blob: 054b90073b5f38eb211837550f716d916226242f [file] [log] [blame]
// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/compiler/frontend/kernel_to_il.h"
#include "platform/assert.h"
#include "platform/globals.h"
#include "vm/class_id.h"
#include "vm/compiler/aot/precompiler.h"
#include "vm/compiler/backend/il.h"
#include "vm/compiler/backend/il_printer.h"
#include "vm/compiler/backend/locations.h"
#include "vm/compiler/backend/range_analysis.h"
#include "vm/compiler/ffi/abi.h"
#include "vm/compiler/ffi/marshaller.h"
#include "vm/compiler/ffi/native_calling_convention.h"
#include "vm/compiler/ffi/native_type.h"
#include "vm/compiler/ffi/recognized_method.h"
#include "vm/compiler/frontend/kernel_binary_flowgraph.h"
#include "vm/compiler/frontend/kernel_translation_helper.h"
#include "vm/compiler/frontend/prologue_builder.h"
#include "vm/compiler/jit/compiler.h"
#include "vm/compiler/runtime_api.h"
#include "vm/kernel_isolate.h"
#include "vm/kernel_loader.h"
#include "vm/log.h"
#include "vm/longjump.h"
#include "vm/native_entry.h"
#include "vm/object_store.h"
#include "vm/report.h"
#include "vm/resolver.h"
#include "vm/scopes.h"
#include "vm/stack_frame.h"
#include "vm/symbols.h"
namespace dart {
namespace kernel {
#define Z (zone_)
#define H (translation_helper_)
#define T (type_translator_)
#define I Isolate::Current()
#define IG IsolateGroup::Current()
FlowGraphBuilder::FlowGraphBuilder(
ParsedFunction* parsed_function,
ZoneGrowableArray<const ICData*>* ic_data_array,
ZoneGrowableArray<intptr_t>* context_level_array,
InlineExitCollector* exit_collector,
bool optimizing,
intptr_t osr_id,
intptr_t first_block_id,
bool inlining_unchecked_entry)
: BaseFlowGraphBuilder(parsed_function,
first_block_id - 1,
osr_id,
context_level_array,
exit_collector,
inlining_unchecked_entry),
translation_helper_(Thread::Current()),
thread_(translation_helper_.thread()),
zone_(translation_helper_.zone()),
parsed_function_(parsed_function),
optimizing_(optimizing),
ic_data_array_(*ic_data_array),
next_function_id_(0),
loop_depth_(0),
try_depth_(0),
catch_depth_(0),
for_in_depth_(0),
block_expression_depth_(0),
graph_entry_(NULL),
scopes_(NULL),
breakable_block_(NULL),
switch_block_(NULL),
try_catch_block_(NULL),
try_finally_block_(NULL),
catch_block_(NULL),
prepend_type_arguments_(Function::ZoneHandle(zone_)),
throw_new_null_assertion_(Function::ZoneHandle(zone_)) {
const Script& script =
Script::Handle(Z, parsed_function->function().script());
H.InitFromScript(script);
}
FlowGraphBuilder::~FlowGraphBuilder() {}
Fragment FlowGraphBuilder::EnterScope(
intptr_t kernel_offset,
const LocalScope** context_scope /* = nullptr */) {
Fragment instructions;
const LocalScope* scope = scopes_->scopes.Lookup(kernel_offset);
if (scope->num_context_variables() > 0) {
instructions += PushContext(scope);
instructions += Drop();
}
if (context_scope != nullptr) {
*context_scope = scope;
}
return instructions;
}
Fragment FlowGraphBuilder::ExitScope(intptr_t kernel_offset) {
Fragment instructions;
const intptr_t context_size =
scopes_->scopes.Lookup(kernel_offset)->num_context_variables();
if (context_size > 0) {
instructions += PopContext();
}
return instructions;
}
Fragment FlowGraphBuilder::AdjustContextTo(int depth) {
ASSERT(depth <= context_depth_ && depth >= 0);
Fragment instructions;
if (depth < context_depth_) {
instructions += LoadContextAt(depth);
instructions += StoreLocal(TokenPosition::kNoSource,
parsed_function_->current_context_var());
instructions += Drop();
context_depth_ = depth;
}
return instructions;
}
Fragment FlowGraphBuilder::PushContext(const LocalScope* scope) {
ASSERT(scope->num_context_variables() > 0);
Fragment instructions = AllocateContext(scope->context_slots());
LocalVariable* context = MakeTemporary();
instructions += LoadLocal(context);
instructions += LoadLocal(parsed_function_->current_context_var());
instructions +=
StoreInstanceField(TokenPosition::kNoSource, Slot::Context_parent(),
StoreInstanceFieldInstr::Kind::kInitializing);
instructions += StoreLocal(TokenPosition::kNoSource,
parsed_function_->current_context_var());
++context_depth_;
return instructions;
}
Fragment FlowGraphBuilder::PopContext() {
return AdjustContextTo(context_depth_ - 1);
}
Fragment FlowGraphBuilder::LoadInstantiatorTypeArguments() {
// TODO(27590): We could use `active_class_->IsGeneric()`.
Fragment instructions;
if (scopes_ != nullptr && scopes_->type_arguments_variable != nullptr) {
#ifdef DEBUG
Function& function =
Function::Handle(Z, parsed_function_->function().ptr());
while (function.IsClosureFunction()) {
function = function.parent_function();
}
ASSERT(function.IsFactory());
#endif
instructions += LoadLocal(scopes_->type_arguments_variable);
} else if (parsed_function_->has_receiver_var() &&
active_class_.ClassNumTypeArguments() > 0) {
ASSERT(!parsed_function_->function().IsFactory());
instructions += LoadLocal(parsed_function_->receiver_var());
instructions += LoadNativeField(
Slot::GetTypeArgumentsSlotFor(thread_, *active_class_.klass));
} else {
instructions += NullConstant();
}
return instructions;
}
// This function is responsible for pushing a type arguments vector which
// contains all type arguments of enclosing functions prepended to the type
// arguments of the current function.
Fragment FlowGraphBuilder::LoadFunctionTypeArguments() {
Fragment instructions;
const Function& function = parsed_function_->function();
if (function.IsGeneric() || function.HasGenericParent()) {
ASSERT(parsed_function_->function_type_arguments() != NULL);
instructions += LoadLocal(parsed_function_->function_type_arguments());
} else {
instructions += NullConstant();
}
return instructions;
}
Fragment FlowGraphBuilder::TranslateInstantiatedTypeArguments(
const TypeArguments& type_arguments) {
Fragment instructions;
if (type_arguments.IsNull() || type_arguments.IsInstantiated()) {
// There are no type references to type parameters so we can just take it.
instructions += Constant(type_arguments);
} else {
// The [type_arguments] vector contains a type reference to a type
// parameter we need to resolve it.
if (type_arguments.CanShareInstantiatorTypeArguments(
*active_class_.klass)) {
// If the instantiator type arguments are just passed on, we don't need to
// resolve the type parameters.
//
// This is for example the case here:
// class Foo<T> {
// newList() => new List<T>();
// }
// We just use the type argument vector from the [Foo] object and pass it
// directly to the `new List<T>()` factory constructor.
instructions += LoadInstantiatorTypeArguments();
} else if (type_arguments.CanShareFunctionTypeArguments(
parsed_function_->function())) {
instructions += LoadFunctionTypeArguments();
} else {
// Otherwise we need to resolve [TypeParameterType]s in the type
// expression based on the current instantiator type argument vector.
if (!type_arguments.IsInstantiated(kCurrentClass)) {
instructions += LoadInstantiatorTypeArguments();
} else {
instructions += NullConstant();
}
if (!type_arguments.IsInstantiated(kFunctions)) {
instructions += LoadFunctionTypeArguments();
} else {
instructions += NullConstant();
}
instructions += InstantiateTypeArguments(type_arguments);
}
}
return instructions;
}
Fragment FlowGraphBuilder::CatchBlockEntry(const Array& handler_types,
intptr_t handler_index,
bool needs_stacktrace,
bool is_synthesized) {
LocalVariable* exception_var = CurrentException();
LocalVariable* stacktrace_var = CurrentStackTrace();
LocalVariable* raw_exception_var = CurrentRawException();
LocalVariable* raw_stacktrace_var = CurrentRawStackTrace();
CatchBlockEntryInstr* entry = new (Z) CatchBlockEntryInstr(
is_synthesized, // whether catch block was synthesized by FE compiler
AllocateBlockId(), CurrentTryIndex(), graph_entry_, handler_types,
handler_index, needs_stacktrace, GetNextDeoptId(), exception_var,
stacktrace_var, raw_exception_var, raw_stacktrace_var);
graph_entry_->AddCatchEntry(entry);
Fragment instructions(entry);
// Auxiliary variables introduced by the try catch can be captured if we are
// inside a function with yield/resume points. In this case we first need
// to restore the context to match the context at entry into the closure.
const bool should_restore_closure_context =
CurrentException()->is_captured() || CurrentCatchContext()->is_captured();
LocalVariable* context_variable = parsed_function_->current_context_var();
if (should_restore_closure_context) {
ASSERT(parsed_function_->function().IsClosureFunction());
LocalVariable* closure_parameter = parsed_function_->ParameterVariable(0);
ASSERT(!closure_parameter->is_captured());
instructions += LoadLocal(closure_parameter);
instructions += LoadNativeField(Slot::Closure_context());
instructions += StoreLocal(TokenPosition::kNoSource, context_variable);
instructions += Drop();
}
if (exception_var->is_captured()) {
instructions += LoadLocal(context_variable);
instructions += LoadLocal(raw_exception_var);
instructions += StoreInstanceField(
TokenPosition::kNoSource,
Slot::GetContextVariableSlotFor(thread_, *exception_var));
}
if (stacktrace_var->is_captured()) {
instructions += LoadLocal(context_variable);
instructions += LoadLocal(raw_stacktrace_var);
instructions += StoreInstanceField(
TokenPosition::kNoSource,
Slot::GetContextVariableSlotFor(thread_, *stacktrace_var));
}
// :saved_try_context_var can be captured in the context of
// of the closure, in this case CatchBlockEntryInstr restores
// :current_context_var to point to closure context in the
// same way as normal function prologue does.
// Update current context depth to reflect that.
const intptr_t saved_context_depth = context_depth_;
ASSERT(!CurrentCatchContext()->is_captured() ||
CurrentCatchContext()->owner()->context_level() == 0);
context_depth_ = 0;
instructions += LoadLocal(CurrentCatchContext());
instructions += StoreLocal(TokenPosition::kNoSource,
parsed_function_->current_context_var());
instructions += Drop();
context_depth_ = saved_context_depth;
return instructions;
}
Fragment FlowGraphBuilder::TryCatch(int try_handler_index) {
// The body of the try needs to have it's own block in order to get a new try
// index.
//
// => We therefore create a block for the body (fresh try index) and another
// join block (with current try index).
Fragment body;
JoinEntryInstr* entry = new (Z)
JoinEntryInstr(AllocateBlockId(), try_handler_index, GetNextDeoptId());
body += LoadLocal(parsed_function_->current_context_var());
body += StoreLocal(TokenPosition::kNoSource, CurrentCatchContext());
body += Drop();
body += Goto(entry);
return Fragment(body.entry, entry);
}
Fragment FlowGraphBuilder::CheckStackOverflowInPrologue(
TokenPosition position) {
ASSERT(loop_depth_ == 0);
return BaseFlowGraphBuilder::CheckStackOverflowInPrologue(position);
}
Fragment FlowGraphBuilder::CloneContext(
const ZoneGrowableArray<const Slot*>& context_slots) {
LocalVariable* context_variable = parsed_function_->current_context_var();
Fragment instructions = LoadLocal(context_variable);
CloneContextInstr* clone_instruction = new (Z) CloneContextInstr(
InstructionSource(), Pop(), context_slots, GetNextDeoptId());
instructions <<= clone_instruction;
Push(clone_instruction);
instructions += StoreLocal(TokenPosition::kNoSource, context_variable);
instructions += Drop();
return instructions;
}
Fragment FlowGraphBuilder::InstanceCall(
TokenPosition position,
const String& name,
Token::Kind kind,
intptr_t type_args_len,
intptr_t argument_count,
const Array& argument_names,
intptr_t checked_argument_count,
const Function& interface_target,
const Function& tearoff_interface_target,
const InferredTypeMetadata* result_type,
bool use_unchecked_entry,
const CallSiteAttributesMetadata* call_site_attrs,
bool receiver_is_not_smi) {
const intptr_t total_count = argument_count + (type_args_len > 0 ? 1 : 0);
InputsArray* arguments = GetArguments(total_count);
InstanceCallInstr* call = new (Z) InstanceCallInstr(
InstructionSource(position), name, kind, arguments, type_args_len,
argument_names, checked_argument_count, ic_data_array_, GetNextDeoptId(),
interface_target, tearoff_interface_target);
if ((result_type != NULL) && !result_type->IsTrivial()) {
call->SetResultType(Z, result_type->ToCompileType(Z));
}
if (use_unchecked_entry) {
call->set_entry_kind(Code::EntryKind::kUnchecked);
}
if (call_site_attrs != nullptr && call_site_attrs->receiver_type != nullptr &&
call_site_attrs->receiver_type->IsInstantiated()) {
call->set_receivers_static_type(call_site_attrs->receiver_type);
} else if (!interface_target.IsNull()) {
const Class& owner = Class::Handle(Z, interface_target.Owner());
const AbstractType& type =
AbstractType::ZoneHandle(Z, owner.DeclarationType());
call->set_receivers_static_type(&type);
}
call->set_receiver_is_not_smi(receiver_is_not_smi);
Push(call);
if (result_type != nullptr && result_type->IsConstant()) {
Fragment instructions(call);
instructions += Drop();
instructions += Constant(result_type->constant_value);
return instructions;
}
return Fragment(call);
}
Fragment FlowGraphBuilder::FfiCall(
const compiler::ffi::CallMarshaller& marshaller) {
Fragment body;
FfiCallInstr* const call =
new (Z) FfiCallInstr(Z, GetNextDeoptId(), marshaller);
for (intptr_t i = call->InputCount() - 1; i >= 0; --i) {
call->SetInputAt(i, Pop());
}
Push(call);
body <<= call;
return body;
}
Fragment FlowGraphBuilder::ThrowException(TokenPosition position) {
Fragment instructions;
Value* exception = Pop();
instructions += Fragment(new (Z) ThrowInstr(InstructionSource(position),
GetNextDeoptId(), exception))
.closed();
// Use its side effect of leaving a constant on the stack (does not change
// the graph).
NullConstant();
return instructions;
}
Fragment FlowGraphBuilder::RethrowException(TokenPosition position,
int catch_try_index) {
Fragment instructions;
Value* stacktrace = Pop();
Value* exception = Pop();
instructions += Fragment(new (Z) ReThrowInstr(
InstructionSource(position), catch_try_index,
GetNextDeoptId(), exception, stacktrace))
.closed();
// Use its side effect of leaving a constant on the stack (does not change
// the graph).
NullConstant();
return instructions;
}
Fragment FlowGraphBuilder::LoadLocal(LocalVariable* variable) {
// Captured 'this' is immutable, so within the outer method we don't need to
// load it from the context.
const ParsedFunction* pf = parsed_function_;
if (pf->function().HasThisParameter() && pf->has_receiver_var() &&
variable == pf->receiver_var()) {
ASSERT(variable == pf->ParameterVariable(0));
variable = pf->RawParameterVariable(0);
}
if (variable->is_captured()) {
Fragment instructions;
instructions += LoadContextAt(variable->owner()->context_level());
instructions +=
LoadNativeField(Slot::GetContextVariableSlotFor(thread_, *variable));
return instructions;
} else {
return BaseFlowGraphBuilder::LoadLocal(variable);
}
}
Fragment FlowGraphBuilder::ThrowLateInitializationError(
TokenPosition position,
const char* throw_method_name,
const String& name) {
const Class& klass =
Class::ZoneHandle(Z, Library::LookupCoreClass(Symbols::LateError()));
ASSERT(!klass.IsNull());
const auto& error = klass.EnsureIsFinalized(thread_);
ASSERT(error == Error::null());
const Function& throw_new =
Function::ZoneHandle(Z, klass.LookupStaticFunctionAllowPrivate(
H.DartSymbolObfuscate(throw_method_name)));
ASSERT(!throw_new.IsNull());
Fragment instructions;
// Call LateError._throwFoo.
instructions += Constant(name);
instructions += StaticCall(position, throw_new,
/* argument_count = */ 1, ICData::kStatic);
instructions += Drop();
return instructions;
}
Fragment FlowGraphBuilder::StoreLateField(const Field& field,
LocalVariable* instance,
LocalVariable* setter_value) {
Fragment instructions;
TargetEntryInstr *is_uninitialized, *is_initialized;
const TokenPosition position = field.token_pos();
const bool is_static = field.is_static();
const bool is_final = field.is_final();
if (is_final) {
// Check whether the field has been initialized already.
if (is_static) {
instructions += LoadStaticField(field, /*calls_initializer=*/false);
} else {
instructions += LoadLocal(instance);
instructions += LoadField(field, /*calls_initializer=*/false);
}
instructions += Constant(Object::sentinel());
instructions += BranchIfStrictEqual(&is_uninitialized, &is_initialized);
JoinEntryInstr* join = BuildJoinEntry();
{
// If the field isn't initialized, do nothing.
Fragment initialize(is_uninitialized);
initialize += Goto(join);
}
{
// If the field is already initialized, throw a LateInitializationError.
Fragment already_initialized(is_initialized);
already_initialized += ThrowLateInitializationError(
position, "_throwFieldAlreadyInitialized",
String::ZoneHandle(Z, field.name()));
already_initialized += Goto(join);
}
instructions = Fragment(instructions.entry, join);
}
if (!is_static) {
instructions += LoadLocal(instance);
}
instructions += LoadLocal(setter_value);
if (is_static) {
instructions += StoreStaticField(position, field);
} else {
instructions += StoreInstanceFieldGuarded(field);
}
return instructions;
}
Fragment FlowGraphBuilder::NativeCall(const String* name,
const Function* function) {
InlineBailout("kernel::FlowGraphBuilder::NativeCall");
const intptr_t num_args =
function->NumParameters() + (function->IsGeneric() ? 1 : 0);
InputsArray* arguments = GetArguments(num_args);
NativeCallInstr* call = new (Z)
NativeCallInstr(name, function, FLAG_link_natives_lazily,
InstructionSource(function->end_token_pos()), arguments);
Push(call);
return Fragment(call);
}
Fragment FlowGraphBuilder::Return(TokenPosition position,
bool omit_result_type_check,
intptr_t yield_index) {
Fragment instructions;
const Function& function = parsed_function_->function();
// Emit a type check of the return type in checked mode for all functions
// and in strong mode for native functions.
if (!omit_result_type_check && function.is_native()) {
const AbstractType& return_type =
AbstractType::Handle(Z, function.result_type());
instructions += CheckAssignable(return_type, Symbols::FunctionResult());
}
if (NeedsDebugStepCheck(function, position)) {
instructions += DebugStepCheck(position);
}
instructions += BaseFlowGraphBuilder::Return(position, yield_index);
return instructions;
}
Fragment FlowGraphBuilder::StaticCall(TokenPosition position,
const Function& target,
intptr_t argument_count,
ICData::RebindRule rebind_rule) {
return StaticCall(position, target, argument_count, Array::null_array(),
rebind_rule);
}
void FlowGraphBuilder::SetResultTypeForStaticCall(
StaticCallInstr* call,
const Function& target,
intptr_t argument_count,
const InferredTypeMetadata* result_type) {
if (call->InitResultType(Z)) {
ASSERT((result_type == NULL) || (result_type->cid == kDynamicCid) ||
(result_type->cid == call->result_cid()));
return;
}
if ((result_type != NULL) && !result_type->IsTrivial()) {
call->SetResultType(Z, result_type->ToCompileType(Z));
}
}
Fragment FlowGraphBuilder::StaticCall(TokenPosition position,
const Function& target,
intptr_t argument_count,
const Array& argument_names,
ICData::RebindRule rebind_rule,
const InferredTypeMetadata* result_type,
intptr_t type_args_count,
bool use_unchecked_entry) {
const intptr_t total_count = argument_count + (type_args_count > 0 ? 1 : 0);
InputsArray* arguments = GetArguments(total_count);
StaticCallInstr* call = new (Z) StaticCallInstr(
InstructionSource(position), target, type_args_count, argument_names,
arguments, ic_data_array_, GetNextDeoptId(), rebind_rule);
SetResultTypeForStaticCall(call, target, argument_count, result_type);
if (use_unchecked_entry) {
call->set_entry_kind(Code::EntryKind::kUnchecked);
}
Push(call);
if (result_type != nullptr && result_type->IsConstant()) {
Fragment instructions(call);
instructions += Drop();
instructions += Constant(result_type->constant_value);
return instructions;
}
return Fragment(call);
}
Fragment FlowGraphBuilder::StringInterpolateSingle(TokenPosition position) {
const int kTypeArgsLen = 0;
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
const Class& cls =
Class::Handle(Library::LookupCoreClass(Symbols::StringBase()));
ASSERT(!cls.IsNull());
const Function& function = Function::ZoneHandle(
Z, Resolver::ResolveStatic(
cls, Library::PrivateCoreLibName(Symbols::InterpolateSingle()),
kTypeArgsLen, kNumberOfArguments, kNoArgumentNames));
Fragment instructions;
instructions +=
StaticCall(position, function, /* argument_count = */ 1, ICData::kStatic);
return instructions;
}
Fragment FlowGraphBuilder::ThrowTypeError() {
const Class& klass =
Class::ZoneHandle(Z, Library::LookupCoreClass(Symbols::TypeError()));
ASSERT(!klass.IsNull());
GrowableHandlePtrArray<const String> pieces(Z, 3);
pieces.Add(Symbols::TypeError());
pieces.Add(Symbols::Dot());
pieces.Add(H.DartSymbolObfuscate("_create"));
const Function& constructor = Function::ZoneHandle(
Z, klass.LookupConstructorAllowPrivate(
String::ZoneHandle(Z, Symbols::FromConcatAll(thread_, pieces))));
ASSERT(!constructor.IsNull());
const String& url = H.DartString(
parsed_function_->function().ToLibNamePrefixedQualifiedCString(),
Heap::kOld);
Fragment instructions;
// Create instance of _FallThroughError
instructions += AllocateObject(TokenPosition::kNoSource, klass, 0);
LocalVariable* instance = MakeTemporary();
// Call _TypeError._create constructor.
