| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" |
| #if defined(TARGET_ARCH_X64) |
| |
| #include "vm/assembler.h" |
| #include "vm/compiler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/heap.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/resolver.h" |
| #include "vm/scavenger.h" |
| #include "vm/stack_frame.h" |
| #include "vm/stub_code.h" |
| #include "vm/tags.h" |
| |
| #define __ assembler-> |
| |
| namespace dart { |
| |
| DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects."); |
| DEFINE_FLAG(bool, use_slow_path, false, |
| "Set to true for debugging & verifying the slow paths."); |
| DECLARE_FLAG(bool, trace_optimized_ic_calls); |
| DECLARE_FLAG(int, optimization_counter_threshold); |
| DECLARE_FLAG(bool, support_debugger); |
| DECLARE_FLAG(bool, lazy_dispatchers); |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of last argument in argument array. |
| // RSP + 8*R10 : address of first argument in argument array. |
| // RSP + 8*R10 + 8 : address of return value. |
| // RBX : address of the runtime function to call. |
| // R10 : number of arguments to the call. |
| // Must preserve callee saved registers R12 and R13. |
| void StubCode::GenerateCallToRuntimeStub(Assembler* assembler) { |
| const intptr_t thread_offset = NativeArguments::thread_offset(); |
| const intptr_t argc_tag_offset = NativeArguments::argc_tag_offset(); |
| const intptr_t argv_offset = NativeArguments::argv_offset(); |
| const intptr_t retval_offset = NativeArguments::retval_offset(); |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to Dart VM C++ code. |
| __ movq(Address(THR, Thread::top_exit_frame_info_offset()), RBP); |
| |
| #if defined(DEBUG) |
| { Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(RAX, Immediate(VMTag::kDartTagId)); |
| __ cmpq(RAX, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing VM code. |
| __ movq(Assembler::VMTagAddress(), RBX); |
| |
| // Reserve space for arguments and align frame before entering C++ world. |
| __ subq(RSP, Immediate(sizeof(NativeArguments))); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call runtime. |
| __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
| // There are no runtime calls to closures, so we do not need to set the tag |
| // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
| __ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments. |
| // Compute argv. |
| __ leaq(RAX, Address(RBP, R10, TIMES_8, kParamEndSlotFromFp * kWordSize)); |
| __ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments. |
| __ addq(RAX, Immediate(1 * kWordSize)); // Retval is next to 1st argument. |
| __ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments. |
| #if defined(_WIN64) |
| ASSERT(sizeof(NativeArguments) > CallingConventions::kRegisterTransferLimit); |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| #endif |
| __ CallCFunction(RBX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(THR, Thread::top_exit_frame_info_offset()), Immediate(0)); |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| |
| // Print the stop message. |
| DEFINE_LEAF_RUNTIME_ENTRY(void, PrintStopMessage, 1, const char* message) { |
| OS::Print("Stop message: %s\n", message); |
| } |
| END_LEAF_RUNTIME_ENTRY |
| |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RDI : stop message (const char*). |
| // Must preserve all registers. |
| void StubCode::GeneratePrintStopMessageStub(Assembler* assembler) { |
| __ EnterCallRuntimeFrame(0); |
| // Call the runtime leaf function. RDI already contains the parameter. |
| #if defined(_WIN64) |
| __ movq(CallingConventions::kArg1Reg, RDI); |
| #endif |
| __ CallRuntime(kPrintStopMessageRuntimeEntry, 1); |
| __ LeaveCallRuntimeFrame(); |
| __ ret(); |
| } |
| |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of return value. |
| // RAX : address of first argument in argument array. |
| // RBX : address of the native function to call. |
| // R10 : argc_tag including number of arguments and function kind. |
| void StubCode::GenerateCallNativeCFunctionStub(Assembler* assembler) { |
| const intptr_t native_args_struct_offset = 0; |
| const intptr_t thread_offset = |
| NativeArguments::thread_offset() + native_args_struct_offset; |
| const intptr_t argc_tag_offset = |
| NativeArguments::argc_tag_offset() + native_args_struct_offset; |
| const intptr_t argv_offset = |
| NativeArguments::argv_offset() + native_args_struct_offset; |
| const intptr_t retval_offset = |
| NativeArguments::retval_offset() + native_args_struct_offset; |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ movq(Address(THR, Thread::top_exit_frame_info_offset()), RBP); |
| |
| #if defined(DEBUG) |
| { Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(R8, Immediate(VMTag::kDartTagId)); |
| __ cmpq(R8, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ movq(Assembler::VMTagAddress(), RBX); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // RDI) and align frame before entering the C++ world. |
| __ subq(RSP, Immediate(sizeof(NativeArguments))); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call native function. |
| __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
| __ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments. |
| __ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments. |
| __ leaq(RAX, Address(RBP, 2 * kWordSize)); // Compute return value addr. |
| __ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments. |
| |
| // Pass the pointer to the NativeArguments. |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| // Pass pointer to function entrypoint. |
| __ movq(CallingConventions::kArg2Reg, RBX); |
| |
| __ movq(RAX, Address(THR, Thread::native_call_wrapper_entry_point_offset())); |
| __ CallCFunction(RAX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(THR, Thread::top_exit_frame_info_offset()), Immediate(0)); |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of return value. |
| // RAX : address of first argument in argument array. |
| // RBX : address of the native function to call. |
| // R10 : argc_tag including number of arguments and function kind. |
| void StubCode::GenerateCallBootstrapCFunctionStub(Assembler* assembler) { |
| const intptr_t native_args_struct_offset = 0; |
| const intptr_t thread_offset = |
| NativeArguments::thread_offset() + native_args_struct_offset; |
| const intptr_t argc_tag_offset = |
| NativeArguments::argc_tag_offset() + native_args_struct_offset; |
| const intptr_t argv_offset = |
| NativeArguments::argv_offset() + native_args_struct_offset; |
| const intptr_t retval_offset = |
| NativeArguments::retval_offset() + native_args_struct_offset; |
| |
| __ EnterStubFrame(); |
| |
| // Save exit frame information to enable stack walking as we are about |
| // to transition to native code. |
| __ movq(Address(THR, Thread::top_exit_frame_info_offset()), RBP); |
| |
| #if defined(DEBUG) |
| { Label ok; |
| // Check that we are always entering from Dart code. |
| __ movq(R8, Immediate(VMTag::kDartTagId)); |
| __ cmpq(R8, Assembler::VMTagAddress()); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Not coming from Dart code."); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| // Mark that the thread is executing native code. |
| __ movq(Assembler::VMTagAddress(), RBX); |
| |
| // Reserve space for the native arguments structure passed on the stack (the |
| // outgoing pointer parameter to the native arguments structure is passed in |
| // RDI) and align frame before entering the C++ world. |
| __ subq(RSP, Immediate(sizeof(NativeArguments))); |
| if (OS::ActivationFrameAlignment() > 1) { |
| __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
| } |
| |
| // Pass NativeArguments structure by value and call native function. |
| __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
| __ movq(Address(RSP, argc_tag_offset), R10); // Set argc in NativeArguments. |
| __ movq(Address(RSP, argv_offset), RAX); // Set argv in NativeArguments. |
| __ leaq(RAX, Address(RBP, 2 * kWordSize)); // Compute return value addr. |
| __ movq(Address(RSP, retval_offset), RAX); // Set retval in NativeArguments. |
| |
