blob: 86b6846878579234d1262849428879ad56256d04 [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "platform/utils.h"
#include "vm/allocation.h"
#include "vm/atomic.h"
#include "vm/code_patcher.h"
#include "vm/isolate.h"
#include "vm/json_stream.h"
#include "vm/native_symbol.h"
#include "vm/object.h"
#include "vm/os.h"
#include "vm/profiler.h"
#include "vm/signal_handler.h"
#include "vm/simulator.h"
namespace dart {
// Notes on stack frame walking:
//
// The sampling profiler will collect up to Sample::kNumStackFrames stack frames
// The stack frame walking code uses the frame pointer to traverse the stack.
// If the VM is compiled without frame pointers (which is the default on
// recent GCC versions with optimizing enabled) the stack walking code may
// fail (sometimes leading to a crash).
//
#if defined(USING_SIMULATOR) || defined(TARGET_OS_WINDOWS) || \
defined(TARGET_OS_MACOS) || defined(TARGET_OS_ANDROID)
DEFINE_FLAG(bool, profile, false, "Enable Sampling Profiler");
#else
DEFINE_FLAG(bool, profile, true, "Enable Sampling Profiler");
#endif
DEFINE_FLAG(bool, trace_profiled_isolates, false, "Trace profiled isolates.");
DEFINE_FLAG(charp, profile_dir, NULL,
"Enable writing profile data into specified directory.");
DEFINE_FLAG(int, profile_period, 1000,
"Time between profiler samples in microseconds. Minimum 250.");
bool Profiler::initialized_ = false;
Monitor* Profiler::monitor_ = NULL;
SampleBuffer* Profiler::sample_buffer_ = NULL;
void Profiler::InitOnce() {
const int kMinimumProfilePeriod = 250;
if (!FLAG_profile) {
return;
}
ASSERT(!initialized_);
initialized_ = true;
monitor_ = new Monitor();
sample_buffer_ = new SampleBuffer();
NativeSymbolResolver::InitOnce();
ThreadInterrupter::InitOnce();
if (FLAG_profile_period < kMinimumProfilePeriod) {
FLAG_profile_period = kMinimumProfilePeriod;
}
ThreadInterrupter::SetInterruptPeriod(FLAG_profile_period);
}
void Profiler::Shutdown() {
if (!FLAG_profile) {
return;
}
ASSERT(initialized_);
ThreadInterrupter::Shutdown();
NativeSymbolResolver::ShutdownOnce();
}
void Profiler::InitProfilingForIsolate(Isolate* isolate, bool shared_buffer) {
if (!FLAG_profile) {
return;
}
ASSERT(isolate != NULL);
ASSERT(sample_buffer_ != NULL);
MonitorLocker ml(monitor_);
{
MutexLocker profiler_data_lock(isolate->profiler_data_mutex());
SampleBuffer* sample_buffer = sample_buffer_;
if (!shared_buffer) {
sample_buffer = new SampleBuffer();
}
IsolateProfilerData* profiler_data =
new IsolateProfilerData(sample_buffer, !shared_buffer);
ASSERT(profiler_data != NULL);
isolate->set_profiler_data(profiler_data);
if (FLAG_trace_profiled_isolates) {
OS::Print("Profiler Setup %p %s\n", isolate, isolate->name());
}
}
}
void Profiler::ShutdownProfilingForIsolate(Isolate* isolate) {
ASSERT(isolate != NULL);
if (!FLAG_profile) {
return;
}
// We do not have a current isolate.
ASSERT(Isolate::Current() == NULL);
MonitorLocker ml(monitor_);
{
MutexLocker profiler_data_lock(isolate->profiler_data_mutex());
IsolateProfilerData* profiler_data = isolate->profiler_data();
if (profiler_data == NULL) {
// Already freed.
