blob: 0c761ff5fada6cf08d77cb9545de22cb4d3bf27c [file] [log] [blame]
// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
/// The Dart TypedData library.
library dart.typed_data;
import 'dart:collection';
import 'dart:_collection-dev';
import 'dart:_js_helper' show Creates, JavaScriptIndexingBehavior, JSName, Null, Returns;
import 'dart:_foreign_helper' show JS;
import 'dart:math' as Math;
/**
* Describes endianness to be used when accessing a sequence of bytes.
*/
class Endianness {
const Endianness(this._littleEndian);
static const Endianness BIG_ENDIAN = const Endianness(false);
static const Endianness LITTLE_ENDIAN = const Endianness(true);
static final Endianness HOST_ENDIAN =
(new ByteData.view(new Int16List.fromList([1]).buffer)).getInt8(0) == 1 ?
LITTLE_ENDIAN : BIG_ENDIAN;
final bool _littleEndian;
}
class ByteBuffer native "ArrayBuffer" {
@JSName('byteLength')
final int lengthInBytes;
}
class TypedData native "ArrayBufferView" {
@Creates('ByteBuffer')
@Returns('ByteBuffer|Null')
final ByteBuffer buffer;
@JSName('byteLength')
final int lengthInBytes;
@JSName('byteOffset')
final int offsetInBytes;
@JSName('BYTES_PER_ELEMENT')
final int elementSizeInBytes;
void _invalidIndex(int index, int length) {
if (index < 0 || index >= length) {
throw new RangeError.range(index, 0, length);
} else {
throw new ArgumentError('Invalid list index $index');
}
}
void _checkIndex(int index, int length) {
if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) {
_invalidIndex(index, length);
}
}
int _checkSublistArguments(int start, int end, int length) {
// For `sublist` the [start] and [end] indices are allowed to be equal to
// [length]. However, [_checkIndex] only allows incides in the range
// 0 .. length - 1. We therefore increment the [length] argument by one
// for the [_checkIndex] checks.
_checkIndex(start, length + 1);
if (end == null) return length;
_checkIndex(end, length + 1);
if (start > end) throw new RangeError.range(start, 0, end);
return end;
}
}
// Ensures that [list] is a JavaScript Array or a typed array. If necessary,
// returns a copy of the list.
List _ensureNativeList(List list) {
return list; // TODO: make sure.
}
class ByteData extends TypedData native "DataView" {
factory ByteData(int length) => _create1(length);
factory ByteData.view(ByteBuffer buffer,
[int byteOffset = 0, int byteLength]) =>
byteLength == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, byteLength);
num getFloat32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getFloat32(byteOffset, endian._littleEndian);
@JSName('getFloat32')
@Returns('num')
num _getFloat32(int byteOffset, [bool littleEndian]) native;
num getFloat64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getFloat64(byteOffset, endian._littleEndian);
@JSName('getFloat64')
@Returns('num')
num _getFloat64(int byteOffset, [bool littleEndian]) native;
int getInt16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getInt16(byteOffset, endian._littleEndian);
@JSName('getInt16')
@Returns('int')
int _getInt16(int byteOffset, [bool littleEndian]) native;
int getInt32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getInt32(byteOffset, endian._littleEndian);
@JSName('getInt32')
@Returns('int')
int _getInt32(int byteOffset, [bool littleEndian]) native;
int getInt64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) {
throw new UnsupportedError("Int64 accessor not supported by dart2js.");
}
int getInt8(int byteOffset) native;
int getUint16(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getUint16(byteOffset, endian._littleEndian);
@JSName('getUint16')
@Returns('int')
int _getUint16(int byteOffset, [bool littleEndian]) native;
int getUint32(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_getUint32(byteOffset, endian._littleEndian);
@JSName('getUint32')
@Returns('int')
int _getUint32(int byteOffset, [bool littleEndian]) native;
int getUint64(int byteOffset, [Endianness endian=Endianness.BIG_ENDIAN]) {
throw new UnsupportedError("Uint64 accessor not supported by dart2js.");
}
int getUint8(int byteOffset) native;
void setFloat32(int byteOffset, num value, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_setFloat32(byteOffset, value, endian._littleEndian);
@JSName('setFloat32')
void _setFloat32(int byteOffset, num value, [bool littleEndian]) native;
void setFloat64(int byteOffset, num value, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_setFloat64(byteOffset, value, endian._littleEndian);
@JSName('setFloat64')
void _setFloat64(int byteOffset, num value, [bool littleEndian]) native;
void setInt16(int byteOffset, int value, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_setInt16(byteOffset, value, endian._littleEndian);
@JSName('setInt16')
void _setInt16(int byteOffset, int value, [bool littleEndian]) native;
void setInt32(int byteOffset, int value, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_setInt32(byteOffset, value, endian._littleEndian);
@JSName('setInt32')
void _setInt32(int byteOffset, int value, [bool littleEndian]) native;
void setInt64(int byteOffset, int value, [Endianness endian=Endianness.BIG_ENDIAN]) {
throw new UnsupportedError("Int64 accessor not supported by dart2js.");
}
void setInt8(int byteOffset, int value) native;
void setUint16(int byteOffset, int value, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_setUint16(byteOffset, value, endian._littleEndian);
@JSName('setUint16')
void _setUint16(int byteOffset, int value, [bool littleEndian]) native;
void setUint32(int byteOffset, int value, [Endianness endian=Endianness.BIG_ENDIAN]) =>
_setUint32(byteOffset, value, endian._littleEndian);
@JSName('setUint32')
void _setUint32(int byteOffset, int value, [bool littleEndian]) native;
void setUint64(int byteOffset, int value, [Endianness endian=Endianness.BIG_ENDIAN]) {
throw new UnsupportedError("Uint64 accessor not supported by dart2js.");
}
void setUint8(int byteOffset, int value) native;
static ByteData _create1(arg) =>
JS('ByteData', 'new DataView(new ArrayBuffer(#))', arg);
static ByteData _create2(arg1, arg2) =>
JS('ByteData', 'new DataView(#, #)', arg1, arg2);
static ByteData _create3(arg1, arg2, arg3) =>
JS('ByteData', 'new DataView(#, #, #)', arg1, arg2, arg3);
}
class Float32List
extends TypedData with ListMixin<double>, FixedLengthListMixin<double>
implements JavaScriptIndexingBehavior, List<double>
native "Float32Array" {