| // Pass the pointer to the NativeArguments. |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| __ CallCFunction(RBX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Reset exit frame information in Isolate structure. |
| __ movq(Address(THR, Thread::top_exit_frame_info_offset()), Immediate(0)); |
| |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| |
| // Input parameters: |
| // R10: arguments descriptor array. |
| void StubCode::GenerateCallStaticFunctionStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| // Setup space on stack for return value. |
| __ PushObject(Object::null_object()); |
| __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object result. |
| __ popq(R10); // Restore arguments descriptor array. |
| // Remove the stub frame as we are about to jump to the dart function. |
| __ LeaveStubFrame(); |
| |
| __ movq(RBX, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jmp(RBX); |
| } |
| |
| |
| // Called from a static call only when an invalid code has been entered |
| // (invalid because its function was optimized or deoptimized). |
| // R10: arguments descriptor array. |
| void StubCode::GenerateFixCallersTargetStub(Assembler* assembler) { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, Address(THR, Thread::fix_callers_target_code_offset())); |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| // Setup space on stack for return value. |
| __ PushObject(Object::null_object()); |
| __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object. |
| __ popq(R10); // Restore arguments descriptor array. |
| __ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| |
| // Called from object allocate instruction when the allocation stub has been |
| // disabled. |
| void StubCode::GenerateFixAllocationStubTargetStub(Assembler* assembler) { |
| // Load code pointer to this stub from the thread: |
| // The one that is passed in, is not correct - it points to the code object |
| // that needs to be replaced. |
| __ movq(CODE_REG, Address(THR, Thread::fix_allocation_stub_code_offset())); |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ PushObject(Object::null_object()); |
| __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
| __ popq(CODE_REG); // Get Code object. |
| __ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| |
| // Input parameters: |
| // R10: smi-tagged argument count, may be zero. |
| // RBP[kParamEndSlotFromFp + 1]: last argument. |
| static void PushArgumentsArray(Assembler* assembler) { |
| __ LoadObject(R12, Object::null_object()); |
| // Allocate array to store arguments of caller. |
| __ movq(RBX, R12); // Null element type for raw Array. |
| __ Call(*StubCode::AllocateArray_entry()); |
| __ SmiUntag(R10); |
| // RAX: newly allocated array. |
| // R10: length of the array (was preserved by the stub). |
| __ pushq(RAX); // Array is in RAX and on top of stack. |
| __ leaq(R12, Address(RBP, R10, TIMES_8, kParamEndSlotFromFp * kWordSize)); |
| __ leaq(RBX, FieldAddress(RAX, Array::data_offset())); |
| // R12: address of first argument on stack. |
| // RBX: address of first argument in array. |
| Label loop, loop_condition; |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ jmp(&loop_condition, kJumpLength); |
| __ Bind(&loop); |
| __ movq(RDI, Address(R12, 0)); |
| // No generational barrier needed, since array is in new space. |
| __ InitializeFieldNoBarrier(RAX, Address(RBX, 0), RDI); |
| __ addq(RBX, Immediate(kWordSize)); |
| __ subq(R12, Immediate(kWordSize)); |
| __ Bind(&loop_condition); |
| __ decq(R10); |
| __ j(POSITIVE, &loop, Assembler::kNearJump); |
| } |
| |
| |
| // Used by eager and lazy deoptimization. Preserve result in RAX if necessary. |
| // This stub translates optimized frame into unoptimized frame. The optimized |
| // frame can contain values in registers and on stack, the unoptimized |
| // frame contains all values on stack. |
| // Deoptimization occurs in following steps: |
| // - Push all registers that can contain values. |
| // - Call C routine to copy the stack and saved registers into temporary buffer. |
| // - Adjust caller's frame to correct unoptimized frame size. |
| // - Fill the unoptimized frame. |
| // - Materialize objects that require allocation (e.g. Double instances). |
| // GC can occur only after frame is fully rewritten. |
| // Stack after EnterDartFrame(0, PP, kNoRegister) below: |
| // +------------------+ |
| // | Saved PP | <- PP |
| // +------------------+ |
| // | PC marker | <- TOS |
| // +------------------+ |
| // | Saved FP | <- FP of stub |
| // +------------------+ |
| // | return-address | (deoptimization point) |
| // +------------------+ |
| // | Saved CODE_REG | |
| // +------------------+ |
| // | ... | <- SP of optimized frame |
| // |
| // Parts of the code cannot GC, part of the code can GC. |
| static void GenerateDeoptimizationSequence(Assembler* assembler, |
| DeoptStubKind kind) { |
| // DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
| // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
| const intptr_t saved_result_slot_from_fp = |
| kFirstLocalSlotFromFp + 1 - (kNumberOfCpuRegisters - RAX); |
| // Result in RAX is preserved as part of pushing all registers below. |
| |
| // Push registers in their enumeration order: lowest register number at |
| // lowest address. |
| for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) { |
| if (i == CODE_REG) { |
| // Save the original value of CODE_REG pushed before invoking this stub |
| // instead of the value used to call this stub. |
| __ pushq(Address(RBP, 2 * kWordSize)); |
| } else { |
| __ pushq(static_cast<Register>(i)); |
| } |
| } |
| __ subq(RSP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize)); |
| intptr_t offset = 0; |
| for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { |
| XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); |
| __ movups(Address(RSP, offset), xmm_reg); |
| offset += kFpuRegisterSize; |
| } |
| |
| // Pass address of saved registers block. |
| __ movq(CallingConventions::kArg1Reg, RSP); |
| __ movq(CallingConventions::kArg2Reg, Immediate(kind == kLazyDeopt ? 1 : 0)); |
| __ ReserveAlignedFrameSpace(0); // Ensure stack is aligned before the call. |
| __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2); |
| // Result (RAX) is stack-size (FP - SP) in bytes. |
| |
| const bool preserve_result = (kind == kLazyDeopt); |
| if (preserve_result) { |
| // Restore result into RBX temporarily. |
| __ movq(RBX, Address(RBP, saved_result_slot_from_fp * kWordSize)); |
| } |
| |
| // There is a Dart Frame on the stack. We must restore PP and leave frame. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| __ popq(RCX); // Preserve return address. |
| __ movq(RSP, RBP); // Discard optimized frame. |
| __ subq(RSP, RAX); // Reserve space for deoptimized frame. |
| __ pushq(RCX); // Restore return address. |
| |
| // DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
| // is no need to set the correct PC marker or load PP, since they get patched. |
| __ EnterStubFrame(); |
| |
| if (preserve_result) { |
| __ pushq(RBX); // Preserve result as first local. |
| } |
| __ ReserveAlignedFrameSpace(0); |
| // Pass last FP as a parameter. |
| __ movq(CallingConventions::kArg1Reg, RBP); |
| __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); |
| if (preserve_result) { |
| // Restore result into RBX. |
| __ movq(RBX, Address(RBP, kFirstLocalSlotFromFp * kWordSize)); |
| } |
| // Code above cannot cause GC. |
| // There is a Dart Frame on the stack. We must restore PP and leave frame. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| |
| // Frame is fully rewritten at this point and it is safe to perform a GC. |
| // Materialize any objects that were deferred by FillFrame because they |
| // require allocation. |
| // Enter stub frame with loading PP. The caller's PP is not materialized yet. |
| __ EnterStubFrame(); |
| if (preserve_result) { |
| __ pushq(RBX); // Preserve result, it will be GC-d here. |
| } |
| __ pushq(Immediate(Smi::RawValue(0))); // Space for the result. |
| __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
| // Result tells stub how many bytes to remove from the expression stack |