instructions += LoadLocal(instance); // this
instructions += Constant(url); // url
instructions += NullConstant(); // line
instructions += IntConstant(0); // column
instructions += Constant(H.DartSymbolPlain("Malformed type.")); // message
instructions += StaticCall(TokenPosition::kNoSource, constructor,
/* argument_count = */ 5, ICData::kStatic);
instructions += Drop();
// Throw the exception
instructions += ThrowException(TokenPosition::kNoSource);
return instructions;
}
Fragment FlowGraphBuilder::ThrowNoSuchMethodError(const Function& target) {
const Class& klass = Class::ZoneHandle(
Z, Library::LookupCoreClass(Symbols::NoSuchMethodError()));
ASSERT(!klass.IsNull());
const auto& error = klass.EnsureIsFinalized(H.thread());
ASSERT(error == Error::null());
const Function& throw_function = Function::ZoneHandle(
Z, klass.LookupStaticFunctionAllowPrivate(Symbols::ThrowNew()));
ASSERT(!throw_function.IsNull());
Fragment instructions;
const Class& owner = Class::Handle(Z, target.Owner());
AbstractType& receiver = AbstractType::ZoneHandle();
InvocationMirror::Kind kind = InvocationMirror::Kind::kMethod;
if (target.IsImplicitGetterFunction() || target.IsGetterFunction()) {
kind = InvocationMirror::kGetter;
} else if (target.IsImplicitSetterFunction() || target.IsSetterFunction()) {
kind = InvocationMirror::kSetter;
}
InvocationMirror::Level level;
if (owner.IsTopLevel()) {
level = InvocationMirror::Level::kTopLevel;
} else {
receiver = owner.RareType();
if (target.kind() == UntaggedFunction::kConstructor) {
level = InvocationMirror::Level::kConstructor;
} else {
level = InvocationMirror::Level::kStatic;
}
}
// Call NoSuchMethodError._throwNew static function.
instructions += Constant(receiver); // receiver
instructions += Constant(String::ZoneHandle(Z, target.name())); // memberName
instructions += IntConstant(InvocationMirror::EncodeType(level, kind));
instructions += IntConstant(0); // type arguments length
instructions += NullConstant(); // type arguments
instructions += NullConstant(); // arguments
instructions += NullConstant(); // argumentNames
instructions += StaticCall(TokenPosition::kNoSource, throw_function,
/* argument_count = */ 7, ICData::kStatic);
// Properly close graph with a ThrowInstr, although it is not executed.
instructions += ThrowException(TokenPosition::kNoSource);
instructions += Drop();
return instructions;
}
LocalVariable* FlowGraphBuilder::LookupVariable(intptr_t kernel_offset) {
LocalVariable* local = scopes_->locals.Lookup(kernel_offset);
ASSERT(local != NULL);
return local;
}
FlowGraph* FlowGraphBuilder::BuildGraph() {
const Function& function = parsed_function_->function();
#ifdef DEBUG
// If we attached the native name to the function after it's creation (namely
// after reading the constant table from the kernel blob), we must have done
// so before building flow graph for the functions (since FGB depends needs
// the native name to be there).
const Script& script = Script::Handle(Z, function.script());
const KernelProgramInfo& info =
KernelProgramInfo::Handle(script.kernel_program_info());
ASSERT(info.IsNull() ||
info.potential_natives() == GrowableObjectArray::null());
// Check that all functions that are explicitly marked as recognized with the
// vm:recognized annotation are in fact recognized. The check can't be done on
// function creation, since the recognized status isn't set until later.
if ((function.IsRecognized() !=
MethodRecognizer::IsMarkedAsRecognized(function)) &&
!function.IsDynamicInvocationForwarder()) {
if (function.IsRecognized()) {
FATAL1(
"Recognized method %s is not marked with the vm:recognized pragma.",
function.ToQualifiedCString());
} else {
FATAL1(
"Non-recognized method %s is marked with the vm:recognized pragma.",
function.ToQualifiedCString());
}
}
#endif
auto& kernel_data = ExternalTypedData::Handle(Z, function.KernelData());
intptr_t kernel_data_program_offset = function.KernelDataProgramOffset();
StreamingFlowGraphBuilder streaming_flow_graph_builder(
this, kernel_data, kernel_data_program_offset);
return streaming_flow_graph_builder.BuildGraph();
}
Fragment FlowGraphBuilder::NativeFunctionBody(const Function& function,
LocalVariable* first_parameter) {
ASSERT(function.is_native());
ASSERT(!IsRecognizedMethodForFlowGraph(function));
Fragment body;
String& name = String::ZoneHandle(Z, function.native_name());
if (function.IsGeneric()) {
body += LoadLocal(parsed_function_->RawTypeArgumentsVariable());
}
for (intptr_t i = 0; i < function.NumParameters(); ++i) {
body += LoadLocal(parsed_function_->RawParameterVariable(i));
}
body += NativeCall(&name, &function);
// We typecheck results of native calls for type safety.
body +=
Return(TokenPosition::kNoSource, /* omit_result_type_check = */ false);
return body;
}
bool FlowGraphBuilder::IsRecognizedMethodForFlowGraph(
const Function& function) {
const MethodRecognizer::Kind kind = function.recognized_kind();
switch (kind) {
case MethodRecognizer::kTypedData_ByteDataView_factory:
case MethodRecognizer::kTypedData_Int8ArrayView_factory:
case MethodRecognizer::kTypedData_Uint8ArrayView_factory:
case MethodRecognizer::kTypedData_Uint8ClampedArrayView_factory:
case MethodRecognizer::kTypedData_Int16ArrayView_factory:
case MethodRecognizer::kTypedData_Uint16ArrayView_factory:
case MethodRecognizer::kTypedData_Int32ArrayView_factory:
case MethodRecognizer::kTypedData_Uint32ArrayView_factory:
case MethodRecognizer::kTypedData_Int64ArrayView_factory:
case MethodRecognizer::kTypedData_Uint64ArrayView_factory:
case MethodRecognizer::kTypedData_Float32ArrayView_factory:
case MethodRecognizer::kTypedData_Float64ArrayView_factory:
case MethodRecognizer::kTypedData_Float32x4ArrayView_factory:
case MethodRecognizer::kTypedData_Int32x4ArrayView_factory:
case MethodRecognizer::kTypedData_Float64x2ArrayView_factory:
case MethodRecognizer::kTypedData_Int8Array_factory:
case MethodRecognizer::kTypedData_Uint8Array_factory:
case MethodRecognizer::kTypedData_Uint8ClampedArray_factory:
case MethodRecognizer::kTypedData_Int16Array_factory:
case MethodRecognizer::kTypedData_Uint16Array_factory:
case MethodRecognizer::kTypedData_Int32Array_factory:
case MethodRecognizer::kTypedData_Uint32Array_factory:
case MethodRecognizer::kTypedData_Int64Array_factory:
case MethodRecognizer::kTypedData_Uint64Array_factory:
case MethodRecognizer::kTypedData_Float32Array_factory:
case MethodRecognizer::kTypedData_Float64Array_factory:
case MethodRecognizer::kTypedData_Float32x4Array_factory:
case MethodRecognizer::kTypedData_Int32x4Array_factory:
case MethodRecognizer::kTypedData_Float64x2Array_factory:
case MethodRecognizer::kFfiLoadInt8:
case MethodRecognizer::kFfiLoadInt16:
case MethodRecognizer::kFfiLoadInt32:
case MethodRecognizer::kFfiLoadInt64:
case MethodRecognizer::kFfiLoadUint8:
case MethodRecognizer::kFfiLoadUint16:
case MethodRecognizer::kFfiLoadUint32:
case MethodRecognizer::kFfiLoadUint64:
case MethodRecognizer::kFfiLoadIntPtr:
case MethodRecognizer::kFfiLoadFloat:
case MethodRecognizer::kFfiLoadDouble:
case MethodRecognizer::kFfiLoadPointer:
case MethodRecognizer::kFfiStoreInt8:
case MethodRecognizer::kFfiStoreInt16:
case MethodRecognizer::kFfiStoreInt32:
case MethodRecognizer::kFfiStoreInt64:
case MethodRecognizer::kFfiStoreUint8:
case MethodRecognizer::kFfiStoreUint16:
case MethodRecognizer::kFfiStoreUint32:
case MethodRecognizer::kFfiStoreUint64:
case MethodRecognizer::kFfiStoreIntPtr:
case MethodRecognizer::kFfiStoreFloat:
case MethodRecognizer::kFfiStoreDouble:
case MethodRecognizer::kFfiStorePointer:
case MethodRecognizer::kFfiFromAddress:
case MethodRecognizer::kFfiGetAddress:
case MethodRecognizer::kObjectEquals:
case MethodRecognizer::kStringBaseLength:
case MethodRecognizer::kStringBaseIsEmpty:
case MethodRecognizer::kGrowableArrayLength:
case MethodRecognizer::kObjectArrayLength:
case MethodRecognizer::kImmutableArrayLength:
case MethodRecognizer::kTypedListLength:
case MethodRecognizer::kTypedListViewLength:
case MethodRecognizer::kByteDataViewLength:
case MethodRecognizer::kByteDataViewOffsetInBytes:
case MethodRecognizer::kTypedDataViewOffsetInBytes:
case MethodRecognizer::kByteDataViewTypedData:
case MethodRecognizer::kTypedDataViewTypedData:
case MethodRecognizer::kClassIDgetID:
case MethodRecognizer::kGrowableArrayCapacity:
case MethodRecognizer::kListFactory:
case MethodRecognizer::kObjectArrayAllocate:
case MethodRecognizer::kCopyRangeFromUint8ListToOneByteString:
case MethodRecognizer::kLinkedHashMap_getIndex:
case MethodRecognizer::kLinkedHashMap_setIndex:
case MethodRecognizer::kLinkedHashMap_getData:
case MethodRecognizer::kLinkedHashMap_setData:
case MethodRecognizer::kLinkedHashMap_getHashMask:
case MethodRecognizer::kLinkedHashMap_setHashMask:
case MethodRecognizer::kLinkedHashMap_getUsedData:
case MethodRecognizer::kLinkedHashMap_setUsedData:
case MethodRecognizer::kLinkedHashMap_getDeletedKeys:
case MethodRecognizer::kLinkedHashMap_setDeletedKeys:
case MethodRecognizer::kWeakProperty_getKey:
case MethodRecognizer::kWeakProperty_setKey:
case MethodRecognizer::kWeakProperty_getValue:
case MethodRecognizer::kWeakProperty_setValue:
case MethodRecognizer::kFfiAbi:
case MethodRecognizer::kReachabilityFence:
case MethodRecognizer::kUtf8DecoderScan:
return true;
default:
return false;
}
}
FlowGraph* FlowGraphBuilder::BuildGraphOfRecognizedMethod(
const Function& function) {
ASSERT(IsRecognizedMethodForFlowGraph(function));
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
PrologueInfo prologue_info(-1, -1);
BlockEntryInstr* instruction_cursor =
BuildPrologue(normal_entry, &prologue_info);
Fragment body(instruction_cursor);
body += CheckStackOverflowInPrologue(function.token_pos());
const MethodRecognizer::Kind kind = function.recognized_kind();
switch (kind) {
case MethodRecognizer::kTypedData_ByteDataView_factory:
body += BuildTypedDataViewFactoryConstructor(function, kByteDataViewCid);
break;
case MethodRecognizer::kTypedData_Int8ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(function,
kTypedDataInt8ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Uint8ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(function,
kTypedDataUint8ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Uint8ClampedArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataUint8ClampedArrayViewCid);
break;
case MethodRecognizer::kTypedData_Int16ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(function,
kTypedDataInt16ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Uint16ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataUint16ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Int32ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(function,
kTypedDataInt32ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Uint32ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataUint32ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Int64ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(function,
kTypedDataInt64ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Uint64ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataUint64ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Float32ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataFloat32ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Float64ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataFloat64ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Float32x4ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataFloat32x4ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Int32x4ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataInt32x4ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Float64x2ArrayView_factory:
body += BuildTypedDataViewFactoryConstructor(
function, kTypedDataFloat64x2ArrayViewCid);
break;
case MethodRecognizer::kTypedData_Int8Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataInt8ArrayCid);
break;
case MethodRecognizer::kTypedData_Uint8Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataUint8ArrayCid);
break;
case MethodRecognizer::kTypedData_Uint8ClampedArray_factory:
body += BuildTypedDataFactoryConstructor(function,
kTypedDataUint8ClampedArrayCid);
break;
case MethodRecognizer::kTypedData_Int16Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataInt16ArrayCid);
break;
case MethodRecognizer::kTypedData_Uint16Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataUint16ArrayCid);
break;
case MethodRecognizer::kTypedData_Int32Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataInt32ArrayCid);
break;
case MethodRecognizer::kTypedData_Uint32Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataUint32ArrayCid);
break;
case MethodRecognizer::kTypedData_Int64Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataInt64ArrayCid);
break;
case MethodRecognizer::kTypedData_Uint64Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataUint64ArrayCid);
break;
case MethodRecognizer::kTypedData_Float32Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataFloat32ArrayCid);
break;
case MethodRecognizer::kTypedData_Float64Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataFloat64ArrayCid);
break;
case MethodRecognizer::kTypedData_Float32x4Array_factory:
body += BuildTypedDataFactoryConstructor(function,
kTypedDataFloat32x4ArrayCid);
break;
case MethodRecognizer::kTypedData_Int32x4Array_factory:
body +=
BuildTypedDataFactoryConstructor(function, kTypedDataInt32x4ArrayCid);
break;
case MethodRecognizer::kTypedData_Float64x2Array_factory:
body += BuildTypedDataFactoryConstructor(function,
kTypedDataFloat64x2ArrayCid);
break;
case MethodRecognizer::kObjectEquals:
ASSERT(function.NumParameters() == 2);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += StrictCompare(Token::kEQ_STRICT);
break;
case MethodRecognizer::kStringBaseLength:
case MethodRecognizer::kStringBaseIsEmpty:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::String_length());
if (kind == MethodRecognizer::kStringBaseIsEmpty) {
body += IntConstant(0);
body += StrictCompare(Token::kEQ_STRICT);
}
break;
case MethodRecognizer::kGrowableArrayLength:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::GrowableObjectArray_length());
break;
case MethodRecognizer::kObjectArrayLength:
case MethodRecognizer::kImmutableArrayLength:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::Array_length());
break;
case MethodRecognizer::kTypedListLength:
case MethodRecognizer::kTypedListViewLength:
case MethodRecognizer::kByteDataViewLength:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::TypedDataBase_length());
break;
case MethodRecognizer::kByteDataViewOffsetInBytes:
case MethodRecognizer::kTypedDataViewOffsetInBytes:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::TypedDataView_offset_in_bytes());
break;
case MethodRecognizer::kByteDataViewTypedData:
case MethodRecognizer::kTypedDataViewTypedData:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::TypedDataView_data());
break;
case MethodRecognizer::kClassIDgetID:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadClassId();
break;
case MethodRecognizer::kGrowableArrayCapacity:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::GrowableObjectArray_data());
body += LoadNativeField(Slot::Array_length());
break;
case MethodRecognizer::kListFactory: {
ASSERT(function.IsFactory() && (function.NumParameters() == 2) &&
function.HasOptionalParameters());
// factory List<E>([int length]) {
// return (:arg_desc.positional_count == 2) ? new _List<E>(length)
// : new _GrowableList<E>(0);
// }
const Library& core_lib = Library::Handle(Z, Library::CoreLibrary());
TargetEntryInstr *allocate_non_growable, *allocate_growable;
body += LoadArgDescriptor();
body += LoadNativeField(Slot::ArgumentsDescriptor_positional_count());
body += IntConstant(2);
body += BranchIfStrictEqual(&allocate_non_growable, &allocate_growable);
JoinEntryInstr* join = BuildJoinEntry();
{
const Class& cls = Class::Handle(
Z, core_lib.LookupClass(
Library::PrivateCoreLibName(Symbols::_List())));
ASSERT(!cls.IsNull());
const Function& func = Function::ZoneHandle(
Z, cls.LookupFactoryAllowPrivate(Symbols::_ListFactory()));
ASSERT(!func.IsNull());
Fragment allocate(allocate_non_growable);
allocate += LoadLocal(parsed_function_->RawParameterVariable(0));
allocate += LoadLocal(parsed_function_->RawParameterVariable(1));
allocate +=
StaticCall(TokenPosition::kNoSource, func, 2, ICData::kStatic);
allocate += StoreLocal(TokenPosition::kNoSource,
parsed_function_->expression_temp_var());
allocate += Drop();
allocate += Goto(join);
}
{
const Class& cls = Class::Handle(
Z, core_lib.LookupClass(
Library::PrivateCoreLibName(Symbols::_GrowableList())));
ASSERT(!cls.IsNull());
const Function& func = Function::ZoneHandle(
Z, cls.LookupFactoryAllowPrivate(Symbols::_GrowableListFactory()));
ASSERT(!func.IsNull());
Fragment allocate(allocate_growable);
allocate += LoadLocal(parsed_function_->RawParameterVariable(0));
allocate += IntConstant(0);
allocate +=
StaticCall(TokenPosition::kNoSource, func, 2, ICData::kStatic);
allocate += StoreLocal(TokenPosition::kNoSource,
parsed_function_->expression_temp_var());
allocate += Drop();
allocate += Goto(join);
}
body = Fragment(body.entry, join);
body += LoadLocal(parsed_function_->expression_temp_var());
break;
}
case MethodRecognizer::kObjectArrayAllocate:
ASSERT(function.IsFactory() && (function.NumParameters() == 2));
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += CreateArray();
break;
case MethodRecognizer::kCopyRangeFromUint8ListToOneByteString:
ASSERT(function.NumParameters() == 5);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += LoadLocal(parsed_function_->RawParameterVariable(2));
body += LoadLocal(parsed_function_->RawParameterVariable(3));
body += LoadLocal(parsed_function_->RawParameterVariable(4));
body += MemoryCopy(kTypedDataUint8ArrayCid, kOneByteStringCid);
body += NullConstant();
break;
case MethodRecognizer::kLinkedHashMap_getIndex:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::LinkedHashMap_index());
break;
case MethodRecognizer::kLinkedHashMap_setIndex:
ASSERT(function.NumParameters() == 2);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += StoreInstanceField(TokenPosition::kNoSource,
Slot::LinkedHashMap_index());
body += NullConstant();
break;
case MethodRecognizer::kLinkedHashMap_getData:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::LinkedHashMap_data());
break;
case MethodRecognizer::kLinkedHashMap_setData:
ASSERT(function.NumParameters() == 2);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += StoreInstanceField(TokenPosition::kNoSource,
Slot::LinkedHashMap_data());
body += NullConstant();
break;
case MethodRecognizer::kLinkedHashMap_getHashMask:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::LinkedHashMap_hash_mask());
break;
case MethodRecognizer::kLinkedHashMap_setHashMask:
ASSERT(function.NumParameters() == 2);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += StoreInstanceField(
TokenPosition::kNoSource, Slot::LinkedHashMap_hash_mask(),
StoreInstanceFieldInstr::Kind::kOther, kNoStoreBarrier);
body += NullConstant();
break;
case MethodRecognizer::kLinkedHashMap_getUsedData:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::LinkedHashMap_used_data());
break;
case MethodRecognizer::kLinkedHashMap_setUsedData:
ASSERT(function.NumParameters() == 2);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += StoreInstanceField(
TokenPosition::kNoSource, Slot::LinkedHashMap_used_data(),
StoreInstanceFieldInstr::Kind::kOther, kNoStoreBarrier);
body += NullConstant();
break;
case MethodRecognizer::kLinkedHashMap_getDeletedKeys:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::LinkedHashMap_deleted_keys());
break;
case MethodRecognizer::kLinkedHashMap_setDeletedKeys:
ASSERT(function.NumParameters() == 2);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += StoreInstanceField(
TokenPosition::kNoSource, Slot::LinkedHashMap_deleted_keys(),
StoreInstanceFieldInstr::Kind::kOther, kNoStoreBarrier);
body += NullConstant();
break;
case MethodRecognizer::kWeakProperty_getKey:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::WeakProperty_key());
break;
case MethodRecognizer::kWeakProperty_setKey:
ASSERT(function.NumParameters() == 2);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += StoreInstanceField(TokenPosition::kNoSource,
Slot::WeakProperty_key());
body += NullConstant();
break;
case MethodRecognizer::kWeakProperty_getValue:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(Slot::WeakProperty_value());
break;
case MethodRecognizer::kWeakProperty_setValue:
ASSERT(function.NumParameters() == 2);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadLocal(parsed_function_->RawParameterVariable(1));
body += StoreInstanceField(TokenPosition::kNoSource,
Slot::WeakProperty_value());
body += NullConstant();
break;
case MethodRecognizer::kUtf8DecoderScan:
ASSERT(function.NumParameters() == 5);
body += LoadLocal(parsed_function_->RawParameterVariable(0)); // decoder
body += LoadLocal(parsed_function_->RawParameterVariable(1)); // bytes
body += LoadLocal(parsed_function_->RawParameterVariable(2)); // start
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
body += UnboxTruncate(kUnboxedIntPtr);
body += LoadLocal(parsed_function_->RawParameterVariable(3)); // end
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
body += UnboxTruncate(kUnboxedIntPtr);
body += LoadLocal(parsed_function_->RawParameterVariable(4)); // table
body += Utf8Scan();
body += Box(kUnboxedIntPtr);
break;
case MethodRecognizer::kReachabilityFence:
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += ReachabilityFence();
body += NullConstant();
break;
case MethodRecognizer::kFfiAbi:
ASSERT(function.NumParameters() == 0);
body += IntConstant(static_cast<int64_t>(compiler::ffi::TargetAbi()));
break;
case MethodRecognizer::kFfiLoadInt8:
case MethodRecognizer::kFfiLoadInt16:
case MethodRecognizer::kFfiLoadInt32:
case MethodRecognizer::kFfiLoadInt64:
case MethodRecognizer::kFfiLoadUint8:
case MethodRecognizer::kFfiLoadUint16:
case MethodRecognizer::kFfiLoadUint32:
case MethodRecognizer::kFfiLoadUint64:
case MethodRecognizer::kFfiLoadIntPtr:
case MethodRecognizer::kFfiLoadFloat:
case MethodRecognizer::kFfiLoadDouble:
case MethodRecognizer::kFfiLoadPointer: {
const classid_t ffi_type_arg_cid =
compiler::ffi::RecognizedMethodTypeArgCid(kind);
const classid_t typed_data_cid =
compiler::ffi::ElementTypedDataCid(ffi_type_arg_cid);
const auto& native_rep = compiler::ffi::NativeType::FromTypedDataClassId(
zone_, ffi_type_arg_cid);
ASSERT(function.NumParameters() == 2);
LocalVariable* arg_pointer = parsed_function_->RawParameterVariable(0);
LocalVariable* arg_offset = parsed_function_->RawParameterVariable(1);
body += LoadLocal(arg_offset);
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
LocalVariable* arg_offset_not_null = MakeTemporary();
body += LoadLocal(arg_pointer);
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
// No GC from here til LoadIndexed.