factory Float32List(int length) => _create1(length);
factory Float32List.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Float32List.view(ByteBuffer buffer,
[int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 4;
int get length => JS("int", "#.length", this);
num operator[](int index) {
_checkIndex(index, length);
return JS("num", "#[#]", this, index);
}
void operator[]=(int index, num value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<double> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Float32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Float32List _create1(arg) =>
JS('Float32List', 'new Float32Array(#)', arg);
static Float32List _create2(arg1, arg2) =>
JS('Float32List', 'new Float32Array(#, #)', arg1, arg2);
static Float32List _create3(arg1, arg2, arg3) =>
JS('Float32List', 'new Float32Array(#, #, #)', arg1, arg2, arg3);
}
class Float64List
extends TypedData with ListMixin<double>, FixedLengthListMixin<double>
implements JavaScriptIndexingBehavior, List<double>
native "Float64Array" {
factory Float64List(int length) => _create1(length);
factory Float64List.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Float64List.view(ByteBuffer buffer,
[int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 8;
int get length => JS("int", "#.length", this);
num operator[](int index) {
_checkIndex(index, length);
return JS("num", "#[#]", this, index);
}
void operator[]=(int index, num value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<double> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Float64List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Float64List _create1(arg) =>
JS('Float64List', 'new Float64Array(#)', arg);
static Float64List _create2(arg1, arg2) =>
JS('Float64List', 'new Float64Array(#, #)', arg1, arg2);
static Float64List _create3(arg1, arg2, arg3) =>
JS('Float64List', 'new Float64Array(#, #, #)', arg1, arg2, arg3);
}
class Int16List
extends TypedData with ListMixin<int>, FixedLengthListMixin<int>
implements JavaScriptIndexingBehavior, List<int>
native "Int16Array" {
factory Int16List(int length) => _create1(length);
factory Int16List.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Int16List.view(ByteBuffer buffer, [int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 2;
int get length => JS("int", "#.length", this);
int operator[](int index) {
_checkIndex(index, length);
return JS("int", "#[#]", this, index);
}
void operator[]=(int index, int value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Int16List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Int16List _create1(arg) =>
JS('Int16List', 'new Int16Array(#)', arg);
static Int16List _create2(arg1, arg2) =>
JS('Int16List', 'new Int16Array(#, #)', arg1, arg2);
static Int16List _create3(arg1, arg2, arg3) =>
JS('Int16List', 'new Int16Array(#, #, #)', arg1, arg2, arg3);
}
class Int32List
extends TypedData with ListMixin<int>, FixedLengthListMixin<int>
implements JavaScriptIndexingBehavior, List<int>
native "Int32Array" {
factory Int32List(int length) => _create1(length);
factory Int32List.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Int32List.view(ByteBuffer buffer, [int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 4;
int get length => JS("int", "#.length", this);
int operator[](int index) {
_checkIndex(index, length);
return JS("int", "#[#]", this, index);
}
void operator[]=(int index, int value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Int32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Int32List _create1(arg) =>
JS('Int32List', 'new Int32Array(#)', arg);
static Int32List _create2(arg1, arg2) =>
JS('Int32List', 'new Int32Array(#, #)', arg1, arg2);
static Int32List _create3(arg1, arg2, arg3) =>
JS('Int32List', 'new Int32Array(#, #, #)', arg1, arg2, arg3);
}
class Int8List
extends TypedData with ListMixin<int>, FixedLengthListMixin<int>
implements JavaScriptIndexingBehavior, List<int>
native "Int8Array" {
factory Int8List(int length) => _create1(length);
factory Int8List.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Int8List.view(ByteBuffer buffer, [int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 1;
int get length => JS("int", "#.length", this);
int operator[](int index) {
_checkIndex(index, length);
return JS("int", "#[#]", this, index);
}
void operator[]=(int index, int value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Int8List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Int8List _create1(arg) =>
JS('Int8List', 'new Int8Array(#)', arg);
static Int8List _create2(arg1, arg2) =>
JS('Int8List', 'new Int8Array(#, #)', arg1, arg2);
static Int8List _create3(arg1, arg2, arg3) =>
JS('Int8List', 'new Int8Array(#, #, #)', arg1, arg2, arg3);
}
class Uint16List
extends TypedData with ListMixin<int>, FixedLengthListMixin<int>
implements JavaScriptIndexingBehavior, List<int>
native "Uint16Array" {
factory Uint16List(int length) => _create1(length);
factory Uint16List.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Uint16List.view(ByteBuffer buffer,
[int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 2;
int get length => JS("int", "#.length", this);
int operator[](int index) {
_checkIndex(index, length);
return JS("int", "#[#]", this, index);
}
void operator[]=(int index, int value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Uint16List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Uint16List _create1(arg) =>
JS('Uint16List', 'new Uint16Array(#)', arg);
static Uint16List _create2(arg1, arg2) =>
JS('Uint16List', 'new Uint16Array(#, #)', arg1, arg2);
static Uint16List _create3(arg1, arg2, arg3) =>
JS('Uint16List', 'new Uint16Array(#, #, #)', arg1, arg2, arg3);
}
class Uint32List
extends TypedData with ListMixin<int>, FixedLengthListMixin<int>
implements JavaScriptIndexingBehavior, List<int>
native "Uint32Array" {
factory Uint32List(int length) => _create1(length);
factory Uint32List.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Uint32List.view(ByteBuffer buffer,
[int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 4;
int get length => JS("int", "#.length", this);
int operator[](int index) {
_checkIndex(index, length);
return JS("int", "#[#]", this, index);
}
void operator[]=(int index, int value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Uint32List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Uint32List _create1(arg) =>
JS('Uint32List', 'new Uint32Array(#)', arg);
