(0).reg();
__ LoadCompressedFieldFromOffset(temp, instance_reg, OffsetInBytes());
switch (cid) {
case kDoubleCid:
__ Comment("UnboxedDoubleLoadFieldInstr");
__ LoadDFieldFromOffset(result, temp, Double::value_offset());
break;
case kFloat32x4Cid:
UNIMPLEMENTED();
break;
case kFloat64x2Cid:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
}
return;
}
compiler::Label done;
const Register result_reg = locs()->out(0).reg();
if (IsPotentialUnboxedDartFieldLoad()) {
const Register temp = locs()->temp(0).reg();
compiler::Label load_pointer;
compiler::Label load_double;
compiler::Label load_float32x4;
compiler::Label load_float64x2;
__ LoadObject(result_reg, Field::ZoneHandle(slot().field().Original()));
compiler::FieldAddress field_cid_operand(result_reg,
Field::guarded_cid_offset());
compiler::FieldAddress field_nullability_operand(
result_reg, Field::is_nullable_offset());
__ lhu(temp, field_nullability_operand);
__ CompareImmediate(temp, kNullCid);
__ BranchIf(EQ, &load_pointer, compiler::Assembler::kNearJump);
__ lhu(temp, field_cid_operand);
__ CompareImmediate(temp, kDoubleCid);
__ BranchIf(EQ, &load_double, compiler::Assembler::kNearJump);
__ lhu(temp, field_cid_operand);
__ CompareImmediate(temp, kFloat32x4Cid);
__ BranchIf(EQ, &load_float32x4, compiler::Assembler::kNearJump);
__ lhu(temp, field_cid_operand);
__ CompareImmediate(temp, kFloat64x2Cid);
__ BranchIf(EQ, &load_float64x2, compiler::Assembler::kNearJump);
// Fall through.
__ j(&load_pointer);
if (!compiler->is_optimizing()) {
locs()->live_registers()->Add(locs()->in(0));
}
{
__ Bind(&load_double);
BoxAllocationSlowPath::Allocate(compiler, this, compiler->double_class(),
result_reg, temp);
__ LoadCompressedFieldFromOffset(temp, instance_reg, OffsetInBytes());
__ LoadDFieldFromOffset(FTMP, temp, Double::value_offset());
__ StoreDFieldToOffset(FTMP, result_reg, Double::value_offset());
__ j(&done);
}
{
__ Bind(&load_float32x4);
__ ebreak(); // Unimplemented
__ j(&done);
}
{
__ Bind(&load_float64x2);
__ ebreak(); // Unimplemented
__ j(&done);
}
__ Bind(&load_pointer);
}
if (slot().is_compressed()) {
__ LoadCompressedFieldFromOffset(result_reg, instance_reg, OffsetInBytes());
} else {
__ LoadFieldFromOffset(result_reg, instance_reg, OffsetInBytes());
}
if (calls_initializer()) {
EmitNativeCodeForInitializerCall(compiler);
}
__ Bind(&done);
}
LocationSummary* AllocateUninitializedContextInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
ASSERT(opt);
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 3;
LocationSummary* locs = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
locs->set_temp(0, Location::RegisterLocation(T1));
locs->set_temp(1, Location::RegisterLocation(T2));
locs->set_temp(2, Location::RegisterLocation(T3));
locs->set_out(0, Location::RegisterLocation(A0));
return locs;
}
class AllocateContextSlowPath
: public TemplateSlowPathCode<AllocateUninitializedContextInstr> {
public:
explicit AllocateContextSlowPath(
AllocateUninitializedContextInstr* instruction)
: TemplateSlowPathCode(instruction) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
__ Comment("AllocateContextSlowPath");
__ Bind(entry_label());
LocationSummary* locs = instruction()->locs();
locs->live_registers()->Remove(locs->out(0));
compiler->SaveLiveRegisters(locs);
auto slow_path_env = compiler->SlowPathEnvironmentFor(
instruction(), /*num_slow_path_args=*/0);
ASSERT(slow_path_env != nullptr);
auto object_store = compiler->isolate_group()->object_store();
const auto& allocate_context_stub = Code::ZoneHandle(
compiler->zone(), object_store->allocate_context_stub());
__ LoadImmediate(T1, instruction()->num_context_variables());
compiler->GenerateStubCall(instruction()->source(), allocate_context_stub,
UntaggedPcDescriptors::kOther, locs,
instruction()->deopt_id(), slow_path_env);
ASSERT(instruction()->locs()->out(0).reg() == A0);
compiler->RestoreLiveRegisters(instruction()->locs());
__ j(exit_label());
}
};
void AllocateUninitializedContextInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register temp0 = locs()->temp(0).reg();
Register temp1 = locs()->temp(1).reg();
Register temp2 = locs()->temp(2).reg();
Register result = locs()->out(0).reg();
// Try allocate the object.
AllocateContextSlowPath* slow_path = new AllocateContextSlowPath(this);
compiler->AddSlowPathCode(slow_path);
intptr_t instance_size = Context::InstanceSize(num_context_variables());
if (!FLAG_use_slow_path && FLAG_inline_alloc) {
__ TryAllocateArray(kContextCid, instance_size, slow_path->entry_label(),
result, // instance
temp0, temp1, temp2);
// Setup up number of context variables field (int32_t).
__ LoadImmediate(temp0, num_context_variables());
__ sw(temp0,
compiler::FieldAddress(result, Context::num_variables_offset()));
} else {
__ Jump(slow_path->entry_label());
}
__ Bind(slow_path->exit_label());
}
LocationSummary* AllocateContextInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_temp(0, Location::RegisterLocation(T1));
locs->set_out(0, Location::RegisterLocation(A0));
return locs;
}
void AllocateContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->temp(0).reg() == T1);
ASSERT(locs()->out(0).reg() == A0);
auto object_store = compiler->isolate_group()->object_store();
const auto& allocate_context_stub =
Code::ZoneHandle(compiler->zone(), object_store->allocate_context_stub());
__ LoadImmediate(T1, num_context_variables());
compiler->GenerateStubCall(source(), allocate_context_stub,
UntaggedPcDescriptors::kOther, locs(), deopt_id(),
env());
}
LocationSummary* CloneContextInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(T5));
locs->set_out(0, Location::RegisterLocation(A0));
return locs;
}
void CloneContextInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).reg() == T5);
ASSERT(locs()->out(0).reg() == A0);
auto object_store = compiler->isolate_group()->object_store();
const auto& clone_context_stub =
Code::ZoneHandle(compiler->zone(), object_store->clone_context_stub());
compiler->GenerateStubCall(source(), clone_context_stub,
/*kind=*/UntaggedPcDescriptors::kOther, locs(),
deopt_id(), env());
}
LocationSummary* CatchBlockEntryInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
UNREACHABLE();
return nullptr;
}
void CatchBlockEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Bind(compiler->GetJumpLabel(this));
compiler->AddExceptionHandler(
catch_try_index(), try_index(), compiler->assembler()->CodeSize(),
is_generated(), catch_handler_types_, needs_stacktrace());
if (!FLAG_precompiled_mode) {
// On lazy deoptimization we patch the optimized code here to enter the
// deoptimization stub.
const intptr_t deopt_id = DeoptId::ToDeoptAfter(GetDeoptId());
if (compiler->is_optimizing()) {
compiler->AddDeoptIndexAtCall(deopt_id, env());
} else {
compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kDeopt, deopt_id,
InstructionSource());
}
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// Restore SP from FP as we are coming from a throw and the code for
// popping arguments has not been run.
const intptr_t fp_sp_dist =
(compiler::target::frame_layout.first_local_from_fp + 1 -
compiler->StackSize()) *
kWordSize;
ASSERT(fp_sp_dist <= 0);
__ AddImmediate(SP, FP, fp_sp_dist);
if (!compiler->is_optimizing()) {
if (raw_exception_var_ != nullptr) {
__ StoreToOffset(
kExceptionObjectReg, FP,
compiler::target::FrameOffsetInBytesForVariable(raw_exception_var_));
}
if (raw_stacktrace_var_ != nullptr) {
__ StoreToOffset(
kStackTraceObjectReg, FP,
compiler::target::FrameOffsetInBytesForVariable(raw_stacktrace_var_));
}
}
}
LocationSummary* CheckStackOverflowInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 0;
const intptr_t kNumTemps = 1;
const bool using_shared_stub = UseSharedSlowPathStub(opt);
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
using_shared_stub ? LocationSummary::kCallOnSharedSlowPath
: LocationSummary::kCallOnSlowPath);
summary->set_temp(0, Location::RequiresRegister());
return summary;
}
class CheckStackOverflowSlowPath
: public TemplateSlowPathCode<CheckStackOverflowInstr> {
public:
static constexpr intptr_t kNumSlowPathArgs = 0;
explicit CheckStackOverflowSlowPath(CheckStackOverflowInstr* instruction)
: TemplateSlowPathCode(instruction) {}
virtual void EmitNativeCode(FlowGraphCompiler* compiler) {
auto locs = instruction()->locs();
if (compiler->isolate_group()->use_osr() && osr_entry_label()->IsLinked()) {
const Register value = locs->temp(0).reg();
__ Comment("CheckStackOverflowSlowPathOsr");
__ Bind(osr_entry_label());
__ li(value, Thread::kOsrRequest);
__ sx(value,
compiler::Address(THR, Thread::stack_overflow_flags_offset()));
}
__ Comment("CheckStackOverflowSlowPath");
__ Bind(entry_label());
const bool using_shared_stub = locs->call_on_shared_slow_path();
if (!using_shared_stub) {
compiler->SaveLiveRegisters(locs);
}
// pending_deoptimization_env_ is needed to generate a runtime call that
// may throw an exception.
ASSERT(compiler->pending_deoptimization_env_ == NULL);
Environment* env =
compiler->SlowPathEnvironmentFor(instruction(), kNumSlowPathArgs);
compiler->pending_deoptimization_env_ = env;
if (using_shared_stub) {
auto object_store = compiler->isolate_group()->object_store();
const bool live_fpu_regs = locs->live_registers()->FpuRegisterCount() > 0;
const auto& stub = Code::ZoneHandle(
compiler->zone(),
live_fpu_regs
? object_store->stack_overflow_stub_with_fpu_regs_stub()
: object_store->stack_overflow_stub_without_fpu_regs_stub());
if (using_shared_stub && compiler->CanPcRelativeCall(stub)) {
__ GenerateUnRelocatedPcRelativeCall();
compiler->AddPcRelativeCallStubTarget(stub);
} else {
const uword entry_point_offset =
Thread::stack_overflow_shared_stub_entry_point_offset(
locs->live_registers()->FpuRegisterCount() > 0);
__ Call(compiler::Address(THR, entry_point_offset));
}
compiler->RecordSafepoint(locs, kNumSlowPathArgs);
compiler->RecordCatchEntryMoves(env);
compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kOther,
instruction()->deopt_id(),
instruction()->source());
} else {
__ CallRuntime(kInterruptOrStackOverflowRuntimeEntry, kNumSlowPathArgs);
compiler->EmitCallsiteMetadata(
instruction()->source(), instruction()->deopt_id(),
UntaggedPcDescriptors::kOther, instruction()->locs(), env);
}
if (compiler->isolate_group()->use_osr() && !compiler->is_optimizing() &&
instruction()->in_loop()) {
// In unoptimized code, record loop stack checks as possible OSR entries.
compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kOsrEntry,
instruction()->deopt_id(),
InstructionSource());
}
compiler->pending_deoptimization_env_ = NULL;
if (!using_shared_stub) {
compiler->RestoreLiveRegisters(locs);
}
__ j(exit_label());
}
compiler::Label* osr_entry_label() {
ASSERT(IsolateGroup::Current()->use_osr());
return &osr_entry_label_;
}
private:
compiler::Label osr_entry_label_;
};
void CheckStackOverflowInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
CheckStackOverflowSlowPath* slow_path = new CheckStackOverflowSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ lx(TMP,
compiler::Address(THR, compiler::target::Thread::stack_limit_offset()));
__ bleu(SP, TMP, slow_path->entry_label());
if (compiler->CanOSRFunction() && in_loop()) {
const Register function = locs()->temp(0).reg();
// In unoptimized code check the usage counter to trigger OSR at loop
// stack checks. Use progressively higher thresholds for more deeply
// nested loops to attempt to hit outer loops with OSR when possible.
__ LoadObject(function, compiler->parsed_function().function());
intptr_t threshold =
FLAG_optimization_counter_threshold * (loop_depth() + 1);
__ LoadFieldFromOffset(TMP, function, Function::usage_counter_offset(),
compiler::kFourBytes);
__ addi(TMP, TMP, 1);
__ StoreFieldToOffset(TMP, function, Function::usage_counter_offset(),
compiler::kFourBytes);
__ CompareImmediate(TMP, threshold);
__ BranchIf(GE, slow_path->osr_entry_label());
}
if (compiler->ForceSlowPathForStackOverflow()) {
__ j(slow_path->entry_label());
}
__ Bind(slow_path->exit_label());
}
static void EmitSmiShiftLeft(FlowGraphCompiler* compiler,
BinarySmiOpInstr* shift_left) {
const LocationSummary& locs = *shift_left->locs();
const Register left = locs.in(0).reg();
const Register result = locs.out(0).reg();
compiler::Label* deopt =
shift_left->CanDeoptimize()
? compiler->AddDeoptStub(shift_left->deopt_id(),
ICData::kDeoptBinarySmiOp)
: NULL;
if (locs.in(1).IsConstant()) {
const Object& constant = locs.in(1).constant();
ASSERT(constant.IsSmi());
// Immediate shift operation takes 6/5 bits for the count.
const intptr_t kCountLimit = XLEN - 1;
const intptr_t value = Smi::Cast(constant).Value();
ASSERT((0 < value) && (value < kCountLimit));
__ slli(result, left, value);
if (shift_left->can_overflow()) {
ASSERT(result != left);
__ srai(TMP2, result, value);
__ bne(left, TMP2, deopt); // Overflow.
}
return;
}
// Right (locs.in(1)) is not constant.
const Register right = locs.in(1).reg();
Range* right_range = shift_left->right_range();
if (shift_left->left()->BindsToConstant() && shift_left->can_overflow()) {
// TODO(srdjan): Implement code below for is_truncating().
