| // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/elf.h" |
| |
| #include "platform/elf.h" |
| #include "vm/cpu.h" |
| #include "vm/dwarf.h" |
| #include "vm/hash_map.h" |
| #include "vm/image_snapshot.h" |
| #include "vm/stack_frame.h" |
| #include "vm/thread.h" |
| #include "vm/zone_text_buffer.h" |
| |
| namespace dart { |
| |
| #if defined(DART_PRECOMPILER) |
| |
| // A wrapper around BaseWriteStream that provides methods useful for |
| // writing ELF files (e.g., using ELF definitions of data sizes). |
| class ElfWriteStream : public ValueObject { |
| public: |
| explicit ElfWriteStream(BaseWriteStream* stream, const Elf& elf) |
| : stream_(ASSERT_NOTNULL(stream)), elf_(elf) {} |
| |
| // Subclasses of Section may need to query the Elf object during Write(), |
| // so we store it in the ElfWriteStream for easy access. |
| const Elf& elf() const { return elf_; } |
| |
| intptr_t Position() const { return stream_->Position(); } |
| void Align(const intptr_t alignment) { |
| ASSERT(Utils::IsPowerOfTwo(alignment)); |
| stream_->Align(alignment); |
| } |
| void WriteBytes(const uint8_t* b, intptr_t size) { |
| stream_->WriteBytes(b, size); |
| } |
| void WriteByte(uint8_t value) { stream_->WriteByte(value); } |
| void WriteHalf(uint16_t value) { stream_->WriteFixed(value); } |
| void WriteWord(uint32_t value) { stream_->WriteFixed(value); } |
| void WriteAddr(compiler::target::uword value) { stream_->WriteFixed(value); } |
| void WriteOff(compiler::target::uword value) { stream_->WriteFixed(value); } |
| #if defined(TARGET_ARCH_IS_64_BIT) |
| void WriteXWord(uint64_t value) { stream_->WriteFixed(value); } |
| #endif |
| |
| private: |
| BaseWriteStream* const stream_; |
| const Elf& elf_; |
| }; |
| |
| static constexpr intptr_t kLinearInitValue = -1; |
| |
| #define DEFINE_LINEAR_FIELD_METHODS(name) \ |
| intptr_t name() const { \ |
| ASSERT(name##_ != kLinearInitValue); \ |
| return name##_; \ |
| } \ |
| bool name##_is_set() const { return name##_ != kLinearInitValue; } \ |
| void set_##name(intptr_t value) { \ |
| ASSERT(value != kLinearInitValue); \ |
| ASSERT_EQUAL(name##_, kLinearInitValue); \ |
| name##_ = value; \ |
| } |
| |
| #define DEFINE_LINEAR_FIELD(name) intptr_t name##_ = kLinearInitValue; |
| |
| class BitsContainer; |
| class Segment; |
| |
| static constexpr intptr_t kDefaultAlignment = -1; |
| // Align note sections and segments to 4 byte boundries. |
| static constexpr intptr_t kNoteAlignment = 4; |
| |
| class Section : public ZoneAllocated { |
| public: |
| Section(elf::SectionHeaderType t, |
| bool allocate, |
| bool executable, |
| bool writable, |
| intptr_t align = kDefaultAlignment) |
| : type(t), |
| flags(EncodeFlags(allocate, executable, writable)), |
| alignment(align == kDefaultAlignment ? DefaultAlignment(t) : align), |
| // Non-segments will never have a memory offset, here represented by 0. |
| memory_offset_(allocate ? kLinearInitValue : 0) { |
| // Only sections with type SHT_NULL are allowed to have an alignment of 0. |
| ASSERT(type == elf::SectionHeaderType::SHT_NULL || alignment > 0); |
| // Non-zero alignments must be a power of 2. |
| ASSERT(alignment == 0 || Utils::IsPowerOfTwo(alignment)); |
| } |
| |
| virtual ~Section() {} |
| |
| // Linker view. |
| const elf::SectionHeaderType type; |
| const intptr_t flags; |
| const intptr_t alignment; |
| |
| // These are fields that only are not set for most kinds of sections and so we |
| // set them to a reasonable default. |
| intptr_t link = elf::SHN_UNDEF; |
| intptr_t info = 0; |
| intptr_t entry_size = 0; |
| const char* symbol_name = nullptr; |
| |
| #define FOR_EACH_SECTION_LINEAR_FIELD(M) \ |
| M(name) \ |
| M(index) \ |
| M(file_offset) |
| |
| FOR_EACH_SECTION_LINEAR_FIELD(DEFINE_LINEAR_FIELD_METHODS); |
| |
| virtual intptr_t FileSize() const = 0; |
| |
| // Loader view. |
| #define FOR_EACH_SEGMENT_LINEAR_FIELD(M) M(memory_offset) |
| |
| FOR_EACH_SEGMENT_LINEAR_FIELD(DEFINE_LINEAR_FIELD_METHODS); |
| |
| // Each section belongs to at most one PT_LOAD segment. |
| Segment* load_segment = nullptr; |
| |
| virtual intptr_t MemorySize() const = 0; |
| |
| // Other methods. |
| |
| bool IsAllocated() const { |
| return (flags & elf::SHF_ALLOC) == elf::SHF_ALLOC; |
| } |
| bool IsExecutable() const { |
| return (flags & elf::SHF_EXECINSTR) == elf::SHF_EXECINSTR; |
| } |
| bool IsWritable() const { return (flags & elf::SHF_WRITE) == elf::SHF_WRITE; } |
| |
| // Returns whether the size of a section can change. |
| bool HasBeenFinalized() const { |
| // Sections can grow or shrink up until Elf::ComputeOffsets has been run, |
| // which sets the file offset (and memory offset for allocated sections). |
| return file_offset_is_set(); |
| } |
| |
| virtual const BitsContainer* AsBitsContainer() const { return nullptr; } |
| |
| // Writes the file contents of the section. |
| virtual void Write(ElfWriteStream* stream) = 0; |
| |
| virtual void WriteSectionHeader(ElfWriteStream* stream) { |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| stream->WriteWord(name()); |
| stream->WriteWord(static_cast<uint32_t>(type)); |
| stream->WriteWord(flags); |
| stream->WriteAddr(memory_offset()); |
| stream->WriteOff(file_offset()); |
| stream->WriteWord(FileSize()); // Has different meaning for BSS. |
| stream->WriteWord(link); |
| stream->WriteWord(info); |
| stream->WriteWord(alignment); |
| stream->WriteWord(entry_size); |
| #else |
| stream->WriteWord(name()); |
| stream->WriteWord(static_cast<uint32_t>(type)); |
| stream->WriteXWord(flags); |
| stream->WriteAddr(memory_offset()); |
| stream->WriteOff(file_offset()); |
| stream->WriteXWord(FileSize()); // Has different meaning for BSS. |
| stream->WriteWord(link); |
| stream->WriteWord(info); |
| stream->WriteXWord(alignment); |
| stream->WriteXWord(entry_size); |
| #endif |
| } |
| |
| private: |
| static intptr_t EncodeFlags(bool allocate, bool executable, bool writable) { |
| if (!allocate) return 0; |
| intptr_t flags = elf::SHF_ALLOC; |
| if (executable) flags |= elf::SHF_EXECINSTR; |
| if (writable) flags |= elf::SHF_WRITE; |
| return flags; |
| } |
| |
| static intptr_t DefaultAlignment(elf::SectionHeaderType type) { |
| switch (type) { |
| case elf::SectionHeaderType::SHT_SYMTAB: |
| case elf::SectionHeaderType::SHT_DYNSYM: |
| case elf::SectionHeaderType::SHT_HASH: |
| case elf::SectionHeaderType::SHT_DYNAMIC: |
| return compiler::target::kWordSize; |
| default: |
| return 1; |
| } |
| } |
| |
| FOR_EACH_SECTION_LINEAR_FIELD(DEFINE_LINEAR_FIELD); |
| FOR_EACH_SEGMENT_LINEAR_FIELD(DEFINE_LINEAR_FIELD); |
| |
| #undef FOR_EACH_SECTION_LINEAR_FIELD |
| #undef FOR_EACH_SEGMENT_LINEAR_FIELD |
| }; |
| |
| #undef DEFINE_LINEAR_FIELD |
| #undef DEFINE_LINEAR_FIELD_METHODS |
| |
| class Segment : public ZoneAllocated { |
| public: |
| Segment(Zone* zone, |
| Section* initial_section, |
| elf::ProgramHeaderType segment_type) |
| : type(segment_type), |
| // Flags for the segment are the same as the initial section. |
| flags(EncodeFlags(ASSERT_NOTNULL(initial_section)->IsExecutable(), |
| ASSERT_NOTNULL(initial_section)->IsWritable())), |
| sections_(zone, 0) { |
| // Unlike sections, we don't have a reserved segment with the null type, |
| // so we never should pass this value. |
| ASSERT(segment_type != elf::ProgramHeaderType::PT_NULL); |
| // All segments should have at least one section. |
| ASSERT(initial_section->IsAllocated()); |
| sections_.Add(initial_section); |
| if (type == elf::ProgramHeaderType::PT_LOAD) { |
| ASSERT(initial_section->load_segment == nullptr); |
| } |
| } |
| |
| virtual ~Segment() {} |
| |
| static intptr_t Alignment(elf::ProgramHeaderType segment_type) { |
| switch (segment_type) { |
| case elf::ProgramHeaderType::PT_PHDR: |
| case elf::ProgramHeaderType::PT_DYNAMIC: |
| return compiler::target::kWordSize; |
| case elf::ProgramHeaderType::PT_NOTE: |
