blob: 63582890ba79fbf083db40150810edc318d1dfa8 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#ifndef RUNTIME_VM_HEAP_SCAVENGER_H_
#define RUNTIME_VM_HEAP_SCAVENGER_H_
#include "platform/assert.h"
#include "platform/utils.h"
#include "vm/dart.h"
#include "vm/flags.h"
#include "vm/globals.h"
#include "vm/heap/spaces.h"
#include "vm/heap/tlab.h"
#include "vm/lockers.h"
#include "vm/raw_object.h"
#include "vm/ring_buffer.h"
#include "vm/virtual_memory.h"
#include "vm/visitor.h"
namespace dart {
// Forward declarations.
class Heap;
class Isolate;
class JSONObject;
class ObjectSet;
template <bool parallel>
class ScavengerVisitorBase;
// Wrapper around VirtualMemory that adds caching and handles the empty case.
class SemiSpace {
public:
static void Init();
static void Cleanup();
// Get a space of the given size. Returns NULL on out of memory. If size is 0,
// returns an empty space: pointer(), start() and end() all return NULL.
// The name parameter may be NULL. If non-NULL it is ued to give the OS a name
// for the underlying virtual memory region.
static SemiSpace* New(intptr_t size_in_words, const char* name);
// Hand back an unused space.
void Delete();
void* pointer() const { return region_.pointer(); }
uword start() const { return region_.start(); }
uword end() const { return region_.end(); }
intptr_t size_in_words() const {
return static_cast<intptr_t>(region_.size()) >> kWordSizeLog2;
}
bool Contains(uword address) const { return region_.Contains(address); }
// Set write protection mode for this space. The space must not be protected
// when Delete is called.
// TODO(koda): Remember protection mode in VirtualMemory and assert this.
void WriteProtect(bool read_only);
private:
explicit SemiSpace(VirtualMemory* reserved);
~SemiSpace();
VirtualMemory* reserved_; // NULL for an empty space.
MemoryRegion region_;
static SemiSpace* cache_;
static Mutex* mutex_;
};
// Statistics for a particular scavenge.
class ScavengeStats {
public:
ScavengeStats() {}
ScavengeStats(int64_t start_micros,
int64_t end_micros,
SpaceUsage before,
SpaceUsage after,
intptr_t promo_candidates_in_words,
intptr_t promoted_in_words,
intptr_t abandoned_in_words)
: start_micros_(start_micros),
end_micros_(end_micros),
before_(before),
after_(after),
promo_candidates_in_words_(promo_candidates_in_words),
promoted_in_words_(promoted_in_words),
abandoned_in_words_(abandoned_in_words) {}
// Of all data before scavenge, what fraction was found to be garbage?
// If this scavenge included growth, assume the extra capacity would become
// garbage to give the scavenger a chance to stablize at the new capacity.
double ExpectedGarbageFraction() const {
double work =
after_.used_in_words + promoted_in_words_ + abandoned_in_words_;
return 1.0 - (work / after_.capacity_in_words);
}
// Fraction of promotion candidates that survived and was thereby promoted.
// Returns zero if there were no promotion candidates.
double PromoCandidatesSuccessFraction() const {
return promo_candidates_in_words_ > 0
? promoted_in_words_ /
static_cast<double>(promo_candidates_in_words_)
: 0.0;
}
intptr_t UsedBeforeInWords() const { return before_.used_in_words; }
int64_t DurationMicros() const { return end_micros_ - start_micros_; }
private:
int64_t start_micros_;
int64_t end_micros_;
SpaceUsage before_;
SpaceUsage after_;
intptr_t promo_candidates_in_words_;
intptr_t promoted_in_words_;
intptr_t abandoned_in_words_;
};
class Scavenger {
public:
Scavenger(Heap* heap, intptr_t max_semi_capacity_in_words);
~Scavenger();
// Check whether this Scavenger contains this address.
// During scavenging both the to and from spaces contain "legal" objects.
// During a scavenge this function only returns true for addresses that will
// be part of the surviving objects.
bool Contains(uword addr) const { return to_->Contains(addr); }
ObjectPtr FindObject(FindObjectVisitor* visitor);
uword TryAllocate(Thread* thread, intptr_t size) {
uword addr = TryAllocateFromTLAB(thread, size);
if (LIKELY(addr != 0)) {
return addr;
}
TryAllocateNewTLAB(thread);
return TryAllocateFromTLAB(thread, size);
}
void MakeTLABIterable(const TLAB& tlab);
void AbandonRemainingTLABForDebugging(Thread* thread);
template <bool parallel>
bool TryAllocateNewTLAB(ScavengerVisitorBase<parallel>* visitor);
// When a thread gets scheduled it will try to acquire a TLAB.
void TryAcquireCachedTLAB(Thread* thread) {
MutexLocker ml(&space_lock_);
thread->set_tlab(TryAcquireCachedTLABLocked());
}
TLAB TryAcquireCachedTLABLocked();
// When a thread gets unscheduled it will release it's TLAB.
void ReleaseAndCacheTLAB(Thread* thread) {
MutexLocker ml(&space_lock_);
CacheTLABLocked(thread->tlab());
thread->set_tlab(TLAB());
}
void CacheTLABLocked(TLAB tlab);
// Collect the garbage in this scavenger.
void Scavenge();
// Promote all live objects.
void Evacuate();
// Report (TLAB) abandoned bytes that should be taken account when
// deciding whether to grow new space or not.