return;
}
isolate->set_profiler_data(NULL);
profiler_data->set_sample_buffer(NULL);
delete profiler_data;
if (FLAG_trace_profiled_isolates) {
OS::Print("Profiler Shutdown %p %s\n", isolate, isolate->name());
}
}
}
void Profiler::BeginExecution(Isolate* isolate) {
if (isolate == NULL) {
return;
}
if (!FLAG_profile) {
return;
}
ASSERT(initialized_);
IsolateProfilerData* profiler_data = isolate->profiler_data();
if (profiler_data == NULL) {
return;
}
SampleBuffer* sample_buffer = profiler_data->sample_buffer();
if (sample_buffer == NULL) {
return;
}
Sample* sample = sample_buffer->ReserveSample();
sample->Init(Sample::kIsolateStart, isolate, OS::GetCurrentTimeMicros(),
Thread::GetCurrentThreadId());
ThreadInterrupter::Register(RecordSampleInterruptCallback, isolate);
}
void Profiler::EndExecution(Isolate* isolate) {
if (isolate == NULL) {
return;
}
if (!FLAG_profile) {
return;
}
ASSERT(initialized_);
ThreadInterrupter::Unregister();
IsolateProfilerData* profiler_data = isolate->profiler_data();
if (profiler_data == NULL) {
return;
}
SampleBuffer* sample_buffer = profiler_data->sample_buffer();
if (sample_buffer == NULL) {
return;
}
Sample* sample = sample_buffer->ReserveSample();
sample->Init(Sample::kIsolateStop, isolate, OS::GetCurrentTimeMicros(),
Thread::GetCurrentThreadId());
}
void Profiler::RecordTickInterruptCallback(const InterruptedThreadState& state,
void* data) {
Isolate* isolate = reinterpret_cast<Isolate*>(data);
if (isolate == NULL) {
return;
}
IsolateProfilerData* profiler_data = isolate->profiler_data();
if (profiler_data == NULL) {
return;
}
SampleBuffer* sample_buffer = profiler_data->sample_buffer();
if (sample_buffer == NULL) {
return;
}
Sample* sample = sample_buffer->ReserveSample();
sample->Init(Sample::kIsolateSample, isolate, OS::GetCurrentTimeMicros(),
state.tid);
}
void Profiler::RecordSampleInterruptCallback(
const InterruptedThreadState& state,
void* data) {
Isolate* isolate = reinterpret_cast<Isolate*>(data);
if (isolate == NULL) {
return;
}
IsolateProfilerData* profiler_data = isolate->profiler_data();
if (profiler_data == NULL) {
return;
}
SampleBuffer* sample_buffer = profiler_data->sample_buffer();
if (sample_buffer == NULL) {
return;
}
Sample* sample = sample_buffer->ReserveSample();
sample->Init(Sample::kIsolateSample, isolate, OS::GetCurrentTimeMicros(),
state.tid);
uintptr_t stack_lower = 0;
uintptr_t stack_upper = 0;
isolate->GetStackBounds(&stack_lower, &stack_upper);
if ((stack_lower == 0) || (stack_upper == 0)) {
stack_lower = 0;
stack_upper = 0;
}
ProfilerSampleStackWalker stackWalker(sample, stack_lower, stack_upper,
state.pc, state.fp, state.sp);
stackWalker.walk();
}
struct AddressEntry {
uintptr_t pc;
uintptr_t ticks;
};
// A region of code. Each region is a kind of code (Dart, Collected, or Native).