body += LoadUntagged(compiler::target::PointerBase::data_field_offset());
body += LoadLocal(arg_offset_not_null);
body += UnboxTruncate(kUnboxedFfiIntPtr);
body += LoadIndexed(typed_data_cid, /*index_scale=*/1,
/*index_unboxed=*/true);
if (kind == MethodRecognizer::kFfiLoadFloat ||
kind == MethodRecognizer::kFfiLoadDouble) {
if (kind == MethodRecognizer::kFfiLoadFloat) {
body += FloatToDouble();
}
body += Box(kUnboxedDouble);
} else {
body += Box(native_rep.AsRepresentationOverApprox(zone_));
if (kind == MethodRecognizer::kFfiLoadPointer) {
const auto class_table = thread_->isolate_group()->class_table();
ASSERT(class_table->HasValidClassAt(kFfiPointerCid));
const auto& pointer_class =
Class::ZoneHandle(H.zone(), class_table->At(kFfiPointerCid));
// We find the reified type to use for the pointer allocation.
//
// Call sites to this recognized method are guaranteed to pass a
// Pointer<Pointer<X>> as RawParameterVariable(0). This function
// will return a Pointer<X> object - for which we inspect the
// reified type on the argument.
//
// The following is safe to do, as (1) we are guaranteed to have a
// Pointer<Pointer<X>> as argument, and (2) the bound on the pointer
// type parameter guarantees X is an interface type.
ASSERT(function.NumTypeParameters() == 1);
LocalVariable* address = MakeTemporary();
body += LoadLocal(parsed_function_->RawParameterVariable(0));
body += LoadNativeField(
Slot::GetTypeArgumentsSlotFor(thread_, pointer_class));
body += LoadNativeField(Slot::GetTypeArgumentsIndexSlot(
thread_, Pointer::kNativeTypeArgPos));
body += LoadNativeField(Slot::Type_arguments());
body += AllocateObject(TokenPosition::kNoSource, pointer_class, 1);
LocalVariable* pointer = MakeTemporary();
body += LoadLocal(pointer);
body += LoadLocal(address);
body += UnboxTruncate(kUnboxedFfiIntPtr);
body += ConvertUnboxedToUntagged(kUnboxedFfiIntPtr);
body += StoreUntagged(compiler::target::Pointer::data_field_offset());
body += DropTempsPreserveTop(1); // Drop [address] keep [pointer].
}
}
body += DropTempsPreserveTop(1); // Drop [arg_offset].
} break;
case MethodRecognizer::kFfiStoreInt8:
case MethodRecognizer::kFfiStoreInt16:
case MethodRecognizer::kFfiStoreInt32:
case MethodRecognizer::kFfiStoreInt64:
case MethodRecognizer::kFfiStoreUint8:
case MethodRecognizer::kFfiStoreUint16:
case MethodRecognizer::kFfiStoreUint32:
case MethodRecognizer::kFfiStoreUint64:
case MethodRecognizer::kFfiStoreIntPtr:
case MethodRecognizer::kFfiStoreFloat:
case MethodRecognizer::kFfiStoreDouble:
case MethodRecognizer::kFfiStorePointer: {
const classid_t ffi_type_arg_cid =
compiler::ffi::RecognizedMethodTypeArgCid(kind);
const classid_t typed_data_cid =
compiler::ffi::ElementTypedDataCid(ffi_type_arg_cid);
const auto& native_rep = compiler::ffi::NativeType::FromTypedDataClassId(
zone_, ffi_type_arg_cid);
LocalVariable* arg_pointer = parsed_function_->RawParameterVariable(0);
LocalVariable* arg_offset = parsed_function_->RawParameterVariable(1);
LocalVariable* arg_value = parsed_function_->RawParameterVariable(2);
if (kind == MethodRecognizer::kFfiStorePointer) {
// Do type check before anything untagged is on the stack.
const auto class_table = thread_->isolate_group()->class_table();
ASSERT(class_table->HasValidClassAt(kFfiPointerCid));
const auto& pointer_class =
Class::ZoneHandle(H.zone(), class_table->At(kFfiPointerCid));
const auto& pointer_type_args =
TypeArguments::Handle(pointer_class.type_parameters());
const auto& pointer_type_arg =
AbstractType::ZoneHandle(pointer_type_args.TypeAt(0));
// But we type check it as a method on a generic class at runtime.
body += LoadLocal(arg_value); // value.
body += Constant(pointer_type_arg); // dst_type.
// We pass the Pointer type argument as instantiator_type_args.
//
// Call sites to this recognized method are guaranteed to pass a
// Pointer<Pointer<X>> as RawParameterVariable(0). This function
// will takes a Pointer<X> object - for which we inspect the
// reified type on the argument.
//
// The following is safe to do, as (1) we are guaranteed to have a
// Pointer<Pointer<X>> as argument, and (2) the bound on the pointer
// type parameter guarantees X is an interface type.
body += LoadLocal(arg_pointer);
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
body += LoadNativeField(
Slot::GetTypeArgumentsSlotFor(thread_, pointer_class));
body += NullConstant(); // function_type_args.
body += AssertAssignable(TokenPosition::kNoSource, Symbols::Empty());
body += Drop();
}
ASSERT(function.NumParameters() == 3);
body += LoadLocal(arg_offset);
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
LocalVariable* arg_offset_not_null = MakeTemporary();
body += LoadLocal(arg_value);
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
LocalVariable* arg_value_not_null = MakeTemporary();
body += LoadLocal(arg_pointer); // Pointer.
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
// No GC from here til StoreIndexed.
body += LoadUntagged(compiler::target::PointerBase::data_field_offset());
body += LoadLocal(arg_offset_not_null);
body += UnboxTruncate(kUnboxedFfiIntPtr);
body += LoadLocal(arg_value_not_null);
if (kind == MethodRecognizer::kFfiStorePointer) {
// This can only be Pointer, so it is always safe to LoadUntagged.
body += LoadUntagged(compiler::target::Pointer::data_field_offset());
body += ConvertUntaggedToUnboxed(kUnboxedFfiIntPtr);
} else if (kind == MethodRecognizer::kFfiStoreFloat ||
kind == MethodRecognizer::kFfiStoreDouble) {
body += UnboxTruncate(kUnboxedDouble);
if (kind == MethodRecognizer::kFfiStoreFloat) {
body += DoubleToFloat();
}
} else {
body += UnboxTruncate(native_rep.AsRepresentationOverApprox(zone_));
}
body += StoreIndexedTypedData(typed_data_cid, /*index_scale=*/1,
/*index_unboxed=*/true);
body += Drop(); // Drop [arg_value].
body += Drop(); // Drop [arg_offset].
body += NullConstant();
} break;
case MethodRecognizer::kFfiFromAddress: {
const auto class_table = thread_->isolate_group()->class_table();
ASSERT(class_table->HasValidClassAt(kFfiPointerCid));
const auto& pointer_class =
Class::ZoneHandle(H.zone(), class_table->At(kFfiPointerCid));
ASSERT(function.NumTypeParameters() == 1);
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawTypeArgumentsVariable());
body += AllocateObject(TokenPosition::kNoSource, pointer_class, 1);
body += LoadLocal(MakeTemporary()); // Duplicate Pointer.
body += LoadLocal(parsed_function_->RawParameterVariable(0)); // Address.
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
body += UnboxTruncate(kUnboxedFfiIntPtr);
body += ConvertUnboxedToUntagged(kUnboxedFfiIntPtr);
body += StoreUntagged(compiler::target::Pointer::data_field_offset());
} break;
case MethodRecognizer::kFfiGetAddress: {
ASSERT(function.NumParameters() == 1);
body += LoadLocal(parsed_function_->RawParameterVariable(0)); // Pointer.
body += CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, function.name()));
// This can only be Pointer, so it is always safe to LoadUntagged.
body += LoadUntagged(compiler::target::Pointer::data_field_offset());
body += ConvertUntaggedToUnboxed(kUnboxedFfiIntPtr);
body += Box(kUnboxedFfiIntPtr);
} break;
default: {
UNREACHABLE();
break;
}
}
body += Return(TokenPosition::kNoSource, /* omit_result_type_check = */ true);
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
Fragment FlowGraphBuilder::BuildTypedDataViewFactoryConstructor(
const Function& function,
classid_t cid) {
auto token_pos = function.token_pos();
auto class_table = Thread::Current()->isolate_group()->class_table();
ASSERT(class_table->HasValidClassAt(cid));
const auto& view_class = Class::ZoneHandle(H.zone(), class_table->At(cid));
ASSERT(function.IsFactory() && (function.NumParameters() == 4));
LocalVariable* typed_data = parsed_function_->RawParameterVariable(1);
LocalVariable* offset_in_bytes = parsed_function_->RawParameterVariable(2);
LocalVariable* length = parsed_function_->RawParameterVariable(3);
Fragment body;
body += AllocateObject(token_pos, view_class, /*arg_count=*/0);
LocalVariable* view_object = MakeTemporary();
body += LoadLocal(view_object);
body += LoadLocal(typed_data);
body += StoreInstanceField(token_pos, Slot::TypedDataView_data(),
StoreInstanceFieldInstr::Kind::kInitializing);
body += LoadLocal(view_object);
body += LoadLocal(offset_in_bytes);
body += StoreInstanceField(token_pos, Slot::TypedDataView_offset_in_bytes(),
StoreInstanceFieldInstr::Kind::kInitializing,
kNoStoreBarrier);
body += LoadLocal(view_object);
body += LoadLocal(length);
body += StoreInstanceField(token_pos, Slot::TypedDataBase_length(),
StoreInstanceFieldInstr::Kind::kInitializing,
kNoStoreBarrier);
// Update the inner pointer.
//
// WARNING: Notice that we assume here no GC happens between those 4
// instructions!
body += LoadLocal(view_object);
body += LoadLocal(typed_data);
body += LoadUntagged(compiler::target::TypedDataBase::data_field_offset());
body += ConvertUntaggedToUnboxed(kUnboxedIntPtr);
body += LoadLocal(offset_in_bytes);
body += UnboxSmiToIntptr();
body += AddIntptrIntegers();
body += ConvertUnboxedToUntagged(kUnboxedIntPtr);
body += StoreUntagged(compiler::target::TypedDataBase::data_field_offset());
return body;
}
Fragment FlowGraphBuilder::BuildTypedDataFactoryConstructor(
const Function& function,
classid_t cid) {
const auto token_pos = function.token_pos();
ASSERT(
Thread::Current()->isolate_group()->class_table()->HasValidClassAt(cid));
ASSERT(function.IsFactory() && (function.NumParameters() == 2));
LocalVariable* length = parsed_function_->RawParameterVariable(1);
Fragment instructions;
instructions += LoadLocal(length);
// AllocateTypedData instruction checks that length is valid (a non-negative
// Smi below maximum allowed length).
instructions += AllocateTypedData(token_pos, cid);
return instructions;
}
static const LocalScope* MakeImplicitClosureScope(Zone* Z, const Class& klass) {
ASSERT(!klass.IsNull());
// Note that if klass is _Closure, DeclarationType will be _Closure,
// and not the signature type.
Type& klass_type = Type::ZoneHandle(Z, klass.DeclarationType());
LocalVariable* receiver_variable = new (Z)
LocalVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::This(), klass_type, /*param_type=*/nullptr);
receiver_variable->set_is_captured();
// receiver_variable->set_is_final();
LocalScope* scope = new (Z) LocalScope(NULL, 0, 0);
scope->set_context_level(0);
scope->AddVariable(receiver_variable);
scope->AddContextVariable(receiver_variable);
return scope;
}
Fragment FlowGraphBuilder::BuildImplicitClosureCreation(
const Function& target) {
Fragment fragment;
fragment += AllocateClosure(TokenPosition::kNoSource, target);
LocalVariable* closure = MakeTemporary();
// The function signature can have uninstantiated class type parameters.
if (!target.HasInstantiatedSignature(kCurrentClass)) {
fragment += LoadLocal(closure);
fragment += LoadInstantiatorTypeArguments();
fragment += StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_instantiator_type_arguments(),
StoreInstanceFieldInstr::Kind::kInitializing);
}
// The function signature cannot have uninstantiated function type parameters,
// because the function cannot be local and have parent generic functions.
ASSERT(target.HasInstantiatedSignature(kFunctions));
// Allocate a context that closes over `this`.
// Note: this must be kept in sync with ScopeBuilder::BuildScopes.
const LocalScope* implicit_closure_scope =
MakeImplicitClosureScope(Z, Class::Handle(Z, target.Owner()));
fragment += AllocateContext(implicit_closure_scope->context_slots());
LocalVariable* context = MakeTemporary();
// Store the function and the context in the closure.
fragment += LoadLocal(closure);
fragment += Constant(target);
fragment +=
StoreInstanceField(TokenPosition::kNoSource, Slot::Closure_function(),
StoreInstanceFieldInstr::Kind::kInitializing);
fragment += LoadLocal(closure);
fragment += LoadLocal(context);
fragment +=
StoreInstanceField(TokenPosition::kNoSource, Slot::Closure_context(),
StoreInstanceFieldInstr::Kind::kInitializing);
if (target.IsGeneric()) {
// Only generic functions need to have properly initialized
// delayed_type_arguments.
fragment += LoadLocal(closure);
fragment += Constant(Object::empty_type_arguments());
fragment += StoreInstanceField(
TokenPosition::kNoSource, Slot::Closure_delayed_type_arguments(),
StoreInstanceFieldInstr::Kind::kInitializing);
}
// The context is on top of the operand stack. Store `this`. The context
// doesn't need a parent pointer because it doesn't close over anything
// else.
fragment += LoadLocal(parsed_function_->receiver_var());
fragment += StoreInstanceField(
TokenPosition::kNoSource,
Slot::GetContextVariableSlotFor(
thread_, *implicit_closure_scope->context_variables()[0]),
StoreInstanceFieldInstr::Kind::kInitializing);
return fragment;
}
Fragment FlowGraphBuilder::CheckVariableTypeInCheckedMode(
const AbstractType& dst_type,
const String& name_symbol) {
return Fragment();
}
bool FlowGraphBuilder::NeedsDebugStepCheck(const Function& function,
TokenPosition position) {
return position.IsDebugPause() && !function.is_native() &&
function.is_debuggable();
}
bool FlowGraphBuilder::NeedsDebugStepCheck(Value* value,
TokenPosition position) {
if (!position.IsDebugPause()) {
return false;
}
Definition* definition = value->definition();
if (definition->IsConstant() || definition->IsLoadStaticField()) {
return true;
}
if (definition->IsAllocateObject()) {
return !definition->AsAllocateObject()->closure_function().IsNull();
}
return definition->IsLoadLocal();
}
Fragment FlowGraphBuilder::EvaluateAssertion() {
const Class& klass =
Class::ZoneHandle(Z, Library::LookupCoreClass(Symbols::AssertionError()));
ASSERT(!klass.IsNull());
const auto& error = klass.EnsureIsFinalized(H.thread());
ASSERT(error == Error::null());
const Function& target = Function::ZoneHandle(
Z, klass.LookupStaticFunctionAllowPrivate(Symbols::EvaluateAssertion()));
ASSERT(!target.IsNull());
return StaticCall(TokenPosition::kNoSource, target, /* argument_count = */ 1,
ICData::kStatic);
}
Fragment FlowGraphBuilder::CheckBoolean(TokenPosition position) {
Fragment instructions;
LocalVariable* top_of_stack = MakeTemporary();
instructions += LoadLocal(top_of_stack);
instructions += AssertBool(position);
instructions += Drop();
return instructions;
}
Fragment FlowGraphBuilder::CheckAssignable(const AbstractType& dst_type,
const String& dst_name,
AssertAssignableInstr::Kind kind) {
Fragment instructions;
if (!dst_type.IsTopTypeForSubtyping()) {
LocalVariable* top_of_stack = MakeTemporary();
instructions += LoadLocal(top_of_stack);
instructions += AssertAssignableLoadTypeArguments(TokenPosition::kNoSource,
dst_type, dst_name, kind);
instructions += Drop();
}
return instructions;
}
Fragment FlowGraphBuilder::AssertAssignableLoadTypeArguments(
TokenPosition position,
const AbstractType& dst_type,
const String& dst_name,
AssertAssignableInstr::Kind kind) {
Fragment instructions;
instructions += Constant(AbstractType::ZoneHandle(dst_type.ptr()));
if (!dst_type.IsInstantiated(kCurrentClass)) {
instructions += LoadInstantiatorTypeArguments();
} else {
instructions += NullConstant();
}
if (!dst_type.IsInstantiated(kFunctions)) {
instructions += LoadFunctionTypeArguments();
} else {
instructions += NullConstant();
}
instructions += AssertAssignable(position, dst_name, kind);
return instructions;
}
Fragment FlowGraphBuilder::AssertSubtype(TokenPosition position,
const AbstractType& sub_type_value,
const AbstractType& super_type_value,
const String& dst_name_value) {
Fragment instructions;
instructions += LoadInstantiatorTypeArguments();
instructions += LoadFunctionTypeArguments();
instructions += Constant(AbstractType::ZoneHandle(Z, sub_type_value.ptr()));
instructions += Constant(AbstractType::ZoneHandle(Z, super_type_value.ptr()));
instructions += Constant(String::ZoneHandle(Z, dst_name_value.ptr()));
instructions += AssertSubtype(position);
return instructions;
}
Fragment FlowGraphBuilder::AssertSubtype(TokenPosition position) {
Fragment instructions;
Value* dst_name = Pop();
Value* super_type = Pop();
Value* sub_type = Pop();
Value* function_type_args = Pop();
Value* instantiator_type_args = Pop();
AssertSubtypeInstr* instr = new (Z) AssertSubtypeInstr(
InstructionSource(position), instantiator_type_args, function_type_args,
sub_type, super_type, dst_name, GetNextDeoptId());
instructions += Fragment(instr);
return instructions;
}
void FlowGraphBuilder::BuildTypeArgumentTypeChecks(TypeChecksToBuild mode,
Fragment* implicit_checks) {
const Function& dart_function = parsed_function_->function();
const Function* forwarding_target = nullptr;
if (parsed_function_->is_forwarding_stub()) {
forwarding_target = parsed_function_->forwarding_stub_super_target();
ASSERT(!forwarding_target->IsNull());
}
TypeArguments& type_parameters = TypeArguments::Handle(Z);
if (dart_function.IsFactory()) {
type_parameters = Class::Handle(Z, dart_function.Owner()).type_parameters();
} else {
type_parameters = dart_function.type_parameters();
}
intptr_t num_type_params = type_parameters.Length();
if (forwarding_target != nullptr) {
type_parameters = forwarding_target->type_parameters();
ASSERT(type_parameters.Length() == num_type_params);
}
TypeParameter& type_param = TypeParameter::Handle(Z);
String& name = String::Handle(Z);
AbstractType& bound = AbstractType::Handle(Z);
Fragment check_bounds;
for (intptr_t i = 0; i < num_type_params; ++i) {
type_param ^= type_parameters.TypeAt(i);
bound = type_param.bound();
if (bound.IsTopTypeForSubtyping()) {
continue;
}
switch (mode) {
case TypeChecksToBuild::kCheckAllTypeParameterBounds:
break;
case TypeChecksToBuild::kCheckCovariantTypeParameterBounds:
if (!type_param.IsGenericCovariantImpl()) {
continue;
}
break;
case TypeChecksToBuild::kCheckNonCovariantTypeParameterBounds:
if (type_param.IsGenericCovariantImpl()) {
continue;
}
break;
}
name = type_param.name();
ASSERT(type_param.IsFinalized());
check_bounds +=
AssertSubtype(TokenPosition::kNoSource, type_param, bound, name);
}
// Type arguments passed through partial instantiation are guaranteed to be
// bounds-checked at the point of partial instantiation, so we don't need to
// check them again at the call-site.