// If left is constant, we know the maximal allowed size for right.
const Object& obj = shift_left->left()->BoundConstant();
if (obj.IsSmi()) {
const intptr_t left_int = Smi::Cast(obj).Value();
if (left_int == 0) {
__ bltz(right, deopt);
__ mv(result, ZR);
return;
}
const intptr_t max_right =
compiler::target::kSmiBits - Utils::HighestBit(left_int);
const bool right_needs_check =
!RangeUtils::IsWithin(right_range, 0, max_right - 1);
if (right_needs_check) {
__ CompareObject(right, Smi::ZoneHandle(Smi::New(max_right)));
__ BranchIf(CS, deopt);
}
__ SmiUntag(TMP, right);
__ sll(result, left, TMP);
}
return;
}
const bool right_needs_check =
!RangeUtils::IsWithin(right_range, 0, (Smi::kBits - 1));
if (!shift_left->can_overflow()) {
if (right_needs_check) {
if (!RangeUtils::IsPositive(right_range)) {
ASSERT(shift_left->CanDeoptimize());
__ bltz(right, deopt);
}
compiler::Label done, is_not_zero;
__ CompareObject(right, Smi::ZoneHandle(Smi::New(Smi::kBits)));
__ BranchIf(LESS, &is_not_zero, compiler::Assembler::kNearJump);
__ li(result, 0);
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&is_not_zero);
__ SmiUntag(TMP, right);
__ sll(result, left, TMP);
__ Bind(&done);
} else {
__ SmiUntag(TMP, right);
__ sll(result, left, TMP);
}
} else {
if (right_needs_check) {
ASSERT(shift_left->CanDeoptimize());
__ CompareObject(right, Smi::ZoneHandle(Smi::New(Smi::kBits)));
__ BranchIf(CS, deopt);
}
__ SmiUntag(TMP, right);
ASSERT(result != left);
__ sll(result, left, TMP);
__ sra(TMP, result, TMP);
__ bne(left, TMP, deopt); // Overflow.
}
}
LocationSummary* BinarySmiOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps =
((op_kind() == Token::kUSHR) || (op_kind() == Token::kMUL)) ? 1 : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (op_kind() == Token::kTRUNCDIV) {
summary->set_in(0, Location::RequiresRegister());
if (RightIsPowerOfTwoConstant()) {
ConstantInstr* right_constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(right_constant));
} else {
summary->set_in(1, Location::RequiresRegister());
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
if (op_kind() == Token::kMOD) {
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, LocationRegisterOrSmiConstant(right()));
if (kNumTemps == 1) {
summary->set_temp(0, Location::RequiresRegister());
}
// We make use of 3-operand instructions by not requiring result register
// to be identical to first input register as on Intel.
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BinarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (op_kind() == Token::kSHL) {
EmitSmiShiftLeft(compiler, this);
return;
}
const Register left = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
compiler::Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(constant.IsSmi());
const intx_t imm = static_cast<intx_t>(constant.ptr());
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ AddImmediate(result, left, imm);
} else {
__ AddImmediateBranchOverflow(result, left, imm, deopt);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ AddImmediate(result, left, -imm);
} else {
// Negating imm and using AddImmediateSetFlags would not detect the
// overflow when imm == kMinInt64.
__ SubtractImmediateBranchOverflow(result, left, imm, deopt);
}
break;
}
case Token::kMUL: {
// Keep left value tagged and untag right value.
const intptr_t value = Smi::Cast(constant).Value();
if (deopt == NULL) {
__ LoadImmediate(TMP, value);
__ mul(result, left, TMP);
} else {
__ MultiplyImmediateBranchOverflow(result, left, value, deopt);
}
break;
}
case Token::kTRUNCDIV: {
const intptr_t value = Smi::Cast(constant).Value();
ASSERT(value != kIntptrMin);
ASSERT(Utils::IsPowerOfTwo(Utils::Abs(value)));
const intptr_t shift_count =
Utils::ShiftForPowerOfTwo(Utils::Abs(value)) + kSmiTagSize;
ASSERT(kSmiTagSize == 1);
__ srai(TMP, left, XLEN - 1);
ASSERT(shift_count > 1); // 1, -1 case handled above.
const Register temp = TMP2;
__ srli(TMP, TMP, XLEN - shift_count);
__ add(temp, left, TMP);
ASSERT(shift_count > 0);
__ srai(result, temp, shift_count);
if (value < 0) {
__ neg(result, result);
}
__ SmiTag(result);
break;
}
case Token::kBIT_AND:
// No overflow check.
__ AndImmediate(result, left, imm);
break;
case Token::kBIT_OR:
// No overflow check.
__ OrImmediate(result, left, imm);
break;
case Token::kBIT_XOR:
// No overflow check.
__ XorImmediate(result, left, imm);
break;
case Token::kSHR: {
// Asr operation masks the count to 6/5 bits.
const intptr_t kCountLimit = XLEN - 1;
intptr_t value = Smi::Cast(constant).Value();
__ srai(result, left, Utils::Minimum(value + kSmiTagSize, kCountLimit));
__ SmiTag(result);
break;
}
case Token::kUSHR: {
#if XLEN == 32
const intptr_t value = compiler::target::SmiValue(constant);
ASSERT((value > 0) && (value < 64));
COMPILE_ASSERT(compiler::target::kSmiBits < 32);
// 64-bit representation of left operand value:
//
// ss...sssss s s xxxxxxxxxxxxx
// | | | | | |
// 63 32 31 30 kSmiBits-1 0
//
// Where 's' is a sign bit.
//
// If left operand is negative (sign bit is set), then
// result will fit into Smi range if and only if
// the shift amount >= 64 - kSmiBits.
//
// If left operand is non-negative, the result always
// fits into Smi range.
//
if (value < (64 - compiler::target::kSmiBits)) {
if (deopt != nullptr) {
__ bltz(left, deopt);
} else {
// Operation cannot overflow only if left value is always
// non-negative.
ASSERT(!can_overflow());
}
// At this point left operand is non-negative, so unsigned shift
// can't overflow.
if (value >= compiler::target::kSmiBits) {
__ li(result, 0);
} else {
__ srli(result, left, value + kSmiTagSize);
__ SmiTag(result);
}
} else {
// Shift amount > 32, and the result is guaranteed to fit into Smi.
// Low (Smi) part of the left operand is shifted out.
// High part is filled with sign bits.
__ srai(result, left, 31);
__ srli(result, result, value - 32);
__ SmiTag(result);
}
#else
// Lsr operation masks the count to 6 bits, but
// unsigned shifts by >= kBitsPerInt64 are eliminated by
// BinaryIntegerOpInstr::Canonicalize.
const intptr_t kCountLimit = XLEN - 1;
intptr_t value = Smi::Cast(constant).Value();
ASSERT((value >= 0) && (value <= kCountLimit));
__ SmiUntag(TMP, left);
__ srli(TMP, TMP, value);
__ SmiTag(result, TMP);
if (deopt != nullptr) {
__ SmiUntag(TMP2, result);
__ bne(TMP, TMP2, deopt);
}
#endif
break;
}
default:
UNREACHABLE();
break;
}
return;
}
const Register right = locs()->in(1).reg();
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ add(result, left, right);
} else if (RangeUtils::IsPositive(right_range())) {
ASSERT(result != left);
__ add(result, left, right);
__ blt(result, left, deopt);
} else if (RangeUtils::IsNegative(right_range())) {
ASSERT(result != left);
__ add(result, left, right);
__ bgt(result, left, deopt);
} else {
__ AddBranchOverflow(result, left, right, deopt);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ sub(result, left, right);
} else if (RangeUtils::IsPositive(right_range())) {
ASSERT(result != left);
__ sub(result, left, right);
__ bgt(result, left, deopt);
} else if (RangeUtils::IsNegative(right_range())) {
ASSERT(result != left);
__ sub(result, left, right);
__ blt(result, left, deopt);
} else {
__ SubtractBranchOverflow(result, left, right, deopt);
}
break;
}
case Token::kMUL: {
const Register temp = locs()->temp(0).reg();
__ SmiUntag(temp, left);
if (deopt == NULL) {
__ mul(result, temp, right);
} else {
__ MultiplyBranchOverflow(result, temp, right, deopt);
}
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ and_(result, left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ or_(result, left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xor_(result, left, right);
break;
}
case Token::kTRUNCDIV: {
if (RangeUtils::CanBeZero(right_range())) {
// Handle divide by zero in runtime.
__ beqz(right, deopt);
}
__ SmiUntag(TMP, left);
__ SmiUntag(TMP2, right);
__ div(TMP, TMP, TMP2);
__ SmiTag(result, TMP);
if (RangeUtils::Overlaps(right_range(), -1, -1)) {
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ SmiUntag(TMP2, result);
__ bne(TMP, TMP2, deopt);
}
break;
}
case Token::kMOD: {
if (RangeUtils::CanBeZero(right_range())) {
// Handle divide by zero in runtime.
__ beqz(right, deopt);
}
__ SmiUntag(TMP, left);
__ SmiUntag(TMP2, right);
__ rem(result, TMP, TMP2);
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
compiler::Label done, adjust;
__ bgez(result, &done, compiler::Assembler::kNearJump);
// Result is negative, adjust it.
__ bgez(right, &adjust, compiler::Assembler::kNearJump);
__ sub(result, result, TMP2);
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&adjust);
__ add(result, result, TMP2);
__ Bind(&done);
__ SmiTag(result);
break;
}
case Token::kSHR: {
if (CanDeoptimize()) {
__ bltz(right, deopt);
}
__ SmiUntag(TMP, right);
// asrv[w] operation masks the count to 6/5 bits.
const intptr_t kCountLimit = XLEN - 1;
if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(), kCountLimit)) {
__ LoadImmediate(TMP2, kCountLimit);
compiler::Label shift_in_bounds;
__ ble(TMP, TMP2, &shift_in_bounds, compiler::Assembler::kNearJump);
__ mv(TMP, TMP2);
__ Bind(&shift_in_bounds);
}
__ SmiUntag(TMP2, left);
__ sra(result, TMP2, TMP);
__ SmiTag(result);
break;
}
case Token::kUSHR: {
#if XLEN == 32
compiler::Label done;
__ SmiUntag(TMP, right);
// 64-bit representation of left operand value:
//
// ss...sssss s s xxxxxxxxxxxxx
// | | | | | |
// 63 32 31 30 kSmiBits-1 0
//
// Where 's' is a sign bit.
//
// If left operand is negative (sign bit is set), then
// result will fit into Smi range if and only if
// the shift amount >= 64 - kSmiBits.
//
// If left operand is non-negative, the result always
// fits into Smi range.
//
if (!RangeUtils::OnlyLessThanOrEqualTo(
right_range(), 64 - compiler::target::kSmiBits - 1)) {
if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(),
kBitsPerInt64 - 1)) {
ASSERT(result != left);
ASSERT(result != right);
__ li(result, 0);
__ CompareImmediate(TMP, kBitsPerInt64);
// If shift amount >= 64, then result is 0.
__ BranchIf(GE, &done);
}
__ CompareImmediate(TMP, 64 - compiler::target::kSmiBits);
// Shift amount >= 64 - kSmiBits > 32, but < 64.
// Result is guaranteed to fit into Smi range.
// Low (Smi) part of the left operand is shifted out.
// High part is filled with sign bits.
compiler::Label next;
__ BranchIf(LT, &next);
__ subi(TMP, TMP, 32);
__ srai(result, left, 31);
__ srl(result, result, TMP);
__ SmiTag(result);
__ j(&done);
__ Bind(&next);
}
// Shift amount < 64 - kSmiBits.
// If left is negative, then result will not fit into Smi range.
// Also deopt in case of negative shift amount.
if (deopt != nullptr) {
__ bltz(left, deopt);
__ bltz(right, deopt);
} else {
ASSERT(!can_overflow());
}
// At this point left operand is non-negative, so unsigned shift
// can't overflow.
if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(),
compiler::target::kSmiBits - 1)) {
ASSERT(result != left);
ASSERT(result != right);
__ li(result, 0);
__ CompareImmediate(TMP, compiler::target::kSmiBits);
// Left operand >= 0, shift amount >= kSmiBits. Result is 0.
__ BranchIf(GE, &done);
}
// Left operand >= 0, shift amount < kSmiBits < 32.
const Register temp = locs()->temp(0).reg();
__ SmiUntag(temp, left);
__ srl(result, temp, TMP);
__ SmiTag(result);
__ Bind(&done);
#elif XLEN == 64
if (CanDeoptimize()) {
__ bltz(right, deopt);
}
__ SmiUntag(TMP, right);
// lsrv operation masks the count to 6 bits.
const intptr_t kCountLimit = XLEN - 1;
COMPILE_ASSERT(kCountLimit + 1 == kBitsPerInt64);
compiler::Label done;
if (!RangeUtils::OnlyLessThanOrEqualTo(right_range(), kCountLimit)) {
__ LoadImmediate(TMP2, kCountLimit);
compiler::Label shift_in_bounds;
__ ble(TMP, TMP2, &shift_in_bounds, compiler::Assembler::kNearJump);
__ mv(result, ZR);
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&shift_in_bounds);
}
__ SmiUntag(TMP2, left);
__ srl(TMP, TMP2, TMP);
__ SmiTag(result, TMP);
if (deopt != nullptr) {
__ SmiUntag(TMP2, result);
__ bne(TMP, TMP2, deopt);
}
__ Bind(&done);
#else
UNIMPLEMENTED();
#endif
break;
}
case Token::kDIV: {
// Dispatches to 'Double./'.
// TODO(srdjan): Implement as conversion to double and double division.
UNREACHABLE();
break;
}
case Token::kOR:
case Token::kAND: {
// Flow graph builder has dissected this operation to guarantee correct
// behavior (short-circuit evaluation).