static Uint32List _create2(arg1, arg2) =>
JS('Uint32List', 'new Uint32Array(#, #)', arg1, arg2);
static Uint32List _create3(arg1, arg2, arg3) =>
JS('Uint32List', 'new Uint32Array(#, #, #)', arg1, arg2, arg3);
}
class Uint8ClampedList extends Uint8List
native "Uint8ClampedArray,CanvasPixelArray" {
factory Uint8ClampedList(int length) => _create1(length);
factory Uint8ClampedList.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Uint8ClampedList.view(ByteBuffer buffer,
[int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 1;
// Use implementation from Uint8List
// final int length;
int operator[](int index) {
_checkIndex(index, length);
return JS("int", "#[#]", this, index);
}
void operator[]=(int index, int value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Uint8ClampedList', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Uint8ClampedList _create1(arg) =>
JS('Uint8ClampedList', 'new Uint8ClampedArray(#)', arg);
static Uint8ClampedList _create2(arg1, arg2) =>
JS('Uint8ClampedList', 'new Uint8ClampedArray(#, #)', arg1, arg2);
static Uint8ClampedList _create3(arg1, arg2, arg3) =>
JS('Uint8ClampedList', 'new Uint8ClampedArray(#, #, #)', arg1, arg2, arg3);
}
class Uint8List
extends TypedData with ListMixin<int>, FixedLengthListMixin<int>
implements JavaScriptIndexingBehavior, List<int>
native "Uint8Array" {
factory Uint8List(int length) => _create1(length);
factory Uint8List.fromList(List<num> list) =>
_create1(_ensureNativeList(list));
factory Uint8List.view(ByteBuffer buffer,
[int byteOffset = 0, int length]) =>
length == null
? _create2(buffer, byteOffset)
: _create3(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 1;
int get length => JS("int", "#.length", this);
int operator[](int index) {
_checkIndex(index, length);
return JS("int", "#[#]", this, index);
}
void operator[]=(int index, int value) {
_checkIndex(index, length);
JS("void", "#[#] = #", this, index, value);
}
List<int> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
var source = JS('Uint8List', '#.subarray(#, #)', this, start, end);
return _create1(source);
}
static Uint8List _create1(arg) =>
JS('Uint8List', 'new Uint8Array(#)', arg);
static Uint8List _create2(arg1, arg2) =>
JS('Uint8List', 'new Uint8Array(#, #)', arg1, arg2);
static Uint8List _create3(arg1, arg2, arg3) =>
JS('Uint8List', 'new Uint8Array(#, #, #)', arg1, arg2, arg3);
}
class Int64List extends TypedData implements JavaScriptIndexingBehavior, List<int> {
factory Int64List(int length) {
throw new UnsupportedError("Int64List not supported by dart2js.");
}
factory Int64List.fromList(List<int> list) {
throw new UnsupportedError("Int64List not supported by dart2js.");
}
factory Int64List.view(ByteBuffer buffer, [int byteOffset, int length]) {
throw new UnsupportedError("Int64List not supported by dart2js.");
}
static const int BYTES_PER_ELEMENT = 8;
}
class Uint64List extends TypedData implements JavaScriptIndexingBehavior, List<int> {
factory Uint64List(int length) {
throw new UnsupportedError("Uint64List not supported by dart2js.");
}
factory Uint64List.fromList(List<int> list) {
throw new UnsupportedError("Uint64List not supported by dart2js.");
}
factory Uint64List.view(ByteBuffer buffer, [int byteOffset, int length]) {
throw new UnsupportedError("Uint64List not supported by dart2js.");
}
static const int BYTES_PER_ELEMENT = 8;
}
class Float32x4List
extends Object with ListMixin<Float32x4>, FixedLengthListMixin<Float32x4>
implements List<Float32x4>, TypedData {
final Float32List _storage;
ByteBuffer get buffer => _storage.buffer;
int get lengthInBytes => _storage.lengthInBytes;
int get offsetInBytes => _storage.offsetInBytes;
final int elementSizeInBytes = 16;
void _invalidIndex(int index, int length) {
if (index < 0 || index >= length) {
throw new RangeError.range(index, 0, length);
} else {
throw new ArgumentError('Invalid list index $index');
}
}
void _checkIndex(int index, int length) {
if (JS('bool', '(# >>> 0 != #)', index, index) || index >= length) {
_invalidIndex(index, length);
}
}
int _checkSublistArguments(int start, int end, int length) {
// For `sublist` the [start] and [end] indices are allowed to be equal to
// [length]. However, [_checkIndex] only allows incides in the range
// 0 .. length - 1. We therefore increment the [length] argument by one
// for the [_checkIndex] checks.
_checkIndex(start, length + 1);
if (end == null) return length;
_checkIndex(end, length + 1);
if (start > end) throw new RangeError.range(start, 0, end);
return end;
}
Float32x4List(int length) : _storage = new Float32List(length*4);
Float32x4List._externalStorage(Float32List storage) : _storage = storage;
Float32x4List._slowFromList(List<Float32x4> list)
: _storage = new Float32List(list.length * 4) {
for (int i = 0; i < list.length; i++) {
var e = list[i];
_storage[(i*4)+0] = e.x;
_storage[(i*4)+1] = e.y;
_storage[(i*4)+2] = e.z;
_storage[(i*4)+3] = e.w;
}
}
factory Float32x4List.fromList(List<Float32x4> list) {
if (list is Float32x4List) {
Float32x4List nativeList = list as Float32x4List;
return new Float32x4List._externalStorage(
new Float32List.fromList(nativeList._storage));
} else {
return new Float32x4List._slowFromList(list);
}
}
Float32x4List.view(ByteBuffer buffer,
[int byteOffset = 0, int length])
: _storage = new Float32List.view(buffer, byteOffset, length);
static const int BYTES_PER_ELEMENT = 16;
int get length => _storage.length ~/ 4;
Float32x4 operator[](int index) {
_checkIndex(index, length);
double _x = _storage[(index*4)+0];
double _y = _storage[(index*4)+1];
double _z = _storage[(index*4)+2];
double _w = _storage[(index*4)+3];
return new Float32x4(_x, _y, _z, _w);
}
void operator[]=(int index, Float32x4 value) {
_checkIndex(index, length);
_storage[(index*4)+0] = value._storage[0];
_storage[(index*4)+1] = value._storage[1];
_storage[(index*4)+2] = value._storage[2];
_storage[(index*4)+3] = value._storage[3];
}
List<Float32x4> sublist(int start, [int end]) {
end = _checkSublistArguments(start, end, length);
return new Float32x4List._externalStorage(_storage.sublist(start*4, end*4));
}
}
class Float32x4 {
final _storage = new Float32List(4);
Float32x4(double x, double y, double z, double w) {
_storage[0] = x;
_storage[1] = y;
_storage[2] = z;
_storage[3] = w;
}
Float32x4.splat(double v) {
_storage[0] = v;
_storage[1] = v;
_storage[2] = v;
_storage[3] = v;
}
Float32x4.zero();
/// Addition operator.