| return kNoteAlignment; |
| default: |
| return Elf::kPageSize; |
| } |
| } |
| |
| bool IsExecutable() const { return (flags & elf::PF_X) == elf::PF_X; } |
| bool IsWritable() const { return (flags & elf::PF_W) == elf::PF_W; } |
| |
| void WriteProgramHeader(ElfWriteStream* stream) { |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| stream->WriteWord(static_cast<uint32_t>(type)); |
| stream->WriteOff(FileOffset()); |
| stream->WriteAddr(MemoryOffset()); // Virtual address. |
| stream->WriteAddr(MemoryOffset()); // Physical address, not used. |
| stream->WriteWord(FileSize()); |
| stream->WriteWord(MemorySize()); |
| stream->WriteWord(flags); |
| stream->WriteWord(Alignment(type)); |
| #else |
| stream->WriteWord(static_cast<uint32_t>(type)); |
| stream->WriteWord(flags); |
| stream->WriteOff(FileOffset()); |
| stream->WriteAddr(MemoryOffset()); // Virtual address. |
| stream->WriteAddr(MemoryOffset()); // Physical address, not used. |
| stream->WriteXWord(FileSize()); |
| stream->WriteXWord(MemorySize()); |
| stream->WriteXWord(Alignment(type)); |
| #endif |
| } |
| |
| // Adds a given section to the end of this segment. Returns whether the |
| // section was successfully added. |
| bool Add(Section* section) { |
| ASSERT(section != nullptr); |
| // We only add additional sections to load segments. |
| ASSERT(type == elf::ProgramHeaderType::PT_LOAD); |
| // Don't use this to change a section's segment. |
| ASSERT(section->load_segment == nullptr); |
| // We only add sections with the same executable and writable bits. |
| if (IsExecutable() != section->IsExecutable() || |
| IsWritable() != section->IsWritable()) { |
| return false; |
| } |
| sections_.Add(section); |
| section->load_segment = this; |
| return true; |
| } |
| |
| bool Merge(Segment* other) { |
| ASSERT(other != nullptr); |
| // We only add additional sections to load segments. |
| ASSERT(type == elf::ProgramHeaderType::PT_LOAD); |
| // We only merge segments with the same executable and writable bits. |
| if (IsExecutable() != other->IsExecutable() || |
| IsWritable() != other->IsWritable()) { |
| return false; |
| } |
| for (auto* section : other->sections_) { |
| // Don't merge segments where the memory offsets have already been |
| // calculated. |
| ASSERT(!section->memory_offset_is_set()); |
| sections_.Add(section); |
| section->load_segment = this; |
| } |
| return true; |
| } |
| |
| intptr_t FileOffset() const { return sections_[0]->file_offset(); } |
| |
| intptr_t FileSize() const { |
| auto const last = sections_.Last(); |
| const intptr_t end = last->file_offset() + last->FileSize(); |
| return end - FileOffset(); |
| } |
| |
| intptr_t MemoryOffset() const { return sections_[0]->memory_offset(); } |
| |
| intptr_t MemorySize() const { |
| auto const last = sections_.Last(); |
| const intptr_t end = last->memory_offset() + last->MemorySize(); |
| return end - MemoryOffset(); |
| } |
| |
| intptr_t MemoryEnd() const { return MemoryOffset() + MemorySize(); } |
| |
| private: |
| static constexpr intptr_t kInitValue = -1; |
| static_assert(kInitValue < 0, "init value must be negative"); |
| |
| static intptr_t EncodeFlags(bool executable, bool writable) { |
| intptr_t flags = elf::PF_R; |
| if (executable) flags |= elf::PF_X; |
| if (writable) flags |= elf::PF_W; |
| return flags; |
| } |
| |
| public: |
| const elf::ProgramHeaderType type; |
| const intptr_t flags; |
| |
| private: |
| GrowableArray<Section*> sections_; |
| }; |
| |
| // Represents the first entry in the section table, which should only contain |
| // zero values and does not correspond to a memory segment. |
| class ReservedSection : public Section { |
| public: |
| ReservedSection() |
| : Section(elf::SectionHeaderType::SHT_NULL, |
| /*allocate=*/false, |
| /*executable=*/false, |
| /*writable=*/false, |
| /*alignment=*/0) { |
| set_name(0); |
| set_index(0); |
| set_file_offset(0); |
| } |
| |
| intptr_t FileSize() const { return 0; } |
| intptr_t MemorySize() const { return 0; } |
| void Write(ElfWriteStream* stream) {} |
| }; |
| |
| // Represents portions of the file/memory space which do not correspond to |
| // actual sections. Should never be added to sections_. |
| class PseudoSection : public Section { |
| public: |
| PseudoSection(bool executable, |
| bool writable, |
| intptr_t file_offset, |
| intptr_t file_size, |
| intptr_t memory_offset, |
| intptr_t memory_size) |
| : Section(elf::SectionHeaderType::SHT_NULL, |
| /*allocate=*/true, |
| executable, |
| writable, |
| /*alignment=*/0), |
| file_size_(file_size), |
| memory_size_(memory_size) { |
| set_file_offset(file_offset); |
| set_memory_offset(memory_offset); |
| } |
| |
| intptr_t FileSize() const { return file_size_; } |
| intptr_t MemorySize() const { return memory_size_; } |
| void WriteSectionHeader(ElfWriteStream* stream) { UNREACHABLE(); } |
| void Write(ElfWriteStream* stream) { UNREACHABLE(); } |
| |
| private: |
| const intptr_t file_size_; |
| const intptr_t memory_size_; |
| }; |
| |
| // A segment for representing the program header table self-reference in the |
| // program header table. |
| class ProgramTableSelfSegment : public Segment { |
| public: |
| ProgramTableSelfSegment(Zone* zone, intptr_t offset, intptr_t size) |
| : Segment(zone, |
| new (zone) PseudoSection(/*executable=*/false, |
| /*writable=*/false, |
| offset, |
| size, |
| offset, |
| size), |
| elf::ProgramHeaderType::PT_PHDR) {} |
| }; |
| |
| // A segment for representing the program header table load segment in the |
| // program header table. |
| class ProgramTableLoadSegment : public Segment { |
| public: |
| // The Android dynamic linker in Jelly Bean incorrectly assumes that all |
| // non-writable segments are continguous. Since the BSS segment comes directly |
| // after the program header segment, we must make this segment writable so |
| // later non-writable segments does not cause the BSS to be also marked as |
| // read-only. |
| // |
| // The bug is here: |
| // https://github.com/aosp-mirror/platform_bionic/blob/94963af28e445384e19775a838a29e6a71708179/linker/linker.c#L1991-L2001 |
| explicit ProgramTableLoadSegment(Zone* zone, intptr_t size) |
| : Segment(zone, |
| // This segment should always start at address 0. |
| new (zone) PseudoSection(/*executable=*/false, |
| /*writable=*/true, |
| 0, |
| size, |
| 0, |
| size), |
| elf::ProgramHeaderType::PT_LOAD) {} |
| }; |
| |
| class StringTable : public Section { |
| public: |
| explicit StringTable(Zone* zone, bool allocate) |
| : Section(elf::SectionHeaderType::SHT_STRTAB, |
| allocate, |
| /*executable=*/false, |
| /*writable=*/false), |
| dynamic_(allocate), |
| text_(zone, 128), |
| text_indices_(zone) { |
| AddString(""); |
| } |
| |
| intptr_t FileSize() const { return text_.length(); } |
| intptr_t MemorySize() const { return dynamic_ ? FileSize() : 0; } |
| |
| void Write(ElfWriteStream* stream) { |
| stream->WriteBytes(reinterpret_cast<const uint8_t*>(text_.buffer()), |
| text_.length()); |
| } |
| |
| intptr_t AddString(const char* str) { |
| ASSERT(str != nullptr); |
| if (auto const kv = text_indices_.Lookup(str)) { |
| return kv->value; |
| } |
| intptr_t offset = text_.length(); |
| text_.AddString(str); |
| text_.AddChar('\0'); |
| text_indices_.Insert({str, offset}); |
| return offset; |
| } |
| |
| const char* At(intptr_t index) { |
| ASSERT(index < text_.length()); |
| return text_.buffer() + index; |
| } |
| |
| static const intptr_t kNotIndexed = CStringIntMapKeyValueTrait::kNoValue; |
| |
| // Returns the index of |str| if it is present in the string table |
| // and |kNotIndexed| otherwise. |
| intptr_t Lookup(const char* str) const { |
| return text_indices_.LookupValue(str); |
| } |
| |
| const bool dynamic_; |
| ZoneTextBuffer text_; |
| CStringIntMap text_indices_; |
| }; |
| |
| class Symbol : public ZoneAllocated { |
| public: |