UNREACHABLE();
break;
}
default:
UNREACHABLE();
break;
}
}
LocationSummary* CheckEitherNonSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
ASSERT((left_cid != kDoubleCid) && (right_cid != kDoubleCid));
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
return summary;
}
void CheckEitherNonSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryDoubleOp,
licm_hoisted_ ? ICData::kHoisted : 0);
intptr_t left_cid = left()->Type()->ToCid();
intptr_t right_cid = right()->Type()->ToCid();
const Register left = locs()->in(0).reg();
const Register right = locs()->in(1).reg();
if (this->left()->definition() == this->right()->definition()) {
__ BranchIfSmi(left, deopt);
} else if (left_cid == kSmiCid) {
__ BranchIfSmi(right, deopt);
} else if (right_cid == kSmiCid) {
__ BranchIfSmi(left, deopt);
} else {
__ or_(TMP, left, right);
__ BranchIfSmi(TMP, deopt);
}
}
LocationSummary* BoxInstr::MakeLocationSummary(Zone* zone, bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register out_reg = locs()->out(0).reg();
const FRegister value = locs()->in(0).fpu_reg();
BoxAllocationSlowPath::Allocate(compiler, this,
compiler->BoxClassFor(from_representation()),
out_reg, TMP);
switch (from_representation()) {
case kUnboxedDouble:
__ StoreDFieldToOffset(value, out_reg, ValueOffset());
break;
case kUnboxedFloat:
__ fcvtds(FpuTMP, value);
__ StoreDFieldToOffset(FpuTMP, out_reg, ValueOffset());
break;
case kUnboxedFloat32x4:
case kUnboxedFloat64x2:
case kUnboxedInt32x4:
UNIMPLEMENTED();
break;
default:
UNREACHABLE();
break;
}
}
LocationSummary* UnboxInstr::MakeLocationSummary(Zone* zone, bool opt) const {
ASSERT(!RepresentationUtils::IsUnsigned(representation()));
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 1;
const bool is_floating_point =
!RepresentationUtils::IsUnboxedInteger(representation());
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
if (is_floating_point) {
summary->set_out(0, Location::RequiresFpuRegister());
#if XLEN == 32
} else if (representation() == kUnboxedInt64) {
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#endif
} else {
summary->set_out(0, Location::RequiresRegister());
}
return summary;
}
void UnboxInstr::EmitLoadFromBox(FlowGraphCompiler* compiler) {
const Register box = locs()->in(0).reg();
switch (representation()) {
case kUnboxedInt64: {
#if XLEN == 32
PairLocation* result = locs()->out(0).AsPairLocation();
ASSERT(result->At(0).reg() != box);
__ LoadFieldFromOffset(result->At(0).reg(), box, ValueOffset());
__ LoadFieldFromOffset(result->At(1).reg(), box,
ValueOffset() + compiler::target::kWordSize);
#elif XLEN == 64
const Register result = locs()->out(0).reg();
__ ld(result, compiler::FieldAddress(box, ValueOffset()));
#endif
break;
}
case kUnboxedDouble: {
const FRegister result = locs()->out(0).fpu_reg();
__ LoadDFieldFromOffset(result, box, ValueOffset());
break;
}
case kUnboxedFloat: {
const FRegister result = locs()->out(0).fpu_reg();
__ LoadDFieldFromOffset(result, box, ValueOffset());
__ fcvtsd(result, result);
break;
}
case kUnboxedFloat32x4:
case kUnboxedFloat64x2:
case kUnboxedInt32x4: {
UNIMPLEMENTED();
break;
}
default:
UNREACHABLE();
break;
}
}
void UnboxInstr::EmitSmiConversion(FlowGraphCompiler* compiler) {
const Register box = locs()->in(0).reg();
switch (representation()) {
#if XLEN == 32
case kUnboxedInt64: {
PairLocation* result = locs()->out(0).AsPairLocation();
__ SmiUntag(result->At(0).reg(), box);
__ srai(result->At(1).reg(), box, XLEN - 1); // SignFill.
break;
}
#elif XLEN == 64
case kUnboxedInt32:
case kUnboxedInt64: {
const Register result = locs()->out(0).reg();
__ SmiUntag(result, box);
break;
}
#endif
case kUnboxedDouble: {
const FRegister result = locs()->out(0).fpu_reg();
__ SmiUntag(TMP, box);
#if XLEN == 32
__ fcvtdw(result, TMP);
#elif XLEN == 64
__ fcvtdl(result, TMP);
#endif
break;
}
default:
UNREACHABLE();
break;
}
}
void UnboxInstr::EmitLoadInt32FromBoxOrSmi(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
ASSERT(value != result);
compiler::Label done;
__ SmiUntag(result, value);
__ BranchIfSmi(value, &done, compiler::Assembler::kNearJump);
__ LoadFieldFromOffset(result, value, Mint::value_offset(),
compiler::kFourBytes);
__ Bind(&done);
}
void UnboxInstr::EmitLoadInt64FromBoxOrSmi(FlowGraphCompiler* compiler) {
#if XLEN == 32
const Register box = locs()->in(0).reg();
PairLocation* result = locs()->out(0).AsPairLocation();
ASSERT(result->At(0).reg() != box);
ASSERT(result->At(1).reg() != box);
compiler::Label done;
__ srai(result->At(1).reg(), box, XLEN - 1); // SignFill
__ SmiUntag(result->At(0).reg(), box);
__ BranchIfSmi(box, &done, compiler::Assembler::kNearJump);
EmitLoadFromBox(compiler);
__ Bind(&done);
#else
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
ASSERT(value != result);
compiler::Label done;
__ SmiUntag(result, value);
__ BranchIfSmi(value, &done, compiler::Assembler::kNearJump);
__ LoadFieldFromOffset(result, value, Mint::value_offset());
__ Bind(&done);
#endif
}
LocationSummary* BoxInteger32Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((from_representation() == kUnboxedInt32) ||
(from_representation() == kUnboxedUint32));
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
#if XLEN > 32
// ValueFitsSmi() may be overly conservative and false because we only
// perform range analysis during optimized compilation.
const bool kMayAllocateMint = false;
#else
const bool kMayAllocateMint = !ValueFitsSmi();
#endif
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps,
kMayAllocateMint ? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BoxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
Register out = locs()->out(0).reg();
ASSERT(value != out);
#if XLEN > 32
ASSERT(compiler::target::kSmiBits >= 32);
__ slli(out, value, XLEN - 32);
if (from_representation() == kUnboxedInt32) {
__ srai(out, out, XLEN - 32 - kSmiTagShift);
} else {
ASSERT(from_representation() == kUnboxedUint32);
__ srli(out, out, XLEN - 32 - kSmiTagShift);
}
#elif XLEN == 32
__ slli(out, value, 1);
if (ValueFitsSmi()) {
return;
}
compiler::Label done;
if (from_representation() == kUnboxedInt32) {
__ srai(TMP, out, 1);
__ beq(TMP, value, &done);
} else {
ASSERT(from_representation() == kUnboxedUint32);
__ srli(TMP, value, 30);
__ beqz(TMP, &done);
}
BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(), out,
TMP);
__ StoreFieldToOffset(value, out, compiler::target::Mint::value_offset());
if (from_representation() == kUnboxedInt32) {
__ srai(TMP, value, 31);
__ StoreFieldToOffset(
TMP, out,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
} else {
ASSERT(from_representation() == kUnboxedUint32);
__ StoreFieldToOffset(
ZR, out,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
}
__ Bind(&done);
#endif
}
LocationSummary* BoxInt64Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
// Shared slow path is used in BoxInt64Instr::EmitNativeCode in
// FLAG_use_bare_instructions mode and only after VM isolate stubs where
// replaced with isolate-specific stubs.
auto object_store = IsolateGroup::Current()->object_store();
const bool stubs_in_vm_isolate =
object_store->allocate_mint_with_fpu_regs_stub()
->untag()
->InVMIsolateHeap() ||
object_store->allocate_mint_without_fpu_regs_stub()
->untag()
->InVMIsolateHeap();
const bool shared_slow_path_call =
SlowPathSharingSupported(opt) && !stubs_in_vm_isolate;
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = ValueFitsSmi() ? 0 : 1;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps,
ValueFitsSmi()
? LocationSummary::kNoCall
: ((shared_slow_path_call ? LocationSummary::kCallOnSharedSlowPath
: LocationSummary::kCallOnSlowPath)));
#if XLEN == 32
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
summary->set_in(0, Location::RequiresRegister());
#endif
if (ValueFitsSmi()) {
summary->set_out(0, Location::RequiresRegister());
} else if (shared_slow_path_call) {
summary->set_out(0,
Location::RegisterLocation(AllocateMintABI::kResultReg));
summary->set_temp(0, Location::RegisterLocation(AllocateMintABI::kTempReg));
} else {
summary->set_out(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
}
return summary;
}
void BoxInt64Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
if (ValueFitsSmi()) {
PairLocation* value_pair = locs()->in(0).AsPairLocation();
Register value_lo = value_pair->At(0).reg();
Register out_reg = locs()->out(0).reg();
__ SmiTag(out_reg, value_lo);
return;
}
PairLocation* value_pair = locs()->in(0).AsPairLocation();
Register value_lo = value_pair->At(0).reg();
Register value_hi = value_pair->At(1).reg();
Register out_reg = locs()->out(0).reg();
compiler::Label overflow, done;
__ SmiTag(out_reg, value_lo);
__ srai(TMP, out_reg, kSmiTagSize);
__ bne(value_lo, TMP, &overflow, compiler::Assembler::kNearJump);
__ srai(TMP, out_reg, XLEN - 1); // SignFill
__ beq(value_hi, TMP, &done, compiler::Assembler::kNearJump);
__ Bind(&overflow);
if (compiler->intrinsic_mode()) {
__ TryAllocate(compiler->mint_class(),
compiler->intrinsic_slow_path_label(),
compiler::Assembler::kNearJump, out_reg, TMP);
} else if (locs()->call_on_shared_slow_path()) {
auto object_store = compiler->isolate_group()->object_store();
const bool live_fpu_regs = locs()->live_registers()->FpuRegisterCount() > 0;
const auto& stub = Code::ZoneHandle(
compiler->zone(),
live_fpu_regs ? object_store->allocate_mint_with_fpu_regs_stub()
: object_store->allocate_mint_without_fpu_regs_stub());
ASSERT(!locs()->live_registers()->ContainsRegister(
AllocateMintABI::kResultReg));
auto extended_env = compiler->SlowPathEnvironmentFor(this, 0);
compiler->GenerateStubCall(source(), stub, UntaggedPcDescriptors::kOther,
locs(), DeoptId::kNone, extended_env);
} else {
BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(),
out_reg, TMP);
}
__ StoreFieldToOffset(value_lo, out_reg,
compiler::target::Mint::value_offset());
__ StoreFieldToOffset(
value_hi, out_reg,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
__ Bind(&done);
#else
Register in = locs()->in(0).reg();
Register out = locs()->out(0).reg();
if (ValueFitsSmi()) {
__ SmiTag(out, in);
return;
}
ASSERT(kSmiTag == 0);
compiler::Label done;
ASSERT(out != in);
__ SmiTag(out, in);
__ SmiUntag(TMP, out);
__ beq(in, TMP, &done); // No overflow.
if (compiler->intrinsic_mode()) {
__ TryAllocate(compiler->mint_class(),
compiler->intrinsic_slow_path_label(),
compiler::Assembler::kNearJump, out, TMP);
} else if (locs()->call_on_shared_slow_path()) {
auto object_store = compiler->isolate_group()->object_store();
const bool live_fpu_regs = locs()->live_registers()->FpuRegisterCount() > 0;
const auto& stub = Code::ZoneHandle(
compiler->zone(),
live_fpu_regs ? object_store->allocate_mint_with_fpu_regs_stub()
: object_store->allocate_mint_without_fpu_regs_stub());
ASSERT(!locs()->live_registers()->ContainsRegister(
AllocateMintABI::kResultReg));
auto extended_env = compiler->SlowPathEnvironmentFor(this, 0);
compiler->GenerateStubCall(source(), stub, UntaggedPcDescriptors::kOther,
locs(), DeoptId::kNone, extended_env);
} else {
BoxAllocationSlowPath::Allocate(compiler, this, compiler->mint_class(), out,
TMP);
}
__ StoreToOffset(in, out, Mint::value_offset() - kHeapObjectTag);
__ Bind(&done);
#endif
}
#if XLEN == 32
static void LoadInt32FromMint(FlowGraphCompiler* compiler,
Register mint,
Register result,
compiler::Label* deopt) {
__ LoadFieldFromOffset(result, mint, compiler::target::Mint::value_offset());
if (deopt != NULL) {
__ LoadFieldFromOffset(
TMP, mint,
compiler::target::Mint::value_offset() + compiler::target::kWordSize);
__ srai(TMP2, result, XLEN - 1);
__ bne(TMP, TMP2, deopt);
}
}
#endif
LocationSummary* UnboxInteger32Instr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void UnboxInteger32Instr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
const intptr_t value_cid = value()->Type()->ToCid();
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
compiler::Label* deopt =
CanDeoptimize()
? compiler->AddDeoptStub(GetDeoptId(), ICData::kDeoptUnboxInteger)
: NULL;
compiler::Label* out_of_range = !is_truncating() ? deopt : NULL;
ASSERT(value != out);
if (value_cid == kSmiCid) {
__ SmiUntag(out, value);
} else if (value_cid == kMintCid) {
LoadInt32FromMint(compiler, value, out, out_of_range);
} else if (!CanDeoptimize()) {
compiler::Label done;
__ SmiUntag(out, value);
__ BranchIfSmi(value, &done, compiler::Assembler::kNearJump);
LoadInt32FromMint(compiler, value, out, NULL);
__ Bind(&done);
} else {
compiler::Label done;
__ SmiUntag(out, value);
__ BranchIfSmi(value, &done, compiler::Assembler::kNearJump);
__ CompareClassId(value, kMintCid, TMP);
__ BranchIf(NE, deopt);
LoadInt32FromMint(compiler, value, out, out_of_range);
__ Bind(&done);
}
#elif XLEN == 64
const intptr_t value_cid = value()->Type()->ToCid();
const Register out = locs()->out(0).reg();
const Register value = locs()->in(0).reg();
compiler::Label* deopt =
CanDeoptimize()
? compiler->AddDeoptStub(GetDeoptId(), ICData::kDeoptUnboxInteger)
: NULL;
if (value_cid == kSmiCid) {
__ SmiUntag(out, value);
} else if (value_cid == kMintCid) {
__ LoadFieldFromOffset(out, value, Mint::value_offset());
} else if (!CanDeoptimize()) {
// Type information is not conclusive, but range analysis found
// the value to be in int64 range. Therefore it must be a smi
// or mint value.