| // of the bottom-most frame. They were used as materialization arguments. |
| __ popq(RBX); |
| __ SmiUntag(RBX); |
| if (preserve_result) { |
| __ popq(RAX); // Restore result. |
| } |
| __ LeaveStubFrame(); |
| |
| __ popq(RCX); // Pop return address. |
| __ addq(RSP, RBX); // Remove materialization arguments. |
| __ pushq(RCX); // Push return address. |
| __ ret(); |
| } |
| |
| |
| // TOS: return address + call-instruction-size (5 bytes). |
| // RAX: result, must be preserved |
| void StubCode::GenerateDeoptimizeLazyStub(Assembler* assembler) { |
| // Correct return address to point just after the call that is being |
| // deoptimized. |
| __ popq(RBX); |
| __ subq(RBX, Immediate(ShortCallPattern::pattern_length_in_bytes())); |
| // Push zap value instead of CODE_REG for lazy deopt. |
| __ pushq(Immediate(0xf1f1f1f1)); |
| __ pushq(RBX); |
| GenerateDeoptimizationSequence(assembler, kLazyDeopt); |
| } |
| |
| |
| void StubCode::GenerateDeoptimizeStub(Assembler* assembler) { |
| GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
| } |
| |
| |
| static void GenerateDispatcherCode(Assembler* assembler, |
| Label* call_target_function) { |
| __ Comment("NoSuchMethodDispatch"); |
| // When lazily generated invocation dispatchers are disabled, the |
| // miss-handler may return null. |
| __ CompareObject(RAX, Object::null_object()); |
| __ j(NOT_EQUAL, call_target_function); |
| __ EnterStubFrame(); |
| // Load the receiver. |
| __ movq(RDI, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(RAX, Address( |
| RBP, RDI, TIMES_HALF_WORD_SIZE, kParamEndSlotFromFp * kWordSize)); |
| __ PushObject(Object::null_object()); // Setup space on stack for result. |
| __ pushq(RAX); // Receiver. |
| __ pushq(RBX); |
| __ pushq(R10); // Arguments descriptor array. |
| __ movq(R10, RDI); |
| // EDX: Smi-tagged arguments array length. |
| PushArgumentsArray(assembler); |
| const intptr_t kNumArgs = 4; |
| __ CallRuntime(kInvokeNoSuchMethodDispatcherRuntimeEntry, kNumArgs); |
| __ Drop(4); |
| __ popq(RAX); // Return value. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| |
| void StubCode::GenerateMegamorphicMissStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| // Load the receiver into RAX. The argument count in the arguments |
| // descriptor in R10 is a smi. |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| // Three words (saved pp, saved fp, stub's pc marker) |
| // in the stack above the return address. |
| __ movq(RAX, Address(RSP, RAX, TIMES_4, |
| kSavedAboveReturnAddress * kWordSize)); |
| // Preserve IC data and arguments descriptor. |
| __ pushq(RBX); |
| __ pushq(R10); |
| |
| // Space for the result of the runtime call. |
| __ PushObject(Object::null_object()); |
| __ pushq(RAX); // Receiver. |
| __ pushq(RBX); // IC data. |
| __ pushq(R10); // Arguments descriptor. |
| __ CallRuntime(kMegamorphicCacheMissHandlerRuntimeEntry, 3); |
| // Discard arguments. |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); |
| __ popq(RAX); // Return value from the runtime call (function). |
| __ popq(R10); // Restore arguments descriptor. |
| __ popq(RBX); // Restore IC data. |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| if (!FLAG_lazy_dispatchers) { |
| Label call_target_function; |
| GenerateDispatcherCode(assembler, &call_target_function); |
| __ Bind(&call_target_function); |
| } |
| __ movq(CODE_REG, FieldAddress(RAX, Function::code_offset())); |
| __ movq(RCX, FieldAddress(RAX, Function::entry_point_offset())); |
| __ jmp(RCX); |
| } |
| |
| |
| // Called for inline allocation of arrays. |
| // Input parameters: |
| // R10 : Array length as Smi. |
| // RBX : array element type (either NULL or an instantiated type). |
| // NOTE: R10 cannot be clobbered here as the caller relies on it being saved. |
| // The newly allocated object is returned in RAX. |
| void StubCode::GenerateAllocateArrayStub(Assembler* assembler) { |
| Label slow_case; |
| // Compute the size to be allocated, it is based on the array length |
| // and is computed as: |
| // RoundedAllocationSize((array_length * kwordSize) + sizeof(RawArray)). |
| __ movq(RDI, R10); // Array Length. |
| // Check that length is a positive Smi. |
| __ testq(RDI, Immediate(kSmiTagMask)); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(NOT_ZERO, &slow_case); |
| } |
| __ cmpq(RDI, Immediate(0)); |
| __ j(LESS, &slow_case); |
| // Check for maximum allowed length. |
| const Immediate& max_len = |
| Immediate(reinterpret_cast<int64_t>(Smi::New(Array::kMaxElements))); |
| __ cmpq(RDI, max_len); |
| __ j(GREATER, &slow_case); |
| |
| // Check for allocation tracing. |
| __ MaybeTraceAllocation(kArrayCid, |
| &slow_case, |
| Assembler::kFarJump, |
| /* inline_isolate = */ false); |
| |
| const intptr_t fixed_size = sizeof(RawArray) + kObjectAlignment - 1; |
| __ leaq(RDI, Address(RDI, TIMES_4, fixed_size)); // RDI is a Smi. |
| ASSERT(kSmiTagShift == 1); |
| __ andq(RDI, Immediate(-kObjectAlignment)); |
| |
| const intptr_t cid = kArrayCid; |
| Heap::Space space = Heap::SpaceForAllocation(cid); |
| __ movq(R13, Address(THR, Thread::heap_offset())); |
| __ movq(RAX, Address(R13, Heap::TopOffset(space))); |
| |
| // RDI: allocation size. |
| __ movq(RCX, RAX); |
| __ addq(RCX, RDI); |
| __ j(CARRY, &slow_case); |
| |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object start. |
| // RCX: potential next object start. |
| // RDI: allocation size. |
| // R13: heap. |
| __ cmpq(RCX, Address(R13, Heap::EndOffset(space))); |
| __ j(ABOVE_EQUAL, &slow_case); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movq(Address(R13, Heap::TopOffset(space)), RCX); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| __ UpdateAllocationStatsWithSize(cid, RDI, space, |
| /* inline_isolate = */ false); |
| // Initialize the tags. |
| // RAX: new object start as a tagged pointer. |
| // RDI: allocation size. |
| { |
| Label size_tag_overflow, done; |
| __ cmpq(RDI, Immediate(RawObject::SizeTag::kMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(RDI, Immediate(RawObject::kSizeTagPos - kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ movq(RDI, Immediate(0)); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| __ orq(RDI, Immediate(RawObject::ClassIdTag::encode(cid))); |
| __ movq(FieldAddress(RAX, Array::tags_offset()), RDI); // Tags. |
| } |
| |
| // RAX: new object start as a tagged pointer. |
| // Store the type argument field. |
| __ InitializeFieldNoBarrier(RAX, |
| FieldAddress(RAX, Array::type_arguments_offset()), |
| RBX); |
| |
| // Set the length field. |
| __ InitializeFieldNoBarrier(RAX, |
| FieldAddress(RAX, Array::length_offset()), |
| R10); |
| |
| // Initialize all array elements to raw_null. |
| // RAX: new object start as a tagged pointer. |
| // RCX: new object end address. |
| // RDI: iterator which initially points to the start of the variable |
| // data area to be initialized. |
| __ LoadObject(R12, Object::null_object()); |
| __ leaq(RDI, FieldAddress(RAX, sizeof(RawArray))); |
| Label done; |
| Label init_loop; |
| __ Bind(&init_loop); |
| __ cmpq(RDI, RCX); |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(ABOVE_EQUAL, &done, kJumpLength); |
| // No generational barrier needed, since we are storing null. |
| __ InitializeFieldNoBarrier(RAX, Address(RDI, 0), R12); |
| __ addq(RDI, Immediate(kWordSize)); |
| __ jmp(&init_loop, kJumpLength); |
| __ Bind(&done); |
| __ ret(); // returns the newly allocated object in RAX. |
| |
| // Unable to allocate the array using the fast inline code, just call |
| // into the runtime. |
| __ Bind(&slow_case); |
| // Create a stub frame as we are pushing some objects on the stack before |
| // calling into the runtime. |
| __ EnterStubFrame(); |
| // Setup space on stack for return value. |
| __ PushObject(Object::null_object()); |
| __ pushq(R10); // Array length as Smi. |
| __ pushq(RBX); // Element type. |
| __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
| __ popq(RAX); // Pop element type argument. |
| __ popq(R10); // Pop array length argument. |
| __ popq(RAX); // Pop return value from return slot. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| |
