|  | // Copyright (c) 2012, the Dart project authors.  Please see the AUTHORS file | 
|  | // for details. All rights reserved. Use of this source code is governed by a | 
|  | // BSD-style license that can be found in the LICENSE file. | 
|  |  | 
|  | part of dart.io; | 
|  |  | 
|  | class _CryptoUtils { | 
|  | static const int PAD = 61; // '=' | 
|  | static const int CR = 13;  // '\r' | 
|  | static const int LF = 10;  // '\n' | 
|  | static const int LINE_LENGTH = 76; | 
|  |  | 
|  | static const String _encodeTable = | 
|  | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | 
|  |  | 
|  | static const String _encodeTableUrlSafe = | 
|  | "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; | 
|  |  | 
|  | // Lookup table used for finding Base 64 alphabet index of a given byte. | 
|  | // -2 : Outside Base 64 alphabet. | 
|  | // -1 : '\r' or '\n' | 
|  | //  0 : = (Padding character). | 
|  | // >0 : Base 64 alphabet index of given byte. | 
|  | static const List<int> _decodeTable = | 
|  | const [ -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -2, -2, -1, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, 62, -2, 63, | 
|  | 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2,  0, -2, -2, | 
|  | -2,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, | 
|  | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, 63, | 
|  | -2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, | 
|  | 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, | 
|  | -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2 ]; | 
|  |  | 
|  | static String bytesToHex(List<int> bytes) { | 
|  | var result = new StringBuffer(); | 
|  | for (var part in bytes) { | 
|  | result.write('${part < 16 ? '0' : ''}${part.toRadixString(16)}'); | 
|  | } | 
|  | return result.toString(); | 
|  | } | 
|  |  | 
|  | static String bytesToBase64(List<int> bytes, | 
|  | [bool urlSafe = false, | 
|  | bool addLineSeparator = false]) { | 
|  | int len = bytes.length; | 
|  | if (len == 0) { | 
|  | return ""; | 
|  | } | 
|  | final String lookup = urlSafe ? _encodeTableUrlSafe : _encodeTable; | 
|  | // Size of 24 bit chunks. | 
|  | final int remainderLength = len.remainder(3); | 
|  | final int chunkLength = len - remainderLength; | 
|  | // Size of base output. | 
|  | int outputLen = ((len ~/ 3) * 4) + ((remainderLength > 0) ? 4 : 0); | 
|  | // Add extra for line separators. | 
|  | if (addLineSeparator) { | 
|  | outputLen += ((outputLen - 1) ~/ LINE_LENGTH) << 1; | 
|  | } | 
|  | List<int> out = new List<int>(outputLen); | 
|  |  | 
|  | // Encode 24 bit chunks. | 
|  | int j = 0, i = 0, c = 0; | 
|  | while (i < chunkLength) { | 
|  | int x = ((bytes[i++] << 16) & 0xFFFFFF) | | 
|  | ((bytes[i++] << 8) & 0xFFFFFF) | | 
|  | bytes[i++]; | 
|  | out[j++] = lookup.codeUnitAt(x >> 18); | 
|  | out[j++] = lookup.codeUnitAt((x >> 12) & 0x3F); | 
|  | out[j++] = lookup.codeUnitAt((x >> 6)  & 0x3F); | 
|  | out[j++] = lookup.codeUnitAt(x & 0x3f); | 
|  | // Add optional line separator for each 76 char output. | 
|  | if (addLineSeparator && ++c == 19 && j < outputLen - 2) { | 