ASSERT(is_truncating());
compiler::Label done;
__ SmiUntag(out, value);
__ BranchIfSmi(value, &done, compiler::Assembler::kNearJump);
__ LoadFieldFromOffset(out, value, Mint::value_offset());
__ Bind(&done);
} else {
compiler::Label done;
__ SmiUntag(out, value);
__ BranchIfSmi(value, &done, compiler::Assembler::kNearJump);
__ CompareClassId(value, kMintCid, TMP);
__ BranchIf(NE, deopt);
__ LoadFieldFromOffset(out, value, Mint::value_offset());
__ Bind(&done);
}
// TODO(vegorov): as it is implemented right now truncating unboxing would
// leave "garbage" in the higher word.
if (!is_truncating() && (deopt != NULL)) {
ASSERT(representation() == kUnboxedInt32);
__ sextw(TMP, out);
__ bne(TMP, out, deopt);
}
#endif
}
LocationSummary* BinaryDoubleOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void BinaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const FRegister left = locs()->in(0).fpu_reg();
const FRegister right = locs()->in(1).fpu_reg();
const FRegister result = locs()->out(0).fpu_reg();
switch (op_kind()) {
case Token::kADD:
__ faddd(result, left, right);
break;
case Token::kSUB:
__ fsubd(result, left, right);
break;
case Token::kMUL:
__ fmuld(result, left, right);
break;
case Token::kDIV:
__ fdivd(result, left, right);
break;
default:
UNREACHABLE();
}
}
LocationSummary* DoubleTestOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
Condition DoubleTestOpInstr::EmitComparisonCode(FlowGraphCompiler* compiler,
BranchLabels labels) {
ASSERT(compiler->is_optimizing());
const FRegister value = locs()->in(0).fpu_reg();
__ fclassd(TMP, value);
if (op_kind() == MethodRecognizer::kDouble_getIsNaN) {
__ TestImmediate(TMP, kFClassSignallingNan | kFClassQuietNan);
} else if (op_kind() == MethodRecognizer::kDouble_getIsInfinite) {
__ TestImmediate(TMP, kFClassNegInfinity | kFClassPosInfinity);
} else {
UNREACHABLE();
}
return kind() == Token::kEQ ? NOT_ZERO : ZERO;
}
// SIMD
#define DEFINE_EMIT(Name, Args) \
static void Emit##Name(FlowGraphCompiler* compiler, SimdOpInstr* instr, \
PP_APPLY(PP_UNPACK, Args))
#define SIMD_OP_FLOAT_ARITH(V, Name, op) \
V(Float32x4##Name, op##s) \
V(Float64x2##Name, op##d)
#define SIMD_OP_SIMPLE_BINARY(V) \
SIMD_OP_FLOAT_ARITH(V, Add, vadd) \
SIMD_OP_FLOAT_ARITH(V, Sub, vsub) \
SIMD_OP_FLOAT_ARITH(V, Mul, vmul) \
SIMD_OP_FLOAT_ARITH(V, Div, vdiv) \
SIMD_OP_FLOAT_ARITH(V, Min, vmin) \
SIMD_OP_FLOAT_ARITH(V, Max, vmax) \
V(Int32x4Add, vaddw) \
V(Int32x4Sub, vsubw) \
V(Int32x4BitAnd, vand) \
V(Int32x4BitOr, vorr) \
V(Int32x4BitXor, veor) \
V(Float32x4Equal, vceqs) \
V(Float32x4GreaterThan, vcgts) \
V(Float32x4GreaterThanOrEqual, vcges)
DEFINE_EMIT(SimdBinaryOp, (FRegister result, FRegister left, FRegister right)) {
UNIMPLEMENTED();
}
#define SIMD_OP_SIMPLE_UNARY(V) \
SIMD_OP_FLOAT_ARITH(V, Sqrt, vsqrt) \
SIMD_OP_FLOAT_ARITH(V, Negate, vneg) \
SIMD_OP_FLOAT_ARITH(V, Abs, vabs) \
V(Float32x4Reciprocal, VRecps) \
V(Float32x4ReciprocalSqrt, VRSqrts)
DEFINE_EMIT(SimdUnaryOp, (FRegister result, FRegister value)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Simd32x4GetSignMask,
(Register out, FRegister value, Temp<Register> temp)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(
Float32x4FromDoubles,
(FRegister r, FRegister v0, FRegister v1, FRegister v2, FRegister v3)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(
Float32x4Clamp,
(FRegister result, FRegister value, FRegister lower, FRegister upper)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Float32x4With,
(FRegister result, FRegister replacement, FRegister value)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Simd32x4ToSimd32x4, (SameAsFirstInput, FRegister value)) {
// TODO(dartbug.com/30949) these operations are essentially nop and should
// not generate any code. They should be removed from the graph before
// code generation.
}
DEFINE_EMIT(SimdZero, (FRegister v)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Float64x2GetSignMask, (Register out, FRegister value)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Float64x2With,
(SameAsFirstInput, FRegister left, FRegister right)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(
Int32x4FromInts,
(FRegister result, Register v0, Register v1, Register v2, Register v3)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Int32x4FromBools,
(FRegister result,
Register v0,
Register v1,
Register v2,
Register v3,
Temp<Register> temp)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Int32x4GetFlag, (Register result, FRegister value)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Int32x4Select,
(FRegister out,
FRegister mask,
FRegister trueValue,
FRegister falseValue,
Temp<FRegister> temp)) {
UNIMPLEMENTED();
}
DEFINE_EMIT(Int32x4WithFlag,
(SameAsFirstInput, FRegister mask, Register flag)) {
UNIMPLEMENTED();
}
// Map SimdOpInstr::Kind-s to corresponding emit functions. Uses the following
// format:
//
// CASE(OpA) CASE(OpB) ____(Emitter) - Emitter is used to emit OpA and OpB.
// SIMPLE(OpA) - Emitter with name OpA is used to emit OpA.
//
#define SIMD_OP_VARIANTS(CASE, ____) \
SIMD_OP_SIMPLE_BINARY(CASE) \
CASE(Float32x4ShuffleMix) \
CASE(Int32x4ShuffleMix) \
CASE(Float32x4NotEqual) \
CASE(Float32x4LessThan) \
CASE(Float32x4LessThanOrEqual) \
CASE(Float32x4Scale) \
CASE(Float64x2FromDoubles) \
CASE(Float64x2Scale) \
____(SimdBinaryOp) \
SIMD_OP_SIMPLE_UNARY(CASE) \
CASE(Float32x4ShuffleX) \
CASE(Float32x4ShuffleY) \
CASE(Float32x4ShuffleZ) \
CASE(Float32x4ShuffleW) \
CASE(Int32x4Shuffle) \
CASE(Float32x4Shuffle) \
CASE(Float32x4Splat) \
CASE(Float64x2GetX) \
CASE(Float64x2GetY) \
CASE(Float64x2Splat) \
CASE(Float64x2ToFloat32x4) \
CASE(Float32x4ToFloat64x2) \
____(SimdUnaryOp) \
CASE(Float32x4GetSignMask) \
CASE(Int32x4GetSignMask) \
____(Simd32x4GetSignMask) \
CASE(Float32x4FromDoubles) \
____(Float32x4FromDoubles) \
CASE(Float32x4Zero) \
CASE(Float64x2Zero) \
____(SimdZero) \
CASE(Float32x4Clamp) \
____(Float32x4Clamp) \
CASE(Float32x4WithX) \
CASE(Float32x4WithY) \
CASE(Float32x4WithZ) \
CASE(Float32x4WithW) \
____(Float32x4With) \
CASE(Float32x4ToInt32x4) \
CASE(Int32x4ToFloat32x4) \
____(Simd32x4ToSimd32x4) \
CASE(Float64x2GetSignMask) \
____(Float64x2GetSignMask) \
CASE(Float64x2WithX) \
CASE(Float64x2WithY) \
____(Float64x2With) \
CASE(Int32x4FromInts) \
____(Int32x4FromInts) \
CASE(Int32x4FromBools) \
____(Int32x4FromBools) \
CASE(Int32x4GetFlagX) \
CASE(Int32x4GetFlagY) \
CASE(Int32x4GetFlagZ) \
CASE(Int32x4GetFlagW) \
____(Int32x4GetFlag) \
CASE(Int32x4Select) \
____(Int32x4Select) \
CASE(Int32x4WithFlagX) \
CASE(Int32x4WithFlagY) \
CASE(Int32x4WithFlagZ) \
CASE(Int32x4WithFlagW) \
____(Int32x4WithFlag)
LocationSummary* SimdOpInstr::MakeLocationSummary(Zone* zone, bool opt) const {
switch (kind()) {
#define CASE(Name, ...) case k##Name:
#define EMIT(Name) \
return MakeLocationSummaryFromEmitter(zone, this, &Emit##Name);
SIMD_OP_VARIANTS(CASE, EMIT)
#undef CASE
#undef EMIT
case kIllegalSimdOp:
UNREACHABLE();
break;
}
UNREACHABLE();
return NULL;
}
void SimdOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
switch (kind()) {
#define CASE(Name, ...) case k##Name:
#define EMIT(Name) \
InvokeEmitter(compiler, this, &Emit##Name); \
break;
SIMD_OP_VARIANTS(CASE, EMIT)
#undef CASE
#undef EMIT
case kIllegalSimdOp:
UNREACHABLE();
break;
}
}
#undef DEFINE_EMIT
LocationSummary* MathUnaryInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((kind() == MathUnaryInstr::kSqrt) ||
(kind() == MathUnaryInstr::kDoubleSquare));
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void MathUnaryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (kind() == MathUnaryInstr::kSqrt) {
const FRegister val = locs()->in(0).fpu_reg();
const FRegister result = locs()->out(0).fpu_reg();
__ fsqrtd(result, val);
} else if (kind() == MathUnaryInstr::kDoubleSquare) {
const FRegister val = locs()->in(0).fpu_reg();
const FRegister result = locs()->out(0).fpu_reg();
__ fmuld(result, val, val);
} else {
UNREACHABLE();
}
}
LocationSummary* CaseInsensitiveCompareInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall);
summary->set_in(0, Location::RegisterLocation(A0));
summary->set_in(1, Location::RegisterLocation(A1));
summary->set_in(2, Location::RegisterLocation(A2));
// Can't specify A3 because it is blocked in register allocation as TMP.
summary->set_in(3, Location::Any());
summary->set_out(0, Location::RegisterLocation(A0));
return summary;
}
void CaseInsensitiveCompareInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (compiler->intrinsic_mode()) {
// Would also need to preserve CODE_REG and ARGS_DESC_REG.
UNIMPLEMENTED();
}
compiler::LeafRuntimeScope rt(compiler->assembler(),
/*frame_size=*/0,
/*preserve_registers=*/false);
if (locs()->in(3).IsRegister()) {
__ mv(A3, locs()->in(3).reg());
} else if (locs()->in(3).IsStackSlot()) {
__ lx(A3, LocationToStackSlotAddress(locs()->in(3)));
} else {
UNIMPLEMENTED();
}
rt.Call(TargetFunction(), TargetFunction().argument_count());
}
LocationSummary* MathMinMaxInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
if (result_cid() == kDoubleCid) {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_in(1, Location::RequiresFpuRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
ASSERT(result_cid() == kSmiCid);
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
// Reuse the left register so that code can be made shorter.
summary->set_out(0, Location::SameAsFirstInput());
return summary;
}
void MathMinMaxInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT((op_kind() == MethodRecognizer::kMathMin) ||
(op_kind() == MethodRecognizer::kMathMax));
const bool is_min = (op_kind() == MethodRecognizer::kMathMin);
if (result_cid() == kDoubleCid) {
compiler::Label done, returns_nan, are_equal;
const FRegister left = locs()->in(0).fpu_reg();
const FRegister right = locs()->in(1).fpu_reg();
const FRegister result = locs()->out(0).fpu_reg();
if (is_min) {
__ fmind(result, left, right);
} else {
__ fmaxd(result, left, right);
}
return;
}
ASSERT(result_cid() == kSmiCid);
const Register left = locs()->in(0).reg();
const Register right = locs()->in(1).reg();
const Register result = locs()->out(0).reg();
compiler::Label choose_right, done;
if (is_min) {
__ bgt(left, right, &choose_right, compiler::Assembler::kNearJump);
} else {
__ blt(left, right, &choose_right, compiler::Assembler::kNearJump);
}
__ mv(result, left);
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&choose_right);
__ mv(result, right);
__ Bind(&done);
}
LocationSummary* UnarySmiOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
// We make use of 3-operand instructions by not requiring result register
// to be identical to first input register as on Intel.
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void UnarySmiOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
switch (op_kind()) {
case Token::kNEGATE: {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnaryOp);
__ neg(result, value);
ASSERT(result != value);
__ beq(result, value, deopt); // Overflow.
break;
}
case Token::kBIT_NOT:
__ not_(result, value);
__ andi(result, result, ~kSmiTagMask); // Remove inverted smi-tag.
break;
default:
UNREACHABLE();
}
}
LocationSummary* UnaryDoubleOpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresFpuRegister());
summary->set_out(0, Location::RequiresFpuRegister());
return summary;
}
void UnaryDoubleOpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const FRegister result = locs()->out(0).fpu_reg();
const FRegister value = locs()->in(0).fpu_reg();
__ fnegd(result, value);
}
LocationSummary* Int32ToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void Int32ToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const FRegister result = locs()->out(0).fpu_reg();
__ fcvtdw(result, value);
}
LocationSummary* SmiToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void SmiToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
const FRegister result = locs()->out(0).fpu_reg();
__ SmiUntag(TMP, value);
#if XLEN == 32
__ fcvtdw(result, TMP);
#else
__ fcvtdl(result, TMP);
#endif
}
LocationSummary* Int64ToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
#if XLEN == 32
UNIMPLEMENTED();
return NULL;
#else
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
#endif
}
void Int64ToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
UNIMPLEMENTED();
#else
const Register value = locs()->in(0).reg();
const FRegister result = locs()->out(0).fpu_reg();
__ fcvtdl(result, value);
#endif
}
LocationSummary* DoubleToIntegerInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresRegister());
return result;
}
void DoubleToIntegerInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register result = locs()->out(0).reg();
const FRegister value_double = locs()->in(0).fpu_reg();
DoubleToIntegerSlowPath* slow_path =
new DoubleToIntegerSlowPath(this, value_double);
compiler->AddSlowPathCode(slow_path);
RoundingMode rounding;
switch (recognized_kind()) {
case MethodRecognizer::kDoubleToInteger:
rounding = RTZ;
break;
case MethodRecognizer::kDoubleFloorToInt:
rounding = RDN;
break;
case MethodRecognizer::kDoubleCeilToInt:
rounding = RUP;
break;
default:
UNREACHABLE();
}
#if XLEN == 32
__ fcvtwd(TMP, value_double, rounding);
#else
__ fcvtld(TMP, value_double, rounding);
#endif
// Underflow -> minint -> Smi tagging fails
// Overflow, NaN -> maxint -> Smi tagging fails
// Check for overflow and that it fits into Smi.
__ SmiTag(result, TMP);
__ SmiUntag(TMP2, result);
__ bne(TMP, TMP2, slow_path->entry_label());
__ Bind(slow_path->exit_label());
}
LocationSummary* DoubleToSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresRegister());
return result;
}
void DoubleToSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptDoubleToSmi);
const Register result = locs()->out(0).reg();
const FRegister value = locs()->in(0).fpu_reg();
#if XLEN == 32
__ fcvtwd(TMP, value, RTZ); // Round To Zero (truncation).
#else
__ fcvtld(TMP, value, RTZ); // Round To Zero (truncation).
#endif
// Underflow -> minint -> Smi tagging fails
// Overflow, NaN -> maxint -> Smi tagging fails
// Check for overflow and that it fits into Smi.