if (dart_function.IsClosureFunction() && !check_bounds.is_empty() &&
FLAG_eliminate_type_checks) {
LocalVariable* closure = parsed_function_->ParameterVariable(0);
*implicit_checks += TestDelayedTypeArgs(closure, /*present=*/{},
/*absent=*/check_bounds);
} else {
*implicit_checks += check_bounds;
}
}
void FlowGraphBuilder::BuildArgumentTypeChecks(
Fragment* explicit_checks,
Fragment* implicit_checks,
Fragment* implicit_redefinitions) {
const Function& dart_function = parsed_function_->function();
const Function* forwarding_target = nullptr;
if (parsed_function_->is_forwarding_stub()) {
forwarding_target = parsed_function_->forwarding_stub_super_target();
ASSERT(!forwarding_target->IsNull());
}
const intptr_t num_params = dart_function.NumParameters();
for (intptr_t i = dart_function.NumImplicitParameters(); i < num_params;
++i) {
LocalVariable* param = parsed_function_->ParameterVariable(i);
const String& name = param->name();
if (!param->needs_type_check()) {
continue;
}
if (param->is_captured()) {
param = parsed_function_->RawParameterVariable(i);
}
const AbstractType* target_type = &param->type();
if (forwarding_target != NULL) {
// We add 1 to the parameter index to account for the receiver.
target_type =
&AbstractType::ZoneHandle(Z, forwarding_target->ParameterTypeAt(i));
}
if (target_type->IsTopTypeForSubtyping()) continue;
const bool is_covariant = param->is_explicit_covariant_parameter();
Fragment* checks = is_covariant ? explicit_checks : implicit_checks;
*checks += LoadLocal(param);
*checks += AssertAssignableLoadTypeArguments(
TokenPosition::kNoSource, *target_type, name,
AssertAssignableInstr::kParameterCheck);
*checks += StoreLocal(param);
*checks += Drop();
if (!is_covariant && implicit_redefinitions != nullptr && optimizing_) {
// We generate slightly different code in optimized vs. un-optimized code,
// which is ok since we don't allocate any deopt ids.
AssertNoDeoptIdsAllocatedScope no_deopt_allocation(thread_);
*implicit_redefinitions += LoadLocal(param);
*implicit_redefinitions += RedefinitionWithType(*target_type);
*implicit_redefinitions += StoreLocal(TokenPosition::kNoSource, param);
*implicit_redefinitions += Drop();
}
}
}
BlockEntryInstr* FlowGraphBuilder::BuildPrologue(BlockEntryInstr* normal_entry,
PrologueInfo* prologue_info) {
const bool compiling_for_osr = IsCompiledForOsr();
kernel::PrologueBuilder prologue_builder(
parsed_function_, last_used_block_id_, compiling_for_osr, IsInlining());
BlockEntryInstr* instruction_cursor =
prologue_builder.BuildPrologue(normal_entry, prologue_info);
last_used_block_id_ = prologue_builder.last_used_block_id();
return instruction_cursor;
}
ArrayPtr FlowGraphBuilder::GetOptionalParameterNames(const Function& function) {
if (!function.HasOptionalNamedParameters()) {
return Array::null();
}
const intptr_t num_fixed_params = function.num_fixed_parameters();
const intptr_t num_opt_params = function.NumOptionalNamedParameters();
const auto& names = Array::Handle(Z, Array::New(num_opt_params, Heap::kOld));
auto& name = String::Handle(Z);
for (intptr_t i = 0; i < num_opt_params; ++i) {
name = function.ParameterNameAt(num_fixed_params + i);
names.SetAt(i, name);
}
return names.ptr();
}
Fragment FlowGraphBuilder::PushExplicitParameters(
const Function& function,
const Function& target /* = Function::null_function()*/) {
Fragment instructions;
for (intptr_t i = function.NumImplicitParameters(),
n = function.NumParameters();
i < n; ++i) {
Fragment push_param = LoadLocal(parsed_function_->ParameterVariable(i));
if (!target.IsNull() && target.is_unboxed_parameter_at(i)) {
Representation to;
if (target.is_unboxed_integer_parameter_at(i)) {
to = kUnboxedInt64;
} else {
ASSERT(target.is_unboxed_double_parameter_at(i));
to = kUnboxedDouble;
}
const auto unbox = UnboxInstr::Create(to, Pop(), DeoptId::kNone,
Instruction::kNotSpeculative);
Push(unbox);
push_param += Fragment(unbox);
}
instructions += push_param;
}
return instructions;
}
FlowGraph* FlowGraphBuilder::BuildGraphOfMethodExtractor(
const Function& method) {
// A method extractor is the implicit getter for a method.
const Function& function =
Function::ZoneHandle(Z, method.extracted_method_closure());
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
Fragment body(normal_entry);
body += CheckStackOverflowInPrologue(method.token_pos());
body += BuildImplicitClosureCreation(function);
body += Return(TokenPosition::kNoSource);
// There is no prologue code for a method extractor.
PrologueInfo prologue_info(-1, -1);
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
FlowGraph* FlowGraphBuilder::BuildGraphOfNoSuchMethodDispatcher(
const Function& function) {
// This function is specialized for a receiver class, a method name, and
// the arguments descriptor at a call site.
const ArgumentsDescriptor descriptor(saved_args_desc_array());
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
PrologueInfo prologue_info(-1, -1);
BlockEntryInstr* instruction_cursor =
BuildPrologue(normal_entry, &prologue_info);
Fragment body(instruction_cursor);
body += CheckStackOverflowInPrologue(function.token_pos());
// The receiver is the first argument to noSuchMethod, and it is the first
// argument passed to the dispatcher function.
body += LoadLocal(parsed_function_->ParameterVariable(0));
// The second argument to noSuchMethod is an invocation mirror. Push the
// arguments for allocating the invocation mirror. First, the name.
body += Constant(String::ZoneHandle(Z, function.name()));
// Second, the arguments descriptor.
body += Constant(saved_args_desc_array());
// Third, an array containing the original arguments. Create it and fill
// it in.
const intptr_t receiver_index = descriptor.TypeArgsLen() > 0 ? 1 : 0;
body += Constant(TypeArguments::ZoneHandle(Z, TypeArguments::null()));
body += IntConstant(receiver_index + descriptor.Size());
body += CreateArray();
LocalVariable* array = MakeTemporary();
if (receiver_index > 0) {
LocalVariable* type_args = parsed_function_->function_type_arguments();
ASSERT(type_args != NULL);
body += LoadLocal(array);
body += IntConstant(0);
body += LoadLocal(type_args);
body += StoreIndexed(kArrayCid);
}
for (intptr_t i = 0; i < descriptor.PositionalCount(); ++i) {
body += LoadLocal(array);
body += IntConstant(receiver_index + i);
body += LoadLocal(parsed_function_->ParameterVariable(i));
body += StoreIndexed(kArrayCid);
}
String& name = String::Handle(Z);
for (intptr_t i = 0; i < descriptor.NamedCount(); ++i) {
const intptr_t parameter_index = descriptor.PositionAt(i);
name = descriptor.NameAt(i);
name = Symbols::New(H.thread(), name);
body += LoadLocal(array);
body += IntConstant(receiver_index + parameter_index);
body += LoadLocal(parsed_function_->ParameterVariable(parameter_index));
body += StoreIndexed(kArrayCid);
}
// Fourth, false indicating this is not a super NoSuchMethod.
body += Constant(Bool::False());
const Class& mirror_class =
Class::Handle(Z, Library::LookupCoreClass(Symbols::InvocationMirror()));
ASSERT(!mirror_class.IsNull());
const auto& error = mirror_class.EnsureIsFinalized(H.thread());
ASSERT(error == Error::null());
const Function& allocation_function = Function::ZoneHandle(
Z, mirror_class.LookupStaticFunction(
Library::PrivateCoreLibName(Symbols::AllocateInvocationMirror())));
ASSERT(!allocation_function.IsNull());
body += StaticCall(TokenPosition::kMinSource, allocation_function,
/* argument_count = */ 4, ICData::kStatic);
const int kTypeArgsLen = 0;
ArgumentsDescriptor two_arguments(
Array::Handle(Z, ArgumentsDescriptor::NewBoxed(kTypeArgsLen, 2)));
Function& no_such_method =
Function::ZoneHandle(Z, Resolver::ResolveDynamicForReceiverClass(
Class::Handle(Z, function.Owner()),
Symbols::NoSuchMethod(), two_arguments));
if (no_such_method.IsNull()) {
// If noSuchMethod is not found on the receiver class, call
// Object.noSuchMethod.
no_such_method = Resolver::ResolveDynamicForReceiverClass(
Class::Handle(Z, IG->object_store()->object_class()),
Symbols::NoSuchMethod(), two_arguments);
}
body += StaticCall(TokenPosition::kMinSource, no_such_method,
/* argument_count = */ 2, ICData::kNSMDispatch);
body += Return(TokenPosition::kNoSource);
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
// Information used by the various dynamic closure call fragment builders.
struct FlowGraphBuilder::ClosureCallInfo {
ClosureCallInfo(LocalVariable* closure,
JoinEntryInstr* throw_no_such_method,
const Array& arguments_descriptor_array,
ParsedFunction::DynamicClosureCallVars* const vars)
: closure(ASSERT_NOTNULL(closure)),
throw_no_such_method(ASSERT_NOTNULL(throw_no_such_method)),
descriptor(arguments_descriptor_array),
vars(ASSERT_NOTNULL(vars)) {}
LocalVariable* const closure;
JoinEntryInstr* const throw_no_such_method;
const ArgumentsDescriptor descriptor;
ParsedFunction::DynamicClosureCallVars* const vars;
// Set up by BuildDynamicCallChecks() when needed. These values are
// read-only, so they don't need real local variables and are created
// using MakeTemporary().
LocalVariable* function = nullptr;
LocalVariable* num_fixed_params = nullptr;
LocalVariable* num_opt_params = nullptr;
LocalVariable* num_max_params = nullptr;
LocalVariable* has_named_params = nullptr;
LocalVariable* parameter_names = nullptr;
LocalVariable* parameter_types = nullptr;
LocalVariable* type_parameters = nullptr;
LocalVariable* closure_data = nullptr;
LocalVariable* default_tav_info = nullptr;
LocalVariable* instantiator_type_args = nullptr;
LocalVariable* parent_function_type_args = nullptr;
};
Fragment FlowGraphBuilder::TestClosureFunctionGeneric(
const ClosureCallInfo& info,
Fragment generic,
Fragment not_generic) {
JoinEntryInstr* after_branch = BuildJoinEntry();
Fragment check;
check += LoadLocal(info.type_parameters);
TargetEntryInstr *is_not_generic, *is_generic;
check += BranchIfNull(&is_not_generic, &is_generic);
generic.Prepend(is_generic);
generic += Goto(after_branch);
not_generic.Prepend(is_not_generic);
not_generic += Goto(after_branch);
return Fragment(check.entry, after_branch);
}
Fragment FlowGraphBuilder::TestClosureFunctionNamedParameterRequired(
const ClosureCallInfo& info,
Fragment set,
Fragment not_set) {
// Required named arguments only exist if null_safety is enabled.
if (!IG->use_strict_null_safety_checks()) return not_set;
Fragment check_required;
// First, we convert the index to be in terms of the number of optional
// parameters, not total parameters (to calculate the flag index and shift).
check_required += LoadLocal(info.vars->current_param_index);
check_required += LoadLocal(info.num_fixed_params);
check_required += SmiBinaryOp(Token::kSUB, /*is_truncating=*/true);
LocalVariable* opt_index = MakeTemporary("opt_index"); // Read-only.
// Next, we calculate the index to dereference in the parameter names array.
check_required += LoadLocal(opt_index);
check_required +=
IntConstant(compiler::target::kNumParameterFlagsPerElementLog2);
check_required += SmiBinaryOp(Token::kSHR);
check_required += LoadLocal(info.num_max_params);
check_required += SmiBinaryOp(Token::kADD);
LocalVariable* flags_index = MakeTemporary("flags_index"); // Read-only.
// Two read-only stack values (opt_index, flag_index) that must be dropped
// after we rejoin at after_check.
JoinEntryInstr* after_check = BuildJoinEntry();
// Now we check to see if the flags index is within the bounds of the
// parameters names array. If not, it cannot be required.
check_required += LoadLocal(flags_index);
check_required += LoadLocal(info.parameter_names);
check_required += LoadNativeField(Slot::Array_length());
check_required += SmiRelationalOp(Token::kLT);
TargetEntryInstr *valid_index, *invalid_index;
check_required += BranchIfTrue(&valid_index, &invalid_index);
JoinEntryInstr* join_not_set = BuildJoinEntry();
Fragment(invalid_index) + Goto(join_not_set);
// Otherwise, we need to retrieve the value. We're guaranteed the Smis in
// the flag slots are non-null, so after loading we can immediate check
// the required flag bit for the given named parameter.
check_required.current = valid_index;
check_required += LoadLocal(info.parameter_names);
check_required += LoadLocal(flags_index);
check_required += LoadIndexed(kArrayCid);
check_required += LoadLocal(opt_index);
check_required +=
IntConstant(compiler::target::kNumParameterFlagsPerElement - 1);
check_required += SmiBinaryOp(Token::kBIT_AND);
// If the below changes, we'll need to multiply by the number of parameter
// flags before shifting.
static_assert(compiler::target::kNumParameterFlags == 1,
"IL builder assumes only one flag bit per parameter");
check_required += SmiBinaryOp(Token::kSHR);
check_required +=
IntConstant(1 << compiler::target::kRequiredNamedParameterFlag);
check_required += SmiBinaryOp(Token::kBIT_AND);
check_required += IntConstant(0);
TargetEntryInstr *is_not_set, *is_set;
check_required += BranchIfEqual(&is_not_set, &is_set);
Fragment(is_not_set) + Goto(join_not_set);
set.Prepend(is_set);
set += Goto(after_check);
not_set.Prepend(join_not_set);
not_set += Goto(after_check);
// After rejoining, drop the introduced temporaries.
check_required.current = after_check;
check_required += DropTemporary(&flags_index);
check_required += DropTemporary(&opt_index);
return check_required;
}
Fragment FlowGraphBuilder::BuildClosureCallDefaultTypeHandling(
const ClosureCallInfo& info) {
if (info.descriptor.TypeArgsLen() > 0) {
ASSERT(parsed_function_->function_type_arguments() != nullptr);
// A TAV was provided, so we don't need default type argument handling
// and can just take the arguments we were given.
Fragment store_provided;
store_provided += LoadLocal(parsed_function_->function_type_arguments());
store_provided += StoreLocal(info.vars->function_type_args);
store_provided += Drop();
return store_provided;
}
// Load the defaults, instantiating or replacing them with the other type
// arguments as appropriate.
Fragment store_default;
store_default += LoadLocal(info.default_tav_info);
static_assert(
Function::DefaultTypeArgumentsKindField::shift() == 0,
"Need to generate shift for DefaultTypeArgumentsKindField bit field");
store_default += IntConstant(Function::DefaultTypeArgumentsKindField::mask());
store_default += SmiBinaryOp(Token::kBIT_AND);
LocalVariable* default_tav_kind = MakeTemporary("default_tav_kind");
// One read-only stack values (default_tav_kind) that must be dropped after
// rejoining at done.
JoinEntryInstr* done = BuildJoinEntry();
store_default += LoadLocal(default_tav_kind);
TargetEntryInstr *is_instantiated, *is_not_instantiated;
store_default += IntConstant(static_cast<intptr_t>(
Function::DefaultTypeArgumentsKind::kIsInstantiated));
store_default += BranchIfEqual(&is_instantiated, &is_not_instantiated);
store_default.current = is_not_instantiated; // Check next case.
store_default += LoadLocal(default_tav_kind);
TargetEntryInstr *needs_instantiation, *can_share;
store_default += IntConstant(static_cast<intptr_t>(
Function::DefaultTypeArgumentsKind::kNeedsInstantiation));
store_default += BranchIfEqual(&needs_instantiation, &can_share);
store_default.current = can_share; // Check next case.
store_default += LoadLocal(default_tav_kind);
TargetEntryInstr *can_share_instantiator, *can_share_function;
store_default += IntConstant(static_cast<intptr_t>(
Function::DefaultTypeArgumentsKind::kSharesInstantiatorTypeArguments));
store_default += BranchIfEqual(&can_share_instantiator, &can_share_function);
Fragment instantiated(is_instantiated);
instantiated += LoadLocal(info.closure_data);
instantiated += LoadNativeField(Slot::ClosureData_default_type_arguments());
instantiated += StoreLocal(info.vars->function_type_args);
instantiated += Drop();
instantiated += Goto(done);
Fragment do_instantiation(needs_instantiation);
// Load the instantiator type arguments.
do_instantiation += LoadLocal(info.instantiator_type_args);
// Load the parent function type arguments. (No local function type arguments
// can be used within the defaults).
do_instantiation += LoadLocal(info.parent_function_type_args);
// Load the default type arguments to instantiate.
do_instantiation += LoadLocal(info.closure_data);
do_instantiation +=
LoadNativeField(Slot::ClosureData_default_type_arguments());
do_instantiation += InstantiateDynamicTypeArguments();
do_instantiation += StoreLocal(info.vars->function_type_args);
do_instantiation += Drop();
do_instantiation += Goto(done);
Fragment share_instantiator(can_share_instantiator);
share_instantiator += LoadLocal(info.instantiator_type_args);
share_instantiator += StoreLocal(info.vars->function_type_args);
share_instantiator += Drop();
share_instantiator += Goto(done);
Fragment share_function(can_share_function);
// Since the defaults won't have local type parameters, these must all be
// from the parent function type arguments, so we can just use it.
share_function += LoadLocal(info.parent_function_type_args);
share_function += StoreLocal(info.vars->function_type_args);
share_function += Drop();
share_function += Goto(done);
store_default.current = done; // Return here after branching.
store_default += DropTemporary(&default_tav_kind);
Fragment store_delayed;
store_delayed += LoadLocal(info.closure);
store_delayed += LoadNativeField(Slot::Closure_delayed_type_arguments());
store_delayed += StoreLocal(info.vars->function_type_args);
store_delayed += Drop();
// Use the delayed type args if present, else the default ones.
return TestDelayedTypeArgs(info.closure, store_delayed, store_default);
}
Fragment FlowGraphBuilder::BuildClosureCallNamedArgumentsCheck(
const ClosureCallInfo& info) {
// When no named arguments are provided, we just need to check for possible
// required named arguments.
if (info.descriptor.NamedCount() == 0) {
// No work to do if there are no possible required named parameters.
if (!IG->use_strict_null_safety_checks()) {
return Fragment();
}
// If the below changes, we can no longer assume that flag slots existing
// means there are required parameters.
static_assert(compiler::target::kNumParameterFlags == 1,
"IL builder assumes only one flag bit per parameter");
// No named args were provided, so check for any required named params.