|  | out[j++] = CR; | 
|  | out[j++] = LF; | 
|  | c = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If input length if not a multiple of 3, encode remaining bytes and | 
|  | // add padding. | 
|  | if (remainderLength == 1) { | 
|  | int x = bytes[i]; | 
|  | out[j++] = lookup.codeUnitAt(x >> 2); | 
|  | out[j++] = lookup.codeUnitAt((x << 4) & 0x3F); | 
|  | out[j++] = PAD; | 
|  | out[j++] = PAD; | 
|  | } else if (remainderLength == 2) { | 
|  | int x = bytes[i]; | 
|  | int y = bytes[i + 1]; | 
|  | out[j++] = lookup.codeUnitAt(x >> 2); | 
|  | out[j++] = lookup.codeUnitAt(((x << 4) | (y >> 4)) & 0x3F); | 
|  | out[j++] = lookup.codeUnitAt((y << 2) & 0x3F); | 
|  | out[j++] = PAD; | 
|  | } | 
|  |  | 
|  | return new String.fromCharCodes(out); | 
|  | } | 
|  |  | 
|  | static List<int> base64StringToBytes(String input, | 
|  | [bool ignoreInvalidCharacters = true]) { | 
|  | int len = input.length; | 
|  | if (len == 0) { | 
|  | return new List<int>(0); | 
|  | } | 
|  |  | 
|  | // Count '\r', '\n' and illegal characters, For illegal characters, | 
|  | // if [ignoreInvalidCharacters] is false, throw an exception. | 
|  | int extrasLen = 0; | 
|  | for (int i = 0; i < len; i++) { | 
|  | int c = _decodeTable[input.codeUnitAt(i)]; | 
|  | if (c < 0) { | 
|  | extrasLen++; | 
|  | if(c == -2 && !ignoreInvalidCharacters) { | 
|  | throw new FormatException('Invalid character: ${input[i]}'); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((len - extrasLen) % 4 != 0) { | 
|  | throw new FormatException('''Size of Base 64 characters in Input | 
|  | must be a multiple of 4. Input: $input'''); | 
|  | } | 
|  |  | 
|  | // Count pad characters, ignore illegal characters at the end. | 
|  | int padLength = 0; | 
|  | for (int i = len - 1; i >= 0; i--) { | 
|  | int currentCodeUnit = input.codeUnitAt(i); | 
|  | if (_decodeTable[currentCodeUnit] > 0) break; | 
|  | if (currentCodeUnit == PAD) padLength++; | 
|  | } | 
|  | int outputLen = (((len - extrasLen) * 6) >> 3) - padLength; | 
|  | List<int> out = new List<int>(outputLen); | 
|  |  | 
|  | for (int i = 0, o = 0; o < outputLen;) { | 
|  | // Accumulate 4 valid 6 bit Base 64 characters into an int. | 
|  | int x = 0; | 
|  | for (int j = 4; j > 0;) { | 
|  | int c = _decodeTable[input.codeUnitAt(i++)]; | 
|  | if (c >= 0) { | 
|  | x = ((x << 6) & 0xFFFFFF) | c; | 
|  | j--; | 
|  | } | 
|  | } | 
|  | out[o++] = x >> 16; | 
|  | if (o < outputLen) { | 
|  | out[o++] = (x >> 8) & 0xFF; | 
|  | if (o < outputLen) out[o++] = x & 0xFF; | 
|  | } | 
|  | } | 
|  | return out; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // Constants. | 
|  | const _MASK_8 = 0xff; | 
|  | const _MASK_32 = 0xffffffff; | 
|  | const _BITS_PER_BYTE = 8; | 
|  | const _BYTES_PER_WORD = 4; | 
|  |  | 
|  | // Base class encapsulating common behavior for cryptographic hash | 
|  | // functions. | 
|  | abstract class _HashBase { | 
|  | // Hasher state. | 
|  | final int _chunkSizeInWords; | 
|  | final int _digestSizeInWords; | 
|  | final bool _bigEndianWords; | 
|  | int _lengthInBytes = 0; | 