__ SmiTag(result, TMP);
__ SmiUntag(TMP2, result);
__ bne(TMP, TMP2, deopt);
}
LocationSummary* DoubleToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
UNIMPLEMENTED();
return NULL;
}
void DoubleToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
UNIMPLEMENTED();
}
LocationSummary* DoubleToFloatInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void DoubleToFloatInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const FRegister value = locs()->in(0).fpu_reg();
const FRegister result = locs()->out(0).fpu_reg();
__ fcvtsd(result, value);
}
LocationSummary* FloatToDoubleInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
result->set_in(0, Location::RequiresFpuRegister());
result->set_out(0, Location::RequiresFpuRegister());
return result;
}
void FloatToDoubleInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const FRegister value = locs()->in(0).fpu_reg();
const FRegister result = locs()->out(0).fpu_reg();
__ fcvtds(result, value);
}
LocationSummary* InvokeMathCFunctionInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
ASSERT((InputCount() == 1) || (InputCount() == 2));
const intptr_t kNumTemps = 0;
LocationSummary* result = new (zone)
LocationSummary(zone, InputCount(), kNumTemps, LocationSummary::kCall);
result->set_in(0, Location::FpuRegisterLocation(FA0));
if (InputCount() == 2) {
result->set_in(1, Location::FpuRegisterLocation(FA1));
}
result->set_out(0, Location::FpuRegisterLocation(FA0));
return result;
}
void InvokeMathCFunctionInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (compiler->intrinsic_mode()) {
// Would also need to preserve CODE_REG and ARGS_DESC_REG.
UNIMPLEMENTED();
}
compiler::LeafRuntimeScope rt(compiler->assembler(),
/*frame_size=*/0,
/*preserve_registers=*/false);
ASSERT(locs()->in(0).fpu_reg() == FA0);
if (InputCount() == 2) {
ASSERT(locs()->in(1).fpu_reg() == FA1);
}
rt.Call(TargetFunction(), InputCount());
ASSERT(locs()->out(0).fpu_reg() == FA0);
// TODO(riscv): Special case pow?
}
LocationSummary* ExtractNthOutputInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
// Only use this instruction in optimized code.
ASSERT(opt);
const intptr_t kNumInputs = 1;
LocationSummary* summary =
new (zone) LocationSummary(zone, kNumInputs, 0, LocationSummary::kNoCall);
if (representation() == kUnboxedDouble) {
if (index() == 0) {
summary->set_in(
0, Location::Pair(Location::RequiresFpuRegister(), Location::Any()));
} else {
ASSERT(index() == 1);
summary->set_in(
0, Location::Pair(Location::Any(), Location::RequiresFpuRegister()));
}
summary->set_out(0, Location::RequiresFpuRegister());
} else {
ASSERT(representation() == kTagged);
if (index() == 0) {
summary->set_in(
0, Location::Pair(Location::RequiresRegister(), Location::Any()));
} else {
ASSERT(index() == 1);
summary->set_in(
0, Location::Pair(Location::Any(), Location::RequiresRegister()));
}
summary->set_out(0, Location::RequiresRegister());
}
return summary;
}
void ExtractNthOutputInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(locs()->in(0).IsPairLocation());
PairLocation* pair = locs()->in(0).AsPairLocation();
Location in_loc = pair->At(index());
if (representation() == kUnboxedDouble) {
const FRegister out = locs()->out(0).fpu_reg();
const FRegister in = in_loc.fpu_reg();
__ fmvd(out, in);
} else {
ASSERT(representation() == kTagged);
const Register out = locs()->out(0).reg();
const Register in = in_loc.reg();
__ mv(out, in);
}
}
LocationSummary* TruncDivModInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
// Output is a pair of registers.
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
return summary;
}
void TruncDivModInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ASSERT(CanDeoptimize());
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
const Register left = locs()->in(0).reg();
const Register right = locs()->in(1).reg();
ASSERT(locs()->out(0).IsPairLocation());
const PairLocation* pair = locs()->out(0).AsPairLocation();
const Register result_div = pair->At(0).reg();
const Register result_mod = pair->At(1).reg();
if (RangeUtils::CanBeZero(divisor_range())) {
// Handle divide by zero in runtime.
__ beqz(right, deopt);
}
__ SmiUntag(TMP, left);
__ SmiUntag(TMP2, right);
// Macro-op fusion: DIV immediately before REM.
__ div(result_div, TMP, TMP2);
__ rem(result_mod, TMP, TMP2);
// Correct MOD result:
// res = left % right;
// if (res < 0) {
// if (right < 0) {
// res = res - right;
// } else {
// res = res + right;
// }
// }
compiler::Label done, adjust;
__ bgez(result_mod, &done, compiler::Assembler::kNearJump);
// Result is negative, adjust it.
if (RangeUtils::IsNegative(divisor_range())) {
__ sub(result_mod, result_mod, TMP2);
} else if (RangeUtils::IsPositive(divisor_range())) {
__ add(result_mod, result_mod, TMP2);
} else {
__ bgez(right, &adjust, compiler::Assembler::kNearJump);
__ sub(result_mod, result_mod, TMP2);
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&adjust);
__ add(result_mod, result_mod, TMP2);
}
__ Bind(&done);
if (RangeUtils::Overlaps(divisor_range(), -1, -1)) {
// Check the corner case of dividing the 'MIN_SMI' with -1, in which
// case we cannot tag the result.
__ mv(TMP, result_div);
__ SmiTag(result_div);
__ SmiTag(result_mod);
__ SmiUntag(TMP2, result_div);
__ bne(TMP, TMP2, deopt);
} else {
__ SmiTag(result_div);
__ SmiTag(result_mod);
}
}
LocationSummary* BranchInstr::MakeLocationSummary(Zone* zone, bool opt) const {
comparison()->InitializeLocationSummary(zone, opt);
// Branches don't produce a result.
comparison()->locs()->set_out(0, Location::NoLocation());
return comparison()->locs();
}
void BranchInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
comparison()->EmitBranchCode(compiler, this);
}
LocationSummary* CheckClassInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const bool need_mask_temp = IsBitTest();
const intptr_t kNumTemps = !IsNullCheck() ? (need_mask_temp ? 2 : 1) : 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
if (!IsNullCheck()) {
summary->set_temp(0, Location::RequiresRegister());
if (need_mask_temp) {
summary->set_temp(1, Location::RequiresRegister());
}
}
return summary;
}
void CheckClassInstr::EmitNullCheck(FlowGraphCompiler* compiler,
compiler::Label* deopt) {
if (IsDeoptIfNull()) {
__ beq(locs()->in(0).reg(), NULL_REG, deopt);
} else if (IsDeoptIfNotNull()) {
__ bne(locs()->in(0).reg(), NULL_REG, deopt);
} else {
UNREACHABLE();
}
}
void CheckClassInstr::EmitBitTest(FlowGraphCompiler* compiler,
intptr_t min,
intptr_t max,
intptr_t mask,
compiler::Label* deopt) {
Register biased_cid = locs()->temp(0).reg();
__ AddImmediate(biased_cid, -min);
__ CompareImmediate(biased_cid, max - min);
__ BranchIf(HI, deopt);
Register bit_reg = locs()->temp(1).reg();
__ LoadImmediate(bit_reg, 1);
__ sll(bit_reg, bit_reg, biased_cid);
__ TestImmediate(bit_reg, mask);
__ BranchIf(EQ, deopt);
}
int CheckClassInstr::EmitCheckCid(FlowGraphCompiler* compiler,
int bias,
intptr_t cid_start,
intptr_t cid_end,
bool is_last,
compiler::Label* is_ok,
compiler::Label* deopt,
bool use_near_jump) {
Register biased_cid = locs()->temp(0).reg();
Condition no_match, match;
if (cid_start == cid_end) {
__ CompareImmediate(biased_cid, cid_start - bias);
no_match = NE;
match = EQ;
} else {
// For class ID ranges use a subtract followed by an unsigned
// comparison to check both ends of the ranges with one comparison.
__ AddImmediate(biased_cid, bias - cid_start);
bias = cid_start;
__ CompareImmediate(biased_cid, cid_end - cid_start);
no_match = HI; // Unsigned higher.
match = LS; // Unsigned lower or same.
}
if (is_last) {
__ BranchIf(no_match, deopt);
} else {
__ BranchIf(match, is_ok);
}
return bias;
}
LocationSummary* CheckClassIdInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, cids_.IsSingleCid() ? Location::RequiresRegister()
: Location::WritableRegister());
return summary;
}
void CheckClassIdInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register value = locs()->in(0).reg();
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckClass);
if (cids_.IsSingleCid()) {
__ CompareImmediate(value, Smi::RawValue(cids_.cid_start));
__ BranchIf(NE, deopt);
} else {
__ AddImmediate(value, -Smi::RawValue(cids_.cid_start));
__ CompareImmediate(value, Smi::RawValue(cids_.cid_end - cids_.cid_start));
__ BranchIf(HI, deopt); // Unsigned higher.
}
}
LocationSummary* CheckSmiInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
return summary;
}
void CheckSmiInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register value = locs()->in(0).reg();
compiler::Label* deopt = compiler->AddDeoptStub(
deopt_id(), ICData::kDeoptCheckSmi, licm_hoisted_ ? ICData::kHoisted : 0);
__ BranchIfNotSmi(value, deopt);
}
void CheckNullInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
ThrowErrorSlowPathCode* slow_path = new NullErrorSlowPath(this);
compiler->AddSlowPathCode(slow_path);
Register value_reg = locs()->in(0).reg();
// TODO(dartbug.com/30480): Consider passing `null` literal as an argument
// in order to be able to allocate it on register.
__ CompareObject(value_reg, Object::null_object());
__ BranchIf(EQUAL, slow_path->entry_label());
}
LocationSummary* CheckArrayBoundInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(kLengthPos, LocationRegisterOrSmiConstant(length()));
locs->set_in(kIndexPos, LocationRegisterOrSmiConstant(index()));
return locs;
}
void CheckArrayBoundInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
uint32_t flags = generalized_ ? ICData::kGeneralized : 0;
flags |= licm_hoisted_ ? ICData::kHoisted : 0;
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptCheckArrayBound, flags);
Location length_loc = locs()->in(kLengthPos);
Location index_loc = locs()->in(kIndexPos);
const intptr_t index_cid = index()->Type()->ToCid();
if (length_loc.IsConstant() && index_loc.IsConstant()) {
// TODO(srdjan): remove this code once failures are fixed.
if ((Smi::Cast(length_loc.constant()).Value() >
Smi::Cast(index_loc.constant()).Value()) &&
(Smi::Cast(index_loc.constant()).Value() >= 0)) {
// This CheckArrayBoundInstr should have been eliminated.
return;
}
ASSERT((Smi::Cast(length_loc.constant()).Value() <=
Smi::Cast(index_loc.constant()).Value()) ||
(Smi::Cast(index_loc.constant()).Value() < 0));
// Unconditionally deoptimize for constant bounds checks because they
// only occur only when index is out-of-bounds.
__ j(deopt);
return;
}
if (index_loc.IsConstant()) {
const Register length = length_loc.reg();
const Smi& index = Smi::Cast(index_loc.constant());
__ CompareObject(length, index);
__ BranchIf(LS, deopt);
} else if (length_loc.IsConstant()) {
const Smi& length = Smi::Cast(length_loc.constant());
const Register index = index_loc.reg();
if (index_cid != kSmiCid) {
__ BranchIfNotSmi(index, deopt);
}
if (length.Value() == Smi::kMaxValue) {
__ bltz(index, deopt);
} else {
__ CompareObject(index, length);
__ BranchIf(CS, deopt);
}
} else {
const Register length = length_loc.reg();
const Register index = index_loc.reg();
if (index_cid != kSmiCid) {
__ BranchIfNotSmi(index, deopt);
}
__ CompareObjectRegisters(index, length);
__ BranchIf(CS, deopt);
}
}
class Int64DivideSlowPath : public ThrowErrorSlowPathCode {
public:
Int64DivideSlowPath(BinaryInt64OpInstr* instruction,
Register divisor,
Range* divisor_range,
Register tmp,
Register out)
: ThrowErrorSlowPathCode(instruction,
kIntegerDivisionByZeroExceptionRuntimeEntry),
is_mod_(instruction->op_kind() == Token::kMOD),
divisor_(divisor),
divisor_range_(divisor_range),
tmp_(tmp),
out_(out),
adjust_sign_label_() {}
void EmitNativeCode(FlowGraphCompiler* compiler) override {
// Handle modulo/division by zero, if needed. Use superclass code.
if (has_divide_by_zero()) {
ThrowErrorSlowPathCode::EmitNativeCode(compiler);
} else {
__ Bind(entry_label()); // not used, but keeps destructor happy
if (compiler::Assembler::EmittingComments()) {
__ Comment("slow path %s operation (no throw)", name());
}
}
// Adjust modulo for negative sign, optimized for known ranges.
// if (divisor < 0)
// out -= divisor;
// else
// out += divisor;
if (has_adjust_sign()) {
__ Bind(adjust_sign_label());
if (RangeUtils::Overlaps(divisor_range_, -1, 1)) {
// General case.
compiler::Label adjust, done;
__ bgez(divisor_, &adjust, compiler::Assembler::kNearJump);
__ sub(out_, out_, divisor_);
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&adjust);
__ add(out_, out_, divisor_);
__ Bind(&done);
} else if (divisor_range_->IsPositive()) {
// Always positive.
__ add(out_, out_, divisor_);
} else {
// Always negative.
__ sub(out_, out_, divisor_);
}
__ j(exit_label());
}
}
const char* name() override { return "int64 divide"; }
bool has_divide_by_zero() { return RangeUtils::CanBeZero(divisor_range_); }
bool has_adjust_sign() { return is_mod_; }
bool is_needed() { return has_divide_by_zero() || has_adjust_sign(); }
compiler::Label* adjust_sign_label() {
ASSERT(has_adjust_sign());
return &adjust_sign_label_;
}
private:
bool is_mod_;
Register divisor_;
Range* divisor_range_;
Register tmp_;
Register out_;
compiler::Label adjust_sign_label_;
};
#if XLEN == 64
static void EmitInt64ModTruncDiv(FlowGraphCompiler* compiler,
BinaryInt64OpInstr* instruction,
Token::Kind op_kind,
Register left,
Register right,
Register tmp,
Register out) {
ASSERT(op_kind == Token::kMOD || op_kind == Token::kTRUNCDIV);
// TODO(riscv): Is it worth copying the magic constant optimization from the
// other architectures?
// Prepare a slow path.
Range* right_range = instruction->right()->definition()->range();
Int64DivideSlowPath* slow_path =
new (Z) Int64DivideSlowPath(instruction, right, right_range, tmp, out);
// Handle modulo/division by zero exception on slow path.
if (slow_path->has_divide_by_zero()) {
__ beqz(right, slow_path->entry_label());
}
// Perform actual operation
// out = left % right
// or
// out = left / right.
if (op_kind == Token::kMOD) {
__ rem(out, left, right);
// For the % operator, the rem instruction does not
// quite do what we want. Adjust for sign on slow path.
__ bltz(out, slow_path->adjust_sign_label());
} else {
__ div(out, left, right);
}
if (slow_path->is_needed()) {
__ Bind(slow_path->exit_label());
compiler->AddSlowPathCode(slow_path);
}
}
#endif
LocationSummary* BinaryInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
#if XLEN == 32
// TODO(riscv): Allow constants for the RHS of bitwise operators if both
// hi and lo components are IType immediates.