// Here, we assume that the only parameter flag saved is the required bit
// for named parameters. If this changes, we'll need to check each flag
// entry appropriately for any set required bits.
Fragment has_any;
has_any += LoadLocal(info.num_max_params);
has_any += LoadLocal(info.parameter_names);
has_any += LoadNativeField(Slot::Array_length());
TargetEntryInstr *no_required, *has_required;
has_any += BranchIfEqual(&no_required, &has_required);
Fragment(has_required) + Goto(info.throw_no_such_method);
return Fragment(has_any.entry, no_required);
}
// Otherwise, we need to loop through the parameter names to check the names
// of named arguments for validity (and possibly missing required ones).
Fragment check_names;
check_names += LoadLocal(info.vars->current_param_index);
LocalVariable* old_index = MakeTemporary("old_index"); // Read-only.
check_names += LoadLocal(info.vars->current_num_processed);
LocalVariable* old_processed = MakeTemporary("old_processed"); // Read-only.
// Two local stack values (old_index, old_processed) to drop after rejoining
// at done.
JoinEntryInstr* loop = BuildJoinEntry();
JoinEntryInstr* done = BuildJoinEntry();
check_names += IntConstant(0);
check_names += StoreLocal(info.vars->current_num_processed);
check_names += Drop();
check_names += LoadLocal(info.num_fixed_params);
check_names += StoreLocal(info.vars->current_param_index);
check_names += Drop();
check_names += Goto(loop);
Fragment loop_check(loop);
loop_check += LoadLocal(info.vars->current_param_index);
loop_check += LoadLocal(info.num_max_params);
loop_check += SmiRelationalOp(Token::kLT);
TargetEntryInstr *no_more, *more;
loop_check += BranchIfTrue(&more, &no_more);
Fragment(no_more) + Goto(done);
Fragment loop_body(more);
// First load the name we need to check against.
loop_body += LoadLocal(info.parameter_names);
loop_body += LoadLocal(info.vars->current_param_index);
loop_body += LoadIndexed(kArrayCid);
LocalVariable* param_name = MakeTemporary("param_name"); // Read only.
// One additional local value on the stack within the loop body (param_name)
// that should be dropped after rejoining at loop_incr.
JoinEntryInstr* loop_incr = BuildJoinEntry();
// Now iterate over the ArgumentsDescriptor names and check for a match.
for (intptr_t i = 0; i < info.descriptor.NamedCount(); i++) {
const auto& name = String::ZoneHandle(Z, info.descriptor.NameAt(i));
loop_body += Constant(name);
loop_body += LoadLocal(param_name);
TargetEntryInstr *match, *mismatch;
loop_body += BranchIfEqual(&match, &mismatch);
loop_body.current = mismatch;
// We have a match, so go to the next name after storing the corresponding
// parameter index on the stack and incrementing the number of matched
// arguments. (No need to check the required bit for provided parameters.)
Fragment matched(match);
matched += LoadLocal(info.vars->current_param_index);
matched += StoreLocal(info.vars->named_argument_parameter_indices.At(i));
matched += Drop();
matched += LoadLocal(info.vars->current_num_processed);
matched += IntConstant(1);
matched += SmiBinaryOp(Token::kADD, /*is_truncating=*/true);
matched += StoreLocal(info.vars->current_num_processed);
matched += Drop();
matched += Goto(loop_incr);
}
// None of the names in the arguments descriptor matched, so check if this
// is a required parameter.
loop_body += TestClosureFunctionNamedParameterRequired(
info,
/*set=*/Goto(info.throw_no_such_method),
/*not_set=*/{});
loop_body += Goto(loop_incr);
Fragment incr_index(loop_incr);
incr_index += DropTemporary(&param_name);
incr_index += LoadLocal(info.vars->current_param_index);
incr_index += IntConstant(1);
incr_index += SmiBinaryOp(Token::kADD, /*is_truncating=*/true);
incr_index += StoreLocal(info.vars->current_param_index);
incr_index += Drop();
incr_index += Goto(loop);
Fragment check_processed(done);
check_processed += LoadLocal(info.vars->current_num_processed);
check_processed += IntConstant(info.descriptor.NamedCount());
TargetEntryInstr *all_processed, *bad_name;
check_processed += BranchIfEqual(&all_processed, &bad_name);
// Didn't find a matching parameter name for at least one argument name.
Fragment(bad_name) + Goto(info.throw_no_such_method);
// Drop the temporaries at the end of the fragment.
check_names.current = all_processed;
check_names += LoadLocal(old_processed);
check_names += StoreLocal(info.vars->current_num_processed);
check_names += Drop();
check_names += DropTemporary(&old_processed);
check_names += LoadLocal(old_index);
check_names += StoreLocal(info.vars->current_param_index);
check_names += Drop();
check_names += DropTemporary(&old_index);
return check_names;
}
Fragment FlowGraphBuilder::BuildClosureCallArgumentsValidCheck(
const ClosureCallInfo& info) {
Fragment check_entry;
// We only need to check the length of any explicitly provided type arguments.
if (info.descriptor.TypeArgsLen() > 0) {
Fragment check_type_args_length;
check_type_args_length += LoadLocal(info.type_parameters);
TargetEntryInstr *null, *not_null;
check_type_args_length += BranchIfNull(&null, &not_null);
check_type_args_length.current = not_null; // Continue in non-error case.
check_type_args_length += LoadLocal(info.type_parameters);
check_type_args_length += LoadNativeField(Slot::TypeArguments_length());
check_type_args_length += IntConstant(info.descriptor.TypeArgsLen());
TargetEntryInstr *equal, *not_equal;
check_type_args_length += BranchIfEqual(&equal, &not_equal);
check_type_args_length.current = equal; // Continue in non-error case.
// The function is not generic.
Fragment(null) + Goto(info.throw_no_such_method);
// An incorrect number of type arguments were passed.
Fragment(not_equal) + Goto(info.throw_no_such_method);
// Type arguments should not be provided if there are delayed type
// arguments, as then the closure itself is not generic.
check_entry += TestDelayedTypeArgs(
info.closure, /*present=*/Goto(info.throw_no_such_method),
/*absent=*/check_type_args_length);
}
check_entry += LoadLocal(info.has_named_params);
TargetEntryInstr *has_named, *has_positional;
check_entry += BranchIfTrue(&has_named, &has_positional);
JoinEntryInstr* join_after_optional = BuildJoinEntry();
check_entry.current = join_after_optional;
if (info.descriptor.NamedCount() > 0) {
// No reason to continue checking, as this function doesn't take named args.
Fragment(has_positional) + Goto(info.throw_no_such_method);
} else {
Fragment check_pos(has_positional);
check_pos += LoadLocal(info.num_fixed_params);
check_pos += IntConstant(info.descriptor.PositionalCount());
check_pos += SmiRelationalOp(Token::kLTE);
TargetEntryInstr *enough, *too_few;
check_pos += BranchIfTrue(&enough, &too_few);
check_pos.current = enough;
Fragment(too_few) + Goto(info.throw_no_such_method);
check_pos += IntConstant(info.descriptor.PositionalCount());
check_pos += LoadLocal(info.num_max_params);
check_pos += SmiRelationalOp(Token::kLTE);
TargetEntryInstr *valid, *too_many;
check_pos += BranchIfTrue(&valid, &too_many);
check_pos.current = valid;
Fragment(too_many) + Goto(info.throw_no_such_method);
check_pos += Goto(join_after_optional);
}
Fragment check_named(has_named);
TargetEntryInstr *same, *different;
check_named += LoadLocal(info.num_fixed_params);
check_named += IntConstant(info.descriptor.PositionalCount());
check_named += BranchIfEqual(&same, &different);
check_named.current = same;
Fragment(different) + Goto(info.throw_no_such_method);
if (info.descriptor.NamedCount() > 0) {
check_named += IntConstant(info.descriptor.NamedCount());
check_named += LoadLocal(info.num_opt_params);
check_named += SmiRelationalOp(Token::kLTE);
TargetEntryInstr *valid, *too_many;
check_named += BranchIfTrue(&valid, &too_many);
check_named.current = valid;
Fragment(too_many) + Goto(info.throw_no_such_method);
}
// Check the names for optional arguments. If applicable, also check that all
// required named parameters are provided.
check_named += BuildClosureCallNamedArgumentsCheck(info);
check_named += Goto(join_after_optional);
check_entry.current = join_after_optional;
return check_entry;
}
Fragment FlowGraphBuilder::BuildClosureCallTypeArgumentsTypeCheck(
const ClosureCallInfo& info) {
JoinEntryInstr* done = BuildJoinEntry();
JoinEntryInstr* loop = BuildJoinEntry();
// We assume that the value stored in :t_type_parameters is not null (i.e.,
// the function stored in :t_function is generic).
Fragment loop_init;
// Loop over the type parameters array.
loop_init += IntConstant(0);
loop_init += StoreLocal(info.vars->current_param_index);
loop_init += Drop();
loop_init += Goto(loop);
Fragment loop_check(loop);
loop_check += LoadLocal(info.vars->current_param_index);
loop_check += LoadLocal(info.type_parameters);
loop_check += LoadNativeField(Slot::TypeArguments_length());
loop_check += SmiRelationalOp(Token::kLT);
TargetEntryInstr *more, *no_more;
loop_check += BranchIfTrue(&more, &no_more);
Fragment(no_more) + Goto(done);
Fragment loop_body(more);
loop_body += LoadLocal(info.type_parameters);
loop_body += LoadLocal(info.vars->current_param_index);
loop_body += LoadIndexed(kTypeArgumentsCid);
LocalVariable* current_param = MakeTemporary("current_param"); // Read-only.
// One read-only local variable on stack (param) to drop after joining.
JoinEntryInstr* next = BuildJoinEntry();
loop_body += LoadLocal(current_param);
loop_body += LoadNativeField(Slot::TypeParameter_flags());
loop_body += Box(kUnboxedUint8);
loop_body += IntConstant(
UntaggedTypeParameter::GenericCovariantImplBit::mask_in_place());
loop_body += SmiBinaryOp(Token::kBIT_AND);
loop_body += IntConstant(0);
TargetEntryInstr *is_noncovariant, *is_covariant;
loop_body += BranchIfEqual(&is_noncovariant, &is_covariant);
Fragment(is_covariant) + Goto(next); // Continue if covariant.
loop_body.current = is_noncovariant; // Type check if non-covariant.
loop_body += LoadLocal(info.instantiator_type_args);
loop_body += LoadLocal(info.vars->function_type_args);
// Load parameter.
loop_body += LoadLocal(current_param);
// Load bounds from parameter.
loop_body += LoadLocal(current_param);
loop_body += LoadNativeField(Slot::TypeParameter_bound());
// Load name from parameter.
loop_body += LoadLocal(current_param);
loop_body += LoadNativeField(Slot::TypeParameter_name());
// Assert that the type the parameter is instantiated as is consistent with
// the bounds of the parameter.
loop_body += AssertSubtype(TokenPosition::kNoSource);
loop_body += Goto(next);
Fragment loop_incr(next);
loop_incr += DropTemporary(&current_param);
loop_incr += LoadLocal(info.vars->current_param_index);
loop_incr += IntConstant(1);
loop_incr += SmiBinaryOp(Token::kADD, /*is_truncating=*/true);
loop_incr += StoreLocal(info.vars->current_param_index);
loop_incr += Drop();
loop_incr += Goto(loop);
return Fragment(loop_init.entry, done);
}
Fragment FlowGraphBuilder::BuildClosureCallArgumentTypeCheck(
const ClosureCallInfo& info,
LocalVariable* param_index,
intptr_t arg_index,
const String& arg_name) {
Fragment instructions;
// Load value.
instructions += LoadLocal(parsed_function_->ParameterVariable(arg_index));
// Load destination type.
instructions += LoadLocal(info.parameter_types);
instructions += LoadLocal(param_index);
instructions += LoadIndexed(kArrayCid);
// Load instantiator type arguments.
instructions += LoadLocal(info.instantiator_type_args);
// Load the full set of function type arguments.
instructions += LoadLocal(info.vars->function_type_args);
// Check that the value has the right type.
instructions += AssertAssignable(TokenPosition::kNoSource, arg_name,
AssertAssignableInstr::kParameterCheck);
// Make sure to store the result to keep data dependencies accurate.
instructions += StoreLocal(parsed_function_->ParameterVariable(arg_index));
instructions += Drop();
return instructions;
}
Fragment FlowGraphBuilder::BuildClosureCallArgumentTypeChecks(
const ClosureCallInfo& info) {
Fragment instructions;
// Only check explicit arguments (i.e., skip the receiver), as the receiver
// is always assignable to its type (stored as dynamic).
for (intptr_t i = 1; i < info.descriptor.PositionalCount(); i++) {
instructions += IntConstant(i);
LocalVariable* param_index = MakeTemporary("param_index");
// We don't have a compile-time name, so this symbol signals the runtime
// that it should recreate the type check using info from the stack.
instructions += BuildClosureCallArgumentTypeCheck(
info, param_index, i, Symbols::dynamic_assert_assignable_stc_check());
instructions += DropTemporary(&param_index);
}
for (intptr_t i = 0; i < info.descriptor.NamedCount(); i++) {
const intptr_t arg_index = info.descriptor.PositionAt(i);
const auto& arg_name = String::ZoneHandle(Z, info.descriptor.NameAt(i));
auto const param_index = info.vars->named_argument_parameter_indices.At(i);
instructions += BuildClosureCallArgumentTypeCheck(info, param_index,
arg_index, arg_name);
}
return instructions;
}
Fragment FlowGraphBuilder::BuildDynamicClosureCallChecks(
LocalVariable* closure) {
ClosureCallInfo info(closure, BuildThrowNoSuchMethod(),
saved_args_desc_array(),
parsed_function_->dynamic_closure_call_vars());
Fragment body;
body += LoadLocal(info.closure);
body += LoadNativeField(Slot::Closure_function());
info.function = MakeTemporary("function");
body += LoadLocal(info.function);
body += BuildExtractUnboxedSlotBitFieldIntoSmi<
Function::PackedNumFixedParameters>(Slot::Function_packed_fields());
info.num_fixed_params = MakeTemporary("num_fixed_params");
body += LoadLocal(info.function);
body += BuildExtractUnboxedSlotBitFieldIntoSmi<
Function::PackedNumOptionalParameters>(Slot::Function_packed_fields());
info.num_opt_params = MakeTemporary("num_opt_params");
body += LoadLocal(info.num_fixed_params);
body += LoadLocal(info.num_opt_params);
body += SmiBinaryOp(Token::kADD);
info.num_max_params = MakeTemporary("num_max_params");
body += LoadLocal(info.function);
body += BuildExtractUnboxedSlotBitFieldIntoSmi<
Function::PackedHasNamedOptionalParameters>(
Slot::Function_packed_fields());
body += IntConstant(0);
body += StrictCompare(Token::kNE_STRICT);
info.has_named_params = MakeTemporary("has_named_params");
body += LoadLocal(info.function);
body += LoadNativeField(Slot::Function_parameter_names());
info.parameter_names = MakeTemporary("parameter_names");
body += LoadLocal(info.function);
body += LoadNativeField(Slot::Function_signature());
body += LoadNativeField(Slot::FunctionType_parameter_types());
info.parameter_types = MakeTemporary("parameter_types");
body += LoadLocal(info.function);
body += LoadNativeField(Slot::Function_signature());
body += LoadNativeField(Slot::FunctionType_type_parameters());
info.type_parameters = MakeTemporary("type_parameters");
body += LoadLocal(info.closure);
body += LoadNativeField(Slot::Closure_instantiator_type_arguments());
info.instantiator_type_args = MakeTemporary("instantiator_type_args");
body += LoadLocal(info.closure);
body += LoadNativeField(Slot::Closure_function_type_arguments());
info.parent_function_type_args = MakeTemporary("parent_function_type_args");
// At this point, all the read-only temporaries stored in the ClosureCallInfo
// should be either loaded or still nullptr, if not needed for this function.
// Now we check that the arguments to the closure call have the right shape.
body += BuildClosureCallArgumentsValidCheck(info);
// If the closure function is not generic, there are no local function type
// args. Thus, use whatever was stored for the parent function type arguments,
// which has already been checked against any parent type parameter bounds.
Fragment not_generic;
not_generic += LoadLocal(info.parent_function_type_args);
not_generic += StoreLocal(info.vars->function_type_args);
not_generic += Drop();
// If the closure function is generic, then we first need to calculate the
// full set of function type arguments, then check the local function type
// arguments against the closure function's type parameter bounds.
Fragment generic;
generic += LoadLocal(info.function);
generic += LoadNativeField(Slot::Function_data());
info.closure_data = MakeTemporary("closure_data");
generic += LoadLocal(info.closure_data);
generic += LoadNativeField(Slot::ClosureData_default_type_arguments_info());
info.default_tav_info = MakeTemporary("default_tav_info");
// Calculate the local function type arguments and store them in
// info.vars->function_type_args.
generic += BuildClosureCallDefaultTypeHandling(info);
// Load the local function type args.
generic += LoadLocal(info.vars->function_type_args);
// Load the parent function type args.
generic += LoadLocal(info.parent_function_type_args);
// Load the number of parent type parameters.
generic += LoadLocal(info.default_tav_info);
static_assert(Function::NumParentTypeParametersField::shift() > 0,
"No need to shift for NumParentTypeParametersField bit field");
generic += IntConstant(Function::NumParentTypeParametersField::shift());
generic += SmiBinaryOp(Token::kSHR);
generic += IntConstant(Function::NumParentTypeParametersField::mask());
generic += SmiBinaryOp(Token::kBIT_AND);
// Load the number of total type parameters.
LocalVariable* num_parents = MakeTemporary();
generic += LoadLocal(info.type_parameters);
generic += LoadNativeField(Slot::TypeArguments_length());
generic += LoadLocal(num_parents);
generic += SmiBinaryOp(Token::kADD, /*is_truncating=*/true);
// Call the static function for prepending type arguments.
generic += StaticCall(TokenPosition::kNoSource,
PrependTypeArgumentsFunction(), 4, ICData::kStatic);
generic += StoreLocal(info.vars->function_type_args);
generic += Drop();
generic += DropTemporary(&info.default_tav_info);
generic += DropTemporary(&info.closure_data);
// Now that we have the full set of function type arguments, check them
// against the type parameter bounds. However, if the local function type
// arguments are delayed type arguments, they have already been checked by
// the type system and need not be checked again at the call site.
auto const check_bounds = BuildClosureCallTypeArgumentsTypeCheck(info);
if (FLAG_eliminate_type_checks) {
generic += TestDelayedTypeArgs(info.closure, /*present=*/{},
/*absent=*/check_bounds);
} else {
generic += check_bounds;
}
// Call the appropriate fragment for setting up the function type arguments
// and performing any needed type argument checking.
body += TestClosureFunctionGeneric(info, generic, not_generic);
// Check that the values provided as arguments are assignable to the types
// of the corresponding closure function parameters.
body += BuildClosureCallArgumentTypeChecks(info);
// Drop all the read-only temporaries at the end of the fragment.
body += DropTemporary(&info.parent_function_type_args);
body += DropTemporary(&info.instantiator_type_args);
body += DropTemporary(&info.type_parameters);
body += DropTemporary(&info.parameter_types);
body += DropTemporary(&info.parameter_names);
body += DropTemporary(&info.has_named_params);
body += DropTemporary(&info.num_max_params);
body += DropTemporary(&info.num_opt_params);
body += DropTemporary(&info.num_fixed_params);
body += DropTemporary(&info.function);
return body;
}
FlowGraph* FlowGraphBuilder::BuildGraphOfInvokeFieldDispatcher(
const Function& function) {
const ArgumentsDescriptor descriptor(saved_args_desc_array());
// Find the name of the field we should dispatch to.
const Class& owner = Class::Handle(Z, function.Owner());
ASSERT(!owner.IsNull());
auto& field_name = String::Handle(Z, function.name());
// If the field name has a dyn: tag, then remove it. We don't add dynamic
// invocation forwarders for field getters used for invoking, we just use
// the tag in the name of the invoke field dispatcher to detect dynamic calls.
const bool is_dynamic_call =
Function::IsDynamicInvocationForwarderName(field_name);
if (is_dynamic_call) {
field_name = Function::DemangleDynamicInvocationForwarderName(field_name);
}
const String& getter_name = String::ZoneHandle(
Z, Symbols::New(thread_,
String::Handle(Z, Field::GetterSymbol(field_name))));
// Determine if this is `class Closure { get call => this; }`
const Class& closure_class =
Class::Handle(Z, IG->object_store()->closure_class());
const bool is_closure_call = (owner.ptr() == closure_class.ptr()) &&
field_name.Equals(Symbols::Call());
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
PrologueInfo prologue_info(-1, -1);
BlockEntryInstr* instruction_cursor =
BuildPrologue(normal_entry, &prologue_info);
Fragment body(instruction_cursor);
body += CheckStackOverflowInPrologue(function.token_pos());
// Build any dynamic closure call checks before pushing arguments to the
// final call on the stack to make debugging easier.