class CodeRegion : public ZoneAllocated {
public:
enum Kind {
kDartCode,
kCollectedCode,
kNativeCode
};
CodeRegion(Kind kind, uintptr_t start, uintptr_t end) :
kind_(kind),
start_(start),
end_(end),
inclusive_ticks_(0),
exclusive_ticks_(0),
name_(NULL),
address_table_(new ZoneGrowableArray<AddressEntry>()) {
}
~CodeRegion() {
}
uintptr_t start() const { return start_; }
void set_start(uintptr_t start) {
start_ = start;
}
uintptr_t end() const { return end_; }
void set_end(uintptr_t end) {
end_ = end;
}
void AdjustExtent(uintptr_t start, uintptr_t end) {
if (start < start_) {
start_ = start;
}
if (end > end_) {
end_ = end;
}
}
bool contains(uintptr_t pc) const {
return (pc >= start_) && (pc < end_);
}
intptr_t inclusive_ticks() const { return inclusive_ticks_; }
void set_inclusive_ticks(intptr_t inclusive_ticks) {
inclusive_ticks_ = inclusive_ticks;
}
intptr_t exclusive_ticks() const { return exclusive_ticks_; }
void set_exclusive_ticks(intptr_t exclusive_ticks) {
exclusive_ticks_ = exclusive_ticks;
}
const char* name() const { return name_; }
void SetName(const char* name) {
if (name == NULL) {
name_ = NULL;
}
intptr_t len = strlen(name);
name_ = Isolate::Current()->current_zone()->Alloc<const char>(len + 1);
strncpy(const_cast<char*>(name_), name, len);
const_cast<char*>(name_)[len] = '\0';
}
Kind kind() const { return kind_; }
static const char* KindToCString(Kind kind) {
switch (kind) {
case kDartCode:
return "Dart";
case kCollectedCode:
return "Collected";
case kNativeCode:
return "Native";
}
UNREACHABLE();
return NULL;
}
void AddTick(bool exclusive) {
if (exclusive) {
exclusive_ticks_++;
} else {
inclusive_ticks_++;
}
}
void AddTickAtAddress(uintptr_t pc) {
const intptr_t length = address_table_->length();
intptr_t i = 0;
for (; i < length; i++) {
AddressEntry& entry = (*address_table_)[i];
if (entry.pc == pc) {
entry.ticks++;
return;
}
if (entry.pc > pc) {
break;
}
}
AddressEntry entry;
entry.pc = pc;
entry.ticks = 1;
if (i < length) {
// Insert at i.
address_table_->InsertAt(i, entry);
} else {
// Add to end.
address_table_->Add(entry);
}
}
void PrintToJSONArray(JSONArray* events, bool full) {
JSONObject obj(events);
obj.AddProperty("type", "ProfileCode");
obj.AddProperty("kind", KindToCString(kind()));
obj.AddPropertyF("inclusive_ticks", "%" Pd "", inclusive_ticks());
obj.AddPropertyF("exclusive_ticks", "%" Pd "", exclusive_ticks());
if (kind() == kDartCode) {
// Look up code in Dart heap.
Code& code = Code::Handle(Code::LookupCode(start()));
Function& func = Function::Handle();
ASSERT(!code.IsNull());
func ^= code.function();
if (func.IsNull()) {
if (name() == NULL) {
GenerateAndSetSymbolName("Stub");
}
obj.AddPropertyF("start", "%" Px "", start());
obj.AddPropertyF("end", "%" Px "", end());
obj.AddProperty("name", name());
} else {
obj.AddProperty("code", code, !full);
}
} else if (kind() == kCollectedCode) {
if (name() == NULL) {
GenerateAndSetSymbolName("Collected");
}
obj.AddPropertyF("start", "%" Px "", start());
obj.AddPropertyF("end", "%" Px "", end());
obj.AddProperty("name", name());
} else {
ASSERT(kind() == kNativeCode);
if (name() == NULL) {
GenerateAndSetSymbolName("Native");
}
obj.AddPropertyF("start", "%" Px "", start());
obj.AddPropertyF("end", "%" Px "", end());
obj.AddProperty("name", name());
}
{
JSONArray ticks(&obj, "ticks");
for (intptr_t i = 0; i < address_table_->length(); i++) {
const AddressEntry& entry = (*address_table_)[i];
ticks.AddValueF("%" Px "", entry.pc);
ticks.AddValueF("%" Pd "", entry.ticks);
}
}
}
private:
void GenerateAndSetSymbolName(const char* prefix) {
const intptr_t kBuffSize = 512;
char buff[kBuffSize];
OS::SNPrint(&buff[0], kBuffSize-1, "%s [%" Px ", %" Px ")",
prefix, start(), end());
SetName(buff);
}
Kind kind_;
uintptr_t start_;
uintptr_t end_;
intptr_t inclusive_ticks_;
intptr_t exclusive_ticks_;
const char* name_;
ZoneGrowableArray<AddressEntry>* address_table_;
DISALLOW_COPY_AND_ASSIGN(CodeRegion);
};
// All code regions. Code region tables are built on demand when a profile
// is requested (through the service or on isolate shutdown).