| // Called when invoking Dart code from C++ (VM code). |
| // Input parameters: |
| // RSP : points to return address. |
| // RDI : target code |
| // RSI : arguments descriptor array. |
| // RDX : arguments array. |
| // RCX : current thread. |
| void StubCode::GenerateInvokeDartCodeStub(Assembler* assembler) { |
| // Save frame pointer coming in. |
| __ EnterFrame(0); |
| |
| const Register kTargetCodeReg = CallingConventions::kArg1Reg; |
| const Register kArgDescReg = CallingConventions::kArg2Reg; |
| const Register kArgsReg = CallingConventions::kArg3Reg; |
| const Register kThreadReg = CallingConventions::kArg4Reg; |
| |
| // Push code object to PC marker slot. |
| __ pushq(Address(kThreadReg, Thread::invoke_dart_code_stub_offset())); |
| |
| // At this point, the stack looks like: |
| // | stub code object |
| // | saved RBP | <-- RBP |
| // | saved PC (return to DartEntry::InvokeFunction) | |
| |
| const intptr_t kInitialOffset = 2; |
| // Save arguments descriptor array. |
| const intptr_t kArgumentsDescOffset = -(kInitialOffset) * kWordSize; |
| __ pushq(kArgDescReg); |
| |
| // Save C++ ABI callee-saved registers. |
| __ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
| CallingConventions::kCalleeSaveXmmRegisters); |
| |
| // If any additional (or fewer) values are pushed, the offsets in |
| // kExitLinkSlotFromEntryFp will need to be changed. |
| |
| // Set up THR, which caches the current thread in Dart code. |
| if (THR != kThreadReg) { |
| __ movq(THR, kThreadReg); |
| } |
| |
| // Save the current VMTag on the stack. |
| __ movq(RAX, Assembler::VMTagAddress()); |
| __ pushq(RAX); |
| |
| // Mark that the thread is executing Dart code. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| |
| // Save top resource and top exit frame info. Use RAX as a temporary register. |
| // StackFrameIterator reads the top exit frame info saved in this frame. |
| __ movq(RAX, Address(THR, Thread::top_resource_offset())); |
| __ pushq(RAX); |
| __ movq(Address(THR, Thread::top_resource_offset()), |
| Immediate(0)); |
| __ movq(RAX, Address(THR, Thread::top_exit_frame_info_offset())); |
| // The constant kExitLinkSlotFromEntryFp must be kept in sync with the |
| // code below. |
| __ pushq(RAX); |
| #if defined(DEBUG) |
| { |
| Label ok; |
| __ leaq(RAX, Address(RBP, kExitLinkSlotFromEntryFp * kWordSize)); |
| __ cmpq(RAX, RSP); |
| __ j(EQUAL, &ok); |
| __ Stop("kExitLinkSlotFromEntryFp mismatch"); |
| __ Bind(&ok); |
| } |
| #endif |
| |
| __ movq(Address(THR, Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| |
| // Load arguments descriptor array into R10, which is passed to Dart code. |
| __ movq(R10, Address(kArgDescReg, VMHandles::kOffsetOfRawPtrInHandle)); |
| |
| // Push arguments. At this point we only need to preserve kTargetCodeReg. |
| ASSERT(kTargetCodeReg != RDX); |
| |
| // Load number of arguments into RBX. |
| __ movq(RBX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ SmiUntag(RBX); |
| |
| // Compute address of 'arguments array' data area into RDX. |
| __ movq(RDX, Address(kArgsReg, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ leaq(RDX, FieldAddress(RDX, Array::data_offset())); |
| |
| // Set up arguments for the Dart call. |
| Label push_arguments; |
| Label done_push_arguments; |
| __ testq(RBX, RBX); // check if there are arguments. |
| __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
| __ movq(RAX, Immediate(0)); |
| __ Bind(&push_arguments); |
| __ pushq(Address(RDX, RAX, TIMES_8, 0)); |
| __ incq(RAX); |
| __ cmpq(RAX, RBX); |
| __ j(LESS, &push_arguments, Assembler::kNearJump); |
| __ Bind(&done_push_arguments); |
| |
| // Call the Dart code entrypoint. |
| __ xorq(PP, PP); // GC-safe value into PP. |
| __ movq(CODE_REG, |
| Address(kTargetCodeReg, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ movq(kTargetCodeReg, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ call(kTargetCodeReg); // R10 is the arguments descriptor array. |
| |
| // Read the saved arguments descriptor array to obtain the number of passed |
| // arguments. |
| __ movq(kArgDescReg, Address(RBP, kArgumentsDescOffset)); |
| __ movq(R10, Address(kArgDescReg, VMHandles::kOffsetOfRawPtrInHandle)); |
| __ movq(RDX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| // Get rid of arguments pushed on the stack. |
| __ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi. |
| |
| // Restore the saved top exit frame info and top resource back into the |
| // Isolate structure. |
| __ popq(Address(THR, Thread::top_exit_frame_info_offset())); |
| __ popq(Address(THR, Thread::top_resource_offset())); |
| |
| // Restore the current VMTag from the stack. |
| __ popq(Assembler::VMTagAddress()); |
| |
| // Restore C++ ABI callee-saved registers. |
| __ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
| CallingConventions::kCalleeSaveXmmRegisters); |
| __ set_constant_pool_allowed(false); |
| |
| // Restore the frame pointer. |
| __ LeaveFrame(); |
| |
| __ ret(); |
| } |
| |
| |
| // Called for inline allocation of contexts. |
| // Input: |
| // R10: number of context variables. |
| // Output: |
| // RAX: new allocated RawContext object. |
| void StubCode::GenerateAllocateContextStub(Assembler* assembler) { |
| __ LoadObject(R9, Object::null_object()); |
| if (FLAG_inline_alloc) { |
| Label slow_case; |
| // First compute the rounded instance size. |
| // R10: number of context variables. |
| intptr_t fixed_size = (sizeof(RawContext) + kObjectAlignment - 1); |
| __ leaq(R13, Address(R10, TIMES_8, fixed_size)); |
| __ andq(R13, Immediate(-kObjectAlignment)); |
| |
| // Check for allocation tracing. |
| __ MaybeTraceAllocation(kContextCid, |
| &slow_case, |
| Assembler::kFarJump, |
| /* inline_isolate = */ false); |
| |
| // Now allocate the object. |
| // R10: number of context variables. |
| const intptr_t cid = kContextCid; |
| Heap::Space space = Heap::SpaceForAllocation(cid); |
| __ movq(RCX, Address(THR, Thread::heap_offset())); |
| __ movq(RAX, Address(RCX, Heap::TopOffset(space))); |
| __ addq(R13, RAX); |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object. |
| // R13: potential next object start. |
| // R10: number of context variables. |
| // RCX: heap. |
| __ cmpq(R13, Address(RCX, Heap::EndOffset(space))); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(ABOVE_EQUAL, &slow_case); |
| } |
| |
| // Successfully allocated the object, now update top to point to |
| // next object start and initialize the object. |
| // RAX: new object. |
| // R13: next object start. |
| // R10: number of context variables. |
| // RCX: heap. |
| __ movq(Address(RCX, Heap::TopOffset(space)), R13); |
| // R13: Size of allocation in bytes. |
| __ subq(R13, RAX); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| // Generate isolate-independent code to allow sharing between isolates. |
| __ UpdateAllocationStatsWithSize(cid, R13, space, |
| /* inline_isolate */ false); |
| |
| // Calculate the size tag. |
| // RAX: new object. |
| // R10: number of context variables. |
| { |
| Label size_tag_overflow, done; |
| __ leaq(R13, Address(R10, TIMES_8, fixed_size)); |
| __ andq(R13, Immediate(-kObjectAlignment)); |
| __ cmpq(R13, Immediate(RawObject::SizeTag::kMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(R13, Immediate(RawObject::kSizeTagPos - kObjectAlignmentLog2)); |
| __ jmp(&done); |
| |
| __ Bind(&size_tag_overflow); |
| // Set overflow size tag value. |
| __ movq(R13, Immediate(0)); |
| |
| __ Bind(&done); |
| // RAX: new object. |
| // R10: number of context variables. |
| // R13: size and bit tags. |
| __ orq(R13, |
| Immediate(RawObject::ClassIdTag::encode(cid))); |
| __ movq(FieldAddress(RAX, Context::tags_offset()), R13); // Tags. |
| } |
| |
| // Setup up number of context variables field. |
| // RAX: new object. |
| // R10: number of context variables as integer value (not object). |
| __ movq(FieldAddress(RAX, Context::num_variables_offset()), R10); |
| |
| // Setup the parent field. |
| // RAX: new object. |
| // R10: number of context variables. |
| // No generational barrier needed, since we are storing null. |