Float32x4 operator+(Float32x4 other) {
double _x = _storage[0] + other._storage[0];
double _y = _storage[1] + other._storage[1];
double _z = _storage[2] + other._storage[2];
double _w = _storage[3] + other._storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Negate operator.
Float32x4 operator-() {
double _x = -_storage[0];
double _y = -_storage[1];
double _z = -_storage[2];
double _w = -_storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Subtraction operator.
Float32x4 operator-(Float32x4 other) {
double _x = _storage[0] - other._storage[0];
double _y = _storage[1] - other._storage[1];
double _z = _storage[2] - other._storage[2];
double _w = _storage[3] - other._storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Multiplication operator.
Float32x4 operator*(Float32x4 other) {
double _x = _storage[0] * other._storage[0];
double _y = _storage[1] * other._storage[1];
double _z = _storage[2] * other._storage[2];
double _w = _storage[3] * other._storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Division operator.
Float32x4 operator/(Float32x4 other) {
double _x = _storage[0] / other._storage[0];
double _y = _storage[1] / other._storage[1];
double _z = _storage[2] / other._storage[2];
double _w = _storage[3] / other._storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Relational less than.
Uint32x4 lessThan(Float32x4 other) {
bool _cx = _storage[0] < other._storage[0];
bool _cy = _storage[1] < other._storage[1];
bool _cz = _storage[2] < other._storage[2];
bool _cw = _storage[3] < other._storage[3];
return new Uint32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational less than or equal.
Uint32x4 lessThanOrEqual(Float32x4 other) {
bool _cx = _storage[0] <= other._storage[0];
bool _cy = _storage[1] <= other._storage[1];
bool _cz = _storage[2] <= other._storage[2];
bool _cw = _storage[3] <= other._storage[3];
return new Uint32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational greater than.
Uint32x4 greaterThan(Float32x4 other) {
bool _cx = _storage[0] > other._storage[0];
bool _cy = _storage[1] > other._storage[1];
bool _cz = _storage[2] > other._storage[2];
bool _cw = _storage[3] > other._storage[3];
return new Uint32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational greater than or equal.
Uint32x4 greaterThanOrEqual(Float32x4 other) {
bool _cx = _storage[0] >= other._storage[0];
bool _cy = _storage[1] >= other._storage[1];
bool _cz = _storage[2] >= other._storage[2];
bool _cw = _storage[3] >= other._storage[3];
return new Uint32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational equal.
Uint32x4 equal(Float32x4 other) {
bool _cx = _storage[0] == other._storage[0];
bool _cy = _storage[1] == other._storage[1];
bool _cz = _storage[2] == other._storage[2];
bool _cw = _storage[3] == other._storage[3];
return new Uint32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Relational not-equal.
Uint32x4 notEqual(Float32x4 other) {
bool _cx = _storage[0] != other._storage[0];
bool _cy = _storage[1] != other._storage[1];
bool _cz = _storage[2] != other._storage[2];
bool _cw = _storage[3] != other._storage[3];
return new Uint32x4(_cx == true ? 0xFFFFFFFF : 0x0,
_cy == true ? 0xFFFFFFFF : 0x0,
_cz == true ? 0xFFFFFFFF : 0x0,
_cw == true ? 0xFFFFFFFF : 0x0);
}
/// Returns a copy of [this] each lane being scaled by [s].
Float32x4 scale(double s) {
double _x = s * _storage[0];
double _y = s * _storage[1];
double _z = s * _storage[2];
double _w = s * _storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns the absolute value of this [Float32x4].
Float32x4 abs() {
double _x = _storage[0].abs();
double _y = _storage[1].abs();
double _z = _storage[2].abs();
double _w = _storage[3].abs();
return new Float32x4(_x, _y, _z, _w);
}
/// Clamps [this] to be in the range [lowerLimit]-[upperLimit].
Float32x4 clamp(Float32x4 lowerLimit, Float32x4 upperLimit) {
double _lx = lowerLimit._storage[0];
double _ly = lowerLimit._storage[1];
double _lz = lowerLimit._storage[2];
double _lw = lowerLimit._storage[3];
double _ux = upperLimit._storage[0];
double _uy = upperLimit._storage[1];
double _uz = upperLimit._storage[2];
double _uw = upperLimit._storage[3];
double _x = _storage[0];
double _y = _storage[1];
double _z = _storage[2];
double _w = _storage[3];
_x = _x < _lx ? _lx : _x;
_x = _x > _ux ? _ux : _x;
_y = _y < _ly ? _ly : _y;
_y = _y > _uy ? _uy : _y;
_z = _z < _lz ? _lz : _z;
_z = _z > _uz ? _uz : _z;
_w = _w < _lw ? _lw : _w;
_w = _w > _uw ? _uw : _w;
return new Float32x4(_x, _y, _z, _w);
}
/// Extracted x value.
double get x => _storage[0];
/// Extracted y value.
double get y => _storage[1];
/// Extracted z value.
double get z => _storage[2];
/// Extracted w value.