LocalVariable* closure = nullptr;
if (is_closure_call) {
closure = parsed_function_->ParameterVariable(0);
if (is_dynamic_call) {
// The whole reason for making this invoke field dispatcher is that
// this closure call needs checking, so we shouldn't inline a call to an
// unchecked entry that can't tail call NSM.
InlineBailout(
"kernel::FlowGraphBuilder::BuildGraphOfInvokeFieldDispatcher");
body += BuildDynamicClosureCallChecks(closure);
}
}
if (descriptor.TypeArgsLen() > 0) {
LocalVariable* type_args = parsed_function_->function_type_arguments();
ASSERT(type_args != nullptr);
body += LoadLocal(type_args);
}
if (is_closure_call) {
// The closure itself is the first argument.
body += LoadLocal(closure);
} else {
// Invoke the getter to get the field value.
body += LoadLocal(parsed_function_->ParameterVariable(0));
const intptr_t kTypeArgsLen = 0;
const intptr_t kNumArgsChecked = 1;
body += InstanceCall(TokenPosition::kMinSource, getter_name, Token::kGET,
kTypeArgsLen, 1, Array::null_array(), kNumArgsChecked);
}
// Push all arguments onto the stack.
for (intptr_t pos = 1; pos < descriptor.Count(); pos++) {
body += LoadLocal(parsed_function_->ParameterVariable(pos));
}
// Construct argument names array if necessary.
const Array* argument_names = &Object::null_array();
if (descriptor.NamedCount() > 0) {
const auto& array_handle =
Array::ZoneHandle(Z, Array::New(descriptor.NamedCount(), Heap::kNew));
String& string_handle = String::Handle(Z);
for (intptr_t i = 0; i < descriptor.NamedCount(); ++i) {
const intptr_t named_arg_index =
descriptor.PositionAt(i) - descriptor.PositionalCount();
string_handle = descriptor.NameAt(i);
array_handle.SetAt(named_arg_index, string_handle);
}
argument_names = &array_handle;
}
if (is_closure_call) {
// Lookup the function in the closure.
body += LoadLocal(closure);
body += LoadNativeField(Slot::Closure_function());
body += ClosureCall(TokenPosition::kNoSource, descriptor.TypeArgsLen(),
descriptor.Count(), *argument_names);
} else {
const intptr_t kNumArgsChecked = 1;
body +=
InstanceCall(TokenPosition::kMinSource,
is_dynamic_call ? Symbols::DynamicCall() : Symbols::Call(),
Token::kILLEGAL, descriptor.TypeArgsLen(),
descriptor.Count(), *argument_names, kNumArgsChecked);
}
body += Return(TokenPosition::kNoSource);
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
FlowGraph* FlowGraphBuilder::BuildGraphOfNoSuchMethodForwarder(
const Function& function,
bool is_implicit_closure_function,
bool throw_no_such_method_error) {
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
PrologueInfo prologue_info(-1, -1);
BlockEntryInstr* instruction_cursor =
BuildPrologue(normal_entry, &prologue_info);
Fragment body(instruction_cursor);
body += CheckStackOverflowInPrologue(function.token_pos());
// If we are inside the tearoff wrapper function (implicit closure), we need
// to extract the receiver from the context. We just replace it directly on
// the stack to simplify the rest of the code.
if (is_implicit_closure_function && !function.is_static()) {
if (parsed_function_->has_arg_desc_var()) {
body += LoadArgDescriptor();
body += LoadNativeField(Slot::ArgumentsDescriptor_size());
} else {
ASSERT(function.NumOptionalParameters() == 0);
body += IntConstant(function.NumParameters());
}
body += LoadLocal(parsed_function_->current_context_var());
body += LoadNativeField(Slot::GetContextVariableSlotFor(
thread_, *parsed_function_->receiver_var()));
body += StoreFpRelativeSlot(
kWordSize * compiler::target::frame_layout.param_end_from_fp);
}
if (function.NeedsTypeArgumentTypeChecks()) {
BuildTypeArgumentTypeChecks(TypeChecksToBuild::kCheckAllTypeParameterBounds,
&body);
}
if (function.NeedsArgumentTypeChecks()) {
BuildArgumentTypeChecks(&body, &body, nullptr);
}
body += MakeTemp();
LocalVariable* result = MakeTemporary();
// Do "++argument_count" if any type arguments were passed.
LocalVariable* argument_count_var = parsed_function_->expression_temp_var();
body += IntConstant(0);
body += StoreLocal(TokenPosition::kNoSource, argument_count_var);
body += Drop();
if (function.IsGeneric()) {
Fragment then;
Fragment otherwise;
otherwise += IntConstant(1);
otherwise += StoreLocal(TokenPosition::kNoSource, argument_count_var);
otherwise += Drop();
body += TestAnyTypeArgs(then, otherwise);
}
if (function.HasOptionalParameters()) {
body += LoadArgDescriptor();
body += LoadNativeField(Slot::ArgumentsDescriptor_size());
} else {
body += IntConstant(function.NumParameters());
}
body += LoadLocal(argument_count_var);
body += SmiBinaryOp(Token::kADD, /* truncate= */ true);
LocalVariable* argument_count = MakeTemporary();
// We are generating code like the following:
//
// var arguments = new Array<dynamic>(argument_count);
//
// int i = 0;
// if (any type arguments are passed) {
// arguments[0] = function_type_arguments;
// ++i;
// }
//
// for (; i < argument_count; ++i) {
// arguments[i] = LoadFpRelativeSlot(
// kWordSize * (frame_layout.param_end_from_fp + argument_count - i));
// }
body += Constant(TypeArguments::ZoneHandle(Z, TypeArguments::null()));
body += LoadLocal(argument_count);
body += CreateArray();
LocalVariable* arguments = MakeTemporary();
{
// int i = 0
LocalVariable* index = parsed_function_->expression_temp_var();
body += IntConstant(0);
body += StoreLocal(TokenPosition::kNoSource, index);
body += Drop();
// if (any type arguments are passed) {
// arguments[0] = function_type_arguments;
// i = 1;
// }
if (function.IsGeneric()) {
Fragment store;
store += LoadLocal(arguments);
store += IntConstant(0);
store += LoadFunctionTypeArguments();
store += StoreIndexed(kArrayCid);
store += IntConstant(1);
store += StoreLocal(TokenPosition::kNoSource, index);
store += Drop();
body += TestAnyTypeArgs(store, Fragment());
}
TargetEntryInstr* body_entry;
TargetEntryInstr* loop_exit;
Fragment condition;
// i < argument_count
condition += LoadLocal(index);
condition += LoadLocal(argument_count);
condition += SmiRelationalOp(Token::kLT);
condition += BranchIfTrue(&body_entry, &loop_exit, /*negate=*/false);
Fragment loop_body(body_entry);
// arguments[i] = LoadFpRelativeSlot(
// kWordSize * (frame_layout.param_end_from_fp + argument_count - i));
loop_body += LoadLocal(arguments);
loop_body += LoadLocal(index);
loop_body += LoadLocal(argument_count);
loop_body += LoadLocal(index);
loop_body += SmiBinaryOp(Token::kSUB, /*truncate=*/true);
loop_body +=
LoadFpRelativeSlot(compiler::target::kWordSize *
compiler::target::frame_layout.param_end_from_fp,
CompileType::Dynamic());
loop_body += StoreIndexed(kArrayCid);
// ++i
loop_body += LoadLocal(index);
loop_body += IntConstant(1);
loop_body += SmiBinaryOp(Token::kADD, /*truncate=*/true);
loop_body += StoreLocal(TokenPosition::kNoSource, index);
loop_body += Drop();
JoinEntryInstr* join = BuildJoinEntry();
loop_body += Goto(join);
Fragment loop(join);
loop += condition;
Instruction* entry =
new (Z) GotoInstr(join, CompilerState::Current().GetNextDeoptId());
body += Fragment(entry, loop_exit);
}
// Load receiver.
if (is_implicit_closure_function) {
if (throw_no_such_method_error) {
const Function& parent =
Function::ZoneHandle(Z, function.parent_function());
const Class& owner = Class::ZoneHandle(Z, parent.Owner());
AbstractType& type = AbstractType::ZoneHandle(Z);
type = Type::New(owner, TypeArguments::Handle(Z));
type = ClassFinalizer::FinalizeType(type);
body += Constant(type);
} else {
body += LoadLocal(parsed_function_->current_context_var());
body += LoadNativeField(Slot::GetContextVariableSlotFor(
thread_, *parsed_function_->receiver_var()));
}
} else {
body += LoadLocal(parsed_function_->ParameterVariable(0));
}
body += Constant(String::ZoneHandle(Z, function.name()));
if (!parsed_function_->has_arg_desc_var()) {
// If there is no variable for the arguments descriptor (this function's
// signature doesn't require it), then we need to create one.
Array& args_desc = Array::ZoneHandle(
Z, ArgumentsDescriptor::NewBoxed(0, function.NumParameters()));
body += Constant(args_desc);
} else {
body += LoadArgDescriptor();
}
body += LoadLocal(arguments);
if (throw_no_such_method_error) {
const Function& parent =
Function::ZoneHandle(Z, function.parent_function());
const Class& owner = Class::ZoneHandle(Z, parent.Owner());
InvocationMirror::Level im_level = owner.IsTopLevel()
? InvocationMirror::kTopLevel
: InvocationMirror::kStatic;
InvocationMirror::Kind im_kind;
if (function.IsImplicitGetterFunction() || function.IsGetterFunction()) {
im_kind = InvocationMirror::kGetter;
} else if (function.IsImplicitSetterFunction() ||
function.IsSetterFunction()) {
im_kind = InvocationMirror::kSetter;
} else {
im_kind = InvocationMirror::kMethod;
}
body += IntConstant(InvocationMirror::EncodeType(im_level, im_kind));
} else {
body += NullConstant();
}
// Push the number of delayed type arguments.
if (function.IsClosureFunction()) {
LocalVariable* closure = parsed_function_->ParameterVariable(0);
Fragment then;
then += IntConstant(function.NumTypeParameters());
then += StoreLocal(TokenPosition::kNoSource, argument_count_var);
then += Drop();
Fragment otherwise;
otherwise += IntConstant(0);
otherwise += StoreLocal(TokenPosition::kNoSource, argument_count_var);
otherwise += Drop();
body += TestDelayedTypeArgs(closure, then, otherwise);
body += LoadLocal(argument_count_var);
} else {
body += IntConstant(0);
}
const Class& mirror_class =
Class::Handle(Z, Library::LookupCoreClass(Symbols::InvocationMirror()));
ASSERT(!mirror_class.IsNull());
const auto& error = mirror_class.EnsureIsFinalized(H.thread());
ASSERT(error == Error::null());
const Function& allocation_function = Function::ZoneHandle(
Z, mirror_class.LookupStaticFunction(Library::PrivateCoreLibName(
Symbols::AllocateInvocationMirrorForClosure())));
ASSERT(!allocation_function.IsNull());
body += StaticCall(TokenPosition::kMinSource, allocation_function,
/* argument_count = */ 5, ICData::kStatic);
if (throw_no_such_method_error) {
const Class& klass = Class::ZoneHandle(
Z, Library::LookupCoreClass(Symbols::NoSuchMethodError()));
ASSERT(!klass.IsNull());
const auto& error = klass.EnsureIsFinalized(H.thread());
ASSERT(error == Error::null());
const Function& throw_function = Function::ZoneHandle(
Z,
klass.LookupStaticFunctionAllowPrivate(Symbols::ThrowNewInvocation()));
ASSERT(!throw_function.IsNull());
body += StaticCall(TokenPosition::kNoSource, throw_function, 2,
ICData::kStatic);
} else {
body += InstanceCall(
TokenPosition::kNoSource, Symbols::NoSuchMethod(), Token::kILLEGAL,
/*type_args_len=*/0, /*argument_count=*/2, Array::null_array(),
/*checked_argument_count=*/1);
}
body += StoreLocal(TokenPosition::kNoSource, result);
body += Drop();
body += Drop(); // arguments
body += Drop(); // argument count
AbstractType& return_type = AbstractType::Handle(function.result_type());
if (!return_type.IsTopTypeForSubtyping()) {
body += AssertAssignableLoadTypeArguments(TokenPosition::kNoSource,
return_type, Symbols::Empty());
}
body += Return(TokenPosition::kNoSource);
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
Fragment FlowGraphBuilder::BuildDefaultTypeHandling(const Function& function) {
if (function.IsGeneric()) {
auto& default_types =
TypeArguments::ZoneHandle(Z, function.InstantiateToBounds(thread_));
if (!default_types.IsNull()) {
Fragment then;
Fragment otherwise;
otherwise += TranslateInstantiatedTypeArguments(default_types);
otherwise += StoreLocal(TokenPosition::kNoSource,
parsed_function_->function_type_arguments());
otherwise += Drop();
return TestAnyTypeArgs(then, otherwise);
}
}
return Fragment();
}
FunctionEntryInstr* FlowGraphBuilder::BuildSharedUncheckedEntryPoint(
Fragment shared_prologue_linked_in,
Fragment skippable_checks,
Fragment redefinitions_if_skipped,
Fragment body) {
ASSERT(shared_prologue_linked_in.entry == graph_entry_->normal_entry());
ASSERT(parsed_function_->has_entry_points_temp_var());
Instruction* prologue_start = shared_prologue_linked_in.entry->next();
auto* join_entry = BuildJoinEntry();
Fragment normal_entry(shared_prologue_linked_in.entry);
normal_entry +=
IntConstant(static_cast<intptr_t>(UncheckedEntryPointStyle::kNone));
normal_entry += StoreLocal(TokenPosition::kNoSource,
parsed_function_->entry_points_temp_var());
normal_entry += Drop();
normal_entry += Goto(join_entry);
auto* extra_target_entry = BuildFunctionEntry(graph_entry_);
Fragment extra_entry(extra_target_entry);
extra_entry += IntConstant(
static_cast<intptr_t>(UncheckedEntryPointStyle::kSharedWithVariable));
extra_entry += StoreLocal(TokenPosition::kNoSource,
parsed_function_->entry_points_temp_var());
extra_entry += Drop();
extra_entry += Goto(join_entry);
if (prologue_start != nullptr) {
join_entry->LinkTo(prologue_start);
} else {
// Prologue is empty.
shared_prologue_linked_in.current = join_entry;
}
TargetEntryInstr *do_checks, *skip_checks;
shared_prologue_linked_in +=
LoadLocal(parsed_function_->entry_points_temp_var());
shared_prologue_linked_in += BuildEntryPointsIntrospection();
shared_prologue_linked_in +=
LoadLocal(parsed_function_->entry_points_temp_var());
shared_prologue_linked_in += IntConstant(
static_cast<intptr_t>(UncheckedEntryPointStyle::kSharedWithVariable));
shared_prologue_linked_in +=
BranchIfEqual(&skip_checks, &do_checks, /*negate=*/false);
JoinEntryInstr* rest_entry = BuildJoinEntry();
Fragment(do_checks) + skippable_checks + Goto(rest_entry);
Fragment(skip_checks) + redefinitions_if_skipped + Goto(rest_entry);
Fragment(rest_entry) + body;
return extra_target_entry;
}
FunctionEntryInstr* FlowGraphBuilder::BuildSeparateUncheckedEntryPoint(
BlockEntryInstr* normal_entry,
Fragment normal_prologue,
Fragment extra_prologue,
Fragment shared_prologue,
Fragment body) {
auto* join_entry = BuildJoinEntry();
auto* extra_entry = BuildFunctionEntry(graph_entry_);
Fragment normal(normal_entry);
normal += IntConstant(static_cast<intptr_t>(UncheckedEntryPointStyle::kNone));
normal += BuildEntryPointsIntrospection();
normal += normal_prologue;
normal += Goto(join_entry);
Fragment extra(extra_entry);
extra +=
IntConstant(static_cast<intptr_t>(UncheckedEntryPointStyle::kSeparate));
extra += BuildEntryPointsIntrospection();
extra += extra_prologue;
extra += Goto(join_entry);
Fragment(join_entry) + shared_prologue + body;
return extra_entry;
}
FlowGraph* FlowGraphBuilder::BuildGraphOfImplicitClosureFunction(
const Function& function) {
const Function& parent = Function::ZoneHandle(Z, function.parent_function());
Function& target = Function::ZoneHandle(Z, function.ImplicitClosureTarget(Z));
if (target.IsNull() ||
(parent.num_fixed_parameters() != target.num_fixed_parameters())) {
return BuildGraphOfNoSuchMethodForwarder(function, true,
parent.is_static());
}
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
PrologueInfo prologue_info(-1, -1);
BlockEntryInstr* instruction_cursor =
BuildPrologue(normal_entry, &prologue_info);
Fragment closure(instruction_cursor);
closure += CheckStackOverflowInPrologue(function.token_pos());
closure += BuildDefaultTypeHandling(function);
// For implicit closure functions, any non-covariant checks are either
// performed by the type system or a dynamic invocation layer (dynamic closure
// call dispatcher, mirror, etc.). Static targets never have covariant
// arguments, and for non-static targets, they already perform the covariant
// checks internally. Thus, no checks are needed and we just need to invoke
// the target with the right receiver (unless static).
//
// TODO(dartbug.com/44195): Consider replacing the argument pushes + static
// call with stack manipulation and a tail call instead.
intptr_t type_args_len = 0;
if (function.IsGeneric()) {
type_args_len = function.NumTypeParameters();
ASSERT(parsed_function_->function_type_arguments() != NULL);
closure += LoadLocal(parsed_function_->function_type_arguments());
}
// Push receiver.
if (!target.is_static()) {
// The context has a fixed shape: a single variable which is the
// closed-over receiver.
closure += LoadLocal(parsed_function_->ParameterVariable(0));
closure += LoadNativeField(Slot::Closure_context());
closure += LoadNativeField(Slot::GetContextVariableSlotFor(
thread_, *parsed_function_->receiver_var()));
}
closure += PushExplicitParameters(function);
// Forward parameters to the target.
intptr_t argument_count = function.NumParameters() -
function.NumImplicitParameters() +
(target.is_static() ? 0 : 1);
ASSERT(argument_count == target.NumParameters());
Array& argument_names =
Array::ZoneHandle(Z, GetOptionalParameterNames(function));
closure += StaticCall(TokenPosition::kNoSource, target, argument_count,
argument_names, ICData::kNoRebind,
/* result_type = */ NULL, type_args_len);
// Return the result.
closure += Return(function.end_token_pos());
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
FlowGraph* FlowGraphBuilder::BuildGraphOfFieldAccessor(
const Function& function) {
ASSERT(function.IsImplicitGetterOrSetter() ||
function.IsDynamicInvocationForwarder());
// Instead of building a dynamic invocation forwarder that checks argument
// type and then invokes original setter we simply generate the type check
// and inlined field store. Scope builder takes care of setting correct
// type check mode in this case.
const auto& target = Function::Handle(
Z, function.IsDynamicInvocationForwarder() ? function.ForwardingTarget()
: function.ptr());
ASSERT(target.IsImplicitGetterOrSetter());
const bool is_method = !function.IsStaticFunction();
const bool is_setter = target.IsImplicitSetterFunction();
const bool is_getter = target.IsImplicitGetterFunction() ||
target.IsImplicitStaticGetterFunction();
ASSERT(is_setter || is_getter);
const auto& field = Field::ZoneHandle(Z, target.accessor_field());
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
Fragment body(normal_entry);
if (is_setter) {
auto const setter_value =
parsed_function_->ParameterVariable(is_method ? 1 : 0);
if (is_method) {
body += LoadLocal(parsed_function_->ParameterVariable(0));
}
body += LoadLocal(setter_value);
// The dyn:* forwarder has to check the parameters that the
// actual target will not check.