| Symbol(const char* cstr, |
| intptr_t name, |
| intptr_t binding, |
| intptr_t type, |
| intptr_t initial_section_index, |
| intptr_t size) |
| : name_index(name), |
| binding(binding), |
| type(type), |
| size(size), |
| section_index(initial_section_index), |
| cstr_(cstr) {} |
| |
| void Finalize(intptr_t final_section_index, intptr_t offset) { |
| ASSERT(!HasBeenFinalized()); // No symbol should be re-finalized. |
| section_index = final_section_index; |
| offset_ = offset; |
| } |
| bool HasBeenFinalized() const { return offset_ != kNotFinalizedMarker; } |
| intptr_t offset() const { |
| ASSERT(HasBeenFinalized()); |
| // Only the reserved initial symbol should have an offset of 0. |
| ASSERT_EQUAL(type == elf::STT_NOTYPE, offset_ == 0); |
| return offset_; |
| } |
| |
| void Write(ElfWriteStream* stream) const { |
| const intptr_t start = stream->Position(); |
| stream->WriteWord(name_index); |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| stream->WriteAddr(offset()); |
| stream->WriteWord(size); |
| stream->WriteByte(elf::SymbolInfo(binding, type)); |
| stream->WriteByte(0); |
| stream->WriteHalf(section_index); |
| #else |
| stream->WriteByte(elf::SymbolInfo(binding, type)); |
| stream->WriteByte(0); |
| stream->WriteHalf(section_index); |
| stream->WriteAddr(offset()); |
| stream->WriteXWord(size); |
| #endif |
| ASSERT_EQUAL(stream->Position() - start, sizeof(elf::Symbol)); |
| } |
| |
| const intptr_t name_index; |
| const intptr_t binding; |
| const intptr_t type; |
| const intptr_t size; |
| // Is set twice: once in Elf::AddSection to the section's initial index into |
| // sections_, and then in Elf::FinalizeSymbols to the section's final index |
| // into sections_ after reordering. |
| intptr_t section_index; |
| |
| private: |
| static const intptr_t kNotFinalizedMarker = -1; |
| |
| const char* const cstr_; |
| intptr_t offset_ = kNotFinalizedMarker; |
| |
| friend class SymbolHashTable; // For cstr_ access. |
| }; |
| |
| class SymbolTable : public Section { |
| public: |
| SymbolTable(Zone* zone, StringTable* table, bool dynamic) |
| : Section(dynamic ? elf::SectionHeaderType::SHT_DYNSYM |
| : elf::SectionHeaderType::SHT_SYMTAB, |
| dynamic, |
| /*executable=*/false, |
| /*writable=*/false), |
| zone_(zone), |
| table_(table), |
| dynamic_(dynamic), |
| symbols_(zone, 1), |
| by_name_index_(zone) { |
| entry_size = sizeof(elf::Symbol); |
| // The first symbol table entry is reserved and must be all zeros. |
| // (String tables always have the empty string at the 0th index.) |
| const char* const kReservedName = ""; |
| AddSymbol(kReservedName, elf::STB_LOCAL, elf::STT_NOTYPE, elf::SHN_UNDEF, |
| /*size=*/0); |
| FinalizeSymbol(kReservedName, elf::SHN_UNDEF, /*offset=*/0); |
| } |
| |
| intptr_t FileSize() const { return Length() * entry_size; } |
| intptr_t MemorySize() const { return dynamic_ ? FileSize() : 0; } |
| |
| void Write(ElfWriteStream* stream) { |
| for (intptr_t i = 0; i < Length(); i++) { |
| auto const symbol = At(i); |
| const intptr_t start = stream->Position(); |
| symbol->Write(stream); |
| ASSERT_EQUAL(stream->Position() - start, entry_size); |
| } |
| } |
| |
| void AddSymbol(const char* name, |
| intptr_t binding, |
| intptr_t type, |
| intptr_t section_index, |
| intptr_t size) { |
| ASSERT(!table_->HasBeenFinalized()); |
| auto const name_index = table_->AddString(name); |
| ASSERT(by_name_index_.Lookup(name_index) == nullptr); |
| auto const symbol = new (zone_) |
| Symbol(name, name_index, binding, type, section_index, size); |
| symbols_.Add(symbol); |
| by_name_index_.Insert(name_index, symbol); |
| // The info field on a symbol table section holds the index of the first |
| // non-local symbol, so they can be skipped if desired. Thus, we need to |
| // make sure local symbols are before any non-local ones. |
| if (binding == elf::STB_LOCAL) { |
| if (info != symbols_.length() - 1) { |
| // There are non-local symbols, as otherwise [info] would be the |
| // index of the new symbol. Since the order doesn't otherwise matter, |
| // swap the new local symbol with the value at index [info], so when |
| // [info] is incremented it will point just past the new local symbol. |
| ASSERT(symbols_[info]->binding != elf::STB_LOCAL); |
| symbols_.Swap(info, symbols_.length() - 1); |
| } |
| info += 1; |
| } |
| } |
| |
| void FinalizeSymbol(const char* name, |
| intptr_t final_section_index, |
| intptr_t offset) { |
| const intptr_t name_index = table_->Lookup(name); |
| ASSERT(name_index != StringTable::kNotIndexed); |
| Symbol* symbol = by_name_index_.Lookup(name_index); |
| ASSERT(symbol != nullptr); |
| symbol->Finalize(final_section_index, offset); |
| } |
| |
| intptr_t Length() const { return symbols_.length(); } |
| const Symbol* At(intptr_t i) const { return symbols_[i]; } |
| |
| const Symbol* Find(const char* name) const { |
| ASSERT(name != nullptr); |
| auto const name_index = table_->Lookup(name); |
| return by_name_index_.Lookup(name_index); |
| } |
| |
| private: |
| Zone* const zone_; |
| StringTable* const table_; |
| const bool dynamic_; |
| GrowableArray<Symbol*> symbols_; |
| mutable IntMap<Symbol*> by_name_index_; |
| }; |
| |
| static uint32_t ElfHash(const unsigned char* name) { |
| uint32_t h = 0; |
| while (*name != '\0') { |
| h = (h << 4) + *name++; |
| uint32_t g = h & 0xf0000000; |
| h ^= g; |
| h ^= g >> 24; |
| } |
| return h; |
| } |
| |
| class SymbolHashTable : public Section { |
| public: |
| SymbolHashTable(Zone* zone, StringTable* strtab, SymbolTable* symtab) |
| : Section(elf::SectionHeaderType::SHT_HASH, |
| /*allocate=*/true, |
| /*executable=*/false, |
| /*writable=*/false) { |
| entry_size = sizeof(int32_t); |
| |
| nchain_ = symtab->Length(); |
| nbucket_ = symtab->Length(); |
| |
| bucket_ = zone->Alloc<int32_t>(nbucket_); |
| for (intptr_t i = 0; i < nbucket_; i++) { |
| bucket_[i] = elf::STN_UNDEF; |
| } |
| |
| chain_ = zone->Alloc<int32_t>(nchain_); |
| for (intptr_t i = 0; i < nchain_; i++) { |
| chain_[i] = elf::STN_UNDEF; |
| } |
| |
| for (intptr_t i = 1; i < symtab->Length(); i++) { |
| auto const symbol = symtab->At(i); |
| uint32_t hash = ElfHash((const unsigned char*)symbol->cstr_); |
| uint32_t probe = hash % nbucket_; |
| chain_[i] = bucket_[probe]; // next = head |
| bucket_[probe] = i; // head = symbol |
| } |
| } |
| |
| intptr_t FileSize() const { return entry_size * (nbucket_ + nchain_ + 2); } |
| intptr_t MemorySize() const { return FileSize(); } |
| |
| void Write(ElfWriteStream* stream) { |
| stream->WriteWord(nbucket_); |
| stream->WriteWord(nchain_); |
| for (intptr_t i = 0; i < nbucket_; i++) { |
| stream->WriteWord(bucket_[i]); |
| } |
| for (intptr_t i = 0; i < nchain_; i++) { |
| stream->WriteWord(chain_[i]); |
| } |
| } |
| |
| private: |
| int32_t nbucket_; |
| int32_t nchain_; |
| int32_t* bucket_; // "Head" |
| int32_t* chain_; // "Next" |
| }; |
| |
| class DynamicTable : public Section { |
| public: |
| explicit DynamicTable(Zone* zone) |
| : Section(elf::SectionHeaderType::SHT_DYNAMIC, |
| /*allocate=*/true, |
| /*executable=*/false, |
| /*writable=*/true) { |
| entry_size = sizeof(elf::DynamicEntry); |
| |
| // Entries that are not constants are fixed during Elf::Finalize(). |
| AddEntry(zone, elf::DynamicEntryType::DT_HASH, kInvalidEntry); |
| AddEntry(zone, elf::DynamicEntryType::DT_STRTAB, kInvalidEntry); |
| AddEntry(zone, elf::DynamicEntryType::DT_STRSZ, kInvalidEntry); |
| AddEntry(zone, elf::DynamicEntryType::DT_SYMTAB, kInvalidEntry); |
| AddEntry(zone, elf::DynamicEntryType::DT_SYMENT, sizeof(elf::Symbol)); |
| AddEntry(zone, elf::DynamicEntryType::DT_NULL, 0); |
| } |
| |
| static constexpr intptr_t kInvalidEntry = -1; |
| |
| intptr_t FileSize() const { return entries_.length() * entry_size; } |
| intptr_t MemorySize() const { return FileSize(); } |
| |
| void Write(ElfWriteStream* stream) { |