|  | List<int> _pendingData; | 
|  | List<int> _currentChunk; | 
|  | List<int> _h; | 
|  | bool _digestCalled = false; | 
|  |  | 
|  | _HashBase(this._chunkSizeInWords, | 
|  | this._digestSizeInWords, | 
|  | this._bigEndianWords) | 
|  | : _pendingData = [] { | 
|  | _currentChunk = new List(_chunkSizeInWords); | 
|  | _h = new List(_digestSizeInWords); | 
|  | } | 
|  |  | 
|  | // Update the hasher with more data. | 
|  | add(List<int> data) { | 
|  | if (_digestCalled) { | 
|  | throw new StateError( | 
|  | 'Hash update method called after digest was retrieved'); | 
|  | } | 
|  | _lengthInBytes += data.length; | 
|  | _pendingData.addAll(data); | 
|  | _iterate(); | 
|  | } | 
|  |  | 
|  | // Finish the hash computation and return the digest string. | 
|  | List<int> close() { | 
|  | if (_digestCalled) { | 
|  | return _resultAsBytes(); | 
|  | } | 
|  | _digestCalled = true; | 
|  | _finalizeData(); | 
|  | _iterate(); | 
|  | assert(_pendingData.length == 0); | 
|  | return _resultAsBytes(); | 
|  | } | 
|  |  | 
|  | // Returns the block size of the hash in bytes. | 
|  | int get blockSize { | 
|  | return _chunkSizeInWords * _BYTES_PER_WORD; | 
|  | } | 
|  |  | 
|  | // Create a fresh instance of this Hash. | 
|  | newInstance(); | 
|  |  | 
|  | // One round of the hash computation. | 
|  | _updateHash(List<int> m); | 
|  |  | 
|  | // Helper methods. | 
|  | _add32(x, y) => (x + y) & _MASK_32; | 
|  | _roundUp(val, n) => (val + n - 1) & -n; | 
|  |  | 
|  | // Rotate left limiting to unsigned 32-bit values. | 
|  | int _rotl32(int val, int shift) { | 
|  | var mod_shift = shift & 31; | 
|  | return ((val << mod_shift) & _MASK_32) | | 
|  | ((val & _MASK_32) >> (32 - mod_shift)); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Compute the final result as a list of bytes from the hash words. | 
|  | _resultAsBytes() { | 
|  | var result = []; | 
|  | for (var i = 0; i < _h.length; i++) { | 
|  | result.addAll(_wordToBytes(_h[i])); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Converts a list of bytes to a chunk of 32-bit words. | 
|  | _bytesToChunk(List<int> data, int dataIndex) { | 
|  | assert((data.length - dataIndex) >= (_chunkSizeInWords * _BYTES_PER_WORD)); | 
|  |  | 
|  | for (var wordIndex = 0; wordIndex < _chunkSizeInWords; wordIndex++) { | 
|  | var w3 = _bigEndianWords ? data[dataIndex] : data[dataIndex + 3]; | 
|  | var w2 = _bigEndianWords ? data[dataIndex + 1] : data[dataIndex + 2]; | 
|  | var w1 = _bigEndianWords ? data[dataIndex + 2] : data[dataIndex + 1]; | 
|  | var w0 = _bigEndianWords ? data[dataIndex + 3] : data[dataIndex]; | 
|  | dataIndex += 4; | 
|  | var word = (w3 & 0xff) << 24; | 
|  | word |= (w2 & _MASK_8) << 16; | 
|  | word |= (w1 & _MASK_8) << 8; | 
|  | word |= (w0 & _MASK_8); | 
|  | _currentChunk[wordIndex] = word; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Convert a 32-bit word to four bytes. | 
|  | _wordToBytes(int word) { | 
|  | List<int> bytes = new List(_BYTES_PER_WORD); | 
|  | bytes[0] = (word >> (_bigEndianWords ? 24 : 0)) & _MASK_8; | 
|  | bytes[1] = (word >> (_bigEndianWords ? 16 : 8)) & _MASK_8; | 