double get w => _storage[3];
Float32x4 get xxxx => _shuffle(0x0);
Float32x4 get xxxy => _shuffle(0x40);
Float32x4 get xxxz => _shuffle(0x80);
Float32x4 get xxxw => _shuffle(0xC0);
Float32x4 get xxyx => _shuffle(0x10);
Float32x4 get xxyy => _shuffle(0x50);
Float32x4 get xxyz => _shuffle(0x90);
Float32x4 get xxyw => _shuffle(0xD0);
Float32x4 get xxzx => _shuffle(0x20);
Float32x4 get xxzy => _shuffle(0x60);
Float32x4 get xxzz => _shuffle(0xA0);
Float32x4 get xxzw => _shuffle(0xE0);
Float32x4 get xxwx => _shuffle(0x30);
Float32x4 get xxwy => _shuffle(0x70);
Float32x4 get xxwz => _shuffle(0xB0);
Float32x4 get xxww => _shuffle(0xF0);
Float32x4 get xyxx => _shuffle(0x4);
Float32x4 get xyxy => _shuffle(0x44);
Float32x4 get xyxz => _shuffle(0x84);
Float32x4 get xyxw => _shuffle(0xC4);
Float32x4 get xyyx => _shuffle(0x14);
Float32x4 get xyyy => _shuffle(0x54);
Float32x4 get xyyz => _shuffle(0x94);
Float32x4 get xyyw => _shuffle(0xD4);
Float32x4 get xyzx => _shuffle(0x24);
Float32x4 get xyzy => _shuffle(0x64);
Float32x4 get xyzz => _shuffle(0xA4);
Float32x4 get xyzw => _shuffle(0xE4);
Float32x4 get xywx => _shuffle(0x34);
Float32x4 get xywy => _shuffle(0x74);
Float32x4 get xywz => _shuffle(0xB4);
Float32x4 get xyww => _shuffle(0xF4);
Float32x4 get xzxx => _shuffle(0x8);
Float32x4 get xzxy => _shuffle(0x48);
Float32x4 get xzxz => _shuffle(0x88);
Float32x4 get xzxw => _shuffle(0xC8);
Float32x4 get xzyx => _shuffle(0x18);
Float32x4 get xzyy => _shuffle(0x58);
Float32x4 get xzyz => _shuffle(0x98);
Float32x4 get xzyw => _shuffle(0xD8);
Float32x4 get xzzx => _shuffle(0x28);
Float32x4 get xzzy => _shuffle(0x68);
Float32x4 get xzzz => _shuffle(0xA8);
Float32x4 get xzzw => _shuffle(0xE8);
Float32x4 get xzwx => _shuffle(0x38);
Float32x4 get xzwy => _shuffle(0x78);
Float32x4 get xzwz => _shuffle(0xB8);
Float32x4 get xzww => _shuffle(0xF8);
Float32x4 get xwxx => _shuffle(0xC);
Float32x4 get xwxy => _shuffle(0x4C);
Float32x4 get xwxz => _shuffle(0x8C);
Float32x4 get xwxw => _shuffle(0xCC);
Float32x4 get xwyx => _shuffle(0x1C);
Float32x4 get xwyy => _shuffle(0x5C);
Float32x4 get xwyz => _shuffle(0x9C);
Float32x4 get xwyw => _shuffle(0xDC);
Float32x4 get xwzx => _shuffle(0x2C);
Float32x4 get xwzy => _shuffle(0x6C);
Float32x4 get xwzz => _shuffle(0xAC);
Float32x4 get xwzw => _shuffle(0xEC);
Float32x4 get xwwx => _shuffle(0x3C);
Float32x4 get xwwy => _shuffle(0x7C);
Float32x4 get xwwz => _shuffle(0xBC);
Float32x4 get xwww => _shuffle(0xFC);
Float32x4 get yxxx => _shuffle(0x1);
Float32x4 get yxxy => _shuffle(0x41);
Float32x4 get yxxz => _shuffle(0x81);
Float32x4 get yxxw => _shuffle(0xC1);
Float32x4 get yxyx => _shuffle(0x11);
Float32x4 get yxyy => _shuffle(0x51);
Float32x4 get yxyz => _shuffle(0x91);
Float32x4 get yxyw => _shuffle(0xD1);
Float32x4 get yxzx => _shuffle(0x21);
Float32x4 get yxzy => _shuffle(0x61);
Float32x4 get yxzz => _shuffle(0xA1);
Float32x4 get yxzw => _shuffle(0xE1);
Float32x4 get yxwx => _shuffle(0x31);
Float32x4 get yxwy => _shuffle(0x71);
Float32x4 get yxwz => _shuffle(0xB1);
Float32x4 get yxww => _shuffle(0xF1);
Float32x4 get yyxx => _shuffle(0x5);
Float32x4 get yyxy => _shuffle(0x45);
Float32x4 get yyxz => _shuffle(0x85);
Float32x4 get yyxw => _shuffle(0xC5);
Float32x4 get yyyx => _shuffle(0x15);
Float32x4 get yyyy => _shuffle(0x55);
Float32x4 get yyyz => _shuffle(0x95);
Float32x4 get yyyw => _shuffle(0xD5);
Float32x4 get yyzx => _shuffle(0x25);
Float32x4 get yyzy => _shuffle(0x65);
Float32x4 get yyzz => _shuffle(0xA5);
Float32x4 get yyzw => _shuffle(0xE5);
Float32x4 get yywx => _shuffle(0x35);
Float32x4 get yywy => _shuffle(0x75);
Float32x4 get yywz => _shuffle(0xB5);
Float32x4 get yyww => _shuffle(0xF5);
Float32x4 get yzxx => _shuffle(0x9);
Float32x4 get yzxy => _shuffle(0x49);
Float32x4 get yzxz => _shuffle(0x89);
Float32x4 get yzxw => _shuffle(0xC9);
Float32x4 get yzyx => _shuffle(0x19);
Float32x4 get yzyy => _shuffle(0x59);
Float32x4 get yzyz => _shuffle(0x99);
Float32x4 get yzyw => _shuffle(0xD9);
Float32x4 get yzzx => _shuffle(0x29);
Float32x4 get yzzy => _shuffle(0x69);
Float32x4 get yzzz => _shuffle(0xA9);
Float32x4 get yzzw => _shuffle(0xE9);
Float32x4 get yzwx => _shuffle(0x39);
Float32x4 get yzwy => _shuffle(0x79);
Float32x4 get yzwz => _shuffle(0xB9);
Float32x4 get yzww => _shuffle(0xF9);
Float32x4 get ywxx => _shuffle(0xD);
Float32x4 get ywxy => _shuffle(0x4D);
Float32x4 get ywxz => _shuffle(0x8D);
Float32x4 get ywxw => _shuffle(0xCD);
Float32x4 get ywyx => _shuffle(0x1D);
Float32x4 get ywyy => _shuffle(0x5D);