| for (intptr_t i = 0; i < entries_.length(); i++) { |
| entries_[i]->Write(stream); |
| } |
| } |
| |
| struct Entry : public ZoneAllocated { |
| Entry(elf::DynamicEntryType tag, intptr_t value) : tag(tag), value(value) {} |
| |
| void Write(ElfWriteStream* stream) { |
| ASSERT(value != kInvalidEntry); |
| const intptr_t start = stream->Position(); |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| stream->WriteWord(static_cast<uint32_t>(tag)); |
| stream->WriteAddr(value); |
| #else |
| stream->WriteXWord(static_cast<uint64_t>(tag)); |
| stream->WriteAddr(value); |
| #endif |
| ASSERT_EQUAL(stream->Position() - start, sizeof(elf::DynamicEntry)); |
| } |
| |
| elf::DynamicEntryType tag; |
| intptr_t value; |
| }; |
| |
| void AddEntry(Zone* zone, elf::DynamicEntryType tag, intptr_t value) { |
| auto const entry = new (zone) Entry(tag, value); |
| entries_.Add(entry); |
| } |
| |
| void FinalizeEntry(elf::DynamicEntryType tag, intptr_t value) { |
| for (auto* entry : entries_) { |
| if (entry->tag == tag) { |
| entry->value = value; |
| break; |
| } |
| } |
| } |
| |
| void FinalizeEntries(StringTable* strtab, |
| SymbolTable* symtab, |
| SymbolHashTable* hash) { |
| FinalizeEntry(elf::DynamicEntryType::DT_HASH, hash->memory_offset()); |
| FinalizeEntry(elf::DynamicEntryType::DT_STRTAB, strtab->memory_offset()); |
| FinalizeEntry(elf::DynamicEntryType::DT_STRSZ, strtab->MemorySize()); |
| FinalizeEntry(elf::DynamicEntryType::DT_SYMTAB, symtab->memory_offset()); |
| } |
| |
| private: |
| GrowableArray<Entry*> entries_; |
| }; |
| |
| // A segment for representing the dynamic table segment in the program header |
| // table. There is no corresponding section for this segment. |
| class DynamicSegment : public Segment { |
| public: |
| explicit DynamicSegment(Zone* zone, DynamicTable* dynamic) |
| : Segment(zone, dynamic, elf::ProgramHeaderType::PT_DYNAMIC) {} |
| }; |
| |
| // A segment for representing the dynamic table segment in the program header |
| // table. There is no corresponding section for this segment. |
| class NoteSegment : public Segment { |
| public: |
| NoteSegment(Zone* zone, Section* note) |
| : Segment(zone, note, elf::ProgramHeaderType::PT_NOTE) { |
| ASSERT_EQUAL(static_cast<uint32_t>(note->type), |
| static_cast<uint32_t>(elf::SectionHeaderType::SHT_NOTE)); |
| } |
| }; |
| |
| class BitsContainer : public Section { |
| public: |
| // Fully specified BitsContainer information. |
| BitsContainer(elf::SectionHeaderType type, |
| bool allocate, |
| bool executable, |
| bool writable, |
| intptr_t size, |
| const uint8_t* bytes, |
| const ZoneGrowableArray<Elf::Relocation>* relocations, |
| const ZoneGrowableArray<Elf::SymbolData>* symbols, |
| int alignment = kDefaultAlignment) |
| : Section(type, allocate, executable, writable, alignment), |
| file_size_(type == elf::SectionHeaderType::SHT_NOBITS ? 0 : size), |
| memory_size_(allocate ? size : 0), |
| bytes_(bytes), |
| relocations_(relocations), |
| symbols_(symbols) { |
| ASSERT(type == elf::SectionHeaderType::SHT_NOBITS || bytes != nullptr); |
| } |
| |
| // For BitsContainers used only as sections. |
| BitsContainer(elf::SectionHeaderType type, |
| intptr_t size, |
| const uint8_t* bytes, |
| const ZoneGrowableArray<Elf::Relocation>* relocations, |
| const ZoneGrowableArray<Elf::SymbolData>* symbols, |
| intptr_t alignment = kDefaultAlignment) |
| : BitsContainer(type, |
| /*allocate=*/false, |
| /*executable=*/false, |
| /*writable=*/false, |
| size, |
| bytes, |
| relocations, |
| symbols, |
| alignment) {} |
| |
| // For BitsContainers used as segments whose type differ on the type of the |
| // ELF file. Creates an elf::SHT_PROGBITS section if type is Snapshot, |
| // otherwise creates an elf::SHT_NOBITS section. |
| BitsContainer(Elf::Type t, |
| bool executable, |
| bool writable, |
| intptr_t size, |
| const uint8_t* bytes, |
| const ZoneGrowableArray<Elf::Relocation>* relocations, |
| const ZoneGrowableArray<Elf::SymbolData>* symbols, |
| intptr_t alignment = kDefaultAlignment) |
| : BitsContainer(t == Elf::Type::Snapshot |
| ? elf::SectionHeaderType::SHT_PROGBITS |
| : elf::SectionHeaderType::SHT_NOBITS, |
| /*allocate=*/true, |
| executable, |
| writable, |
| size, |
| bytes, |
| relocations, |
| symbols, |
| alignment) {} |
| |
| const BitsContainer* AsBitsContainer() const { return this; } |
| const ZoneGrowableArray<Elf::SymbolData>* symbols() const { return symbols_; } |
| |
| void Write(ElfWriteStream* stream) { |
| if (type == elf::SectionHeaderType::SHT_NOBITS) return; |
| if (relocations_ == nullptr) { |
| return stream->WriteBytes(bytes(), FileSize()); |
| } |
| const SymbolTable* symtab = ASSERT_NOTNULL(stream->elf().symtab()); |
| // Resolve relocations as we write. |
| intptr_t current_pos = 0; |
| for (const auto& reloc : *relocations_) { |
| // We assume here that the relocations are sorted in increasing order, |
| // with unique section offsets. |
| ASSERT(current_pos <= reloc.section_offset); |
| if (current_pos < reloc.section_offset) { |
| stream->WriteBytes(bytes_ + current_pos, |
| reloc.section_offset - current_pos); |
| } |
| intptr_t source_address = reloc.source_offset; |
| intptr_t target_address = reloc.target_offset; |
| // Null symbols denote that the corresponding offset should be treated |
| // as an absolute offset in the ELF memory space. |
| if (reloc.source_symbol != nullptr) { |
| const Symbol* const source_symbol = symtab->Find(reloc.source_symbol); |
| ASSERT(source_symbol != nullptr); |
| source_address += source_symbol->offset(); |
| } |
| if (reloc.target_symbol != nullptr) { |
| const Symbol* const target_symbol = symtab->Find(reloc.target_symbol); |
| if (target_symbol == nullptr) { |
| ASSERT_EQUAL(strcmp(reloc.target_symbol, kSnapshotBuildIdAsmSymbol), |
| 0); |
| ASSERT_EQUAL(reloc.target_offset, 0); |
| ASSERT_EQUAL(reloc.source_offset, 0); |
| ASSERT_EQUAL(reloc.size_in_bytes, compiler::target::kWordSize); |
| // TODO(dartbug.com/43516): Special case for snapshots with deferred |
| // sections that handles the build ID relocation in an |
| // InstructionsSection when there is no build ID. |
| const word to_write = Image::kNoRelocatedAddress; |
| stream->WriteBytes(reinterpret_cast<const uint8_t*>(&to_write), |
| reloc.size_in_bytes); |
| current_pos = reloc.section_offset + reloc.size_in_bytes; |
| continue; |
| } |
| target_address += target_symbol->offset(); |
| } |
| ASSERT(reloc.size_in_bytes <= kWordSize); |
| const word to_write = target_address - source_address; |
| ASSERT(Utils::IsInt(reloc.size_in_bytes * kBitsPerByte, to_write)); |
| stream->WriteBytes(reinterpret_cast<const uint8_t*>(&to_write), |
| reloc.size_in_bytes); |
| current_pos = reloc.section_offset + reloc.size_in_bytes; |
| } |
| stream->WriteBytes(bytes_ + current_pos, FileSize() - current_pos); |
| } |
| |
| uint32_t Hash() const { |
| ASSERT(bytes() != nullptr); |
| return Utils::StringHash(bytes(), MemorySize()); |
| } |
| |
| intptr_t FileSize() const { return file_size_; } |
| intptr_t MemorySize() const { return memory_size_; } |
| const uint8_t* bytes() const { return bytes_; } |
| |
| private: |
| const intptr_t file_size_; |
| const intptr_t memory_size_; |
| const uint8_t* const bytes_; |
| const ZoneGrowableArray<Elf::Relocation>* const relocations_; |
| const ZoneGrowableArray<Elf::SymbolData>* const symbols_; |
| }; |
| |
| Elf::Elf(Zone* zone, BaseWriteStream* stream, Type type, Dwarf* dwarf) |
| : zone_(zone), |
| unwrapped_stream_(stream), |
| type_(type), |
| dwarf_(dwarf), |
| shstrtab_(new (zone) StringTable(zone, /*allocate=*/false)), |
| dynstrtab_(new (zone) StringTable(zone, /*allocate=*/true)), |
| dynsym_(new (zone) SymbolTable(zone, dynstrtab_, /*dynamic=*/true)), |
| strtab_(new (zone_) StringTable(zone_, /*allocate=*/false)), |
| symtab_(new (zone_) SymbolTable(zone, strtab_, /*dynamic=*/false)) { |
