blob: 2edfe080b7a8201b0aea6423b4ccdd3ce31e8627 [file] [log] [blame]
// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/regexp_ast.h"
#include "platform/utils.h"
#include "vm/os.h"
namespace dart {
#define MAKE_ACCEPT(Name) \
void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
return visitor->Visit##Name(this, data); \
}
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
#undef MAKE_ACCEPT
#define MAKE_TYPE_CASE(Name) \
RegExp##Name* RegExpTree::As##Name() { return NULL; } \
bool RegExpTree::Is##Name() const { return false; }
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
#undef MAKE_TYPE_CASE
#define MAKE_TYPE_CASE(Name) \
RegExp##Name* RegExp##Name::As##Name() { return this; } \
bool RegExp##Name::Is##Name() const { return true; }
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
#undef MAKE_TYPE_CASE
static Interval ListCaptureRegisters(ZoneGrowableArray<RegExpTree*>* children) {
Interval result = Interval::Empty();
for (intptr_t i = 0; i < children->length(); i++)
result = result.Union(children->At(i)->CaptureRegisters());
return result;
}
Interval RegExpAlternative::CaptureRegisters() const {
return ListCaptureRegisters(nodes());
}
Interval RegExpDisjunction::CaptureRegisters() const {
return ListCaptureRegisters(alternatives());
}
Interval RegExpLookahead::CaptureRegisters() const {
return body()->CaptureRegisters();
}
Interval RegExpCapture::CaptureRegisters() const {
Interval self(StartRegister(index()), EndRegister(index()));
return self.Union(body()->CaptureRegisters());
}
Interval RegExpQuantifier::CaptureRegisters() const {
return body()->CaptureRegisters();
}
bool RegExpAssertion::IsAnchoredAtStart() const {
return assertion_type() == RegExpAssertion::START_OF_INPUT;
}
bool RegExpAssertion::IsAnchoredAtEnd() const {
return assertion_type() == RegExpAssertion::END_OF_INPUT;
}
bool RegExpAlternative::IsAnchoredAtStart() const {
ZoneGrowableArray<RegExpTree*>* nodes = this->nodes();
for (intptr_t i = 0; i < nodes->length(); i++) {
RegExpTree* node = nodes->At(i);
if (node->IsAnchoredAtStart()) {
return true;
}
if (node->max_match() > 0) {
return false;
}
}
return false;
}
bool RegExpAlternative::IsAnchoredAtEnd() const {
ZoneGrowableArray<RegExpTree*>* nodes = this->nodes();
for (intptr_t i = nodes->length() - 1; i >= 0; i--) {
RegExpTree* node = nodes->At(i);
if (node->IsAnchoredAtEnd()) {
return true;
}
if (node->max_match() > 0) {
return false;
}
}
return false;
}
bool RegExpDisjunction::IsAnchoredAtStart() const {
ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives();
for (intptr_t i = 0; i < alternatives->length(); i++) {
if (!alternatives->At(i)->IsAnchoredAtStart()) return false;
}
return true;
}
bool RegExpDisjunction::IsAnchoredAtEnd() const {
ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives();
for (intptr_t i = 0; i < alternatives->length(); i++) {
if (!alternatives->At(i)->IsAnchoredAtEnd()) return false;
}
return true;
}
bool RegExpLookahead::IsAnchoredAtStart() const {
return is_positive() && body()->IsAnchoredAtStart();
}
bool RegExpCapture::IsAnchoredAtStart() const {
return body()->IsAnchoredAtStart();
}
bool RegExpCapture::IsAnchoredAtEnd() const {
return body()->IsAnchoredAtEnd();
}
// Convert regular expression trees to a simple sexp representation.