| __ InitializeFieldNoBarrier(RAX, |
| FieldAddress(RAX, Context::parent_offset()), |
| R9); |
| |
| // Initialize the context variables. |
| // RAX: new object. |
| // R10: number of context variables. |
| { |
| Label loop, entry; |
| __ leaq(R13, FieldAddress(RAX, Context::variable_offset(0))); |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ jmp(&entry, kJumpLength); |
| __ Bind(&loop); |
| __ decq(R10); |
| // No generational barrier needed, since we are storing null. |
| __ InitializeFieldNoBarrier(RAX, |
| Address(R13, R10, TIMES_8, 0), |
| R9); |
| __ Bind(&entry); |
| __ cmpq(R10, Immediate(0)); |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| } |
| |
| // Done allocating and initializing the context. |
| // RAX: new object. |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // Create a stub frame. |
| __ EnterStubFrame(); |
| __ pushq(R9); // Setup space on stack for the return value. |
| __ SmiTag(R10); |
| __ pushq(R10); // Push number of context variables. |
| __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
| __ popq(RAX); // Pop number of context variables argument. |
| __ popq(RAX); // Pop the new context object. |
| // RAX: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| |
| // Helper stub to implement Assembler::StoreIntoObject. |
| // Input parameters: |
| // RDX: Address being stored |
| void StubCode::GenerateUpdateStoreBufferStub(Assembler* assembler) { |
| // Save registers being destroyed. |
| __ pushq(RAX); |
| __ pushq(RCX); |
| |
| Label add_to_buffer; |
| // Check whether this object has already been remembered. Skip adding to the |
| // store buffer if the object is in the store buffer already. |
| // Spilled: RAX, RCX |
| // RDX: Address being stored |
| Label reload; |
| __ Bind(&reload); |
| __ movq(RCX, FieldAddress(RDX, Object::tags_offset())); |
| __ testq(RCX, Immediate(1 << RawObject::kRememberedBit)); |
| __ j(EQUAL, &add_to_buffer, Assembler::kNearJump); |
| __ popq(RCX); |
| __ popq(RAX); |
| __ ret(); |
| |
| // Update the tags that this object has been remembered. |
| // RDX: Address being stored |
| // RAX: Current tag value |
| __ Bind(&add_to_buffer); |
| __ movq(RCX, RAX); |
| __ orq(RCX, Immediate(1 << RawObject::kRememberedBit)); |
| // Compare the tag word with RAX, update to RCX if unchanged. |
| __ LockCmpxchgq(FieldAddress(RDX, Object::tags_offset()), RCX); |
| __ j(NOT_EQUAL, &reload); |
| |
| // Load the StoreBuffer block out of the thread. Then load top_ out of the |
| // StoreBufferBlock and add the address to the pointers_. |
| // RDX: Address being stored |
| __ movq(RAX, Address(THR, Thread::store_buffer_block_offset())); |
| __ movl(RCX, Address(RAX, StoreBufferBlock::top_offset())); |
| __ movq(Address(RAX, RCX, TIMES_8, StoreBufferBlock::pointers_offset()), RDX); |
| |
| // Increment top_ and check for overflow. |
| // RCX: top_ |
| // RAX: StoreBufferBlock |
| Label L; |
| __ incq(RCX); |
| __ movl(Address(RAX, StoreBufferBlock::top_offset()), RCX); |
| __ cmpl(RCX, Immediate(StoreBufferBlock::kSize)); |
| // Restore values. |
| __ popq(RCX); |
| __ popq(RAX); |
| __ j(EQUAL, &L, Assembler::kNearJump); |
| __ ret(); |
| |
| // Handle overflow: Call the runtime leaf function. |
| __ Bind(&L); |
| // Setup frame, push callee-saved registers. |
| __ EnterCallRuntimeFrame(0); |
| __ movq(CallingConventions::kArg1Reg, THR); |
| __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1); |
| __ LeaveCallRuntimeFrame(); |
| __ ret(); |
| } |
| |
| |
| // Called for inline allocation of objects. |
| // Input parameters: |
| // RSP + 8 : type arguments object (only if class is parameterized). |
| // RSP : points to return address. |
| void StubCode::GenerateAllocationStubForClass(Assembler* assembler, |
| const Class& cls) { |
| const intptr_t kObjectTypeArgumentsOffset = 1 * kWordSize; |
| // The generated code is different if the class is parameterized. |
| const bool is_cls_parameterized = cls.NumTypeArguments() > 0; |
| ASSERT(!is_cls_parameterized || |
| (cls.type_arguments_field_offset() != Class::kNoTypeArguments)); |
| // kInlineInstanceSize is a constant used as a threshold for determining |
| // when the object initialization should be done as a loop or as |
| // straight line code. |
| const int kInlineInstanceSize = 12; // In words. |
| const intptr_t instance_size = cls.instance_size(); |
| ASSERT(instance_size > 0); |
| __ LoadObject(R9, Object::null_object()); |
| if (is_cls_parameterized) { |
| __ movq(RDX, Address(RSP, kObjectTypeArgumentsOffset)); |
| // RDX: instantiated type arguments. |
| } |
| Isolate* isolate = Isolate::Current(); |
| if (FLAG_inline_alloc && Heap::IsAllocatableInNewSpace(instance_size) && |
| !cls.TraceAllocation(isolate)) { |
| Label slow_case; |
| // Allocate the object and update top to point to |
| // next object start and initialize the allocated object. |
| // RDX: instantiated type arguments (if is_cls_parameterized). |
| Heap::Space space = Heap::SpaceForAllocation(cls.id()); |
| __ movq(RCX, Address(THR, Thread::heap_offset())); |
| __ movq(RAX, Address(RCX, Heap::TopOffset(space))); |
| __ leaq(RBX, Address(RAX, instance_size)); |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object start. |
| // RBX: potential next object start. |
| // RCX: heap. |
| __ cmpq(RBX, Address(RCX, Heap::EndOffset(space))); |
| if (FLAG_use_slow_path) { |
| __ jmp(&slow_case); |
| } else { |
| __ j(ABOVE_EQUAL, &slow_case); |
| } |
| __ movq(Address(RCX, Heap::TopOffset(space)), RBX); |
| __ UpdateAllocationStats(cls.id(), space, /* inline_isolate = */ false); |
| |
| // RAX: new object start (untagged). |
| // RBX: next object start. |
| // RDX: new object type arguments (if is_cls_parameterized). |
| // Set the tags. |
| uword tags = 0; |
| tags = RawObject::SizeTag::update(instance_size, tags); |
| ASSERT(cls.id() != kIllegalCid); |
| tags = RawObject::ClassIdTag::update(cls.id(), tags); |
| __ movq(Address(RAX, Instance::tags_offset()), Immediate(tags)); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| |
| // Initialize the remaining words of the object. |
| // RAX: new object (tagged). |
| // RBX: next object start. |
| // RDX: new object type arguments (if is_cls_parameterized). |
| // R9: raw null. |
| // First try inlining the initialization without a loop. |
| if (instance_size < (kInlineInstanceSize * kWordSize)) { |
| // Check if the object contains any non-header fields. |
| // Small objects are initialized using a consecutive set of writes. |
| for (intptr_t current_offset = Instance::NextFieldOffset(); |
| current_offset < instance_size; |
| current_offset += kWordSize) { |
| __ InitializeFieldNoBarrier(RAX, |
| FieldAddress(RAX, current_offset), |
| R9); |
| } |
| } else { |
| __ leaq(RCX, FieldAddress(RAX, Instance::NextFieldOffset())); |
| // Loop until the whole object is initialized. |
| // RAX: new object (tagged). |
| // RBX: next object start. |
| // RCX: next word to be initialized. |
| // RDX: new object type arguments (if is_cls_parameterized). |
| Label init_loop; |
| Label done; |
| __ Bind(&init_loop); |
| __ cmpq(RCX, RBX); |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(ABOVE_EQUAL, &done, kJumpLength); |
| __ InitializeFieldNoBarrier(RAX, Address(RCX, 0), R9); |
| __ addq(RCX, Immediate(kWordSize)); |
| __ jmp(&init_loop, Assembler::kNearJump); |
| __ Bind(&done); |
| } |
| if (is_cls_parameterized) { |
| // RDX: new object type arguments. |
| // Set the type arguments in the new object. |
| intptr_t offset = cls.type_arguments_field_offset(); |
| __ InitializeFieldNoBarrier(RAX, FieldAddress(RAX, offset), RDX); |
| } |
| // Done allocating and initializing the instance. |
| // RAX: new object (tagged). |
| __ ret(); |
| |
| __ Bind(&slow_case); |
| } |
| // If is_cls_parameterized: |
| // RDX: new object type arguments. |
| // Create a stub frame. |
| __ EnterStubFrame(); // Uses PP to access class object. |
| __ pushq(R9); // Setup space on stack for return value. |
| __ PushObject(cls); // Push class of object to be allocated. |
| if (is_cls_parameterized) { |
| __ pushq(RDX); // Push type arguments of object to be allocated. |
| } else { |