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
return summary;
#else
switch (op_kind()) {
case Token::kMOD:
case Token::kTRUNCDIV: {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = (op_kind() == Token::kMOD) ? 1 : 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
if (kNumTemps == 1) {
summary->set_temp(0, Location::RequiresRegister());
}
return summary;
}
default: {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, LocationRegisterOrConstant(right()));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
}
#endif
}
void BinaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
PairLocation* left_pair = locs()->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* right_pair = locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
ASSERT(!can_overflow());
ASSERT(!CanDeoptimize());
switch (op_kind()) {
case Token::kBIT_AND: {
__ and_(out_lo, left_lo, right_lo);
__ and_(out_hi, left_hi, right_hi);
break;
}
case Token::kBIT_OR: {
__ or_(out_lo, left_lo, right_lo);
__ or_(out_hi, left_hi, right_hi);
break;
}
case Token::kBIT_XOR: {
__ xor_(out_lo, left_lo, right_lo);
__ xor_(out_hi, left_hi, right_hi);
break;
}
case Token::kADD: {
__ add(out_hi, left_hi, right_hi);
__ add(out_lo, left_lo, right_lo);
__ sltu(TMP, out_lo, right_lo); // Carry
__ add(out_hi, out_hi, TMP);
break;
}
case Token::kSUB: {
__ sltu(TMP, left_lo, right_lo); // Borrow
__ sub(out_hi, left_hi, right_hi);
__ sub(out_hi, out_hi, TMP);
__ sub(out_lo, left_lo, right_lo);
break;
}
case Token::kMUL: {
// TODO(riscv): Fix ordering for macro-op fusion.
__ mul(out_lo, right_lo, left_hi);
__ mulhu(out_hi, right_lo, left_lo);
__ add(out_lo, out_lo, out_hi);
__ mul(out_hi, right_hi, left_lo);
__ add(out_hi, out_hi, out_lo);
__ mul(out_lo, right_lo, left_lo);
break;
}
default:
UNREACHABLE();
}
#else
ASSERT(!can_overflow());
ASSERT(!CanDeoptimize());
const Register left = locs()->in(0).reg();
const Location right = locs()->in(1);
const Register out = locs()->out(0).reg();
if (op_kind() == Token::kMOD || op_kind() == Token::kTRUNCDIV) {
Register tmp =
(op_kind() == Token::kMOD) ? locs()->temp(0).reg() : kNoRegister;
EmitInt64ModTruncDiv(compiler, this, op_kind(), left, right.reg(), tmp,
out);
return;
} else if (op_kind() == Token::kMUL) {
Register r = TMP;
if (right.IsConstant()) {
int64_t value;
const bool ok = compiler::HasIntegerValue(right.constant(), &value);
RELEASE_ASSERT(ok);
__ LoadImmediate(r, value);
} else {
r = right.reg();
}
__ mul(out, left, r);
return;
}
if (right.IsConstant()) {
int64_t value;
const bool ok = compiler::HasIntegerValue(right.constant(), &value);
RELEASE_ASSERT(ok);
switch (op_kind()) {
case Token::kADD:
__ AddImmediate(out, left, value);
break;
case Token::kSUB:
__ AddImmediate(out, left, -value);
break;
case Token::kBIT_AND:
__ AndImmediate(out, left, value);
break;
case Token::kBIT_OR:
__ OrImmediate(out, left, value);
break;
case Token::kBIT_XOR:
__ XorImmediate(out, left, value);
break;
default:
UNREACHABLE();
}
} else {
switch (op_kind()) {
case Token::kADD:
__ add(out, left, right.reg());
break;
case Token::kSUB:
__ sub(out, left, right.reg());
break;
case Token::kBIT_AND:
__ and_(out, left, right.reg());
break;
case Token::kBIT_OR:
__ or_(out, left, right.reg());
break;
case Token::kBIT_XOR:
__ xor_(out, left, right.reg());
break;
default:
UNREACHABLE();
}
}
#endif
}
#if XLEN == 32
static void EmitShiftInt64ByConstant(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out_lo,
Register out_hi,
Register left_lo,
Register left_hi,
const Object& right) {
const int64_t shift = Integer::Cast(right).AsInt64Value();
ASSERT(shift >= 0);
switch (op_kind) {
case Token::kSHR: {
if (shift < 32) {
__ slli(out_lo, left_hi, 32 - shift);
__ srli(TMP, left_lo, shift);
__ or_(out_lo, out_lo, TMP);
__ srai(out_hi, left_hi, shift);
} else {
if (shift == 32) {
__ mv(out_lo, left_hi);
} else if (shift < 64) {
__ srai(out_lo, left_hi, shift - 32);
} else {
__ srai(out_lo, left_hi, 31);
}
__ srai(out_hi, left_hi, 31);
}
break;
}
case Token::kUSHR: {
ASSERT(shift < 64);
if (shift < 32) {
__ slli(out_lo, left_hi, 32 - shift);
__ srli(TMP, left_lo, shift);
__ or_(out_lo, out_lo, TMP);
__ srli(out_hi, left_hi, shift);
} else {
if (shift == 32) {
__ mv(out_lo, left_hi);
} else {
__ srli(out_lo, left_hi, shift - 32);
}
__ li(out_hi, 0);
}
break;
}
case Token::kSHL: {
ASSERT(shift >= 0);
ASSERT(shift < 64);
if (shift < 32) {
__ srli(out_hi, left_lo, 32 - shift);
__ slli(TMP, left_hi, shift);
__ or_(out_hi, out_hi, TMP);
__ slli(out_lo, left_lo, shift);
} else {
if (shift == 32) {
__ mv(out_hi, left_lo);
} else {
__ slli(out_hi, left_lo, shift - 32);
}
__ li(out_lo, 0);
}
break;
}
default:
UNREACHABLE();
}
}
#else
static void EmitShiftInt64ByConstant(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out,
Register left,
const Object& right) {
const int64_t shift = Integer::Cast(right).AsInt64Value();
ASSERT(shift >= 0);
switch (op_kind) {
case Token::kSHR: {
__ srai(out, left, Utils::Minimum<int64_t>(shift, XLEN - 1));
break;
}
case Token::kUSHR: {
ASSERT(shift < 64);
__ srli(out, left, shift);
break;
}
case Token::kSHL: {
ASSERT(shift < 64);
__ slli(out, left, shift);
break;
}
default:
UNREACHABLE();
}
}
#endif
#if XLEN == 32
static void EmitShiftInt64ByRegister(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out_lo,
Register out_hi,
Register left_lo,
Register left_hi,
Register right) {
// TODO(riscv): Review.
switch (op_kind) {
case Token::kSHR: {
compiler::Label big_shift, done;
__ li(TMP, 32);
__ bge(right, TMP, &big_shift, compiler::Assembler::kNearJump);
// 0 <= right < 32
__ srl(out_lo, left_lo, right);
__ sra(out_hi, left_hi, right);
__ beqz(right, &done, compiler::Assembler::kNearJump);
__ sub(TMP, TMP, right);
__ sll(TMP2, left_hi, TMP);
__ or_(out_lo, out_lo, TMP2);
__ j(&done);
// 32 <= right < 64
__ Bind(&big_shift);
__ sub(TMP, right, TMP);
__ sra(out_lo, left_hi, TMP);
__ srai(out_hi, left_hi, XLEN - 1); // SignFill
__ Bind(&done);
break;
}
case Token::kUSHR: {
compiler::Label big_shift, done;
__ li(TMP, 32);
__ bge(right, TMP, &big_shift, compiler::Assembler::kNearJump);
// 0 <= right < 32
__ srl(out_lo, left_lo, right);
__ srl(out_hi, left_hi, right);
__ beqz(right, &done, compiler::Assembler::kNearJump);
__ sub(TMP, TMP, right);
__ sll(TMP2, left_hi, TMP);
__ or_(out_lo, out_lo, TMP2);
__ j(&done);
// 32 <= right < 64
__ Bind(&big_shift);
__ sub(TMP, right, TMP);
__ srl(out_lo, left_hi, TMP);
__ li(out_hi, 0);
__ Bind(&done);
break;
}
case Token::kSHL: {
compiler::Label big_shift, done;
__ li(TMP, 32);
__ bge(right, TMP, &big_shift, compiler::Assembler::kNearJump);
// 0 <= right < 32
__ sll(out_lo, left_lo, right);
__ sll(out_hi, left_hi, right);
__ beqz(right, &done, compiler::Assembler::kNearJump);
__ sub(TMP, TMP, right);
__ srl(TMP2, left_lo, TMP);
__ or_(out_hi, out_hi, TMP2);
__ j(&done);
// 32 <= right < 64
__ Bind(&big_shift);
__ sub(TMP, right, TMP);
__ sll(out_hi, left_lo, TMP);
__ li(out_lo, 0);
__ Bind(&done);
break;
}
default:
UNREACHABLE();
}
}
#else
static void EmitShiftInt64ByRegister(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out,
Register left,
Register right) {
switch (op_kind) {
case Token::kSHR: {
__ sra(out, left, right);
break;
}
case Token::kUSHR: {
__ srl(out, left, right);
break;
}
case Token::kSHL: {
__ sll(out, left, right);
break;
}
default:
UNREACHABLE();
}
}
#endif
static void EmitShiftUint32ByConstant(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out,
Register left,
const Object& right) {
const int64_t shift = Integer::Cast(right).AsInt64Value();
ASSERT(shift >= 0);
if (shift >= 32) {
__ li(out, 0);
} else {
switch (op_kind) {
case Token::kSHR:
case Token::kUSHR:
#if XLEN == 32
__ srli(out, left, shift);
#else
__ srliw(out, left, shift);
#endif
break;
case Token::kSHL:
#if XLEN == 32
__ slli(out, left, shift);
#else
__ slliw(out, left, shift);
#endif
break;
default:
UNREACHABLE();
}
}
}
static void EmitShiftUint32ByRegister(FlowGraphCompiler* compiler,
Token::Kind op_kind,
Register out,
Register left,
Register right) {
switch (op_kind) {
case Token::kSHR:
case Token::kUSHR:
#if XLEN == 32
__ srl(out, left, right);
#else
__ srlw(out, left, right);
#endif
break;
case Token::kSHL:
#if XLEN == 32
__ sll(out, left, right);
#else
__ sllw(out, left, right);
#endif
break;
default:
UNREACHABLE();
}
}
class ShiftInt64OpSlowPath : public ThrowErrorSlowPathCode {
public:
explicit ShiftInt64OpSlowPath(ShiftInt64OpInstr* instruction)
: ThrowErrorSlowPathCode(instruction,
kArgumentErrorUnboxedInt64RuntimeEntry) {}
const char* name() override { return "int64 shift"; }
void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override {
#if XLEN == 32
PairLocation* left_pair = instruction()->locs()->in(0).AsPairLocation();
Register left_hi = left_pair->At(1).reg();
PairLocation* right_pair = instruction()->locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
PairLocation* out_pair = instruction()->locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
compiler::Label throw_error;
__ bltz(right_hi, &throw_error);
switch (instruction()->AsShiftInt64Op()->op_kind()) {
case Token::kSHR:
__ srai(out_hi, left_hi, compiler::target::kBitsPerWord - 1);
__ mv(out_lo, out_hi);
break;
case Token::kUSHR:
case Token::kSHL: {
__ li(out_lo, 0);
__ li(out_hi, 0);
break;
}
default:
UNREACHABLE();
}
__ j(exit_label());
__ Bind(&throw_error);
// Can't pass unboxed int64 value directly to runtime call, as all
// arguments are expected to be tagged (boxed).
// The unboxed int64 argument is passed through a dedicated slot in Thread.
// TODO(dartbug.com/33549): Clean this up when unboxed values
// could be passed as arguments.
__ StoreToOffset(
right_lo, THR,
compiler::target::Thread::unboxed_int64_runtime_arg_offset());
__ StoreToOffset(
right_hi, THR,
compiler::target::Thread::unboxed_int64_runtime_arg_offset() +
compiler::target::kWordSize);
#else
const Register left = instruction()->locs()->in(0).reg();
const Register right = instruction()->locs()->in(1).reg();
const Register out = instruction()->locs()->out(0).reg();
ASSERT((out != left) && (out != right));
compiler::Label throw_error;
__ bltz(right, &throw_error);
switch (instruction()->AsShiftInt64Op()->op_kind()) {
case Token::kSHR:
__ srai(out, left, XLEN - 1);
break;
case Token::kUSHR:
case Token::kSHL:
__ mv(out, ZR);
break;
default:
UNREACHABLE();
}
__ j(exit_label());
__ Bind(&throw_error);
// Can't pass unboxed int64 value directly to runtime call, as all
// arguments are expected to be tagged (boxed).
// The unboxed int64 argument is passed through a dedicated slot in Thread.
// TODO(dartbug.com/33549): Clean this up when unboxed values
// could be passed as arguments.
__ sx(right,
compiler::Address(THR, Thread::unboxed_int64_runtime_arg_offset()));
#endif
}
};
LocationSummary* ShiftInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
#if XLEN == 32
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
if (RangeUtils::IsPositive(shift_range()) &&
right()->definition()->IsConstant()) {
ConstantInstr* constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(constant));
} else {
summary->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
}
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, RangeUtils::IsPositive(shift_range())
? LocationRegisterOrConstant(right())
: Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
#endif
return summary;
}
void ShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
PairLocation* left_pair = locs()->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
ASSERT(!can_overflow());
if (locs()->in(1).IsConstant()) {
EmitShiftInt64ByConstant(compiler, op_kind(), out_lo, out_hi, left_lo,
left_hi, locs()->in(1).constant());
} else {
// Code for a variable shift amount (or constant that throws).
PairLocation* right_pair = locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
// Jump to a slow path if shift is larger than 63 or less than 0.
ShiftInt64OpSlowPath* slow_path = NULL;
if (!IsShiftCountInRange()) {
slow_path = new (Z) ShiftInt64OpSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ CompareImmediate(right_hi, 0);
__ BranchIf(NE, slow_path->entry_label());
__ CompareImmediate(right_lo, kShiftCountLimit);
__ BranchIf(HI, slow_path->entry_label());
}
EmitShiftInt64ByRegister(compiler, op_kind(), out_lo, out_hi, left_lo,
left_hi, right_lo);
if (slow_path != NULL) {
__ Bind(slow_path->exit_label());
}
}
#else
const Register left = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
ASSERT(!can_overflow());
if (locs()->in(1).IsConstant()) {
EmitShiftInt64ByConstant(compiler, op_kind(), out, left,
locs()->in(1).constant());
} else {
// Code for a variable shift amount (or constant that throws).
Register shift = locs()->in(1).reg();
// Jump to a slow path if shift is larger than 63 or less than 0.