Float32x4 get ywyz => _shuffle(0x9D);
Float32x4 get ywyw => _shuffle(0xDD);
Float32x4 get ywzx => _shuffle(0x2D);
Float32x4 get ywzy => _shuffle(0x6D);
Float32x4 get ywzz => _shuffle(0xAD);
Float32x4 get ywzw => _shuffle(0xED);
Float32x4 get ywwx => _shuffle(0x3D);
Float32x4 get ywwy => _shuffle(0x7D);
Float32x4 get ywwz => _shuffle(0xBD);
Float32x4 get ywww => _shuffle(0xFD);
Float32x4 get zxxx => _shuffle(0x2);
Float32x4 get zxxy => _shuffle(0x42);
Float32x4 get zxxz => _shuffle(0x82);
Float32x4 get zxxw => _shuffle(0xC2);
Float32x4 get zxyx => _shuffle(0x12);
Float32x4 get zxyy => _shuffle(0x52);
Float32x4 get zxyz => _shuffle(0x92);
Float32x4 get zxyw => _shuffle(0xD2);
Float32x4 get zxzx => _shuffle(0x22);
Float32x4 get zxzy => _shuffle(0x62);
Float32x4 get zxzz => _shuffle(0xA2);
Float32x4 get zxzw => _shuffle(0xE2);
Float32x4 get zxwx => _shuffle(0x32);
Float32x4 get zxwy => _shuffle(0x72);
Float32x4 get zxwz => _shuffle(0xB2);
Float32x4 get zxww => _shuffle(0xF2);
Float32x4 get zyxx => _shuffle(0x6);
Float32x4 get zyxy => _shuffle(0x46);
Float32x4 get zyxz => _shuffle(0x86);
Float32x4 get zyxw => _shuffle(0xC6);
Float32x4 get zyyx => _shuffle(0x16);
Float32x4 get zyyy => _shuffle(0x56);
Float32x4 get zyyz => _shuffle(0x96);
Float32x4 get zyyw => _shuffle(0xD6);
Float32x4 get zyzx => _shuffle(0x26);
Float32x4 get zyzy => _shuffle(0x66);
Float32x4 get zyzz => _shuffle(0xA6);
Float32x4 get zyzw => _shuffle(0xE6);
Float32x4 get zywx => _shuffle(0x36);
Float32x4 get zywy => _shuffle(0x76);
Float32x4 get zywz => _shuffle(0xB6);
Float32x4 get zyww => _shuffle(0xF6);
Float32x4 get zzxx => _shuffle(0xA);
Float32x4 get zzxy => _shuffle(0x4A);
Float32x4 get zzxz => _shuffle(0x8A);
Float32x4 get zzxw => _shuffle(0xCA);
Float32x4 get zzyx => _shuffle(0x1A);
Float32x4 get zzyy => _shuffle(0x5A);
Float32x4 get zzyz => _shuffle(0x9A);
Float32x4 get zzyw => _shuffle(0xDA);
Float32x4 get zzzx => _shuffle(0x2A);
Float32x4 get zzzy => _shuffle(0x6A);
Float32x4 get zzzz => _shuffle(0xAA);
Float32x4 get zzzw => _shuffle(0xEA);
Float32x4 get zzwx => _shuffle(0x3A);
Float32x4 get zzwy => _shuffle(0x7A);
Float32x4 get zzwz => _shuffle(0xBA);
Float32x4 get zzww => _shuffle(0xFA);
Float32x4 get zwxx => _shuffle(0xE);
Float32x4 get zwxy => _shuffle(0x4E);
Float32x4 get zwxz => _shuffle(0x8E);
Float32x4 get zwxw => _shuffle(0xCE);
Float32x4 get zwyx => _shuffle(0x1E);
Float32x4 get zwyy => _shuffle(0x5E);
Float32x4 get zwyz => _shuffle(0x9E);
Float32x4 get zwyw => _shuffle(0xDE);
Float32x4 get zwzx => _shuffle(0x2E);
Float32x4 get zwzy => _shuffle(0x6E);
Float32x4 get zwzz => _shuffle(0xAE);
Float32x4 get zwzw => _shuffle(0xEE);
Float32x4 get zwwx => _shuffle(0x3E);
Float32x4 get zwwy => _shuffle(0x7E);
Float32x4 get zwwz => _shuffle(0xBE);
Float32x4 get zwww => _shuffle(0xFE);
Float32x4 get wxxx => _shuffle(0x3);
Float32x4 get wxxy => _shuffle(0x43);
Float32x4 get wxxz => _shuffle(0x83);
Float32x4 get wxxw => _shuffle(0xC3);
Float32x4 get wxyx => _shuffle(0x13);
Float32x4 get wxyy => _shuffle(0x53);
Float32x4 get wxyz => _shuffle(0x93);
Float32x4 get wxyw => _shuffle(0xD3);
Float32x4 get wxzx => _shuffle(0x23);
Float32x4 get wxzy => _shuffle(0x63);
Float32x4 get wxzz => _shuffle(0xA3);
Float32x4 get wxzw => _shuffle(0xE3);
Float32x4 get wxwx => _shuffle(0x33);
Float32x4 get wxwy => _shuffle(0x73);
Float32x4 get wxwz => _shuffle(0xB3);
Float32x4 get wxww => _shuffle(0xF3);
Float32x4 get wyxx => _shuffle(0x7);
Float32x4 get wyxy => _shuffle(0x47);
Float32x4 get wyxz => _shuffle(0x87);
Float32x4 get wyxw => _shuffle(0xC7);
Float32x4 get wyyx => _shuffle(0x17);
Float32x4 get wyyy => _shuffle(0x57);
Float32x4 get wyyz => _shuffle(0x97);
Float32x4 get wyyw => _shuffle(0xD7);
Float32x4 get wyzx => _shuffle(0x27);
Float32x4 get wyzy => _shuffle(0x67);
Float32x4 get wyzz => _shuffle(0xA7);
Float32x4 get wyzw => _shuffle(0xE7);
Float32x4 get wywx => _shuffle(0x37);
Float32x4 get wywy => _shuffle(0x77);
Float32x4 get wywz => _shuffle(0xB7);
Float32x4 get wyww => _shuffle(0xF7);
Float32x4 get wzxx => _shuffle(0xB);
Float32x4 get wzxy => _shuffle(0x4B);
Float32x4 get wzxz => _shuffle(0x8B);
Float32x4 get wzxw => _shuffle(0xCB);
Float32x4 get wzyx => _shuffle(0x1B);
Float32x4 get wzyy => _shuffle(0x5B);
Float32x4 get wzyz => _shuffle(0x9B);
Float32x4 get wzyw => _shuffle(0xDB);
Float32x4 get wzzx => _shuffle(0x2B);
Float32x4 get wzzy => _shuffle(0x6B);
Float32x4 get wzzz => _shuffle(0xAB);
Float32x4 get wzzw => _shuffle(0xEB);
Float32x4 get wzwx => _shuffle(0x3B);