// Though here we manually inline the target, so the dyn:* forwarder has to
// check all parameters.
const bool needs_type_check = function.IsDynamicInvocationForwarder() ||
setter_value->needs_type_check();
if (needs_type_check) {
body += CheckAssignable(setter_value->type(), setter_value->name(),
AssertAssignableInstr::kParameterCheck);
}
body += BuildNullAssertions();
if (field.is_late()) {
if (is_method) {
body += Drop();
}
body += Drop();
body += StoreLateField(
field, is_method ? parsed_function_->ParameterVariable(0) : nullptr,
setter_value);
} else {
if (is_method) {
body += StoreInstanceFieldGuarded(
field, StoreInstanceFieldInstr::Kind::kOther);
} else {
body += StoreStaticField(TokenPosition::kNoSource, field);
}
}
body += NullConstant();
} else if (is_getter && is_method) {
ASSERT(!field.needs_load_guard()
NOT_IN_PRODUCT(|| I->HasAttemptedReload()));
body += LoadLocal(parsed_function_->ParameterVariable(0));
body += LoadField(
field, /*calls_initializer=*/field.NeedsInitializationCheckOnLoad());
if (field.needs_load_guard()) {
#if defined(PRODUCT)
UNREACHABLE();
#else
body += CheckAssignable(AbstractType::Handle(Z, field.type()),
Symbols::FunctionResult());
#endif
}
} else if (field.is_const()) {
const auto& value = Object::Handle(Z, field.StaticConstFieldValue());
if (value.IsError()) {
Report::LongJump(Error::Cast(value));
}
body += Constant(Instance::ZoneHandle(Z, Instance::RawCast(value.ptr())));
} else {
// Static fields
// - with trivial initializer
// - without initializer if they are not late
// are initialized eagerly and do not have implicit getters.
// Static fields with non-trivial initializer need getter to perform
// lazy initialization. Late fields without initializer need getter
// to make sure they are already initialized.
ASSERT(field.has_nontrivial_initializer() ||
(field.is_late() && !field.has_initializer()));
body += LoadStaticField(field, /*calls_initializer=*/true);
if (field.needs_load_guard()) {
#if defined(PRODUCT)
UNREACHABLE();
#else
ASSERT(Isolate::Current()->HasAttemptedReload());
body += CheckAssignable(AbstractType::Handle(Z, field.type()),
Symbols::FunctionResult());
#endif
}
}
body += Return(TokenPosition::kNoSource);
PrologueInfo prologue_info(-1, -1);
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
FlowGraph* FlowGraphBuilder::BuildGraphOfDynamicInvocationForwarder(
const Function& function) {
auto& name = String::Handle(Z, function.name());
name = Function::DemangleDynamicInvocationForwarderName(name);
const auto& target = Function::ZoneHandle(Z, function.ForwardingTarget());
ASSERT(!target.IsNull());
if (target.IsImplicitSetterFunction() || target.IsImplicitGetterFunction()) {
return BuildGraphOfFieldAccessor(function);
}
if (target.IsMethodExtractor()) {
return BuildGraphOfMethodExtractor(target);
}
graph_entry_ = new (Z) GraphEntryInstr(*parsed_function_, osr_id_);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
PrologueInfo prologue_info(-1, -1);
auto instruction_cursor = BuildPrologue(normal_entry, &prologue_info);
Fragment body;
if (!function.is_native()) {
body += CheckStackOverflowInPrologue(function.token_pos());
}
ASSERT(parsed_function_->scope()->num_context_variables() == 0);
// Should never build a dynamic invocation forwarder for equality
// operator.
ASSERT(function.name() != Symbols::EqualOperator().ptr());
// Even if the caller did not pass argument vector we would still
// call the target with instantiate-to-bounds type arguments.
body += BuildDefaultTypeHandling(function);
// Build argument type checks that complement those that are emitted in the
// target.
BuildTypeArgumentTypeChecks(
TypeChecksToBuild::kCheckNonCovariantTypeParameterBounds, &body);
BuildArgumentTypeChecks(&body, &body, nullptr);
// Push all arguments and invoke the original method.
intptr_t type_args_len = 0;
if (function.IsGeneric()) {
type_args_len = function.NumTypeParameters();
ASSERT(parsed_function_->function_type_arguments() != nullptr);
body += LoadLocal(parsed_function_->function_type_arguments());
}
// Push receiver.
ASSERT(function.NumImplicitParameters() == 1);
body += LoadLocal(parsed_function_->receiver_var());
body += PushExplicitParameters(function, target);
const intptr_t argument_count = function.NumParameters();
const auto& argument_names =
Array::ZoneHandle(Z, GetOptionalParameterNames(function));
body += StaticCall(TokenPosition::kNoSource, target, argument_count,
argument_names, ICData::kNoRebind, nullptr, type_args_len);
if (target.has_unboxed_integer_return()) {
body += Box(kUnboxedInt64);
} else if (target.has_unboxed_double_return()) {
body += Box(kUnboxedDouble);
}
// Later optimization passes assume that result of a x.[]=(...) call is not
// used. We must guarantee this invariant because violation will lead to an
// illegal IL once we replace x.[]=(...) with a sequence that does not
// actually produce any value. See http://dartbug.com/29135 for more details.
if (name.ptr() == Symbols::AssignIndexToken().ptr()) {
body += Drop();
body += NullConstant();
}
body += Return(TokenPosition::kNoSource);
instruction_cursor->LinkTo(body.entry);
// When compiling for OSR, use a depth first search to find the OSR
// entry and make graph entry jump to it instead of normal entry.
// Catch entries are always considered reachable, even if they
// become unreachable after OSR.
if (IsCompiledForOsr()) {
graph_entry_->RelinkToOsrEntry(Z, last_used_block_id_ + 1);
}
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
void FlowGraphBuilder::SetConstantRangeOfCurrentDefinition(
const Fragment& fragment,
int64_t min,
int64_t max) {
ASSERT(fragment.current->IsDefinition());
Range range(RangeBoundary::FromConstant(min),
RangeBoundary::FromConstant(max));
fragment.current->AsDefinition()->set_range(range);
}
static classid_t TypedDataCidUnboxed(Representation unboxed_representation) {
switch (unboxed_representation) {
case kUnboxedFloat:
// Note kTypedDataFloat32ArrayCid loads kUnboxedDouble.
UNREACHABLE();
return kTypedDataFloat32ArrayCid;
case kUnboxedInt32:
return kTypedDataInt32ArrayCid;
case kUnboxedUint32:
return kTypedDataUint32ArrayCid;
case kUnboxedInt64:
return kTypedDataInt64ArrayCid;
case kUnboxedDouble:
return kTypedDataFloat64ArrayCid;
default:
UNREACHABLE();
}
UNREACHABLE();
}
Fragment FlowGraphBuilder::StoreIndexedTypedDataUnboxed(
Representation unboxed_representation,
intptr_t index_scale,
bool index_unboxed) {
ASSERT(unboxed_representation == kUnboxedInt32 ||
unboxed_representation == kUnboxedUint32 ||
unboxed_representation == kUnboxedInt64 ||
unboxed_representation == kUnboxedFloat ||
unboxed_representation == kUnboxedDouble);
Fragment fragment;
if (unboxed_representation == kUnboxedFloat) {
fragment += BitCast(kUnboxedFloat, kUnboxedInt32);
unboxed_representation = kUnboxedInt32;
}
fragment += StoreIndexedTypedData(TypedDataCidUnboxed(unboxed_representation),
index_scale, index_unboxed);
return fragment;
}
Fragment FlowGraphBuilder::LoadIndexedTypedDataUnboxed(
Representation unboxed_representation,
intptr_t index_scale,
bool index_unboxed) {
ASSERT(unboxed_representation == kUnboxedInt32 ||
unboxed_representation == kUnboxedUint32 ||
unboxed_representation == kUnboxedInt64 ||
unboxed_representation == kUnboxedFloat ||
unboxed_representation == kUnboxedDouble);
Representation representation_for_load = unboxed_representation;
if (unboxed_representation == kUnboxedFloat) {
representation_for_load = kUnboxedInt32;
}
Fragment fragment;
fragment += LoadIndexed(TypedDataCidUnboxed(representation_for_load),
index_scale, index_unboxed);
if (unboxed_representation == kUnboxedFloat) {
fragment += BitCast(kUnboxedInt32, kUnboxedFloat);
}
return fragment;
}
Fragment FlowGraphBuilder::EnterHandleScope() {
auto* instr = new (Z)
EnterHandleScopeInstr(EnterHandleScopeInstr::Kind::kEnterHandleScope);
Push(instr);
return Fragment(instr);
}
Fragment FlowGraphBuilder::GetTopHandleScope() {
auto* instr = new (Z)
EnterHandleScopeInstr(EnterHandleScopeInstr::Kind::kGetTopHandleScope);
Push(instr);
return Fragment(instr);
}
Fragment FlowGraphBuilder::ExitHandleScope() {
auto* instr = new (Z) ExitHandleScopeInstr();
return Fragment(instr);
}
Fragment FlowGraphBuilder::AllocateHandle(LocalVariable* api_local_scope) {
Fragment code;
if (api_local_scope != nullptr) {
// Use the reference the scope we created in the trampoline.
code += LoadLocal(api_local_scope);
} else {
// Or get a reference to the top handle scope.
code += GetTopHandleScope();
}
Value* api_local_scope_value = Pop();
auto* instr = new (Z) AllocateHandleInstr(api_local_scope_value);
Push(instr);
code <<= instr;
return code;
}
Fragment FlowGraphBuilder::RawStoreField(int32_t offset) {
Fragment code;
Value* value = Pop();
Value* base = Pop();
auto* instr = new (Z) RawStoreFieldInstr(base, value, offset);
code <<= instr;
return code;
}
Fragment FlowGraphBuilder::WrapHandle(LocalVariable* api_local_scope) {
Fragment code;
LocalVariable* object = MakeTemporary();
code += AllocateHandle(api_local_scope);
code += LoadLocal(MakeTemporary()); // Duplicate handle pointer.
code += ConvertUnboxedToUntagged(kUnboxedIntPtr);
code += LoadLocal(object);
code += RawStoreField(compiler::target::LocalHandle::ptr_offset());
code += DropTempsPreserveTop(1); // Drop object below handle.
return code;
}
Fragment FlowGraphBuilder::UnwrapHandle() {
Fragment code;
code += ConvertUnboxedToUntagged(kUnboxedIntPtr);
code += IntConstant(compiler::target::LocalHandle::ptr_offset());
code += UnboxTruncate(kUnboxedIntPtr);
code += LoadIndexed(kArrayCid, /*index_scale=*/1, /*index_unboxed=*/true);
return code;
}
Fragment FlowGraphBuilder::UnhandledException() {
const auto class_table = thread_->isolate_group()->class_table();
ASSERT(class_table->HasValidClassAt(kUnhandledExceptionCid));
const auto& klass =
Class::ZoneHandle(H.zone(), class_table->At(kUnhandledExceptionCid));
ASSERT(!klass.IsNull());
Fragment body;
body += AllocateObject(TokenPosition::kNoSource, klass, 0);
LocalVariable* error_instance = MakeTemporary();
body += LoadLocal(error_instance);
body += LoadLocal(CurrentException());
body += StoreInstanceField(
TokenPosition::kNoSource, Slot::UnhandledException_exception(),
StoreInstanceFieldInstr::Kind::kInitializing, kNoStoreBarrier);
body += LoadLocal(error_instance);
body += LoadLocal(CurrentStackTrace());
body += StoreInstanceField(
TokenPosition::kNoSource, Slot::UnhandledException_stacktrace(),
StoreInstanceFieldInstr::Kind::kInitializing, kNoStoreBarrier);
return body;
}
Fragment FlowGraphBuilder::UnboxTruncate(Representation to) {
auto* unbox = UnboxInstr::Create(to, Pop(), DeoptId::kNone,
Instruction::kNotSpeculative);
Push(unbox);
return Fragment(unbox);
}
Fragment FlowGraphBuilder::NativeReturn(
const compiler::ffi::CallbackMarshaller& marshaller) {
auto* instr = new (Z)
NativeReturnInstr(InstructionSource(), Pop(), marshaller, DeoptId::kNone);
return Fragment(instr).closed();
}
Fragment FlowGraphBuilder::FfiPointerFromAddress(const Type& result_type) {
LocalVariable* address = MakeTemporary();
LocalVariable* result = parsed_function_->expression_temp_var();
Class& result_class = Class::ZoneHandle(Z, result_type.type_class());
// This class might only be instantiated as a return type of ffi calls.
result_class.EnsureIsFinalized(thread_);
TypeArguments& args = TypeArguments::ZoneHandle(Z, result_type.arguments());
// A kernel transform for FFI in the front-end ensures that type parameters
// do not appear in the type arguments to a any Pointer classes in an FFI
// signature.
ASSERT(args.IsNull() || args.IsInstantiated());
args = args.Canonicalize(thread_, nullptr);
Fragment code;
code += Constant(args);
code += AllocateObject(TokenPosition::kNoSource, result_class, 1);
LocalVariable* pointer = MakeTemporary();
code += LoadLocal(pointer);
code += LoadLocal(address);
code += UnboxTruncate(kUnboxedFfiIntPtr);
code += ConvertUnboxedToUntagged(kUnboxedFfiIntPtr);
code += StoreUntagged(compiler::target::Pointer::data_field_offset());
code += StoreLocal(TokenPosition::kNoSource, result);
code += Drop(); // StoreLocal^
code += Drop(); // address
code += LoadLocal(result);
return code;
}
Fragment FlowGraphBuilder::BitCast(Representation from, Representation to) {
BitCastInstr* instr = new (Z) BitCastInstr(from, to, Pop());
Push(instr);
return Fragment(instr);
}
Fragment FlowGraphBuilder::WrapTypedDataBaseInStruct(
const AbstractType& struct_type) {
const auto& struct_sub_class = Class::ZoneHandle(Z, struct_type.type_class());
struct_sub_class.EnsureIsFinalized(thread_);
const auto& lib_ffi = Library::Handle(Z, Library::FfiLibrary());
const auto& struct_class =
Class::Handle(Z, lib_ffi.LookupClass(Symbols::Struct()));
const auto& struct_addressof = Field::ZoneHandle(
Z, struct_class.LookupInstanceFieldAllowPrivate(Symbols::_addressOf()));
ASSERT(!struct_addressof.IsNull());
Fragment body;
LocalVariable* typed_data = MakeTemporary("typed_data_base");
body += AllocateObject(TokenPosition::kNoSource, struct_sub_class, 0);
body += LoadLocal(MakeTemporary("struct")); // Duplicate Struct.
body += LoadLocal(typed_data);
body += StoreInstanceField(struct_addressof,
StoreInstanceFieldInstr::Kind::kInitializing);
body += DropTempsPreserveTop(1); // Drop TypedData.
return body;
}
Fragment FlowGraphBuilder::LoadTypedDataBaseFromStruct() {
const Library& lib_ffi = Library::Handle(zone_, Library::FfiLibrary());
const Class& struct_class =
Class::Handle(zone_, lib_ffi.LookupClass(Symbols::Struct()));
const Field& struct_addressof = Field::ZoneHandle(
zone_,
struct_class.LookupInstanceFieldAllowPrivate(Symbols::_addressOf()));
ASSERT(!struct_addressof.IsNull());
Fragment body;
body += LoadField(struct_addressof, /*calls_initializer=*/false);
return body;
}
Fragment FlowGraphBuilder::CopyFromStructToStack(
LocalVariable* variable,
const GrowableArray<Representation>& representations) {
Fragment body;
const intptr_t num_defs = representations.length();
int offset_in_bytes = 0;
for (intptr_t i = 0; i < num_defs; i++) {
body += LoadLocal(variable);
body += LoadTypedDataBaseFromStruct();
body += LoadUntagged(compiler::target::Pointer::data_field_offset());
body += IntConstant(offset_in_bytes);
const Representation representation = representations[i];
offset_in_bytes += RepresentationUtils::ValueSize(representation);
body += LoadIndexedTypedDataUnboxed(representation, /*index_scale=*/1,
/*index_unboxed=*/false);
}
return body;
}
Fragment FlowGraphBuilder::PopFromStackToTypedDataBase(
ZoneGrowableArray<LocalVariable*>* definitions,
const GrowableArray<Representation>& representations) {
Fragment body;
const intptr_t num_defs = representations.length();
ASSERT(definitions->length() == num_defs);
LocalVariable* uint8_list = MakeTemporary("uint8_list");
int offset_in_bytes = 0;
for (intptr_t i = 0; i < num_defs; i++) {
const Representation representation = representations[i];
body += LoadLocal(uint8_list);
body += LoadUntagged(compiler::target::TypedDataBase::data_field_offset());
body += IntConstant(offset_in_bytes);
body += LoadLocal(definitions->At(i));
body += StoreIndexedTypedDataUnboxed(representation, /*index_scale=*/1,
/*index_unboxed=*/false);
offset_in_bytes += RepresentationUtils::ValueSize(representation);
}
body += DropTempsPreserveTop(num_defs); // Drop chunck defs keep TypedData.
return body;
}
static intptr_t chunk_size(intptr_t bytes_left) {
ASSERT(bytes_left >= 1);
if (bytes_left >= 8 && compiler::target::kWordSize == 8) {
return 8;
}
if (bytes_left >= 4) {
return 4;
}
if (bytes_left >= 2) {
return 2;
}
return 1;
}
static classid_t typed_data_cid(intptr_t chunk_size) {
switch (chunk_size) {
case 8:
return kTypedDataInt64ArrayCid;
case 4:
return kTypedDataInt32ArrayCid;
case 2:
return kTypedDataInt16ArrayCid;
case 1:
return kTypedDataInt8ArrayCid;
}
UNREACHABLE();
}
Fragment FlowGraphBuilder::CopyFromTypedDataBaseToUnboxedAddress(
intptr_t length_in_bytes) {
Fragment body;
Value* unboxed_address_value = Pop();
LocalVariable* typed_data_base = MakeTemporary("typed_data_base");
Push(unboxed_address_value->definition());
LocalVariable* unboxed_address = MakeTemporary("unboxed_address");
intptr_t offset_in_bytes = 0;
while (offset_in_bytes < length_in_bytes) {
const intptr_t bytes_left = length_in_bytes - offset_in_bytes;
const intptr_t chunk_sizee = chunk_size(bytes_left);
const classid_t typed_data_cidd = typed_data_cid(chunk_sizee);
body += LoadLocal(typed_data_base);
body += LoadUntagged(compiler::target::TypedDataBase::data_field_offset());
body += IntConstant(offset_in_bytes);
body += LoadIndexed(typed_data_cidd, /*index_scale=*/1,
/*index_unboxed=*/false);
LocalVariable* chunk_value = MakeTemporary("chunk_value");
body += LoadLocal(unboxed_address);
body += ConvertUnboxedToUntagged(kUnboxedFfiIntPtr);
body += IntConstant(offset_in_bytes);
body += LoadLocal(chunk_value);
body += StoreIndexedTypedData(typed_data_cidd, /*index_scale=*/1,
/*index_unboxed=*/false);
body += DropTemporary(&chunk_value);
offset_in_bytes += chunk_sizee;
}
ASSERT(offset_in_bytes == length_in_bytes);
body += DropTemporary(&unboxed_address);
body += DropTemporary(&typed_data_base);
return body;
}
Fragment FlowGraphBuilder::CopyFromUnboxedAddressToTypedDataBase(
intptr_t length_in_bytes) {
Fragment body;
Value* typed_data_base_value = Pop();
LocalVariable* unboxed_address = MakeTemporary("unboxed_address");
Push(typed_data_base_value->definition());
LocalVariable* typed_data_base = MakeTemporary("typed_data_base");
intptr_t offset_in_bytes = 0;
while (offset_in_bytes < length_in_bytes) {
const intptr_t bytes_left = length_in_bytes - offset_in_bytes;
const intptr_t chunk_sizee = chunk_size(bytes_left);
const classid_t typed_data_cidd = typed_data_cid(chunk_sizee);
body += LoadLocal(unboxed_address);
body += ConvertUnboxedToUntagged(kUnboxedFfiIntPtr);
body += IntConstant(offset_in_bytes);
body += LoadIndexed(typed_data_cidd, /*index_scale=*/1,
/*index_unboxed=*/false);
LocalVariable* chunk_value = MakeTemporary("chunk_value");
body += LoadLocal(typed_data_base);
body += LoadUntagged(compiler::target::TypedDataBase::data_field_offset());
body += IntConstant(offset_in_bytes);
body += LoadLocal(chunk_value);
body += StoreIndexedTypedData(typed_data_cidd, /*index_scale=*/1,
/*index_unboxed=*/false);
body += DropTemporary(&chunk_value);
offset_in_bytes += chunk_sizee;
}
ASSERT(offset_in_bytes == length_in_bytes);
body += DropTemporary(&typed_data_base);
body += DropTemporary(&unboxed_address);
return body;
}
Fragment FlowGraphBuilder::FfiCallConvertStructArgumentToNative(
LocalVariable* variable,
const compiler::ffi::BaseMarshaller& marshaller,
intptr_t arg_index) {
Fragment body;
const auto& native_loc = marshaller.Location(arg_index);
if (native_loc.IsStack() || native_loc.IsMultiple()) {
// Break struct in pieces to separate IL definitions to pass those
// separate definitions into the FFI call.