// This representation should be different from the input grammar
// in as many cases as possible, to make it more difficult for incorrect
// parses to look as correct ones which is likely if the input and
// output formats are alike.
class RegExpUnparser : public RegExpVisitor {
public:
void VisitCharacterRange(CharacterRange that);
#define MAKE_CASE(Name) virtual void* Visit##Name(RegExp##Name*, void* data);
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
#undef MAKE_CASE
};
void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
OS::Print("(|");
for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
OS::Print(" ");
(*that->alternatives())[i]->Accept(this, data);
}
OS::Print(")");
return NULL;
}
void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
OS::Print("(:");
for (intptr_t i = 0; i < that->nodes()->length(); i++) {
OS::Print(" ");
(*that->nodes())[i]->Accept(this, data);
}
OS::Print(")");
return NULL;
}
void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
PrintUtf16(that.from());
if (!that.IsSingleton()) {
OS::Print("-");
PrintUtf16(that.to());
}
}
void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
void* data) {
if (that->is_negated()) OS::Print("^");
OS::Print("[");
for (intptr_t i = 0; i < that->ranges()->length(); i++) {
if (i > 0) OS::Print(" ");
VisitCharacterRange((*that->ranges())[i]);
}
OS::Print("]");
return NULL;
}
void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
switch (that->assertion_type()) {
case RegExpAssertion::START_OF_INPUT:
OS::Print("@^i");
break;
case RegExpAssertion::END_OF_INPUT:
OS::Print("@$i");
break;
case RegExpAssertion::START_OF_LINE:
OS::Print("@^l");
break;
case RegExpAssertion::END_OF_LINE:
OS::Print("@$l");
break;
case RegExpAssertion::BOUNDARY:
OS::Print("@b");
break;
case RegExpAssertion::NON_BOUNDARY:
OS::Print("@B");
break;
}
return NULL;
}
void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
OS::Print("'");
ZoneGrowableArray<uint16_t>* chardata = that->data();
for (intptr_t i = 0; i < chardata->length(); i++) {
PrintUtf16(chardata->At(i));
}
OS::Print("'");
return NULL;
}
void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
if (that->elements()->length() == 1) {
(*that->elements())[0].tree()->Accept(this, data);
} else {
OS::Print("(!");
for (intptr_t i = 0; i < that->elements()->length(); i++) {
OS::Print(" ");
(*that->elements())[i].tree()->Accept(this, data);
}
OS::Print(")");
}
return NULL;
}
void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
OS::Print("(# %" Pd " ", that->min());
if (that->max() == RegExpTree::kInfinity) {
OS::Print("- ");
} else {
OS::Print("%" Pd " ", that->max());
}
OS::Print(that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
that->body()->Accept(this, data);
OS::Print(")");
return NULL;
}
void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
OS::Print("(^ ");
that->body()->Accept(this, data);
OS::Print(")");
return NULL;
}
void* RegExpUnparser::VisitLookahead(RegExpLookahead* that, void* data) {
OS::Print("(-> %s", (that->is_positive() ? "+ " : "- "));
that->body()->Accept(this, data);
OS::Print(")");
return NULL;
}
void* RegExpUnparser::VisitBackReference(RegExpBackReference* that, void*) {
OS::Print("(<- %" Pd ")", that->index());
return NULL;
}
void* RegExpUnparser::VisitEmpty(RegExpEmpty*, void*) {
OS::Print("%%");
return NULL;
}
void RegExpTree::Print() {
RegExpUnparser unparser;
Accept(&unparser, NULL);
}
RegExpDisjunction::RegExpDisjunction(
ZoneGrowableArray<RegExpTree*>* alternatives)
: alternatives_(alternatives) {
ASSERT(alternatives->length() > 1);
RegExpTree* first_alternative = alternatives->At(0);
min_match_ = first_alternative->min_match();
max_match_ = first_alternative->max_match();
for (intptr_t i = 1; i < alternatives->length(); i++) {
RegExpTree* alternative = alternatives->At(i);
min_match_ = Utils::Minimum(min_match_, alternative->min_match());
max_match_ = Utils::Maximum(max_match_, alternative->max_match());
}
}
static intptr_t IncreaseBy(intptr_t previous, intptr_t increase) {
if (RegExpTree::kInfinity - previous < increase) {
return RegExpTree::kInfinity;
} else {
return previous + increase;
}
}
RegExpAlternative::RegExpAlternative(ZoneGrowableArray<RegExpTree*>* nodes)
: nodes_(nodes) {
ASSERT(nodes->length() > 1);
min_match_ = 0;
max_match_ = 0;
for (intptr_t i = 0; i < nodes->length(); i++) {
RegExpTree* node = nodes->At(i);
intptr_t node_min_match = node->min_match();
min_match_ = IncreaseBy(min_match_, node_min_match);
intptr_t node_max_match = node->max_match();
max_match_ = IncreaseBy(max_match_, node_max_match);
}
}
} // namespace dart