class ProfilerCodeRegionTable : public ValueObject {
public:
explicit ProfilerCodeRegionTable(Isolate* isolate) :
heap_(isolate->heap()),
code_region_table_(new ZoneGrowableArray<CodeRegion*>(64)) {
}
~ProfilerCodeRegionTable() {
}
void AddTick(uintptr_t pc, bool exclusive, bool tick_address) {
intptr_t index = FindIndex(pc);
if (index < 0) {
CodeRegion* code_region = CreateCodeRegion(pc);
ASSERT(code_region != NULL);
index = InsertCodeRegion(code_region);
}
ASSERT(index >= 0);
ASSERT(index < code_region_table_->length());
(*code_region_table_)[index]->AddTick(exclusive);
if (tick_address) {
(*code_region_table_)[index]->AddTickAtAddress(pc);
}
}
intptr_t Length() const { return code_region_table_->length(); }
CodeRegion* At(intptr_t idx) {
return (*code_region_table_)[idx];
}
private:
intptr_t FindIndex(uintptr_t pc) {
const intptr_t length = code_region_table_->length();
for (intptr_t i = 0; i < length; i++) {
const CodeRegion* code_region = (*code_region_table_)[i];
if (code_region->contains(pc)) {
return i;
}
}
return -1;
}
CodeRegion* CreateCodeRegion(uintptr_t pc) {
Code& code = Code::Handle(Code::LookupCode(pc));
if (!code.IsNull()) {
return new CodeRegion(CodeRegion::kDartCode, code.EntryPoint(),
code.EntryPoint() + code.Size());
}
if (heap_->CodeContains(pc)) {
const intptr_t kDartCodeAlignment = 0x10;
const intptr_t kDartCodeAlignmentMask = ~(kDartCodeAlignment - 1);
return new CodeRegion(CodeRegion::kCollectedCode,
(pc & kDartCodeAlignmentMask),
(pc & kDartCodeAlignmentMask) + kDartCodeAlignment);
}
uintptr_t native_start = 0;
char* native_name = NativeSymbolResolver::LookupSymbolName(pc,
&native_start);
if (native_name == NULL) {
return new CodeRegion(CodeRegion::kNativeCode, pc, pc + 1);
}
ASSERT(pc >= native_start);
CodeRegion* code_region =
new CodeRegion(CodeRegion::kNativeCode, native_start, pc + 1);
code_region->SetName(native_name);
free(native_name);
return code_region;
}
intptr_t InsertCodeRegion(CodeRegion* code_region) {
const intptr_t length = code_region_table_->length();
const uintptr_t start = code_region->start();
const uintptr_t end = code_region->end();
intptr_t i = 0;
for (; i < length; i++) {
CodeRegion* region = (*code_region_table_)[i];
if (region->contains(start) || region->contains(end - 1)) {
// We should only see overlapping native code regions.
ASSERT(region->kind() == CodeRegion::kNativeCode);
// When code regions overlap, they should be of the same kind.
ASSERT(region->kind() == code_region->kind());
// Overlapping code region.
region->AdjustExtent(start, end);
return i;
} else if (start >= region->end()) {
// Insert here.
break;
}
}
if (i != length) {
code_region_table_->InsertAt(i, code_region);
return i;
}
code_region_table_->Add(code_region);
return code_region_table_->length() - 1;
}
Heap* heap_;
ZoneGrowableArray<CodeRegion*>* code_region_table_;
};
void Profiler::PrintToJSONStream(Isolate* isolate, JSONStream* stream,
bool full) {
ASSERT(isolate == Isolate::Current());
// Disable profile interrupts while processing the buffer.
EndExecution(isolate);
MutexLocker profiler_data_lock(isolate->profiler_data_mutex());
IsolateProfilerData* profiler_data = isolate->profiler_data();
if (profiler_data == NULL) {
JSONObject error(stream);
error.AddProperty("type", "Error");
error.AddProperty("text", "Isolate does not have profiling enabled.");
return;
}
SampleBuffer* sample_buffer = profiler_data->sample_buffer();
ASSERT(sample_buffer != NULL);
{
StackZone zone(isolate);
{
// Build code region table.