| __ pushq(R9); // Push null type arguments. |
| } |
| __ CallRuntime(kAllocateObjectRuntimeEntry, 2); // Allocate object. |
| __ popq(RAX); // Pop argument (type arguments of object). |
| __ popq(RAX); // Pop argument (class of object). |
| __ popq(RAX); // Pop result (newly allocated object). |
| // RAX: new object |
| // Restore the frame pointer. |
| __ LeaveStubFrame(); |
| __ ret(); |
| } |
| |
| |
| // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
| // from the entry code of a dart function after an error in passed argument |
| // name or number is detected. |
| // Input parameters: |
| // RSP : points to return address. |
| // RSP + 8 : address of last argument. |
| // R10 : arguments descriptor array. |
| void StubCode::GenerateCallClosureNoSuchMethodStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| |
| // Load the receiver. |
| __ movq(R13, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(RAX, Address(RBP, R13, TIMES_4, kParamEndSlotFromFp * kWordSize)); |
| |
| __ LoadObject(R12, Object::null_object()); |
| __ pushq(R12); // Setup space on stack for result from noSuchMethod. |
| __ pushq(RAX); // Receiver. |
| __ pushq(R10); // Arguments descriptor array. |
| |
| __ movq(R10, R13); // Smi-tagged arguments array length. |
| PushArgumentsArray(assembler); |
| |
| const intptr_t kNumArgs = 3; |
| __ CallRuntime(kInvokeClosureNoSuchMethodRuntimeEntry, kNumArgs); |
| // noSuchMethod on closures always throws an error, so it will never return. |
| __ int3(); |
| } |
| |
| |
| // Cannot use function object from ICData as it may be the inlined |
| // function and not the top-scope function. |
| void StubCode::GenerateOptimizedUsageCounterIncrement(Assembler* assembler) { |
| Register ic_reg = RBX; |
| Register func_reg = RDI; |
| if (FLAG_trace_optimized_ic_calls) { |
| __ EnterStubFrame(); |
| __ pushq(func_reg); // Preserve |
| __ pushq(ic_reg); // Preserve. |
| __ pushq(ic_reg); // Argument. |
| __ pushq(func_reg); // Argument. |
| __ CallRuntime(kTraceICCallRuntimeEntry, 2); |
| __ popq(RAX); // Discard argument; |
| __ popq(RAX); // Discard argument; |
| __ popq(ic_reg); // Restore. |
| __ popq(func_reg); // Restore. |
| __ LeaveStubFrame(); |
| } |
| __ incl(FieldAddress(func_reg, Function::usage_counter_offset())); |
| } |
| |
| |
| // Loads function into 'temp_reg', preserves 'ic_reg'. |
| void StubCode::GenerateUsageCounterIncrement(Assembler* assembler, |
| Register temp_reg) { |
| if (FLAG_optimization_counter_threshold >= 0) { |
| Register ic_reg = RBX; |
| Register func_reg = temp_reg; |
| ASSERT(ic_reg != func_reg); |
| __ Comment("Increment function counter"); |
| __ movq(func_reg, FieldAddress(ic_reg, ICData::owner_offset())); |
| __ incl(FieldAddress(func_reg, Function::usage_counter_offset())); |
| } |
| } |
| |
| |
| // Note: RBX must be preserved. |
| // Attempt a quick Smi operation for known operations ('kind'). The ICData |
| // must have been primed with a Smi/Smi check that will be used for counting |
| // the invocations. |
| static void EmitFastSmiOp(Assembler* assembler, |
| Token::Kind kind, |
| intptr_t num_args, |
| Label* not_smi_or_overflow, |
| bool should_update_result_range) { |
| __ Comment("Fast Smi op"); |
| if (FLAG_throw_on_javascript_int_overflow) { |
| // The overflow check is more complex than implemented below. |
| return; |
| } |
| ASSERT(num_args == 2); |
| __ movq(RCX, Address(RSP, + 1 * kWordSize)); // Right |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // Left. |
| __ movq(R13, RCX); |
| __ orq(R13, RAX); |
| __ testq(R13, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi_or_overflow); |
| switch (kind) { |
| case Token::kADD: { |
| __ addq(RAX, RCX); |
| __ j(OVERFLOW, not_smi_or_overflow); |
| break; |
| } |
| case Token::kSUB: { |
| __ subq(RAX, RCX); |
| __ j(OVERFLOW, not_smi_or_overflow); |
| break; |
| } |
| case Token::kEQ: { |
| Label done, is_true; |
| __ cmpq(RAX, RCX); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(RAX, Bool::False()); |
| __ jmp(&done, Assembler::kNearJump); |
| __ Bind(&is_true); |
| __ LoadObject(RAX, Bool::True()); |
| __ Bind(&done); |
| break; |
| } |
| default: UNIMPLEMENTED(); |
| } |
| |
| |
| if (should_update_result_range) { |
| Label done; |
| __ movq(RSI, RAX); |
| __ UpdateRangeFeedback(RSI, 2, RBX, RCX, &done); |
| __ Bind(&done); |
| } |
| |
| // RBX: IC data object (preserved). |
| __ movq(R13, FieldAddress(RBX, ICData::ic_data_offset())); |
| // R13: ic_data_array with check entries: classes and target functions. |
| __ leaq(R13, FieldAddress(R13, Array::data_offset())); |
| // R13: points directly to the first ic data array element. |
| #if defined(DEBUG) |
| // Check that first entry is for Smi/Smi. |
| Label error, ok; |
| const Immediate& imm_smi_cid = |
| Immediate(reinterpret_cast<intptr_t>(Smi::New(kSmiCid))); |
| __ cmpq(Address(R13, 0 * kWordSize), imm_smi_cid); |
| __ j(NOT_EQUAL, &error, Assembler::kNearJump); |
| __ cmpq(Address(R13, 1 * kWordSize), imm_smi_cid); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Bind(&error); |
| __ Stop("Incorrect IC data"); |
| __ Bind(&ok); |
| #endif |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize; |
| // Update counter. |
| __ movq(R8, Address(R13, count_offset)); |
| __ addq(R8, Immediate(Smi::RawValue(1))); |
| __ movq(R9, Immediate(Smi::RawValue(Smi::kMaxValue))); |
| __ cmovnoq(R9, R8); |
| __ StoreIntoSmiField(Address(R13, count_offset), R9); |
| } |
| |
| __ ret(); |
| } |
| |
| |
| // Generate inline cache check for 'num_args'. |
| // RBX: Inline cache data object. |
| // TOS(0): return address |
| // Control flow: |
| // - If receiver is null -> jump to IC miss. |
| // - If receiver is Smi -> load Smi class. |
| // - If receiver is not-Smi -> load receiver's class. |
| // - Check if 'num_args' (including receiver) match any IC data group. |
| // - Match found -> jump to target. |
| // - Match not found -> jump to IC miss. |
| void StubCode::GenerateNArgsCheckInlineCacheStub( |
| Assembler* assembler, |
| intptr_t num_args, |
| const RuntimeEntry& handle_ic_miss, |
| Token::Kind kind, |
| RangeCollectionMode range_collection_mode, |
| bool optimized) { |
| ASSERT(num_args > 0); |
| #if defined(DEBUG) |
| { Label ok; |
| // Check that the IC data array has NumArgsTested() == num_args. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(RCX, FieldAddress(RBX, ICData::state_bits_offset())); |
| ASSERT(ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andq(RCX, Immediate(ICData::NumArgsTestedMask())); |
| __ cmpq(RCX, Immediate(num_args)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect stub for IC data"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| Label stepping, done_stepping; |
| if (FLAG_support_debugger && !optimized) { |
| __ Comment("Check single stepping"); |
| __ LoadIsolate(RAX); |
| __ cmpb(Address(RAX, Isolate::single_step_offset()), Immediate(0)); |
| __ j(NOT_EQUAL, &stepping); |
| __ Bind(&done_stepping); |
| } |
| |
| __ Comment("Range feedback collection"); |
| Label not_smi_or_overflow; |
| if (range_collection_mode == kCollectRanges) { |
| ASSERT((num_args == 1) || (num_args == 2)); |
| if (num_args == 2) { |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); |
| __ UpdateRangeFeedback(RAX, 0, RBX, RCX, ¬_smi_or_overflow); |
| } |
| |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); |
| __ UpdateRangeFeedback(RAX, (num_args - 1), RBX, RCX, ¬_smi_or_overflow); |
| } |
| if (kind != Token::kILLEGAL) { |
| EmitFastSmiOp( |
| assembler, |
| kind, |
| num_args, |
| ¬_smi_or_overflow, |
| range_collection_mode == kCollectRanges); |
| } |
| __ Bind(¬_smi_or_overflow); |
| |
| __ Comment("Extract ICData initial values and receiver cid"); |
| // Load arguments descriptor into R10. |
| __ movq(R10, FieldAddress(RBX, ICData::arguments_descriptor_offset())); |
| // Loop that checks if there is an IC data match. |
| Label loop, update, test, found; |
| // RBX: IC data object (preserved). |
| __ movq(R13, FieldAddress(RBX, ICData::ic_data_offset())); |
| // R13: ic_data_array with check entries: classes and target functions. |
| __ leaq(R13, FieldAddress(R13, Array::data_offset())); |