ShiftInt64OpSlowPath* slow_path = NULL;
if (!IsShiftCountInRange()) {
slow_path = new (Z) ShiftInt64OpSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ CompareImmediate(shift, kShiftCountLimit);
__ BranchIf(HI, slow_path->entry_label());
}
EmitShiftInt64ByRegister(compiler, op_kind(), out, left, shift);
if (slow_path != NULL) {
__ Bind(slow_path->exit_label());
}
}
#endif
}
LocationSummary* SpeculativeShiftInt64OpInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
#if XLEN == 32
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_in(1, LocationWritableRegisterOrSmiConstant(right()));
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, LocationRegisterOrSmiConstant(right()));
summary->set_out(0, Location::RequiresRegister());
#endif
return summary;
}
void SpeculativeShiftInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
PairLocation* left_pair = locs()->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
ASSERT(!can_overflow());
if (locs()->in(1).IsConstant()) {
EmitShiftInt64ByConstant(compiler, op_kind(), out_lo, out_hi, left_lo,
left_hi, locs()->in(1).constant());
} else {
// Code for a variable shift amount.
Register shift = locs()->in(1).reg();
__ SmiUntag(shift);
// Deopt if shift is larger than 63 or less than 0 (or not a smi).
if (!IsShiftCountInRange()) {
ASSERT(CanDeoptimize());
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op);
__ CompareImmediate(shift, kShiftCountLimit);
__ BranchIf(HI, deopt);
}
EmitShiftInt64ByRegister(compiler, op_kind(), out_lo, out_hi, left_lo,
left_hi, shift);
}
#else
const Register left = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
ASSERT(!can_overflow());
if (locs()->in(1).IsConstant()) {
EmitShiftInt64ByConstant(compiler, op_kind(), out, left,
locs()->in(1).constant());
} else {
// Code for a variable shift amount.
Register shift = locs()->in(1).reg();
// Untag shift count.
__ SmiUntag(TMP, shift);
shift = TMP;
// Deopt if shift is larger than 63 or less than 0 (or not a smi).
if (!IsShiftCountInRange()) {
ASSERT(CanDeoptimize());
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op);
__ CompareImmediate(shift, kShiftCountLimit);
__ BranchIf(HI, deopt);
}
EmitShiftInt64ByRegister(compiler, op_kind(), out, left, shift);
}
#endif
}
class ShiftUint32OpSlowPath : public ThrowErrorSlowPathCode {
public:
explicit ShiftUint32OpSlowPath(ShiftUint32OpInstr* instruction)
: ThrowErrorSlowPathCode(instruction,
kArgumentErrorUnboxedInt64RuntimeEntry) {}
const char* name() override { return "uint32 shift"; }
void EmitCodeAtSlowPathEntry(FlowGraphCompiler* compiler) override {
#if XLEN == 32
PairLocation* right_pair = instruction()->locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
Register out = instruction()->locs()->out(0).reg();
compiler::Label throw_error;
__ bltz(right_hi, &throw_error, compiler::Assembler::kNearJump);
__ li(out, 0);
__ j(exit_label());
__ Bind(&throw_error);
// Can't pass unboxed int64 value directly to runtime call, as all
// arguments are expected to be tagged (boxed).
// The unboxed int64 argument is passed through a dedicated slot in Thread.
// TODO(dartbug.com/33549): Clean this up when unboxed values
// could be passed as arguments.
__ StoreToOffset(
right_lo, THR,
compiler::target::Thread::unboxed_int64_runtime_arg_offset());
__ StoreToOffset(
right_hi, THR,
compiler::target::Thread::unboxed_int64_runtime_arg_offset() +
compiler::target::kWordSize);
#else
const Register right = instruction()->locs()->in(1).reg();
// Can't pass unboxed int64 value directly to runtime call, as all
// arguments are expected to be tagged (boxed).
// The unboxed int64 argument is passed through a dedicated slot in Thread.
// TODO(dartbug.com/33549): Clean this up when unboxed values
// could be passed as arguments.
__ sx(right,
compiler::Address(THR, Thread::unboxed_int64_runtime_arg_offset()));
#endif
}
};
LocationSummary* ShiftUint32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone) LocationSummary(
zone, kNumInputs, kNumTemps, LocationSummary::kCallOnSlowPath);
summary->set_in(0, Location::RequiresRegister());
if (RangeUtils::IsPositive(shift_range()) &&
right()->definition()->IsConstant()) {
ConstantInstr* constant = right()->definition()->AsConstant();
summary->set_in(1, Location::Constant(constant));
} else {
#if XLEN == 32
summary->set_in(1, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
summary->set_in(1, Location::RequiresRegister());
#endif
}
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void ShiftUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
ASSERT(left != out);
if (locs()->in(1).IsConstant()) {
EmitShiftUint32ByConstant(compiler, op_kind(), out, left,
locs()->in(1).constant());
} else {
// Code for a variable shift amount (or constant that throws).
PairLocation* right_pair = locs()->in(1).AsPairLocation();
Register right_lo = right_pair->At(0).reg();
Register right_hi = right_pair->At(1).reg();
// Jump to a slow path if shift count is > 31 or negative.
ShiftUint32OpSlowPath* slow_path = NULL;
if (!IsShiftCountInRange(kUint32ShiftCountLimit)) {
slow_path = new (Z) ShiftUint32OpSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ CompareImmediate(right_hi, 0);
__ BranchIf(NE, slow_path->entry_label());
__ CompareImmediate(right_lo, kUint32ShiftCountLimit);
__ BranchIf(HI, slow_path->entry_label());
}
EmitShiftUint32ByRegister(compiler, op_kind(), out, left, right_lo);
if (slow_path != NULL) {
__ Bind(slow_path->exit_label());
}
}
#else
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
if (locs()->in(1).IsConstant()) {
EmitShiftUint32ByConstant(compiler, op_kind(), out, left,
locs()->in(1).constant());
} else {
// Code for a variable shift amount (or constant that throws).
const Register right = locs()->in(1).reg();
const bool shift_count_in_range =
IsShiftCountInRange(kUint32ShiftCountLimit);
// Jump to a slow path if shift count is negative.
if (!shift_count_in_range) {
ShiftUint32OpSlowPath* slow_path = new (Z) ShiftUint32OpSlowPath(this);
compiler->AddSlowPathCode(slow_path);
__ bltz(right, slow_path->entry_label());
}
EmitShiftUint32ByRegister(compiler, op_kind(), out, left, right);
if (!shift_count_in_range) {
// If shift value is > 31, return zero.
compiler::Label done;
__ CompareImmediate(right, 31);
__ BranchIf(LE, &done, compiler::Assembler::kNearJump);
__ li(out, 0);
__ Bind(&done);
}
}
#endif
}
LocationSummary* SpeculativeShiftUint32OpInstr::MakeLocationSummary(
Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, LocationRegisterOrSmiConstant(right()));
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void SpeculativeShiftUint32OpInstr::EmitNativeCode(
FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
if (locs()->in(1).IsConstant()) {
EmitShiftUint32ByConstant(compiler, op_kind(), out, left,
locs()->in(1).constant());
} else {
Register right = locs()->in(1).reg();
const bool shift_count_in_range =
IsShiftCountInRange(kUint32ShiftCountLimit);
__ SmiUntag(TMP, right);
right = TMP;
// Jump to a slow path if shift count is negative.
if (!shift_count_in_range) {
// Deoptimize if shift count is negative.
ASSERT(CanDeoptimize());
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinaryInt64Op);
__ bltz(right, deopt);
}
EmitShiftUint32ByRegister(compiler, op_kind(), out, left, right);
if (!shift_count_in_range) {
// If shift value is > 31, return zero.
compiler::Label done;
__ CompareImmediate(right, 31);
__ BranchIf(LE, &done, compiler::Assembler::kNearJump);
__ li(out, 0);
__ Bind(&done);
}
}
}
LocationSummary* UnaryInt64OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
#if XLEN == 32
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
return summary;
#else
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
#endif
}
void UnaryInt64OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
PairLocation* left_pair = locs()->in(0).AsPairLocation();
Register left_lo = left_pair->At(0).reg();
Register left_hi = left_pair->At(1).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
switch (op_kind()) {
case Token::kBIT_NOT:
__ not_(out_lo, left_lo);
__ not_(out_hi, left_hi);
break;
case Token::kNEGATE:
__ snez(TMP, left_lo); // Borrow
__ neg(out_lo, left_lo);
__ neg(out_hi, left_hi);
__ sub(out_hi, out_hi, TMP);
break;
default:
UNREACHABLE();
}
#else
const Register left = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
switch (op_kind()) {
case Token::kBIT_NOT:
__ not_(out, left);
break;
case Token::kNEGATE:
__ neg(out, left);
break;
default:
UNREACHABLE();
}
#endif
}
LocationSummary* BinaryUint32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BinaryUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register right = locs()->in(1).reg();
Register out = locs()->out(0).reg();
switch (op_kind()) {
case Token::kBIT_AND:
__ and_(out, left, right);
break;
case Token::kBIT_OR:
__ or_(out, left, right);
break;
case Token::kBIT_XOR:
__ xor_(out, left, right);
break;
case Token::kADD:
#if XLEN == 32
__ add(out, left, right);
#elif XLEN > 32
__ addw(out, left, right);
#endif
break;
case Token::kSUB:
#if XLEN == 32
__ sub(out, left, right);
#elif XLEN > 32
__ subw(out, left, right);
#endif
break;
case Token::kMUL:
__ mul(out, left, right);
break;
default:
UNREACHABLE();
}
}
LocationSummary* UnaryUint32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void UnaryUint32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register left = locs()->in(0).reg();
Register out = locs()->out(0).reg();
ASSERT(op_kind() == Token::kBIT_NOT);
__ not_(out, left);
}
#if XLEN == 32
static void EmitInt32ShiftLeft(FlowGraphCompiler* compiler,
BinaryInt32OpInstr* shift_left) {
const LocationSummary& locs = *shift_left->locs();
const Register left = locs.in(0).reg();
const Register result = locs.out(0).reg();
compiler::Label* deopt =
shift_left->CanDeoptimize()
? compiler->AddDeoptStub(shift_left->deopt_id(),
ICData::kDeoptBinarySmiOp)
: NULL;
ASSERT(locs.in(1).IsConstant());
const Object& constant = locs.in(1).constant();
ASSERT(compiler::target::IsSmi(constant));
// Immediate shift operation takes 5 bits for the count.
const intptr_t kCountLimit = 0x1F;
const intptr_t value = compiler::target::SmiValue(constant);
ASSERT((0 < value) && (value < kCountLimit));
__ slli(result, left, value);
if (shift_left->can_overflow()) {
__ srai(TMP, result, value);
__ bne(TMP, left, deopt); // Overflow.
}
}
LocationSummary* BinaryInt32OpInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
// Calculate number of temporaries.
intptr_t num_temps = 0;
if (((op_kind() == Token::kSHL) && can_overflow()) ||
(op_kind() == Token::kSHR) || (op_kind() == Token::kUSHR) ||
(op_kind() == Token::kMUL)) {
num_temps = 1;
}
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, num_temps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_in(1, LocationRegisterOrSmiConstant(right()));
if (num_temps == 1) {
summary->set_temp(0, Location::RequiresRegister());
}
// We make use of 3-operand instructions by not requiring result register
// to be identical to first input register as on Intel.
summary->set_out(0, Location::RequiresRegister());
return summary;
}
void BinaryInt32OpInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (op_kind() == Token::kSHL) {
EmitInt32ShiftLeft(compiler, this);
return;
}
const Register left = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
compiler::Label* deopt = NULL;
if (CanDeoptimize()) {
deopt = compiler->AddDeoptStub(deopt_id(), ICData::kDeoptBinarySmiOp);
}
if (locs()->in(1).IsConstant()) {
const Object& constant = locs()->in(1).constant();
ASSERT(compiler::target::IsSmi(constant));
const intptr_t value = compiler::target::SmiValue(constant);
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ AddImmediate(result, left, value);
} else {
__ AddImmediateBranchOverflow(result, left, value, deopt);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ AddImmediate(result, left, -value);
} else {
// Negating value and using AddImmediateSetFlags would not detect the
// overflow when value == kMinInt32.
__ SubtractImmediateBranchOverflow(result, left, value, deopt);
}
break;
}
case Token::kMUL: {
const Register right = locs()->temp(0).reg();
__ LoadImmediate(right, value);
if (deopt == NULL) {
__ mul(result, left, right);
} else {
__ MultiplyBranchOverflow(result, left, right, deopt);
}
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ AndImmediate(result, left, value);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ OrImmediate(result, left, value);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ XorImmediate(result, left, value);
break;
}
case Token::kSHR: {
// sarl operation masks the count to 5 bits.
const intptr_t kCountLimit = 0x1F;
__ srai(result, left, Utils::Minimum(value, kCountLimit));
break;
}
case Token::kUSHR: {
UNIMPLEMENTED();
break;
}
default:
UNREACHABLE();
break;
}
return;
}
const Register right = locs()->in(1).reg();
switch (op_kind()) {
case Token::kADD: {
if (deopt == NULL) {
__ add(result, left, right);
} else {
__ AddBranchOverflow(result, left, right, deopt);
}
break;
}
case Token::kSUB: {
if (deopt == NULL) {
__ sub(result, left, right);
} else {
__ SubtractBranchOverflow(result, left, right, deopt);
}
break;
}
case Token::kMUL: {
if (deopt == NULL) {
__ mul(result, left, right);
} else {
__ MultiplyBranchOverflow(result, left, right, deopt);
}
break;
}
case Token::kBIT_AND: {
// No overflow check.
__ and_(result, left, right);
break;
}
case Token::kBIT_OR: {
// No overflow check.
__ or_(result, left, right);
break;
}
case Token::kBIT_XOR: {
// No overflow check.