ProfilerCodeRegionTable code_region_table(isolate);
intptr_t samples =
ProcessSamples(isolate, &code_region_table, sample_buffer);
{
// Serialize to JSON.
JSONObject obj(stream);
obj.AddProperty("type", "Profile");
obj.AddProperty("samples", samples);
JSONArray codes(&obj, "codes");
for (intptr_t i = 0; i < code_region_table.Length(); i++) {
CodeRegion* region = code_region_table.At(i);
ASSERT(region != NULL);
region->PrintToJSONArray(&codes, full);
}
}
}
}
// Enable profile interrupts.
BeginExecution(isolate);
}
intptr_t Profiler::ProcessSamples(Isolate* isolate,
ProfilerCodeRegionTable* code_region_table,
SampleBuffer* sample_buffer) {
int64_t start = OS::GetCurrentTimeMillis();
intptr_t samples = 0;
for (intptr_t i = 0; i < sample_buffer->capacity(); i++) {
Sample sample = sample_buffer->GetSample(i);
if (sample.isolate != isolate) {
continue;
}
if (sample.timestamp == 0) {
continue;
}
samples += ProcessSample(isolate, code_region_table, &sample);
}
int64_t end = OS::GetCurrentTimeMillis();
if (FLAG_trace_profiled_isolates) {
int64_t delta = end - start;
OS::Print("Processed %" Pd " samples from %s in %" Pd64 " milliseconds.\n",
samples,
isolate->name(),
delta);
}
return samples;
}
intptr_t Profiler::ProcessSample(Isolate* isolate,
ProfilerCodeRegionTable* code_region_table,
Sample* sample) {
Sample::SampleType type = sample->type;
if (type != Sample::kIsolateSample) {
return 0;
}
if (sample->pcs[0] == 0) {
// No frames in this sample.
return 0;
}
intptr_t i = 0;
// i points to the leaf (exclusive) PC sample. Do not tick the address.
code_region_table->AddTick(sample->pcs[i], true, false);
// Give all frames an inclusive tick and tick the address.
for (; i < Sample::kNumStackFrames; i++) {
if (sample->pcs[i] == 0) {
break;
}
code_region_table->AddTick(sample->pcs[i], false, true);
}
return 1;
}
void Profiler::WriteProfile(Isolate* isolate) {
if (isolate == NULL) {
return;
}
if (!FLAG_profile) {
return;
}
ASSERT(initialized_);
if (FLAG_profile_dir == NULL) {
return;
}
Dart_FileOpenCallback file_open = Isolate::file_open_callback();
Dart_FileCloseCallback file_close = Isolate::file_close_callback();
Dart_FileWriteCallback file_write = Isolate::file_write_callback();
if ((file_open == NULL) || (file_close == NULL) || (file_write == NULL)) {
// Embedder has not provided necessary callbacks.
return;
}
// We will be looking up code objects within the isolate.
ASSERT(Isolate::Current() == isolate);
JSONStream stream(10 * MB);
intptr_t pid = OS::ProcessId();
PrintToJSONStream(isolate, &stream, true);
const char* format = "%s/dart-profile-%" Pd "-%" Pd ".json";
intptr_t len = OS::SNPrint(NULL, 0, format,
FLAG_profile_dir, pid, isolate->main_port());
char* filename = Isolate::Current()->current_zone()->Alloc<char>(len + 1);
OS::SNPrint(filename, len + 1, format,
FLAG_profile_dir, pid, isolate->main_port());
void* f = file_open(filename, true);
if (f == NULL) {
// Cannot write.