Float32x4 get wzwy => _shuffle(0x7B);
Float32x4 get wzwz => _shuffle(0xBB);
Float32x4 get wzww => _shuffle(0xFB);
Float32x4 get wwxx => _shuffle(0xF);
Float32x4 get wwxy => _shuffle(0x4F);
Float32x4 get wwxz => _shuffle(0x8F);
Float32x4 get wwxw => _shuffle(0xCF);
Float32x4 get wwyx => _shuffle(0x1F);
Float32x4 get wwyy => _shuffle(0x5F);
Float32x4 get wwyz => _shuffle(0x9F);
Float32x4 get wwyw => _shuffle(0xDF);
Float32x4 get wwzx => _shuffle(0x2F);
Float32x4 get wwzy => _shuffle(0x6F);
Float32x4 get wwzz => _shuffle(0xAF);
Float32x4 get wwzw => _shuffle(0xEF);
Float32x4 get wwwx => _shuffle(0x3F);
Float32x4 get wwwy => _shuffle(0x7F);
Float32x4 get wwwz => _shuffle(0xBF);
Float32x4 get wwww => _shuffle(0xFF);
Float32x4 _shuffle(int m) {
double _x = _storage[m & 0x3];
double _y = _storage[(m >> 2) & 0x3];
double _z = _storage[(m >> 4) & 0x3];
double _w = _storage[(m >> 6) & 0x3];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns a new [Float32x4] with values in the X and Y lanes
/// replaced with the values in the Z and W lanes of [other].
Float32x4 withZWInXY(Float32x4 other) {
double _x = other._storage[2];
double _y = other._storage[3];
double _z = _storage[2];
double _w = _storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns a new [Float32x4] with the X and Y lane values
/// from [this] and [other] interleaved.
Float32x4 interleaveXY(Float32x4 other) {
double _x = _storage[0];
double _y = other._storage[0];
double _z = _storage[1];
double _w = other._storage[1];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns a new [Float32x4] with the Z and W lane values
/// from [this] and [other] interleaved.
Float32x4 interleaveZW(Float32x4 other) {
double _x = _storage[2];
double _y = other._storage[2];
double _z = _storage[3];
double _w = other._storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns a new [Float32x4] with the X and Y lane value pairs
/// from [this] and [other] interleaved.
Float32x4 interleaveXYPairs(Float32x4 other) {
double _x = _storage[0];
double _y = _storage[1];
double _z = other._storage[0];
double _w = other._storage[1];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns a new [Float32x4] with the Z and W lane value pairs
/// from [this] and [other] interleaved.
Float32x4 interleaveZWPairs(Float32x4 other) {
double _x = _storage[2];
double _y = _storage[3];
double _z = other._storage[2];
double _w = other._storage[3];
return new Float32x4(_x, _y, _z, _w);
}
Float32x4 withX(double x) {
double _x = x;
double _y = _storage[1];
double _z = _storage[2];
double _w = _storage[3];
return new Float32x4(_x, _y, _z, _w);
}
Float32x4 withY(double y) {
double _x = _storage[0];
double _y = y;
double _z = _storage[2];
double _w = _storage[3];
return new Float32x4(_x, _y, _z, _w);
}
Float32x4 withZ(double z) {
double _x = _storage[0];
double _y = _storage[1];
double _z = z;
double _w = _storage[3];
return new Float32x4(_x, _y, _z, _w);
}
Float32x4 withW(double w) {
double _x = _storage[0];
double _y = _storage[1];
double _z = _storage[2];
double _w = w;
return new Float32x4(_x, _y, _z, _w);
}
/// Returns the lane-wise minimum value in [this] or [other].
Float32x4 min(Float32x4 other) {
double _x = _storage[0] < other._storage[0] ?
_storage[0] : other._storage[0];
double _y = _storage[1] < other._storage[1] ?
_storage[1] : other._storage[1];
double _z = _storage[2] < other._storage[2] ?
_storage[2] : other._storage[2];
double _w = _storage[3] < other._storage[3] ?
_storage[3] : other._storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns the lane-wise maximum value in [this] or [other].
Float32x4 max(Float32x4 other) {
double _x = _storage[0] > other._storage[0] ?
_storage[0] : other._storage[0];
double _y = _storage[1] > other._storage[1] ?
_storage[1] : other._storage[1];
double _z = _storage[2] > other._storage[2] ?
_storage[2] : other._storage[2];
double _w = _storage[3] > other._storage[3] ?
_storage[3] : other._storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns the square root of [this].
Float32x4 sqrt() {
double _x = Math.sqrt(_storage[0]);
double _y = Math.sqrt(_storage[1]);
double _z = Math.sqrt(_storage[2]);
double _w = Math.sqrt(_storage[3]);
return new Float32x4(_x, _y, _z, _w);
}
/// Returns the reciprocal of [this].
Float32x4 reciprocal() {
double _x = 1.0 / _storage[0];
double _y = 1.0 / _storage[1];
double _z = 1.0 / _storage[2];
double _w = 1.0 / _storage[3];
return new Float32x4(_x, _y, _z, _w);
}
/// Returns the square root of the reciprocal of [this].