GrowableArray<Representation> representations;
marshaller.RepsInFfiCall(arg_index, &representations);
body += CopyFromStructToStack(variable, representations);
} else {
ASSERT(native_loc.IsPointerToMemory());
// Only load the typed data, do copying in the FFI call machine code.
body += LoadLocal(variable); // User-defined struct.
body += LoadTypedDataBaseFromStruct();
}
return body;
}
Fragment FlowGraphBuilder::FfiCallConvertStructReturnToDart(
const compiler::ffi::BaseMarshaller& marshaller,
intptr_t arg_index) {
Fragment body;
// The typed data is allocated before the FFI call, and is populated in
// machine code. So, here, it only has to be wrapped in the struct class.
const auto& struct_type =
AbstractType::Handle(Z, marshaller.CType(arg_index));
body += WrapTypedDataBaseInStruct(struct_type);
return body;
}
Fragment FlowGraphBuilder::FfiCallbackConvertStructArgumentToDart(
const compiler::ffi::BaseMarshaller& marshaller,
intptr_t arg_index,
ZoneGrowableArray<LocalVariable*>* definitions) {
const intptr_t length_in_bytes =
marshaller.Location(arg_index).payload_type().SizeInBytes();
Fragment body;
if ((marshaller.Location(arg_index).IsMultiple() ||
marshaller.Location(arg_index).IsStack())) {
// Allocate and populate a TypedData from the individual NativeParameters.
body += IntConstant(length_in_bytes);
body +=
AllocateTypedData(TokenPosition::kNoSource, kTypedDataUint8ArrayCid);
GrowableArray<Representation> representations;
marshaller.RepsInFfiCall(arg_index, &representations);
body += PopFromStackToTypedDataBase(definitions, representations);
} else {
ASSERT(marshaller.Location(arg_index).IsPointerToMemory());
// Allocate a TypedData and copy contents pointed to by an address into it.
LocalVariable* address_of_struct = MakeTemporary("address_of_struct");
body += IntConstant(length_in_bytes);
body +=
AllocateTypedData(TokenPosition::kNoSource, kTypedDataUint8ArrayCid);
LocalVariable* typed_data_base = MakeTemporary("typed_data_base");
body += LoadLocal(address_of_struct);
body += LoadLocal(typed_data_base);
body += CopyFromUnboxedAddressToTypedDataBase(length_in_bytes);
body += DropTempsPreserveTop(1); // address_of_struct.
}
// Wrap typed data in struct class.
const auto& struct_type =
AbstractType::Handle(Z, marshaller.CType(arg_index));
body += WrapTypedDataBaseInStruct(struct_type);
return body;
}
Fragment FlowGraphBuilder::FfiCallbackConvertStructReturnToNative(
const compiler::ffi::CallbackMarshaller& marshaller,
intptr_t arg_index) {
Fragment body;
const auto& native_loc = marshaller.Location(arg_index);
if (native_loc.IsMultiple()) {
// We pass in typed data to native return instruction, and do the copying
// in machine code.
body += LoadTypedDataBaseFromStruct();
} else {
ASSERT(native_loc.IsPointerToMemory());
// We copy the data into the right location in IL.
const intptr_t length_in_bytes =
marshaller.Location(arg_index).payload_type().SizeInBytes();
body += LoadTypedDataBaseFromStruct();
LocalVariable* typed_data_base = MakeTemporary("typed_data_base");
auto* pointer_to_return =
new (Z) NativeParameterInstr(marshaller, compiler::ffi::kResultIndex);
Push(pointer_to_return); // Address where return value should be stored.
body <<= pointer_to_return;
body += UnboxTruncate(kUnboxedFfiIntPtr);
LocalVariable* unboxed_address = MakeTemporary("unboxed_address");
body += LoadLocal(typed_data_base);
body += LoadLocal(unboxed_address);
body += CopyFromTypedDataBaseToUnboxedAddress(length_in_bytes);
body += DropTempsPreserveTop(1); // Keep address, drop typed_data_base.
}
return body;
}
Fragment FlowGraphBuilder::FfiConvertPrimitiveToDart(
const compiler::ffi::BaseMarshaller& marshaller,
intptr_t arg_index) {
ASSERT(!marshaller.IsStruct(arg_index));
Fragment body;
if (marshaller.IsPointer(arg_index)) {
body += Box(kUnboxedFfiIntPtr);
body += FfiPointerFromAddress(
Type::CheckedHandle(Z, marshaller.CType(arg_index)));
} else if (marshaller.IsHandle(arg_index)) {
body += UnwrapHandle();
} else if (marshaller.IsVoid(arg_index)) {
body += Drop();
body += NullConstant();
} else {
if (marshaller.RequiresBitCast(arg_index)) {
body += BitCast(
marshaller.RepInFfiCall(marshaller.FirstDefinitionIndex(arg_index)),
marshaller.RepInDart(arg_index));
}
body += Box(marshaller.RepInDart(arg_index));
}
return body;
}
Fragment FlowGraphBuilder::FfiConvertPrimitiveToNative(
const compiler::ffi::BaseMarshaller& marshaller,
intptr_t arg_index,
LocalVariable* api_local_scope) {
ASSERT(!marshaller.IsStruct(arg_index));
Fragment body;
if (marshaller.IsPointer(arg_index)) {
// This can only be Pointer, so it is always safe to LoadUntagged.
body += LoadUntagged(compiler::target::Pointer::data_field_offset());
body += ConvertUntaggedToUnboxed(kUnboxedFfiIntPtr);
} else if (marshaller.IsHandle(arg_index)) {
body += WrapHandle(api_local_scope);
} else {
body += UnboxTruncate(marshaller.RepInDart(arg_index));
}
if (marshaller.RequiresBitCast(arg_index)) {
body += BitCast(
marshaller.RepInDart(arg_index),
marshaller.RepInFfiCall(marshaller.FirstDefinitionIndex(arg_index)));
}
return body;
}
FlowGraph* FlowGraphBuilder::BuildGraphOfFfiTrampoline(
const Function& function) {
if (function.FfiCallbackTarget() != Function::null()) {
return BuildGraphOfFfiCallback(function);
} else {
return BuildGraphOfFfiNative(function);
}
}
FlowGraph* FlowGraphBuilder::BuildGraphOfFfiNative(const Function& function) {
const intptr_t kClosureParameterOffset = 0;
const intptr_t kFirstArgumentParameterOffset = kClosureParameterOffset + 1;
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto normal_entry = BuildFunctionEntry(graph_entry_);
graph_entry_->set_normal_entry(normal_entry);
PrologueInfo prologue_info(-1, -1);
BlockEntryInstr* instruction_cursor =
BuildPrologue(normal_entry, &prologue_info);
Fragment function_body(instruction_cursor);
function_body += CheckStackOverflowInPrologue(function.token_pos());
const auto& marshaller = *new (Z) compiler::ffi::CallMarshaller(Z, function);
const bool signature_contains_handles = marshaller.ContainsHandles();
// FFI trampolines are accessed via closures, so non-covariant argument types
// and type arguments are either statically checked by the type system or
// dynamically checked via dynamic closure call dispatchers.
// Null check arguments before we go into the try catch, so that we don't
// catch our own null errors.
const intptr_t num_args = marshaller.num_args();
for (intptr_t i = 0; i < num_args; i++) {
if (marshaller.IsHandle(i)) {
continue;
}
function_body += LoadLocal(
parsed_function_->ParameterVariable(kFirstArgumentParameterOffset + i));
// Check for 'null'.
// TODO(36780): Mention the param name instead of function reciever.
function_body +=
CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, marshaller.function_name()));
function_body += StoreLocal(
TokenPosition::kNoSource,
parsed_function_->ParameterVariable(kFirstArgumentParameterOffset + i));
function_body += Drop();
}
Fragment body;
intptr_t try_handler_index = -1;
LocalVariable* api_local_scope = nullptr;
if (signature_contains_handles) {
// Wrap in Try catch to transition from Native to Generated on a throw from
// the dart_api.
try_handler_index = AllocateTryIndex();
body += TryCatch(try_handler_index);
++try_depth_;
body += EnterHandleScope();
api_local_scope = MakeTemporary("api_local_scope");
}
// Allocate typed data before FfiCall and pass it in to ffi call if needed.
LocalVariable* typed_data = nullptr;
if (marshaller.PassTypedData()) {
body += IntConstant(marshaller.TypedDataSizeInBytes());
body +=
AllocateTypedData(TokenPosition::kNoSource, kTypedDataUint8ArrayCid);
typed_data = MakeTemporary();
}
// Unbox and push the arguments.
for (intptr_t i = 0; i < marshaller.num_args(); i++) {
if (marshaller.IsStruct(i)) {
body += FfiCallConvertStructArgumentToNative(
parsed_function_->ParameterVariable(kFirstArgumentParameterOffset +
i),
marshaller, i);
} else {
body += LoadLocal(parsed_function_->ParameterVariable(
kFirstArgumentParameterOffset + i));
body += FfiConvertPrimitiveToNative(marshaller, i, api_local_scope);
}
}
// Push the function pointer, which is stored (as Pointer object) in the
// first slot of the context.
body +=
LoadLocal(parsed_function_->ParameterVariable(kClosureParameterOffset));
body += LoadNativeField(Slot::Closure_context());
body += LoadNativeField(Slot::GetContextVariableSlotFor(
thread_, *MakeImplicitClosureScope(
Z, Class::Handle(IG->object_store()->ffi_pointer_class()))
->context_variables()[0]));
// This can only be Pointer, so it is always safe to LoadUntagged.
body += LoadUntagged(compiler::target::Pointer::data_field_offset());
body += ConvertUntaggedToUnboxed(kUnboxedFfiIntPtr);
if (marshaller.PassTypedData()) {
body += LoadLocal(typed_data);
}
body += FfiCall(marshaller);
for (intptr_t i = 0; i < marshaller.num_args(); i++) {
if (marshaller.IsPointer(i)) {
body += LoadLocal(parsed_function_->ParameterVariable(
kFirstArgumentParameterOffset + i));
body += ReachabilityFence();
}
}
const intptr_t num_defs = marshaller.NumReturnDefinitions();
ASSERT(num_defs >= 1);
auto defs = new (Z) ZoneGrowableArray<LocalVariable*>(Z, num_defs);
LocalVariable* def = MakeTemporary();
defs->Add(def);
if (marshaller.PassTypedData()) {
// Drop call result, typed data with contents is already on the stack.
body += Drop();
}
if (marshaller.IsStruct(compiler::ffi::kResultIndex)) {
body += FfiCallConvertStructReturnToDart(marshaller,
compiler::ffi::kResultIndex);
} else {
body += FfiConvertPrimitiveToDart(marshaller, compiler::ffi::kResultIndex);
}
if (signature_contains_handles) {
body += DropTempsPreserveTop(1); // Drop api_local_scope.
body += ExitHandleScope();
}
body += Return(TokenPosition::kNoSource);
if (signature_contains_handles) {
--try_depth_;
}
function_body += body;
if (signature_contains_handles) {
++catch_depth_;
Fragment catch_body =
CatchBlockEntry(Array::empty_array(), try_handler_index,
/*needs_stacktrace=*/true, /*is_synthesized=*/true);
// TODO(41984): If we want to pass in the handle scope, move it out
// of the try catch.
catch_body += ExitHandleScope();
catch_body += LoadLocal(CurrentException());
catch_body += LoadLocal(CurrentStackTrace());
catch_body += RethrowException(TokenPosition::kNoSource, try_handler_index);
--catch_depth_;
}
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
FlowGraph* FlowGraphBuilder::BuildGraphOfFfiCallback(const Function& function) {
const auto& marshaller =
*new (Z) compiler::ffi::CallbackMarshaller(Z, function);
graph_entry_ =
new (Z) GraphEntryInstr(*parsed_function_, Compiler::kNoOSRDeoptId);
auto* const native_entry = new (Z) NativeEntryInstr(
marshaller, graph_entry_, AllocateBlockId(), CurrentTryIndex(),
GetNextDeoptId(), function.FfiCallbackId());
graph_entry_->set_normal_entry(native_entry);
Fragment function_body(native_entry);
function_body += CheckStackOverflowInPrologue(function.token_pos());
// Wrap the entire method in a big try/catch. This is important to ensure that
// the VM does not crash if the callback throws an exception.
const intptr_t try_handler_index = AllocateTryIndex();
Fragment body = TryCatch(try_handler_index);
++try_depth_;
// Box and push the arguments.
for (intptr_t i = 0; i < marshaller.num_args(); i++) {
const intptr_t num_defs = marshaller.NumDefinitions(i);
auto defs = new (Z) ZoneGrowableArray<LocalVariable*>(Z, num_defs);
for (intptr_t j = 0; j < num_defs; j++) {
const intptr_t def_index = marshaller.DefinitionIndex(j, i);
auto* parameter = new (Z) NativeParameterInstr(marshaller, def_index);
Push(parameter);
body <<= parameter;
LocalVariable* def = MakeTemporary();
defs->Add(def);
}
if (marshaller.IsStruct(i)) {
body += FfiCallbackConvertStructArgumentToDart(marshaller, i, defs);
} else {
body += FfiConvertPrimitiveToDart(marshaller, i);
}
}
// Call the target.
//
// TODO(36748): Determine the hot-reload semantics of callbacks and update the
// rebind-rule accordingly.
body += StaticCall(TokenPosition::kNoSource,
Function::ZoneHandle(Z, function.FfiCallbackTarget()),
marshaller.num_args(), Array::empty_array(),
ICData::kNoRebind);
if (marshaller.IsVoid(compiler::ffi::kResultIndex)) {
body += Drop();
body += IntConstant(0);
} else if (!marshaller.IsHandle(compiler::ffi::kResultIndex)) {
body +=
CheckNullOptimized(TokenPosition::kNoSource,
String::ZoneHandle(Z, marshaller.function_name()));
}
if (marshaller.IsStruct(compiler::ffi::kResultIndex)) {
body += FfiCallbackConvertStructReturnToNative(marshaller,
compiler::ffi::kResultIndex);
} else {
body += FfiConvertPrimitiveToNative(marshaller, compiler::ffi::kResultIndex,
/*api_local_scope=*/nullptr);
}
body += NativeReturn(marshaller);
--try_depth_;
function_body += body;
++catch_depth_;
Fragment catch_body = CatchBlockEntry(Array::empty_array(), try_handler_index,
/*needs_stacktrace=*/false,
/*is_synthesized=*/true);
// Return the "exceptional return" value given in 'fromFunction'.
//
// For pointer and void return types, the exceptional return is always null --
// return 0 instead.
if (marshaller.IsPointer(compiler::ffi::kResultIndex) ||
marshaller.IsVoid(compiler::ffi::kResultIndex)) {
ASSERT(function.FfiCallbackExceptionalReturn() == Object::null());
catch_body += IntConstant(0);
catch_body += UnboxTruncate(kUnboxedFfiIntPtr);
} else if (marshaller.IsHandle(compiler::ffi::kResultIndex)) {
catch_body += UnhandledException();
catch_body +=
FfiConvertPrimitiveToNative(marshaller, compiler::ffi::kResultIndex,
/*api_local_scope=*/nullptr);
} else if (marshaller.IsStruct(compiler::ffi::kResultIndex)) {
ASSERT(function.FfiCallbackExceptionalReturn() == Object::null());
// Manufacture empty result.
const intptr_t size =
Utils::RoundUp(marshaller.Location(compiler::ffi::kResultIndex)
.payload_type()
.SizeInBytes(),
compiler::target::kWordSize);
catch_body += IntConstant(size);
catch_body +=
AllocateTypedData(TokenPosition::kNoSource, kTypedDataUint8ArrayCid);
catch_body += WrapTypedDataBaseInStruct(
AbstractType::Handle(Z, marshaller.CType(compiler::ffi::kResultIndex)));
catch_body += FfiCallbackConvertStructReturnToNative(
marshaller, compiler::ffi::kResultIndex);
} else {
catch_body += Constant(
Instance::ZoneHandle(Z, function.FfiCallbackExceptionalReturn()));
catch_body +=
FfiConvertPrimitiveToNative(marshaller, compiler::ffi::kResultIndex,
/*api_local_scope=*/nullptr);
}
catch_body += NativeReturn(marshaller);
--catch_depth_;
PrologueInfo prologue_info(-1, -1);
return new (Z) FlowGraph(*parsed_function_, graph_entry_, last_used_block_id_,
prologue_info);
}
void FlowGraphBuilder::SetCurrentTryCatchBlock(TryCatchBlock* try_catch_block) {
try_catch_block_ = try_catch_block;
SetCurrentTryIndex(try_catch_block == nullptr ? kInvalidTryIndex
: try_catch_block->try_index());
}
bool FlowGraphBuilder::NeedsNullAssertion(const AbstractType& type) {
if (!type.IsNonNullable()) {
return false;
}
if (type.IsTypeParameter()) {
return NeedsNullAssertion(
AbstractType::Handle(Z, TypeParameter::Cast(type).bound()));
}
if (type.IsFutureOrType()) {
return NeedsNullAssertion(AbstractType::Handle(Z, type.UnwrapFutureOr()));
}
return true;
}
Fragment FlowGraphBuilder::NullAssertion(LocalVariable* variable) {
Fragment code;
if (!NeedsNullAssertion(variable->type())) {
return code;
}
TargetEntryInstr* then;
TargetEntryInstr* otherwise;
code += LoadLocal(variable);
code += NullConstant();
code += BranchIfEqual(&then, &otherwise);
const Script& script =
Script::Handle(Z, parsed_function_->function().script());
intptr_t line = -1;
intptr_t column = -1;
script.GetTokenLocation(variable->token_pos(), &line, &column);
// Build equivalent of `throw _AssertionError._throwNewNullAssertion(name)`
// expression. We build throw (even through _throwNewNullAssertion already
// throws) because call is not a valid last instruction for the block.
// Blocks can only terminate with explicit control flow instructions
// (Branch, Goto, Return or Throw).
Fragment null_code(then);
null_code += Constant(variable->name());
null_code += IntConstant(line);
null_code += IntConstant(column);
null_code += StaticCall(variable->token_pos(),
ThrowNewNullAssertionFunction(), 3, ICData::kStatic);
null_code += ThrowException(TokenPosition::kNoSource);
null_code += Drop();
return Fragment(code.entry, otherwise);
}
Fragment FlowGraphBuilder::BuildNullAssertions() {
Fragment code;
if (IG->null_safety() || !IG->asserts() || !FLAG_null_assertions) {
return code;
}
const Function& dart_function = parsed_function_->function();
for (intptr_t i = dart_function.NumImplicitParameters(),
n = dart_function.NumParameters();
i < n; ++i) {
LocalVariable* variable = parsed_function_->ParameterVariable(i);
code += NullAssertion(variable);
}
return code;
}
const Function& FlowGraphBuilder::ThrowNewNullAssertionFunction() {
if (throw_new_null_assertion_.IsNull()) {
const Class& klass = Class::ZoneHandle(
Z, Library::LookupCoreClass(Symbols::AssertionError()));
ASSERT(!klass.IsNull());
const auto& error = klass.EnsureIsFinalized(H.thread());
ASSERT(error == Error::null());
throw_new_null_assertion_ = klass.LookupStaticFunctionAllowPrivate(
Symbols::ThrowNewNullAssertion());
ASSERT(!throw_new_null_assertion_.IsNull());
}
return throw_new_null_assertion_;
}
const Function& FlowGraphBuilder::PrependTypeArgumentsFunction() {
if (prepend_type_arguments_.IsNull()) {
const auto& dart_internal = Library::Handle(Z, Library::InternalLibrary());
prepend_type_arguments_ = dart_internal.LookupFunctionAllowPrivate(
Symbols::PrependTypeArguments());
ASSERT(!prepend_type_arguments_.IsNull());
}
return prepend_type_arguments_;
}
} // namespace kernel
} // namespace dart