| // Separate debugging information should always have a Dwarf object. |
| ASSERT(type_ == Type::Snapshot || dwarf_ != nullptr); |
| // Assumed by various offset logic in this file. |
| ASSERT_EQUAL(unwrapped_stream_->Position(), 0); |
| } |
| |
| void Elf::AddSection(Section* section, |
| const char* name, |
| const char* symbol_name) { |
| ASSERT(section_table_file_size_ < 0); |
| ASSERT(!shstrtab_->HasBeenFinalized()); |
| section->set_name(shstrtab_->AddString(name)); |
| // We do not set the section index yet, that will be done during Finalize(). |
| sections_.Add(section); |
| // We do set the initial section index in initialized symbols for quick lookup |
| // until reordering happens. |
| const intptr_t initial_section_index = sections_.length() - 1; |
| if (symbol_name != nullptr) { |
| ASSERT(section->IsAllocated()); |
| section->symbol_name = symbol_name; |
| // While elf::STT_SECTION might seem more appropriate, section symbols are |
| // usually local and dlsym won't return them. |
| ASSERT(!dynsym_->HasBeenFinalized()); |
| dynsym_->AddSymbol(symbol_name, elf::STB_GLOBAL, elf::STT_FUNC, |
| initial_section_index, section->MemorySize()); |
| // Some tools assume the static symbol table is a superset of the dynamic |
| // symbol table when it exists (see dartbug.com/41783). |
| ASSERT(!symtab_->HasBeenFinalized()); |
| symtab_->AddSymbol(symbol_name, elf::STB_GLOBAL, elf::STT_FUNC, |
| initial_section_index, section->FileSize()); |
| } |
| if (auto const container = section->AsBitsContainer()) { |
| if (container->symbols() != nullptr) { |
| ASSERT(section->IsAllocated()); |
| for (const auto& symbol_data : *container->symbols()) { |
| ASSERT(!symtab_->HasBeenFinalized()); |
| symtab_->AddSymbol(symbol_data.name, elf::STB_LOCAL, symbol_data.type, |
| initial_section_index, symbol_data.size); |
| } |
| } |
| } |
| } |
| |
| void Elf::AddText(const char* name, |
| const uint8_t* bytes, |
| intptr_t size, |
| const ZoneGrowableArray<Relocation>* relocations, |
| const ZoneGrowableArray<SymbolData>* symbols) { |
| auto const image = |
| new (zone_) BitsContainer(type_, /*executable=*/true, |
| /*writable=*/false, size, bytes, relocations, |
| symbols, ImageWriter::kTextAlignment); |
| AddSection(image, ".text", name); |
| } |
| |
| // Here, both VM and isolate will be compiled into a single snapshot. |
| // In assembly generation, each serialized text section gets a separate |
| // pointer into the BSS segment and BSS slots are created for each, since |
| // we may not serialize both VM and isolate. Here, we always serialize both, |
| // so make a BSS segment large enough for both, with the VM entries coming |
| // first. |
| static constexpr intptr_t kBssVmSize = |
| BSS::kVmEntryCount * compiler::target::kWordSize; |
| static constexpr intptr_t kBssIsolateSize = |
| BSS::kIsolateEntryCount * compiler::target::kWordSize; |
| static constexpr intptr_t kBssSize = kBssVmSize + kBssIsolateSize; |
| |
| void Elf::CreateBSS() { |
| uint8_t* bytes = nullptr; |
| if (type_ == Type::Snapshot) { |
| // Ideally the BSS segment would take no space in the object, but Android's |
| // "strip" utility truncates the memory-size of our segments to their |
| // file-size. |
| // |
| // Therefore we must insert zero-filled data for the BSS. |
| bytes = zone_->Alloc<uint8_t>(kBssSize); |
| memset(bytes, 0, kBssSize); |
| } |
| // For the BSS section, we add two local symbols to the static symbol table, |
| // one for each isolate. We use local symbols because these addresses are only |
| // used for relocation. (This matches the behavior in the assembly output, |
| // where these symbols are also local.) |
| auto* bss_symbols = new (zone_) ZoneGrowableArray<Elf::SymbolData>(); |
| bss_symbols->Add({kVmSnapshotBssAsmSymbol, elf::STT_SECTION, 0, kBssVmSize}); |
| bss_symbols->Add({kIsolateSnapshotBssAsmSymbol, elf::STT_SECTION, kBssVmSize, |
| kBssIsolateSize}); |
| bss_ = new (zone_) BitsContainer( |
| type_, /*executable=*/false, /*writable=*/true, kBssSize, bytes, |
| /*relocations=*/nullptr, bss_symbols, ImageWriter::kBssAlignment); |
| AddSection(bss_, ".bss"); |
| } |
| |
| void Elf::AddROData(const char* name, |
| const uint8_t* bytes, |
| intptr_t size, |
| const ZoneGrowableArray<Relocation>* relocations, |
| const ZoneGrowableArray<SymbolData>* symbols) { |
| auto const image = |
| new (zone_) BitsContainer(type_, /*executable=*/false, |
| /*writable=*/false, size, bytes, relocations, |
| symbols, ImageWriter::kRODataAlignment); |
| AddSection(image, ".rodata", name); |
| } |
| |
| #if defined(DART_PRECOMPILER) |
| class DwarfElfStream : public DwarfWriteStream { |
| public: |
| DwarfElfStream(Zone* zone, NonStreamingWriteStream* stream) |
| : zone_(ASSERT_NOTNULL(zone)), |
| stream_(ASSERT_NOTNULL(stream)), |
| relocations_(new (zone) ZoneGrowableArray<Elf::Relocation>()) {} |
| |
| const uint8_t* buffer() const { return stream_->buffer(); } |
| intptr_t bytes_written() const { return stream_->bytes_written(); } |
| |
| void sleb128(intptr_t value) { stream_->WriteSLEB128(value); } |
| void uleb128(uintptr_t value) { stream_->WriteLEB128(value); } |
| void u1(uint8_t value) { stream_->WriteByte(value); } |
| void u2(uint16_t value) { stream_->WriteFixed(value); } |
| void u4(uint32_t value) { stream_->WriteFixed(value); } |
| void u8(uint64_t value) { stream_->WriteFixed(value); } |
| void string(const char* cstr) { // NOLINT |
| // Unlike stream_->WriteString(), we want the null terminator written. |
| stream_->WriteBytes(cstr, strlen(cstr) + 1); |
| } |
| // The prefix is ignored for DwarfElfStreams. |
| EncodedPosition WritePrefixedLength(const char* symbol_prefix, |
| std::function<void()> body) { |
| const intptr_t fixup = stream_->Position(); |
| // We assume DWARF v2 currently, so all sizes are 32-bit. |
| u4(0); |
| // All sizes for DWARF sections measure the size of the section data _after_ |
| // the size value. |
| const intptr_t start = stream_->Position(); |
| body(); |
| const intptr_t end = stream_->Position(); |
| stream_->SetPosition(fixup); |
| u4(end - start); |
| stream_->SetPosition(end); |
| return EncodedPosition(start); |
| } |
| // Shorthand for when working directly with DwarfElfStreams. |
| intptr_t WritePrefixedLength(std::function<void()> body) { |
| const EncodedPosition& pos = WritePrefixedLength(nullptr, body); |
| return pos.position(); |
| } |
| |
| void OffsetFromSymbol(const char* symbol, intptr_t offset) { |
| relocations_->Add( |
| {kAddressSize, stream_->Position(), nullptr, 0, symbol, offset}); |
| addr(0); // Resolved later. |
| } |
| template <typename T> |
| void SizedOffsetFromSymbol(const char* symbol, intptr_t offset) { |
| relocations_->Add( |
| {sizeof(T), stream_->Position(), nullptr, 0, symbol, offset}); |
| stream_->WriteFixed<T>(0); // Resolved later. |
| } |
| void InitializeAbstractOrigins(intptr_t size) { |
| abstract_origins_size_ = size; |
| abstract_origins_ = zone_->Alloc<uint32_t>(abstract_origins_size_); |
| } |
| void RegisterAbstractOrigin(intptr_t index) { |
| ASSERT(abstract_origins_ != nullptr); |
| ASSERT(index < abstract_origins_size_); |
| abstract_origins_[index] = stream_->Position(); |
| } |
| void AbstractOrigin(intptr_t index) { u4(abstract_origins_[index]); } |
| |
| const ZoneGrowableArray<Elf::Relocation>* relocations() const { |
| return relocations_; |
| } |
| |
| protected: |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| static constexpr intptr_t kAddressSize = kInt32Size; |
| #else |
| static constexpr intptr_t kAddressSize = kInt64Size; |
| #endif |
| |
| void addr(uword value) { |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| u4(value); |
| #else |
| u8(value); |
| #endif |
| } |
| |
| Zone* const zone_; |
| NonStreamingWriteStream* const stream_; |
| ZoneGrowableArray<Elf::Relocation>* relocations_ = nullptr; |