| // R13: points directly to the first ic data array element. |
| |
| // Get the receiver's class ID (first read number of arguments from |
| // arguments descriptor array and then access the receiver from the stack). |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(R9, Address(RSP, RAX, TIMES_4, 0)); // RAX (argument count) is Smi. |
| __ LoadTaggedClassIdMayBeSmi(RAX, R9); |
| // RAX: receiver's class ID as smi. |
| __ movq(R9, Address(R13, 0)); // First class ID (Smi) to check. |
| __ jmp(&test); |
| |
| __ Comment("ICData loop"); |
| __ Bind(&loop); |
| for (int i = 0; i < num_args; i++) { |
| if (i > 0) { |
| // If not the first, load the next argument's class ID. |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(R9, Address(RSP, RAX, TIMES_4, - i * kWordSize)); |
| __ LoadTaggedClassIdMayBeSmi(RAX, R9); |
| // RAX: next argument class ID (smi). |
| __ movq(R9, Address(R13, i * kWordSize)); |
| // R9: next class ID to check (smi). |
| } |
| __ cmpq(RAX, R9); // Class id match? |
| if (i < (num_args - 1)) { |
| __ j(NOT_EQUAL, &update); // Continue. |
| } else { |
| // Last check, all checks before matched. |
| __ j(EQUAL, &found); // Break. |
| } |
| } |
| __ Bind(&update); |
| // Reload receiver class ID. It has not been destroyed when num_args == 1. |
| if (num_args > 1) { |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ movq(R9, Address(RSP, RAX, TIMES_4, 0)); |
| __ LoadTaggedClassIdMayBeSmi(RAX, R9); |
| } |
| |
| const intptr_t entry_size = ICData::TestEntryLengthFor(num_args) * kWordSize; |
| __ addq(R13, Immediate(entry_size)); // Next entry. |
| __ movq(R9, Address(R13, 0)); // Next class ID. |
| |
| __ Bind(&test); |
| __ cmpq(R9, Immediate(Smi::RawValue(kIllegalCid))); // Done? |
| __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
| |
| __ Comment("IC miss"); |
| __ LoadObject(R13, Object::null_object()); |
| // Compute address of arguments (first read number of arguments from |
| // arguments descriptor array and then compute address on the stack). |
| __ movq(RAX, FieldAddress(R10, ArgumentsDescriptor::count_offset())); |
| __ leaq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX is Smi. |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| __ pushq(RBX); // Preserve IC data object. |
| __ pushq(R13); // Setup space on stack for result (target code object). |
| // Push call arguments. |
| for (intptr_t i = 0; i < num_args; i++) { |
| __ movq(RCX, Address(RAX, -kWordSize * i)); |
| __ pushq(RCX); |
| } |
| __ pushq(RBX); // Pass IC data object. |
| __ CallRuntime(handle_ic_miss, num_args + 1); |
| // Remove the call arguments pushed earlier, including the IC data object. |
| for (intptr_t i = 0; i < num_args + 1; i++) { |
| __ popq(RAX); |
| } |
| __ popq(RAX); // Pop returned function object into RAX. |
| __ popq(RBX); // Restore IC data array. |
| __ popq(R10); // Restore arguments descriptor array. |
| if (range_collection_mode == kCollectRanges) { |
| __ RestoreCodePointer(); |
| } |
| __ LeaveStubFrame(); |
| Label call_target_function; |
| if (!FLAG_lazy_dispatchers) { |
| GenerateDispatcherCode(assembler, &call_target_function); |
| } else { |
| __ jmp(&call_target_function); |
| } |
| |
| __ Bind(&found); |
| // R13: Pointer to an IC data check group. |
| const intptr_t target_offset = ICData::TargetIndexFor(num_args) * kWordSize; |
| const intptr_t count_offset = ICData::CountIndexFor(num_args) * kWordSize; |
| __ movq(RAX, Address(R13, target_offset)); |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Update counter. |
| __ Comment("Update caller's counter"); |
| __ movq(R8, Address(R13, count_offset)); |
| __ addq(R8, Immediate(Smi::RawValue(1))); |
| __ movq(R9, Immediate(Smi::RawValue(Smi::kMaxValue))); |
| __ cmovnoq(R9, R8); |
| __ StoreIntoSmiField(Address(R13, count_offset), R9); |
| } |
| |
| __ Comment("Call target"); |
| __ Bind(&call_target_function); |
| // RAX: Target function. |
| Label is_compiled; |
| if (range_collection_mode == kCollectRanges) { |
| __ movq(R13, FieldAddress(RAX, Function::code_offset())); |
| __ movq(RCX, FieldAddress(RAX, Function::entry_point_offset())); |
| __ movq(R8, Address(RSP, + 1 * kWordSize)); |
| if (num_args == 2) { |
| __ movq(R9, Address(RSP, + 2 * kWordSize)); |
| } |
| __ EnterStubFrame(); |
| __ pushq(RBX); |
| if (num_args == 2) { |
| __ pushq(R9); |
| } |
| __ pushq(R8); |
| __ movq(CODE_REG, R13); |
| __ call(RCX); |
| |
| Label done; |
| __ movq(RDX, RAX); |
| __ movq(RBX, Address(RBP, kFirstLocalSlotFromFp * kWordSize)); |
| __ UpdateRangeFeedback(RDX, 2, RBX, RCX, &done); |
| __ Bind(&done); |
| __ LeaveStubFrame(); |
| __ ret(); |
| } else { |
| __ movq(CODE_REG, FieldAddress(RAX, Function::code_offset())); |
| __ movq(RCX, FieldAddress(RAX, Function::entry_point_offset())); |
| __ jmp(RCX); |
| } |
| |
| if (FLAG_support_debugger && !optimized) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ pushq(RBX); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popq(RBX); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping); |
| } |
| } |
| |
| |
| // Use inline cache data array to invoke the target or continue in inline |
| // cache miss handler. Stub for 1-argument check (receiver class). |
| // RBX: Inline cache data object. |
| // TOS(0): Return address. |
| // Inline cache data object structure: |
| // 0: function-name |
| // 1: N, number of arguments checked. |
| // 2 .. (length - 1): group of checks, each check containing: |
| // - N classes. |
| // - 1 target function. |
| void StubCode::GenerateOneArgCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1, |
| kInlineCacheMissHandlerOneArgRuntimeEntry, |
| Token::kILLEGAL, |
| kIgnoreRanges); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsCheckInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2, |
| kInlineCacheMissHandlerTwoArgsRuntimeEntry, |
| Token::kILLEGAL, |
| kIgnoreRanges); |
| } |
| |
| |
| void StubCode::GenerateSmiAddInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2, |
| kInlineCacheMissHandlerTwoArgsRuntimeEntry, |
| Token::kADD, |
| kCollectRanges); |
| } |
| |
| |
| void StubCode::GenerateSmiSubInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2, |
| kInlineCacheMissHandlerTwoArgsRuntimeEntry, |
| Token::kSUB, |
| kCollectRanges); |
| } |
| |
| |
| void StubCode::GenerateSmiEqualInlineCacheStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2, |
| kInlineCacheMissHandlerTwoArgsRuntimeEntry, |
| Token::kEQ, |
| kIgnoreRanges); |
| } |
| |
| |
| void StubCode::GenerateUnaryRangeCollectingInlineCacheStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1, |
| kInlineCacheMissHandlerOneArgRuntimeEntry, |
| Token::kILLEGAL, |
| kCollectRanges); |
| } |
| |
| |
| void StubCode::GenerateBinaryRangeCollectingInlineCacheStub( |
| Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2, |
| kInlineCacheMissHandlerTwoArgsRuntimeEntry, |
| Token::kILLEGAL, |
| kCollectRanges); |
| } |
| |
| |
| // Use inline cache data array to invoke the target or continue in inline |
| // cache miss handler. Stub for 1-argument check (receiver class). |
| // RDI: function which counter needs to be incremented. |
| // RBX: Inline cache data object. |
| // TOS(0): Return address. |
| // Inline cache data object structure: |
| // 0: function-name |
| // 1: N, number of arguments checked. |
| // 2 .. (length - 1): group of checks, each check containing: |
| // - N classes. |
| // - 1 target function. |
| void StubCode::GenerateOneArgOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 1, |
| kInlineCacheMissHandlerOneArgRuntimeEntry, |
| Token::kILLEGAL, |
| kIgnoreRanges, true /* optimized */); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
| Assembler* assembler) { |
| GenerateOptimizedUsageCounterIncrement(assembler); |
| GenerateNArgsCheckInlineCacheStub(assembler, 2, |
| kInlineCacheMissHandlerTwoArgsRuntimeEntry, |
| Token::kILLEGAL, |
| kIgnoreRanges, true /* optimized */); |
| } |
| |
| |
| // Intermediary stub between a static call and its target. ICData contains |
| // the target function and the call count. |
| // RBX: ICData |