Float32x4 reciprocalSqrt() {
double _x = Math.sqrt(1.0 / _storage[0]);
double _y = Math.sqrt(1.0 / _storage[1]);
double _z = Math.sqrt(1.0 / _storage[2]);
double _w = Math.sqrt(1.0 / _storage[3]);
return new Float32x4(_x, _y, _z, _w);
}
/// Returns a bit-wise copy of [this] as a [Uint32x4].
Uint32x4 toUint32x4() {
var view = new Uint32List.view(_storage.buffer);
return new Uint32x4(view[0], view[1], view[2], view[3]);
}
}
class Uint32x4 {
final _storage = new Uint32List(4);
Uint32x4(int x, int y, int z, int w) {
_storage[0] = x;
_storage[1] = y;
_storage[2] = z;
_storage[3] = w;
}
Uint32x4.bool(bool x, bool y, bool z, bool w) {
_storage[0] = x == true ? 0xFFFFFFFF : 0x0;
_storage[1] = y == true ? 0xFFFFFFFF : 0x0;
_storage[2] = z == true ? 0xFFFFFFFF : 0x0;
_storage[3] = w == true ? 0xFFFFFFFF : 0x0;
}
/// The bit-wise or operator.
Uint32x4 operator|(Uint32x4 other) {
int _x = _storage[0] | other._storage[0];
int _y = _storage[1] | other._storage[1];
int _z = _storage[2] | other._storage[2];
int _w = _storage[3] | other._storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// The bit-wise and operator.
Uint32x4 operator&(Uint32x4 other) {
int _x = _storage[0] & other._storage[0];
int _y = _storage[1] & other._storage[1];
int _z = _storage[2] & other._storage[2];
int _w = _storage[3] & other._storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// The bit-wise xor operator.
Uint32x4 operator^(Uint32x4 other) {
int _x = _storage[0] ^ other._storage[0];
int _y = _storage[1] ^ other._storage[1];
int _z = _storage[2] ^ other._storage[2];
int _w = _storage[3] ^ other._storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// Extract 32-bit mask from x lane.
int get x => _storage[0];
/// Extract 32-bit mask from y lane.
int get y => _storage[1];
/// Extract 32-bit mask from z lane.
int get z => _storage[2];
/// Extract 32-bit mask from w lane.
int get w => _storage[3];
/// Returns a new [Uint32x4] copied from [this] with a new x value.
Uint32x4 withX(int x) {
int _x = x;
int _y = _storage[1];
int _z = _storage[2];
int _w = _storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// Returns a new [Uint32x4] copied from [this] with a new y value.
Uint32x4 withY(int y) {
int _x = _storage[0];
int _y = y;
int _z = _storage[2];
int _w = _storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// Returns a new [Uint32x4] copied from [this] with a new z value.
Uint32x4 withZ(int z) {
int _x = _storage[0];
int _y = _storage[1];
int _z = z;
int _w = _storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// Returns a new [Uint32x4] copied from [this] with a new w value.
Uint32x4 withW(int w) {
int _x = _storage[0];
int _y = _storage[1];
int _z = _storage[2];
int _w = w;
return new Uint32x4(_x, _y, _z, _w);
}
/// Extracted x value. Returns false for 0, true for any other value.
bool get flagX => _storage[0] != 0x0;
/// Extracted y value. Returns false for 0, true for any other value.
bool get flagY => _storage[1] != 0x0;
/// Extracted z value. Returns false for 0, true for any other value.
bool get flagZ => _storage[2] != 0x0;
/// Extracted w value. Returns false for 0, true for any other value.
bool get flagW => _storage[3] != 0x0;
/// Returns a new [Uint32x4] copied from [this] with a new x value.
Uint32x4 withFlagX(bool x) {
int _x = x == true ? 0xFFFFFFFF : 0x0;
int _y = _storage[1];
int _z = _storage[2];
int _w = _storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// Returns a new [Uint32x4] copied from [this] with a new y value.
Uint32x4 withFlagY(bool y) {
int _x = _storage[0];
int _y = y == true ? 0xFFFFFFFF : 0x0;
int _z = _storage[2];
int _w = _storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// Returns a new [Uint32x4] copied from [this] with a new z value.
Uint32x4 withFlagZ(bool z) {
int _x = _storage[0];
int _y = _storage[1];
int _z = z == true ? 0xFFFFFFFF : 0x0;
int _w = _storage[3];
return new Uint32x4(_x, _y, _z, _w);
}
/// Returns a new [Uint32x4] copied from [this] with a new w value.
Uint32x4 withFlagW(bool w) {
int _x = _storage[0];
int _y = _storage[1];
int _z = _storage[2];
int _w = w == true ? 0xFFFFFFFF : 0x0;
return new Uint32x4(_x, _y, _z, _w);
}
/// Merge [trueValue] and [falseValue] based on [this]' bit mask:
/// Select bit from [trueValue] when bit in [this] is on.
/// Select bit from [falseValue] when bit in [this] is off.
Float32x4 select(Float32x4 trueValue, Float32x4 falseValue) {
var trueView = new Uint32List.view(trueValue._storage.buffer);
var falseView = new Uint32List.view(falseValue._storage.buffer);
int cmx = _storage[0];
int cmy = _storage[1];
int cmz = _storage[2];
int cmw = _storage[3];
int stx = trueView[0];
int sty = trueView[1];
int stz = trueView[2];
int stw = trueView[3];
int sfx = falseView[0];
int sfy = falseView[1];
int sfz = falseView[2];
int sfw = falseView[3];
int _x = (cmx & stx) | (~cmx & sfx);
int _y = (cmy & sty) | (~cmy & sfy);
int _z = (cmz & stz) | (~cmz & sfz);
int _w = (cmw & stw) | (~cmw & sfw);
var r = new Float32x4(0.0, 0.0, 0.0, 0.0);
var rView = new Uint32List.view(r._storage.buffer);
rView[0] = _x;
rView[1] = _y;
rView[2] = _z;
rView[3] = _w;
return r;
}
/// Returns a bit-wise copy of [this] as a [Float32x4].
Float32x4 toFloat32x4() {
var view = new Float32List.view(_storage.buffer);
return new Float32x4(view[0], view[1], view[2], view[3]);
}
}