|  | bytes[2] = (word >> (_bigEndianWords ? 8 : 16)) & _MASK_8; | 
|  | bytes[3] = (word >> (_bigEndianWords ? 0 : 24)) & _MASK_8; | 
|  | return bytes; | 
|  | } | 
|  |  | 
|  | // Iterate through data updating the hash computation for each | 
|  | // chunk. | 
|  | _iterate() { | 
|  | var len = _pendingData.length; | 
|  | var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD; | 
|  | if (len >= chunkSizeInBytes) { | 
|  | var index = 0; | 
|  | for (; (len - index) >= chunkSizeInBytes; index += chunkSizeInBytes) { | 
|  | _bytesToChunk(_pendingData, index); | 
|  | _updateHash(_currentChunk); | 
|  | } | 
|  | _pendingData = _pendingData.sublist(index, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finalize the data. Add a 1 bit to the end of the message. Expand with | 
|  | // 0 bits and add the length of the message. | 
|  | _finalizeData() { | 
|  | _pendingData.add(0x80); | 
|  | var contentsLength = _lengthInBytes + 9; | 
|  | var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD; | 
|  | var finalizedLength = _roundUp(contentsLength, chunkSizeInBytes); | 
|  | var zeroPadding = finalizedLength - contentsLength; | 
|  | for (var i = 0; i < zeroPadding; i++) { | 
|  | _pendingData.add(0); | 
|  | } | 
|  | var lengthInBits = _lengthInBytes * _BITS_PER_BYTE; | 
|  | assert(lengthInBits < pow(2, 32)); | 
|  | if (_bigEndianWords) { | 
|  | _pendingData.addAll(_wordToBytes(0)); | 
|  | _pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32)); | 
|  | } else { | 
|  | _pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32)); | 
|  | _pendingData.addAll(_wordToBytes(0)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The MD5 hasher is used to compute an MD5 message digest. | 
|  | class _MD5 extends _HashBase { | 
|  | _MD5() : super(16, 4, false) { | 
|  | _h[0] = 0x67452301; | 
|  | _h[1] = 0xefcdab89; | 
|  | _h[2] = 0x98badcfe; | 
|  | _h[3] = 0x10325476; | 
|  | } | 
|  |  | 
|  | // Returns a new instance of this Hash. | 
|  | _MD5 newInstance() { | 
|  | return new _MD5(); | 
|  | } | 
|  |  | 
|  | static const _k = const [ | 
|  | 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, 0xf57c0faf, 0x4787c62a, | 
|  | 0xa8304613, 0xfd469501, 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, | 
|  | 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, 0xf61e2562, 0xc040b340, | 
|  | 0x265e5a51, 0xe9b6c7aa, 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8, | 
|  | 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, 0xa9e3e905, 0xfcefa3f8, | 
|  | 0x676f02d9, 0x8d2a4c8a, 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, | 
|  | 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, 0x289b7ec6, 0xeaa127fa, | 
|  | 0xd4ef3085, 0x04881d05, 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, | 
|  | 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, 0x655b59c3, 0x8f0ccc92, | 
|  | 0xffeff47d, 0x85845dd1, 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, | 
|  | 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 ]; | 
|  |  | 
|  | static const _r = const [ | 