| uint32_t* abstract_origins_ = nullptr; |
| intptr_t abstract_origins_size_ = -1; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DwarfElfStream); |
| }; |
| |
| static constexpr intptr_t kInitialDwarfBufferSize = 64 * KB; |
| #endif |
| |
| const Section* Elf::FindSectionBySymbolName(const char* name) const { |
| const Symbol* const symbol = symtab_->Find(name); |
| if (symbol == nullptr) return nullptr; |
| // Should not be run between OrderSectionsAndCreateSegments (when section |
| // indices may change) and FinalizeSymbols() (sets the final section index). |
| ASSERT(segments_.length() == 0 || symbol->HasBeenFinalized()); |
| const Section* const section = sections_[symbol->section_index]; |
| ASSERT_EQUAL(strcmp(section->symbol_name, name), 0); |
| return section; |
| } |
| |
| void Elf::FinalizeSymbols() { |
| // Must be run after OrderSectionsAndCreateSegments and ComputeOffsets. |
| ASSERT(segments_.length() > 0); |
| ASSERT(section_table_file_offset_ > 0); |
| for (const auto& section : sections_) { |
| if (section->symbol_name != nullptr) { |
| dynsym_->FinalizeSymbol(section->symbol_name, section->index(), |
| section->memory_offset()); |
| symtab_->FinalizeSymbol(section->symbol_name, section->index(), |
| section->memory_offset()); |
| } |
| if (auto const container = section->AsBitsContainer()) { |
| if (container->symbols() != nullptr) { |
| for (const auto& symbol_data : *container->symbols()) { |
| symtab_->FinalizeSymbol( |
| symbol_data.name, section->index(), |
| section->memory_offset() + symbol_data.offset); |
| } |
| } |
| } |
| } |
| } |
| |
| void Elf::FinalizeEhFrame() { |
| #if defined(DART_PRECOMPILER) && \ |
| (defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64)) |
| // Multiplier which will be used to scale operands of DW_CFA_offset and |
| // DW_CFA_val_offset. |
| const intptr_t kDataAlignment = compiler::target::kWordSize; |
| |
| static const uint8_t DW_EH_PE_pcrel = 0x10; |
| static const uint8_t DW_EH_PE_sdata4 = 0x0b; |
| |
| ZoneWriteStream stream(zone(), kInitialDwarfBufferSize); |
| DwarfElfStream dwarf_stream(zone_, &stream); |
| |
| // Emit CIE. |
| |
| // Used to calculate offset to CIE in FDEs. |
| const intptr_t cie_start = dwarf_stream.WritePrefixedLength([&] { |
| dwarf_stream.u4(0); // CIE |
| dwarf_stream.u1(1); // Version (must be 1 or 3) |
| // Augmentation String |
| dwarf_stream.string("zR"); // NOLINT |
| dwarf_stream.uleb128(1); // Code alignment (must be 1). |
| dwarf_stream.sleb128(kDataAlignment); // Data alignment |
| dwarf_stream.u1( |
| ConcreteRegister(LINK_REGISTER)); // Return address register |
| dwarf_stream.uleb128(1); // Augmentation size |
| dwarf_stream.u1(DW_EH_PE_pcrel | DW_EH_PE_sdata4); // FDE encoding. |
| // CFA is FP+0 |
| dwarf_stream.u1(Dwarf::DW_CFA_def_cfa); |
| dwarf_stream.uleb128(FP); |
| dwarf_stream.uleb128(0); |
| }); |
| |
| // Emit an FDE covering each .text section. |
| const auto text_name = shstrtab_->Lookup(".text"); |
| ASSERT(text_name != StringTable::kNotIndexed); |
| for (auto section : sections_) { |
| if (section->name() != text_name) continue; |
| dwarf_stream.WritePrefixedLength([&]() { |
| // Offset to CIE. Note that unlike pcrel this offset is encoded |
| // backwards: it will be subtracted from the current position. |
| dwarf_stream.u4(stream.Position() - cie_start); |
| // Start address. 4 bytes because DW_EH_PE_sdata4 used in FDE encoding. |
| // Note: If (DW_EH_PE_pcrel | DW_EH_PE_absptr) can be used instead, we |
| // wouldn't need a special version of OffsetForSymbol just for this. |
| dwarf_stream.SizedOffsetFromSymbol<int32_t>(section->symbol_name, 0); |
| dwarf_stream.u4(section->MemorySize()); // Size. |
| dwarf_stream.u1(0); // Augmentation Data length. |
| |
| // FP at FP+kSavedCallerPcSlotFromFp*kWordSize |
| COMPILE_ASSERT(kSavedCallerFpSlotFromFp >= 0); |
| dwarf_stream.u1(Dwarf::DW_CFA_offset | FP); |
| dwarf_stream.uleb128(kSavedCallerFpSlotFromFp); |
| |
| // LR at FP+kSavedCallerPcSlotFromFp*kWordSize |
| COMPILE_ASSERT(kSavedCallerPcSlotFromFp >= 0); |
| dwarf_stream.u1(Dwarf::DW_CFA_offset | ConcreteRegister(LINK_REGISTER)); |
| dwarf_stream.uleb128(kSavedCallerPcSlotFromFp); |
| |
| // SP is FP+kCallerSpSlotFromFp*kWordSize |
| COMPILE_ASSERT(kCallerSpSlotFromFp >= 0); |
| dwarf_stream.u1(Dwarf::DW_CFA_val_offset); |
| #if defined(TARGET_ARCH_ARM64) |
| dwarf_stream.uleb128(ConcreteRegister(CSP)); |
| #elif defined(TARGET_ARCH_ARM) |
| dwarf_stream.uleb128(SP); |
| #else |
| #error "Unsupported .eh_frame architecture" |
| #endif |
| dwarf_stream.uleb128(kCallerSpSlotFromFp); |
| }); |
| } |
| |
| dwarf_stream.u4(0); // end of section |
| |
| auto const eh_frame = new (zone_) |
| BitsContainer(type_, /*writable=*/false, /*executable=*/false, |
| dwarf_stream.bytes_written(), dwarf_stream.buffer(), |
| dwarf_stream.relocations(), /*symbols=*/nullptr); |
| AddSection(eh_frame, ".eh_frame"); |
| #endif // defined(DART_PRECOMPILER) && \ |
| // (defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64)) |
| } |
| |
| void Elf::FinalizeDwarfSections() { |
| if (dwarf_ == nullptr) return; |
| #if defined(DART_PRECOMPILER) |
| auto add_debug = [&](const char* name, const DwarfElfStream& stream) { |
| auto const image = new (zone_) BitsContainer( |
| elf::SectionHeaderType::SHT_PROGBITS, stream.bytes_written(), |
| stream.buffer(), stream.relocations(), /*symbols=*/nullptr); |
| AddSection(image, name); |
| }; |
| { |
| ZoneWriteStream stream(zone(), kInitialDwarfBufferSize); |
| DwarfElfStream dwarf_stream(zone_, &stream); |
| dwarf_->WriteAbbreviations(&dwarf_stream); |
| add_debug(".debug_abbrev", dwarf_stream); |
| } |
| |
| { |
| ZoneWriteStream stream(zone(), kInitialDwarfBufferSize); |
| DwarfElfStream dwarf_stream(zone_, &stream); |
| dwarf_->WriteDebugInfo(&dwarf_stream); |
| add_debug(".debug_info", dwarf_stream); |
| } |
| |
| { |
| ZoneWriteStream stream(zone(), kInitialDwarfBufferSize); |
| DwarfElfStream dwarf_stream(zone_, &stream); |
| dwarf_->WriteLineNumberProgram(&dwarf_stream); |
| add_debug(".debug_line", dwarf_stream); |
| } |
| #endif |
| } |
| |
| void Elf::OrderSectionsAndCreateSegments() { |
| GrowableArray<Section*> reordered_sections; |
| // The first section in the section header table is always a reserved |
| // entry containing only 0 values. |
| reordered_sections.Add(new (zone_) ReservedSection()); |
| |
| Segment* current_segment = nullptr; |
| auto add_to_reordered_sections = [&](Section* section) { |
| section->set_index(reordered_sections.length()); |
| reordered_sections.Add(section); |
| if (!section->IsAllocated()) return; |
| const bool was_added = |
| current_segment == nullptr ? false : current_segment->Add(section); |
| if (!was_added) { |
| // There is no current segment or it is incompatible for merging, so |
| // following compatible segments will be merged into this one if possible. |
| current_segment = |
| new (zone_) Segment(zone_, section, elf::ProgramHeaderType::PT_LOAD); |
| section->load_segment = current_segment; |
| segments_.Add(current_segment); |
| } |
| }; |
| |
| // Add writable, non-executable sections first, due to a bug in Jelly Bean's |
| // ELF loader when a writable segment is placed between two non-writable |
| // segments. See also Elf::WriteProgramTable(), which double-checks this. |
| for (auto* const section : sections_) { |
| if (section->IsAllocated() && section->IsWritable() && |
| !section->IsExecutable()) { |
| add_to_reordered_sections(section); |
| } |
| } |
| |
| // Now add the non-writable, non-executable allocated sections in a new |
| // segment, starting with the data sections. |
| for (auto* const section : sections_) { |
| if (section->IsAllocated() && !section->IsWritable() && |
| !section->IsExecutable()) { |
| add_to_reordered_sections(section); |
| } |
| } |
| |
| // Now add the non-writable, executable sections in a new segment. |