return;
}
TextBuffer* buffer = stream.buffer();
ASSERT(buffer != NULL);
file_write(buffer->buf(), buffer->length(), f);
file_close(f);
}
IsolateProfilerData::IsolateProfilerData(SampleBuffer* sample_buffer,
bool own_sample_buffer) {
sample_buffer_ = sample_buffer;
own_sample_buffer_ = own_sample_buffer;
}
IsolateProfilerData::~IsolateProfilerData() {
if (own_sample_buffer_) {
delete sample_buffer_;
sample_buffer_ = NULL;
own_sample_buffer_ = false;
}
}
void Sample::Init(SampleType type, Isolate* isolate, int64_t timestamp,
ThreadId tid) {
this->timestamp = timestamp;
this->tid = tid;
this->isolate = isolate;
for (intptr_t i = 0; i < kNumStackFrames; i++) {
pcs[i] = 0;
}
this->type = type;
vm_tags = 0;
runtime_tags = 0;
}
SampleBuffer::SampleBuffer(intptr_t capacity) {
capacity_ = capacity;
samples_ = reinterpret_cast<Sample*>(calloc(capacity, sizeof(Sample)));
cursor_ = 0;
}
SampleBuffer::~SampleBuffer() {
if (samples_ != NULL) {
free(samples_);
samples_ = NULL;
cursor_ = 0;
capacity_ = 0;
}
}
Sample* SampleBuffer::ReserveSample() {
ASSERT(samples_ != NULL);
uintptr_t cursor = AtomicOperations::FetchAndIncrement(&cursor_);
// Map back into sample buffer range.
cursor = cursor % capacity_;
return &samples_[cursor];
}
ProfilerSampleStackWalker::ProfilerSampleStackWalker(Sample* sample,
uintptr_t stack_lower,
uintptr_t stack_upper,
uintptr_t pc,
uintptr_t fp,
uintptr_t sp) :
sample_(sample),
stack_lower_(stack_lower),
stack_upper_(stack_upper),
original_pc_(pc),
original_fp_(fp),
original_sp_(sp),
lower_bound_(stack_lower) {
ASSERT(sample_ != NULL);
// Zero out the PCs before (re)using the sample.
for (int i = 0; i < Sample::kNumStackFrames; i++) {
sample_->pcs[i] = 0;
}
}
int ProfilerSampleStackWalker::walk() {
const intptr_t kMaxStep = 0x1000; // 4K.
uword* pc = reinterpret_cast<uword*>(original_pc_);
// Always store the exclusive PC.
sample_->pcs[0] = original_pc_;
#define WALK_STACK
#if defined(WALK_STACK)
uword* fp = reinterpret_cast<uword*>(original_fp_);
uword* previous_fp = fp;
if (original_sp_ > original_fp_) {
// Stack pointer should not be above frame pointer.
return 1;
}
intptr_t gap = original_fp_ - original_sp_;
if (gap >= kMaxStep) {
// Gap between frame pointer and stack pointer is
// too large.
return 1;
}
if (original_sp_ < lower_bound_) {
// The stack pointer gives us a better lower bound than
// the isolates stack limit.
lower_bound_ = original_sp_;
}
int i = 0;
for (; i < Sample::kNumStackFrames; i++) {
sample_->pcs[i] = reinterpret_cast<uintptr_t>(pc);
if (!ValidFramePointer(fp)) {
return i + 1;
}
pc = CallerPC(fp);
previous_fp = fp;
fp = CallerFP(fp);
intptr_t step = fp - previous_fp;
if ((step >= kMaxStep) || (fp <= previous_fp) || !ValidFramePointer(fp)) {
// Frame pointer step is too large.
// Frame pointer did not move to a higher address.
// Frame pointer is outside of isolate stack bounds.
return i + 1;
}
// Move the lower bound up.
lower_bound_ = reinterpret_cast<uintptr_t>(fp);
}
return i;
#else
sample_->pcs[0] = reinterpret_cast<uintptr_t>(pc);
return 0;
#endif
}
uword* ProfilerSampleStackWalker::CallerPC(uword* fp) {
ASSERT(fp != NULL);
return reinterpret_cast<uword*>(*(fp + 1));
}
uword* ProfilerSampleStackWalker::CallerFP(uword* fp) {
ASSERT(fp != NULL);
return reinterpret_cast<uword*>(*fp);
}
bool ProfilerSampleStackWalker::ValidFramePointer(uword* fp) {
if (fp == NULL) {
return false;
}
uintptr_t cursor = reinterpret_cast<uintptr_t>(fp);
cursor += sizeof(fp);
bool r = cursor >= lower_bound_ && cursor < stack_upper_;
return r;
}
} // namespace dart