|  | 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5,  9, 14, | 
|  | 20, 5,  9, 14, 20, 5,  9, 14, 20, 5,  9, 14, 20, 4, 11, 16, 23, 4, 11, | 
|  | 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, | 
|  | 10, 15, 21, 6, 10, 15, 21 ]; | 
|  |  | 
|  | // Compute one iteration of the MD5 algorithm with a chunk of | 
|  | // 16 32-bit pieces. | 
|  | void _updateHash(List<int> m) { | 
|  | assert(m.length == 16); | 
|  |  | 
|  | var a = _h[0]; | 
|  | var b = _h[1]; | 
|  | var c = _h[2]; | 
|  | var d = _h[3]; | 
|  |  | 
|  | var t0; | 
|  | var t1; | 
|  |  | 
|  | for (var i = 0; i < 64; i++) { | 
|  | if (i < 16) { | 
|  | t0 = (b & c) | ((~b & _MASK_32) & d); | 
|  | t1 = i; | 
|  | } else if (i < 32) { | 
|  | t0 = (d & b) | ((~d & _MASK_32) & c); | 
|  | t1 = ((5 * i) + 1) % 16; | 
|  | } else if (i < 48) { | 
|  | t0 = b ^ c ^ d; | 
|  | t1 = ((3 * i) + 5) % 16; | 
|  | } else { | 
|  | t0 = c ^ (b | (~d & _MASK_32)); | 
|  | t1 = (7 * i) % 16; | 
|  | } | 
|  |  | 
|  | var temp = d; | 
|  | d = c; | 
|  | c = b; | 
|  | b = _add32(b, _rotl32(_add32(_add32(a, t0), | 
|  | _add32(_k[i], m[t1])), | 
|  | _r[i])); | 
|  | a = temp; | 
|  | } | 
|  |  | 
|  | _h[0] = _add32(a, _h[0]); | 
|  | _h[1] = _add32(b, _h[1]); | 
|  | _h[2] = _add32(c, _h[2]); | 
|  | _h[3] = _add32(d, _h[3]); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The SHA1 hasher is used to compute an SHA1 message digest. | 
|  | class _SHA1 extends _HashBase { | 
|  | // Construct a SHA1 hasher object. | 
|  | _SHA1() : _w = new List(80), super(16, 5, true) { | 
|  | _h[0] = 0x67452301; | 
|  | _h[1] = 0xEFCDAB89; | 
|  | _h[2] = 0x98BADCFE; | 
|  | _h[3] = 0x10325476; | 
|  | _h[4] = 0xC3D2E1F0; | 
|  | } | 
|  |  | 
|  | // Returns a new instance of this Hash. | 
|  | _SHA1 newInstance() { | 
|  | return new _SHA1(); | 
|  | } | 
|  |  | 
|  | // Compute one iteration of the SHA1 algorithm with a chunk of | 
|  | // 16 32-bit pieces. | 
|  | void _updateHash(List<int> m) { | 
|  | assert(m.length == 16); | 
|  |  | 
|  | var a = _h[0]; | 
|  | var b = _h[1]; | 
|  | var c = _h[2]; | 
|  | var d = _h[3]; | 
|  | var e = _h[4]; | 
|  |  | 
|  | for (var i = 0; i < 80; i++) { | 
|  | if (i < 16) { | 
|  | _w[i] = m[i]; | 
|  | } else { | 
|  | var n = _w[i - 3] ^ _w[i - 8] ^ _w[i - 14] ^ _w[i - 16]; | 
|  | _w[i] = _rotl32(n, 1); | 
|  | } | 
|  | var t = _add32(_add32(_rotl32(a, 5), e), _w[i]); | 
|  | if (i < 20) { | 
|  | t = _add32(_add32(t, (b & c) | (~b & d)), 0x5A827999); | 
|  | } else if (i < 40) { | 
|  | t = _add32(_add32(t, (b ^ c ^ d)), 0x6ED9EBA1); | 
|  | } else if (i < 60) { | 
|  | t = _add32(_add32(t, (b & c) | (b & d) | (c & d)), 0x8F1BBCDC); | 
|  | } else { | 
|  | t = _add32(_add32(t, b ^ c ^ d), 0xCA62C1D6); | 
|  | } | 
|  |  | 
|  | e = d; | 
|  | d = c; | 
|  | c = _rotl32(b, 30); | 
|  | b = a; | 
|  | a = t & _MASK_32; | 
|  | } | 
|  |  | 
|  | _h[0] = _add32(a, _h[0]); | 
|  | _h[1] = _add32(b, _h[1]); | 
|  | _h[2] = _add32(c, _h[2]); | 
|  | _h[3] = _add32(d, _h[3]); | 
|  | _h[4] = _add32(e, _h[4]); | 
|  | } | 
|  |  | 
|  | List<int> _w; | 
|  | } |