void AddAbandonedInBytes(intptr_t value) {
MutexLocker ml(&space_lock_);
AddAbandonedInBytesLocked(value);
}
int64_t GetAndResetAbandonedInBytes() {
int64_t result = abandoned_;
abandoned_ = 0;
return result;
}
int64_t UsedInWords() const {
MutexLocker ml(&space_lock_);
return (top_ - FirstObjectStart()) >> kWordSizeLog2;
}
int64_t CapacityInWords() const { return to_->size_in_words(); }
int64_t ExternalInWords() const { return external_size_ >> kWordSizeLog2; }
SpaceUsage GetCurrentUsage() const {
SpaceUsage usage;
usage.used_in_words = UsedInWords();
usage.capacity_in_words = CapacityInWords();
usage.external_in_words = ExternalInWords();
return usage;
}
void VisitObjects(ObjectVisitor* visitor);
void VisitObjectPointers(ObjectPointerVisitor* visitor);
void AddRegionsToObjectSet(ObjectSet* set) const;
void WriteProtect(bool read_only);
bool ShouldPerformIdleScavenge(int64_t deadline);
void AddGCTime(int64_t micros) { gc_time_micros_ += micros; }
int64_t gc_time_micros() const { return gc_time_micros_; }
void IncrementCollections() { collections_++; }
intptr_t collections() const { return collections_; }
#ifndef PRODUCT
void PrintToJSONObject(JSONObject* object) const;
#endif // !PRODUCT
void AllocateExternal(intptr_t cid, intptr_t size);
void FreeExternal(intptr_t size);
void MakeNewSpaceIterable();
int64_t FreeSpaceInWords(Isolate* isolate) const;
void InitGrowthControl() {
growth_control_ = true;
}
void SetGrowthControlState(bool state) {
growth_control_ = state;
}
bool GrowthControlState() { return growth_control_; }
bool scavenging() const { return scavenging_; }
private:
static const intptr_t kTLABSize = 512 * KB;
// Ids for time and data records in Heap::GCStats.
enum {
// Time
kDummyScavengeTime = 0,
kSafePoint = 1,
kVisitIsolateRoots = 2,
kIterateStoreBuffers = 3,
kProcessToSpace = 4,
kIterateWeaks = 5,
// Data
kStoreBufferEntries = 0,
kDataUnused1 = 1,
kDataUnused2 = 2,
kToKBAfterStoreBuffer = 3
};
uword TryAllocateFromTLAB(Thread* thread, intptr_t size) {
ASSERT(Utils::IsAligned(size, kObjectAlignment));
ASSERT(heap_ != Dart::vm_isolate()->heap());
TLAB tlab = thread->tlab();
const intptr_t remaining = tlab.RemainingSize();
if (UNLIKELY(remaining < size)) {
return 0;
}
const uword result = tlab.top;
ASSERT(to_->Contains(result));
ASSERT((result & kObjectAlignmentMask) == kNewObjectAlignmentOffset);
const uword new_top = tlab.top + size;
ASSERT(to_->Contains(new_top) || new_top == to_->end());
thread->set_tlab(tlab.BumpAllocate(size));
return result;
}
void TryAllocateNewTLAB(Thread* thread);
void AddAbandonedInBytesLocked(intptr_t value) { abandoned_ += value; }
void AbandonTLABsLocked();
uword FirstObjectStart() const {
return to_->start() + kNewObjectAlignmentOffset;
}
SemiSpace* Prologue();
intptr_t ParallelScavenge(SemiSpace* from);
intptr_t SerialScavenge(SemiSpace* from);
void IterateIsolateRoots(ObjectPointerVisitor* visitor);
template <bool parallel>
void IterateStoreBuffers(ScavengerVisitorBase<parallel>* visitor);
template <bool parallel>
void IterateRememberedCards(ScavengerVisitorBase<parallel>* visitor);
void IterateObjectIdTable(ObjectPointerVisitor* visitor);
template <bool parallel>
void IterateRoots(ScavengerVisitorBase<parallel>* visitor);
void MournWeakHandles();
void Epilogue(SemiSpace* from);
bool IsUnreachable(ObjectPtr* p);
void VerifyStoreBuffers();
void UpdateMaxHeapCapacity();
void UpdateMaxHeapUsage();
void MournWeakTables();
intptr_t NewSizeInWords(intptr_t old_size_in_words) const;
uword top_;
uword end_;
MallocGrowableArray<TLAB> abandoned_tlabs_;
MallocGrowableArray<TLAB> free_tlabs_;
SemiSpace* to_;
Heap* heap_;
// A pointer to the first unscanned object. Scanning completes when
// this value meets the allocation top.
uword resolved_top_;
// Objects below this address have survived a scavenge.
uword survivor_end_;
// Abandoned (TLAB) bytes that need to be accounted for when deciding
// whether to grow newspace or not.
intptr_t abandoned_ = 0;
PromotionStack promotion_stack_;
intptr_t max_semi_capacity_in_words_;
// Keep track whether a scavenge is currently running.
bool scavenging_;
RelaxedAtomic<intptr_t> root_slices_started_;
StoreBufferBlock* blocks_;
int64_t gc_time_micros_;
intptr_t collections_;
static const int kStatsHistoryCapacity = 4;
RingBuffer<ScavengeStats, kStatsHistoryCapacity> stats_history_;
intptr_t scavenge_words_per_micro_;
intptr_t idle_scavenge_threshold_in_words_;
// The total size of external data associated with objects in this scavenger.
RelaxedAtomic<intptr_t> external_size_;
bool failed_to_promote_;
bool growth_control_;
// Protects new space during the allocation of new TLABs
mutable Mutex space_lock_;
template <bool>
friend class ScavengerVisitorBase;
friend class ScavengerWeakVisitor;
DISALLOW_COPY_AND_ASSIGN(Scavenger);
};
} // namespace dart
#endif // RUNTIME_VM_HEAP_SCAVENGER_H_