| for (auto* const section : sections_) { |
| if (section->IsAllocated() && !section->IsWritable() && |
| section->IsExecutable()) { |
| add_to_reordered_sections(section); |
| } |
| } |
| |
| // We put all unallocated sections last because otherwise, they would |
| // affect the file offset but not the memory offset of any following allocated |
| // sections. Doing it in this order makes it easier to keep file and memory |
| // offsets page-aligned with respect to each other, which is required for |
| // some loaders. |
| for (auto* const section : sections_) { |
| if (!section->IsAllocated()) { |
| add_to_reordered_sections(section); |
| } |
| } |
| |
| // Now replace sections_. |
| sections_.Clear(); |
| sections_.AddArray(reordered_sections); |
| } |
| |
| void Elf::Finalize() { |
| ASSERT(program_table_file_size_ < 0); |
| |
| // Generate the build ID now that we have all user-provided sections. |
| // Generating it at this point also means it'll be the first writable |
| // non-executable section added to sections_ and thus end up right after the |
| // program table after reordering. This limits how much of the ELF file needs |
| // to be read to get the build ID (header + program table + note segment). |
| GenerateBuildId(); |
| |
| // We add BSS in all cases, even to the separate debugging information ELF, |
| // to ensure that relocated addresses are consistent between ELF snapshots |
| // and ELF separate debugging information. |
| CreateBSS(); |
| |
| // Adding the dynamic symbol table and associated sections. |
| AddSection(dynstrtab_, ".dynstr"); |
| AddSection(dynsym_, ".dynsym"); |
| |
| auto const hash = new (zone_) SymbolHashTable(zone_, dynstrtab_, dynsym_); |
| AddSection(hash, ".hash"); |
| |
| auto const dynamic = new (zone_) DynamicTable(zone_); |
| AddSection(dynamic, ".dynamic"); |
| |
| if (!IsStripped()) { |
| AddSection(strtab_, ".strtab"); |
| AddSection(symtab_, ".symtab"); |
| } |
| AddSection(shstrtab_, ".shstrtab"); |
| FinalizeEhFrame(); |
| FinalizeDwarfSections(); |
| |
| OrderSectionsAndCreateSegments(); |
| |
| // Now that the sections have indices, set up links between them as needed. |
| dynsym_->link = dynstrtab_->index(); |
| hash->link = dynsym_->index(); |
| dynamic->link = dynstrtab_->index(); |
| if (!IsStripped()) { |
| symtab_->link = strtab_->index(); |
| } |
| |
| // Now add any special non-load segments. |
| |
| if (build_id_ != nullptr) { |
| // Add a PT_NOTE segment for the build ID. |
| segments_.Add(new (zone_) NoteSegment(zone_, build_id_)); |
| } |
| |
| // Add a PT_DYNAMIC segment for the dynamic symbol table. |
| segments_.Add(new (zone_) DynamicSegment(zone_, dynamic)); |
| |
| // At this point, all sections have been added and ordered and all sections |
| // appropriately grouped into segments. Add the program table and then |
| // calculate file and memory offsets. |
| FinalizeProgramTable(); |
| ComputeOffsets(); |
| |
| // Now that we have reordered the sections and set memory offsets, we can |
| // update the symbol tables to add index and address information. This must |
| // be done prior to writing the symbol tables and any sections with |
| // relocations. |
| FinalizeSymbols(); |
| // Also update the entries in the dynamic table. |
| dynamic->FinalizeEntries(dynstrtab_, dynsym_, hash); |
| |
| // Finally, write the ELF file contents. |
| ElfWriteStream wrapped(unwrapped_stream_, *this); |
| WriteHeader(&wrapped); |
| WriteProgramTable(&wrapped); |
| WriteSections(&wrapped); |
| WriteSectionTable(&wrapped); |
| } |
| |
| // For the build ID, we generate a 128-bit hash, where each 32 bits is a hash of |
| // the contents of the following segments in order: |
| // |
| // .text(VM) | .text(Isolate) | .rodata(VM) | .rodata(Isolate) |
| static constexpr const char* kBuildIdSegmentNames[]{ |
| kVmSnapshotInstructionsAsmSymbol, |
| kIsolateSnapshotInstructionsAsmSymbol, |
| kVmSnapshotDataAsmSymbol, |
| kIsolateSnapshotDataAsmSymbol, |
| }; |
| static constexpr intptr_t kBuildIdSegmentNamesLength = |
| ARRAY_SIZE(kBuildIdSegmentNames); |
| // Includes the note name, but not the description. |
| static constexpr intptr_t kBuildIdHeaderSize = |
| sizeof(elf::Note) + sizeof(elf::ELF_NOTE_GNU); |
| |
| void Elf::GenerateBuildId() { |
| uint32_t hashes[kBuildIdSegmentNamesLength]; |
| for (intptr_t i = 0; i < kBuildIdSegmentNamesLength; i++) { |
| auto const name = kBuildIdSegmentNames[i]; |
| auto const section = FindSectionBySymbolName(name); |
| // If we're missing a section, then we don't generate a final build ID. |
| if (section == nullptr) return; |
| auto const bits = section->AsBitsContainer(); |
| if (bits == nullptr) { |
| FATAL1("Section for symbol %s is not a BitsContainer", name); |
| } |
| // For now, if we don't have section contents (because we're generating |
| // assembly), don't generate a final build ID, as we'll have different |
| // build IDs in the snapshot and the separate debugging information. |
| // |
| // TODO(dartbug.com/43274): Change once we generate consistent build IDs |
| // between assembly snapshots and their debugging information. |
| if (bits->bytes() == nullptr) return; |
| hashes[i] = bits->Hash(); |
| } |
| auto const description_bytes = reinterpret_cast<uint8_t*>(hashes); |
| const size_t description_length = sizeof(hashes); |
| // To ensure we can quickly check for a final build ID, we ensure the first |
| // byte contains a non-zero value. |
| if (description_bytes[0] == 0) { |
| description_bytes[0] = 1; |
| } |
| // Now that we have the description field contents, create the section. |
| ZoneWriteStream stream(zone(), kBuildIdHeaderSize + description_length); |
| stream.WriteFixed<decltype(elf::Note::name_size)>(sizeof(elf::ELF_NOTE_GNU)); |
| stream.WriteFixed<decltype(elf::Note::description_size)>(description_length); |
| stream.WriteFixed<decltype(elf::Note::type)>(elf::NoteType::NT_GNU_BUILD_ID); |
| ASSERT_EQUAL(stream.Position(), sizeof(elf::Note)); |
| stream.WriteBytes(elf::ELF_NOTE_GNU, sizeof(elf::ELF_NOTE_GNU)); |
| ASSERT_EQUAL(stream.bytes_written(), kBuildIdHeaderSize); |
| stream.WriteBytes(description_bytes, description_length); |
| // While the build ID section does not need to be writable, the first segment |
| // in our ELF files is writable (see Elf::WriteProgramTable) and so this |
| // ensures we can put it right after the program table without padding. |
| build_id_ = new (zone_) BitsContainer( |
| elf::SectionHeaderType::SHT_NOTE, |
| /*allocate=*/true, /*executable=*/false, |
| /*writable=*/true, stream.bytes_written(), stream.buffer(), |
| /*relocations=*/nullptr, /*symbols=*/nullptr, kNoteAlignment); |
| AddSection(build_id_, kBuildIdNoteName, kSnapshotBuildIdAsmSymbol); |
| } |
| |
| void Elf::FinalizeProgramTable() { |
| ASSERT(program_table_file_size_ < 0); |
| |
| program_table_file_offset_ = sizeof(elf::ElfHeader); |
| |
| // There is one additional segment we need the size of the program table to |
| // create, so calculate it as if that segment were already in place. |
| program_table_file_size_ = |
| (1 + segments_.length()) * sizeof(elf::ProgramHeader); |
| |
| auto const program_table_segment_size = |
| program_table_file_offset_ + program_table_file_size_; |
| |
| // Segment for loading the initial part of the ELF file, including the |
| // program header table. Required by Android but not by Linux. |
| Segment* const initial_load = |
| new (zone_) ProgramTableLoadSegment(zone_, program_table_segment_size); |
| // Merge the initial writable segment into this one and replace it (so it |
| // doesn't change the number of segments). |
| const bool was_merged = initial_load->Merge(segments_[0]); |
| ASSERT(was_merged); |
| segments_[0] = initial_load; |
| |
| // Self-reference to program header table. Required by Android but not by |
| // Linux. Must appear before any PT_LOAD entries. |