__ xor_(result, left, right);
break;
}
default:
UNREACHABLE();
break;
}
}
#else
DEFINE_UNIMPLEMENTED_INSTRUCTION(BinaryInt32OpInstr)
#endif
LocationSummary* IntConverterInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
#if XLEN == 32
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (from() == kUntagged || to() == kUntagged) {
ASSERT((from() == kUntagged && to() == kUnboxedInt32) ||
(from() == kUntagged && to() == kUnboxedUint32) ||
(from() == kUnboxedInt32 && to() == kUntagged) ||
(from() == kUnboxedUint32 && to() == kUntagged));
ASSERT(!CanDeoptimize());
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
} else if (from() == kUnboxedInt64) {
ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32);
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
summary->set_out(0, Location::RequiresRegister());
} else if (to() == kUnboxedInt64) {
ASSERT(from() == kUnboxedUint32 || from() == kUnboxedInt32);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
} else {
ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32);
ASSERT(from() == kUnboxedUint32 || from() == kUnboxedInt32);
summary->set_in(0, Location::RequiresRegister());
summary->set_out(0, Location::SameAsFirstInput());
}
return summary;
#else
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 0;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
if (from() == kUntagged || to() == kUntagged) {
ASSERT((from() == kUntagged && to() == kUnboxedIntPtr) ||
(from() == kUnboxedIntPtr && to() == kUntagged));
ASSERT(!CanDeoptimize());
} else if (from() == kUnboxedInt64) {
ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32);
} else if (to() == kUnboxedInt64) {
ASSERT(from() == kUnboxedInt32 || from() == kUnboxedUint32);
} else {
ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32);
ASSERT(from() == kUnboxedUint32 || from() == kUnboxedInt32);
}
summary->set_in(0, Location::RequiresRegister());
if (CanDeoptimize()) {
summary->set_out(0, Location::RequiresRegister());
} else {
summary->set_out(0, Location::SameAsFirstInput());
}
return summary;
#endif
}
void IntConverterInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#if XLEN == 32
const bool is_nop_conversion =
(from() == kUntagged && to() == kUnboxedInt32) ||
(from() == kUntagged && to() == kUnboxedUint32) ||
(from() == kUnboxedInt32 && to() == kUntagged) ||
(from() == kUnboxedUint32 && to() == kUntagged);
if (is_nop_conversion) {
ASSERT(locs()->in(0).reg() == locs()->out(0).reg());
return;
}
if (from() == kUnboxedInt32 && to() == kUnboxedUint32) {
const Register out = locs()->out(0).reg();
// Representations are bitwise equivalent.
ASSERT(out == locs()->in(0).reg());
} else if (from() == kUnboxedUint32 && to() == kUnboxedInt32) {
const Register out = locs()->out(0).reg();
// Representations are bitwise equivalent.
ASSERT(out == locs()->in(0).reg());
if (CanDeoptimize()) {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger);
__ bltz(out, deopt);
}
} else if (from() == kUnboxedInt64) {
ASSERT(to() == kUnboxedUint32 || to() == kUnboxedInt32);
PairLocation* in_pair = locs()->in(0).AsPairLocation();
Register in_lo = in_pair->At(0).reg();
Register in_hi = in_pair->At(1).reg();
Register out = locs()->out(0).reg();
// Copy low word.
__ mv(out, in_lo);
if (CanDeoptimize()) {
compiler::Label* deopt =
compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger);
ASSERT(to() == kUnboxedInt32);
__ srai(TMP, in_lo, XLEN - 1);
__ bne(in_hi, TMP, deopt);
}
} else if (from() == kUnboxedUint32 || from() == kUnboxedInt32) {
ASSERT(to() == kUnboxedInt64);
Register in = locs()->in(0).reg();
PairLocation* out_pair = locs()->out(0).AsPairLocation();
Register out_lo = out_pair->At(0).reg();
Register out_hi = out_pair->At(1).reg();
// Copy low word.
__ mv(out_lo, in);
if (from() == kUnboxedUint32) {
__ li(out_hi, 0);
} else {
ASSERT(from() == kUnboxedInt32);
__ srai(out_hi, in, XLEN - 1);
}
} else {
UNREACHABLE();
}
#else
ASSERT(from() != to()); // We don't convert from a representation to itself.
const bool is_nop_conversion =
(from() == kUntagged && to() == kUnboxedIntPtr) ||
(from() == kUnboxedIntPtr && to() == kUntagged);
if (is_nop_conversion) {
ASSERT(locs()->in(0).reg() == locs()->out(0).reg());
return;
}
const Register value = locs()->in(0).reg();
const Register out = locs()->out(0).reg();
compiler::Label* deopt =
!CanDeoptimize()
? NULL
: compiler->AddDeoptStub(deopt_id(), ICData::kDeoptUnboxInteger);
if (from() == kUnboxedInt32 && to() == kUnboxedUint32) {
if (CanDeoptimize()) {
__ slli(TMP, value, 32);
__ bltz(TMP, deopt); // If sign bit is set it won't fit in a uint32.
}
if (out != value) {
__ mv(out, value); // For positive values the bits are the same.
}
} else if (from() == kUnboxedUint32 && to() == kUnboxedInt32) {
if (CanDeoptimize()) {
__ slli(TMP, value, 32);
__ bltz(TMP, deopt); // If high bit is set it won't fit in an int32.
}
if (out != value) {
__ mv(out, value); // For 31 bit values the bits are the same.
}
} else if (from() == kUnboxedInt64) {
if (to() == kUnboxedInt32) {
if (is_truncating() || out != value) {
__ sextw(out, value); // Signed extension 64->32.
}
} else {
ASSERT(to() == kUnboxedUint32);
if (is_truncating() || out != value) {
// Unsigned extension 64->32.
// TODO(riscv): Might be a shorter way to do this.
__ slli(out, value, 32);
__ srli(out, out, 32);
}
}
if (CanDeoptimize()) {
ASSERT(to() == kUnboxedInt32);
__ CompareRegisters(out, value);
__ BranchIf(NE, deopt); // Value cannot be held in Int32, deopt.
}
} else if (to() == kUnboxedInt64) {
if (from() == kUnboxedUint32) {
// TODO(riscv): Might be a shorter way to do this.
__ slli(out, value, 32);
__ srli(out, out, 32);
} else {
ASSERT(from() == kUnboxedInt32);
__ sextw(out, value); // Signed extension 32->64.
}
} else {
UNREACHABLE();
}
#endif
}
LocationSummary* BitCastInstr::MakeLocationSummary(Zone* zone, bool opt) const {
LocationSummary* summary =
new (zone) LocationSummary(zone, /*num_inputs=*/InputCount(),
/*num_temps=*/0, LocationSummary::kNoCall);
switch (from()) {
case kUnboxedInt32:
summary->set_in(0, Location::RequiresRegister());
break;
case kUnboxedInt64:
#if XLEN == 32
summary->set_in(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
summary->set_in(0, Location::RequiresRegister());
#endif
break;
case kUnboxedFloat:
case kUnboxedDouble:
summary->set_in(0, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
}
switch (to()) {
case kUnboxedInt32:
summary->set_out(0, Location::RequiresRegister());
break;
case kUnboxedInt64:
#if XLEN == 32
summary->set_out(0, Location::Pair(Location::RequiresRegister(),
Location::RequiresRegister()));
#else
summary->set_out(0, Location::RequiresRegister());
#endif
break;
case kUnboxedFloat:
case kUnboxedDouble:
summary->set_out(0, Location::RequiresFpuRegister());
break;
default:
UNREACHABLE();
}
return summary;
}
void BitCastInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
switch (from()) {
case kUnboxedFloat: {
ASSERT(to() == kUnboxedInt64);
const FpuRegister src = locs()->in(0).fpu_reg();
const Register dst = locs()->out(0).reg();
__ fmvxw(dst, src);
break;
}
#if XLEN >= 64
case kUnboxedDouble: {
ASSERT(to() == kUnboxedInt64);
const FpuRegister src = locs()->in(0).fpu_reg();
const Register dst = locs()->out(0).reg();
__ fmvxd(dst, src);
break;
}
#endif
case kUnboxedInt64: {
const Register src = locs()->in(0).reg();
switch (to()) {
#if XLEN >= 64
case kUnboxedDouble: {
const FpuRegister dst = locs()->out(0).fpu_reg();
__ fmvdx(dst, src);
break;
}
#endif
case kUnboxedFloat: {
const FpuRegister dst = locs()->out(0).fpu_reg();
__ fmvwx(dst, src);
break;
}
default:
UNREACHABLE();
}
break;
}
case kUnboxedInt32: {
ASSERT(to() == kUnboxedFloat);
const Register src = locs()->in(0).reg();
const FpuRegister dst = locs()->out(0).fpu_reg();
__ fmvwx(dst, src);
break;
}
default:
UNREACHABLE();
}
}
LocationSummary* StopInstr::MakeLocationSummary(Zone* zone, bool opt) const {
return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall);
}
void StopInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
__ Stop(message());
}
void GraphEntryInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
BlockEntryInstr* entry = normal_entry();
if (entry != nullptr) {
if (!compiler->CanFallThroughTo(entry)) {
FATAL("Checked function entry must have no offset");
}
} else {
entry = osr_entry();
if (!compiler->CanFallThroughTo(entry)) {
__ j(compiler->GetJumpLabel(entry));
}
}
}
LocationSummary* GotoInstr::MakeLocationSummary(Zone* zone, bool opt) const {
return new (zone) LocationSummary(zone, 0, 0, LocationSummary::kNoCall);
}
void GotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (!compiler->is_optimizing()) {
if (FLAG_reorder_basic_blocks) {
compiler->EmitEdgeCounter(block()->preorder_number());
}
// Add a deoptimization descriptor for deoptimizing instructions that
// may be inserted before this instruction.
compiler->AddCurrentDescriptor(UntaggedPcDescriptors::kDeopt, GetDeoptId(),
InstructionSource());
}
if (HasParallelMove()) {
compiler->parallel_move_resolver()->EmitNativeCode(parallel_move());
}
// We can fall through if the successor is the next block in the list.
// Otherwise, we need a jump.
if (!compiler->CanFallThroughTo(successor())) {
__ j(compiler->GetJumpLabel(successor()));
}
}
LocationSummary* IndirectGotoInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 1;
const intptr_t kNumTemps = 2;
LocationSummary* summary = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
summary->set_in(0, Location::RequiresRegister());
summary->set_temp(0, Location::RequiresRegister());
summary->set_temp(1, Location::RequiresRegister());
return summary;
}
void IndirectGotoInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
Register index_reg = locs()->in(0).reg();
Register target_address_reg = locs()->temp(0).reg();
Register offset_reg = locs()->temp(1).reg();
ASSERT(RequiredInputRepresentation(0) == kTagged);
__ LoadObject(offset_reg, offsets_);
const auto element_address = __ ElementAddressForRegIndex(
/*is_external=*/false, kTypedDataInt32ArrayCid,
/*index_scale=*/4,
/*index_unboxed=*/false, offset_reg, index_reg, TMP);
__ lw(offset_reg, element_address);
const intptr_t entry_offset = __ CodeSize();
intx_t imm = -entry_offset;
intx_t lo = imm << (XLEN - 12) >> (XLEN - 12);
intx_t hi = (imm - lo) << (XLEN - 32) >> (XLEN - 32);
__ auipc(target_address_reg, hi);
__ add(target_address_reg, target_address_reg, offset_reg);
__ jr(target_address_reg, lo);
}
LocationSummary* StrictCompareInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = 2;
const intptr_t kNumTemps = 0;
if (needs_number_check()) {
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
locs->set_in(0, Location::RegisterLocation(A0));
locs->set_in(1, Location::RegisterLocation(A1));
locs->set_out(0, Location::RegisterLocation(A0));
return locs;
}
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kNoCall);
locs->set_in(0, LocationRegisterOrConstant(left()));
// Only one of the inputs can be a constant. Choose register if the first one
// is a constant.
locs->set_in(1, locs->in(0).IsConstant()
? Location::RequiresRegister()
: LocationRegisterOrConstant(right()));
locs->set_out(0, Location::RequiresRegister());
return locs;
}
Condition StrictCompareInstr::EmitComparisonCodeRegConstant(
FlowGraphCompiler* compiler,
BranchLabels labels,
Register reg,
const Object& obj) {
return compiler->EmitEqualityRegConstCompare(reg, obj, needs_number_check(),
source(), deopt_id());
}
void ComparisonInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
compiler::Label is_true, is_false;
BranchLabels labels = {&is_true, &is_false, &is_false};
Condition true_condition = EmitComparisonCode(compiler, labels);
Register result = locs()->out(0).reg();
if (is_true.IsLinked() || is_false.IsLinked()) {
if (true_condition != kInvalidCondition) {
EmitBranchOnCondition(compiler, true_condition, labels);
}
compiler::Label done;
__ Bind(&is_false);
__ LoadObject(result, Bool::False());
__ j(&done, compiler::Assembler::kNearJump);
__ Bind(&is_true);
__ LoadObject(result, Bool::True());
__ Bind(&done);
} else {
// If EmitComparisonCode did not use the labels and just returned
// a condition we can avoid the branch and use slt to generate the
// offsets to true or false.
ASSERT(kTrueOffsetFromNull + (1 << kBoolValueBitPosition) ==
kFalseOffsetFromNull);
__ SetIf(InvertCondition(true_condition), result);
__ slli(result, result, kBoolValueBitPosition);
__ add(result, result, NULL_REG);
__ addi(result, result, kTrueOffsetFromNull);
}
}
void ComparisonInstr::EmitBranchCode(FlowGraphCompiler* compiler,
BranchInstr* branch) {
BranchLabels labels = compiler->CreateBranchLabels(branch);
Condition true_condition = EmitComparisonCode(compiler, labels);
if (true_condition != kInvalidCondition) {
EmitBranchOnCondition(compiler, true_condition, labels);
}
}
LocationSummary* BooleanNegateInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
return LocationSummary::Make(zone, 1, Location::RequiresRegister(),
LocationSummary::kNoCall);
}
void BooleanNegateInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
const Register input = locs()->in(0).reg();
const Register result = locs()->out(0).reg();
__ xori(result, input, compiler::target::ObjectAlignment::kBoolValueMask);
}
LocationSummary* AllocateObjectInstr::MakeLocationSummary(Zone* zone,
bool opt) const {
const intptr_t kNumInputs = (type_arguments() != nullptr) ? 1 : 0;
const intptr_t kNumTemps = 0;
LocationSummary* locs = new (zone)
LocationSummary(zone, kNumInputs, kNumTemps, LocationSummary::kCall);
if (type_arguments() != nullptr) {
locs->set_in(kTypeArgumentsPos, Location::RegisterLocation(
AllocateObjectABI::kTypeArgumentsReg));
}
locs->set_out(0, Location::RegisterLocation(AllocateObjectABI::kResultReg));
return locs;
}
void AllocateObjectInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
if (type_arguments() != nullptr) {
TypeUsageInfo* type_usage_info = compiler->thread()->type_usage_info();
if (type_usage_info != nullptr) {
RegisterTypeArgumentsUse(compiler->function(), type_usage_info, cls_,
type_arguments()->definition());
}
}
const Code& stub = Code::ZoneHandle(
compiler->zone(), StubCode::GetAllocationStubForClass(cls()));
compiler->GenerateStubCall(source(), stub, UntaggedPcDescriptors::kOther,
locs(), deopt_id(), env());
}
void DebugStepCheckInstr::EmitNativeCode(FlowGraphCompiler* compiler) {
#ifdef PRODUCT
UNREACHABLE();
#else
ASSERT(!compiler->is_optimizing());
__ JumpAndLinkPatchable(StubCode::DebugStepCheck());
compiler->AddCurrentDescriptor(stub_kind_, deopt_id_, source());
compiler->RecordSafepoint(locs());
#endif
}
} // namespace dart
#endif // defined(TARGET_ARCH_RISCV)