| segments_.InsertAt( |
| 0, new (zone_) ProgramTableSelfSegment(zone_, program_table_file_offset_, |
| program_table_file_size_)); |
| } |
| |
| static const intptr_t kElfSectionTableAlignment = compiler::target::kWordSize; |
| |
| void Elf::ComputeOffsets() { |
| // We calculate the size and offset of the program header table during |
| // finalization. |
| ASSERT(program_table_file_offset_ > 0 && program_table_file_size_ > 0); |
| intptr_t file_offset = program_table_file_offset_ + program_table_file_size_; |
| // Program table memory size is same as file size. |
| intptr_t memory_offset = file_offset; |
| |
| // When calculating memory and file offsets for sections, we'll need to know |
| // if we've changed segments. Start with the one for the program table. |
| ASSERT(segments_[0]->type != elf::ProgramHeaderType::PT_LOAD); |
| const auto* current_segment = segments_[1]; |
| ASSERT(current_segment->type == elf::ProgramHeaderType::PT_LOAD); |
| |
| // The non-reserved sections are output to the file in order after the program |
| // header table. If we're entering a new segment, then we need to align |
| // according to the PT_LOAD segment alignment as well to keep the file offsets |
| // aligned with the memory addresses. |
| for (intptr_t i = 1; i < sections_.length(); i++) { |
| auto const section = sections_[i]; |
| file_offset = Utils::RoundUp(file_offset, section->alignment); |
| memory_offset = Utils::RoundUp(memory_offset, section->alignment); |
| if (section->IsAllocated() && section->load_segment != current_segment) { |
| current_segment = section->load_segment; |
| ASSERT(current_segment->type == elf::ProgramHeaderType::PT_LOAD); |
| const intptr_t load_align = Segment::Alignment(current_segment->type); |
| file_offset = Utils::RoundUp(file_offset, load_align); |
| memory_offset = Utils::RoundUp(memory_offset, load_align); |
| } |
| section->set_file_offset(file_offset); |
| if (section->IsAllocated()) { |
| section->set_memory_offset(memory_offset); |
| #if defined(DEBUG) |
| if (type_ == Type::Snapshot) { |
| // For files that will be dynamically loaded, make sure the file offsets |
| // of allocated sections are page aligned to the memory offsets. |
| ASSERT_EQUAL(section->file_offset() % Elf::kPageSize, |
| section->memory_offset() % Elf::kPageSize); |
| } |
| #endif |
| } |
| file_offset += section->FileSize(); |
| memory_offset += section->MemorySize(); |
| } |
| |
| file_offset = Utils::RoundUp(file_offset, kElfSectionTableAlignment); |
| section_table_file_offset_ = file_offset; |
| section_table_file_size_ = sections_.length() * sizeof(elf::SectionHeader); |
| file_offset += section_table_file_size_; |
| } |
| |
| void Elf::WriteHeader(ElfWriteStream* stream) { |
| #if defined(TARGET_ARCH_IS_32_BIT) |
| uint8_t size = elf::ELFCLASS32; |
| #else |
| uint8_t size = elf::ELFCLASS64; |
| #endif |
| uint8_t e_ident[16] = {0x7f, |
| 'E', |
| 'L', |
| 'F', |
| size, |
| elf::ELFDATA2LSB, |
| elf::EV_CURRENT, |
| elf::ELFOSABI_SYSV, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0}; |
| stream->WriteBytes(e_ident, 16); |
| |
| stream->WriteHalf(elf::ET_DYN); // Shared library. |
| |
| #if defined(TARGET_ARCH_IA32) |
| stream->WriteHalf(elf::EM_386); |
| #elif defined(TARGET_ARCH_X64) |
| stream->WriteHalf(elf::EM_X86_64); |
| #elif defined(TARGET_ARCH_ARM) |
| stream->WriteHalf(elf::EM_ARM); |
| #elif defined(TARGET_ARCH_ARM64) |
| stream->WriteHalf(elf::EM_AARCH64); |
| #else |
| FATAL("Unknown ELF architecture"); |
| #endif |
| |
| stream->WriteWord(elf::EV_CURRENT); // Version |
| stream->WriteAddr(0); // "Entry point" |
| stream->WriteOff(program_table_file_offset_); |
| stream->WriteOff(section_table_file_offset_); |
| |
| #if defined(TARGET_ARCH_ARM) |
| uword flags = elf::EF_ARM_ABI | (TargetCPUFeatures::hardfp_supported() |
| ? elf::EF_ARM_ABI_FLOAT_HARD |
| : elf::EF_ARM_ABI_FLOAT_SOFT); |
| #else |
| uword flags = 0; |
| #endif |
| stream->WriteWord(flags); |
| |
| stream->WriteHalf(sizeof(elf::ElfHeader)); |
| stream->WriteHalf(sizeof(elf::ProgramHeader)); |
| stream->WriteHalf(segments_.length()); |
| stream->WriteHalf(sizeof(elf::SectionHeader)); |
| stream->WriteHalf(sections_.length()); |
| stream->WriteHalf(shstrtab_->index()); |
| |
| ASSERT_EQUAL(stream->Position(), sizeof(elf::ElfHeader)); |
| } |
| |
| void Elf::WriteProgramTable(ElfWriteStream* stream) { |
| ASSERT(program_table_file_size_ >= 0); // Check for finalization. |
| ASSERT(stream->Position() == program_table_file_offset_); |
| #if defined(DEBUG) |
| // Here, we count the number of times that a PT_LOAD writable segment is |
| // followed by a non-writable segment. We initialize last_writable to true so |
| // that we catch the case where the first segment is non-writable. |
| bool last_writable = true; |
| int non_writable_groups = 0; |
| #endif |
| for (auto const segment : segments_) { |
| #if defined(DEBUG) |
| if (segment->type == elf::ProgramHeaderType::PT_LOAD) { |
| if (last_writable && !segment->IsWritable()) { |
| non_writable_groups++; |
| } |
| last_writable = segment->IsWritable(); |
| } |
| #endif |
| const intptr_t start = stream->Position(); |
| segment->WriteProgramHeader(stream); |
| const intptr_t end = stream->Position(); |
| ASSERT_EQUAL(end - start, sizeof(elf::ProgramHeader)); |
| } |
| #if defined(DEBUG) |
| // All PT_LOAD non-writable segments must be contiguous. If not, some older |
| // Android dynamic linkers fail to handle writable segments between |
| // non-writable ones. See https://github.com/flutter/flutter/issues/43259. |
| ASSERT(non_writable_groups <= 1); |
| #endif |
| } |
| |
| void Elf::WriteSectionTable(ElfWriteStream* stream) { |
| ASSERT(section_table_file_size_ >= 0); // Check for finalization. |
| stream->Align(kElfSectionTableAlignment); |
| ASSERT_EQUAL(stream->Position(), section_table_file_offset_); |
| |
| for (auto const section : sections_) { |
| const intptr_t start = stream->Position(); |
| section->WriteSectionHeader(stream); |
| const intptr_t end = stream->Position(); |
| ASSERT_EQUAL(end - start, sizeof(elf::SectionHeader)); |
| } |
| } |
| |
| void Elf::WriteSections(ElfWriteStream* stream) { |
| ASSERT(section_table_file_size_ >= 0); // Check for finalization. |
| // Should be writing the first section immediately after the program table. |
| ASSERT_EQUAL(stream->Position(), |
| program_table_file_offset_ + program_table_file_size_); |
| // Skip the reserved first section, as its alignment is 0 (which will cause |
| // stream->Align() to fail) and it never contains file contents anyway. |
| ASSERT_EQUAL(static_cast<uint32_t>(sections_[0]->type), |
| static_cast<uint32_t>(elf::SectionHeaderType::SHT_NULL)); |
| ASSERT_EQUAL(sections_[0]->alignment, 0); |
| // The program table is considered part of the first load segment (the |
| // second segment in segments_), so other sections in the same segment should |
| // not have extra segment alignment added. |
| ASSERT(segments_[0]->type != elf::ProgramHeaderType::PT_LOAD); |
| const Segment* current_segment = segments_[1]; |
| ASSERT(current_segment->type == elf::ProgramHeaderType::PT_LOAD); |
| for (intptr_t i = 1; i < sections_.length(); i++) { |
| Section* section = sections_[i]; |
| stream->Align(section->alignment); |
| if (section->IsAllocated() && section->load_segment != current_segment) { |
| // Changing segments, so align accordingly. |
| current_segment = section->load_segment; |
| ASSERT(current_segment->type == elf::ProgramHeaderType::PT_LOAD); |
| const intptr_t load_align = Segment::Alignment(current_segment->type); |
| stream->Align(load_align); |
| } |
| ASSERT_EQUAL(stream->Position(), section->file_offset()); |
| section->Write(stream); |
| ASSERT_EQUAL(stream->Position(), |
| section->file_offset() + section->FileSize()); |
| } |
| } |
| |
| #endif // DART_PRECOMPILER |
| |
| } // namespace dart |