| void StubCode::GenerateZeroArgsUnoptimizedStaticCallStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| #if defined(DEBUG) |
| { Label ok; |
| // Check that the IC data array has NumArgsTested() == 0. |
| // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
| __ movl(RCX, FieldAddress(RBX, ICData::state_bits_offset())); |
| ASSERT(ICData::NumArgsTestedShift() == 0); // No shift needed. |
| __ andq(RCX, Immediate(ICData::NumArgsTestedMask())); |
| __ cmpq(RCX, Immediate(0)); |
| __ j(EQUAL, &ok, Assembler::kNearJump); |
| __ Stop("Incorrect IC data for unoptimized static call"); |
| __ Bind(&ok); |
| } |
| #endif // DEBUG |
| |
| // Check single stepping. |
| Label stepping, done_stepping; |
| if (FLAG_support_debugger) { |
| __ LoadIsolate(RAX); |
| __ movzxb(RAX, Address(RAX, Isolate::single_step_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| #if defined(DEBUG) |
| static const bool kJumpLength = Assembler::kFarJump; |
| #else |
| static const bool kJumpLength = Assembler::kNearJump; |
| #endif // DEBUG |
| __ j(NOT_EQUAL, &stepping, kJumpLength); |
| __ Bind(&done_stepping); |
| } |
| |
| // RBX: IC data object (preserved). |
| __ movq(R12, FieldAddress(RBX, ICData::ic_data_offset())); |
| // R12: ic_data_array with entries: target functions and count. |
| __ leaq(R12, FieldAddress(R12, Array::data_offset())); |
| // R12: points directly to the first ic data array element. |
| const intptr_t target_offset = ICData::TargetIndexFor(0) * kWordSize; |
| const intptr_t count_offset = ICData::CountIndexFor(0) * kWordSize; |
| |
| if (FLAG_optimization_counter_threshold >= 0) { |
| // Increment count for this call. |
| __ movq(R8, Address(R12, count_offset)); |
| __ addq(R8, Immediate(Smi::RawValue(1))); |
| __ movq(R13, Immediate(Smi::RawValue(Smi::kMaxValue))); |
| __ cmovnoq(R13, R8); |
| __ StoreIntoSmiField(Address(R12, count_offset), R13); |
| } |
| |
| // Load arguments descriptor into R10. |
| __ movq(R10, FieldAddress(RBX, ICData::arguments_descriptor_offset())); |
| |
| // Get function and call it, if possible. |
| __ movq(RAX, Address(R12, target_offset)); |
| __ movq(CODE_REG, FieldAddress(RAX, Function::code_offset())); |
| __ movq(RCX, FieldAddress(RAX, Function::entry_point_offset())); |
| __ jmp(RCX); |
| |
| if (FLAG_support_debugger) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ pushq(RBX); // Preserve IC data object. |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ popq(RBX); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| } |
| } |
| |
| |
| void StubCode::GenerateOneArgUnoptimizedStaticCallStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub( |
| assembler, |
| 1, |
| kStaticCallMissHandlerOneArgRuntimeEntry, |
| Token::kILLEGAL, |
| kIgnoreRanges); |
| } |
| |
| |
| void StubCode::GenerateTwoArgsUnoptimizedStaticCallStub(Assembler* assembler) { |
| GenerateUsageCounterIncrement(assembler, RCX); |
| GenerateNArgsCheckInlineCacheStub(assembler, |
| 2, |
| kStaticCallMissHandlerTwoArgsRuntimeEntry, |
| Token::kILLEGAL, |
| kIgnoreRanges); |
| } |
| |
| |
| // Stub for compiling a function and jumping to the compiled code. |
| // RCX: IC-Data (for methods). |
| // R10: Arguments descriptor. |
| // RAX: Function. |
| void StubCode::GenerateLazyCompileStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ pushq(R10); // Preserve arguments descriptor array. |
| __ pushq(RBX); // Preserve IC data object. |
| __ pushq(RAX); // Pass function. |
| __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
| __ popq(RAX); // Restore function. |
| __ popq(RBX); // Restore IC data array. |
| __ popq(R10); // Restore arguments descriptor array. |
| __ LeaveStubFrame(); |
| |
| __ movq(CODE_REG, FieldAddress(RAX, Function::code_offset())); |
| __ movq(RAX, FieldAddress(RAX, Function::entry_point_offset())); |
| __ jmp(RAX); |
| } |
| |
| |
| // RBX: Contains an ICData. |
| // TOS(0): return address (Dart code). |
| void StubCode::GenerateICCallBreakpointStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| // Preserve IC data. |
| __ pushq(RBX); |
| // Room for result. Debugger stub returns address of the |
| // unpatched runtime stub. |
| __ LoadObject(R12, Object::null_object()); |
| __ pushq(R12); // Room for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popq(CODE_REG); // Address of original. |
| __ popq(RBX); // Restore IC data. |
| __ LeaveStubFrame(); |
| |
| __ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jmp(RAX); // Jump to original stub. |
| } |
| |
| |
| // TOS(0): return address (Dart code). |
| void StubCode::GenerateRuntimeCallBreakpointStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| // Room for result. Debugger stub returns address of the |
| // unpatched runtime stub. |
| __ LoadObject(R12, Object::null_object()); |
| __ pushq(R12); // Room for result. |
| __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
| __ popq(CODE_REG); // Address of original. |
| __ LeaveStubFrame(); |
| |
| __ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ jmp(RAX); // Jump to original stub. |
| } |
| |
| |
| // Called only from unoptimized code. |
| void StubCode::GenerateDebugStepCheckStub(Assembler* assembler) { |
| // Check single stepping. |
| Label stepping, done_stepping; |
| __ LoadIsolate(RAX); |
| __ movzxb(RAX, Address(RAX, Isolate::single_step_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| __ j(NOT_EQUAL, &stepping, Assembler::kNearJump); |
| __ Bind(&done_stepping); |
| __ ret(); |
| |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping, Assembler::kNearJump); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: instantiator type arguments (can be NULL). |
| // TOS + 2: instance. |
| // TOS + 3: SubtypeTestCache. |
| // Result in RCX: null -> not found, otherwise result (true or false). |
| static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
| ASSERT((1 <= n) && (n <= 3)); |
| const intptr_t kInstantiatorTypeArgumentsInBytes = 1 * kWordSize; |
| const intptr_t kInstanceOffsetInBytes = 2 * kWordSize; |
| const intptr_t kCacheOffsetInBytes = 3 * kWordSize; |
| __ movq(RAX, Address(RSP, kInstanceOffsetInBytes)); |
| __ LoadObject(R9, Object::null_object()); |
| if (n > 1) { |
| __ LoadClass(R10, RAX); |
| // Compute instance type arguments into R13. |
| Label has_no_type_arguments; |
| __ movq(R13, R9); |
| __ movl(RDI, FieldAddress(R10, |
| Class::type_arguments_field_offset_in_words_offset())); |
| __ cmpl(RDI, Immediate(Class::kNoTypeArguments)); |
| __ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump); |
| __ movq(R13, FieldAddress(RAX, RDI, TIMES_8, 0)); |
| __ Bind(&has_no_type_arguments); |
| } |
| __ LoadClassId(R10, RAX); |
| // RAX: instance, R10: instance class id. |
| // R13: instance type arguments or null, used only if n > 1. |
| __ movq(RDX, Address(RSP, kCacheOffsetInBytes)); |
| // RDX: SubtypeTestCache. |
| __ movq(RDX, FieldAddress(RDX, SubtypeTestCache::cache_offset())); |
| __ addq(RDX, Immediate(Array::data_offset() - kHeapObjectTag)); |
| // RDX: Entry start. |
| // R10: instance class id. |
| // R13: instance type arguments. |
| Label loop, found, not_found, next_iteration; |
| __ SmiTag(R10); |
| __ Bind(&loop); |
| __ movq(RDI, Address(RDX, kWordSize * SubtypeTestCache::kInstanceClassId)); |
| __ cmpq(RDI, R9); |
| __ j(EQUAL, ¬_found, Assembler::kNearJump); |
| __ cmpq(RDI, R10); |
| if (n == 1) { |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } else { |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ movq(RDI, |
| Address(RDX, kWordSize * SubtypeTestCache::kInstanceTypeArguments)); |
| __ cmpq(RDI, R13); |
| if (n == 2) { |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } else { |
| __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
| __ movq(RDI, |
| Address(RDX, |
| kWordSize * SubtypeTestCache::kInstantiatorTypeArguments)); |
| __ cmpq(RDI, Address(RSP, kInstantiatorTypeArgumentsInBytes)); |
| __ j(EQUAL, &found, Assembler::kNearJump); |
| } |
| } |
| |
| __ Bind(&next_iteration); |
| __ addq(RDX, Immediate(kWordSize * SubtypeTestCache::kTestEntryLength)); |
| __ jmp(&loop, Assembler::kNearJump); |
| // Fall through to not found. |
| __ Bind(¬_found); |
| __ movq(RCX, R9); |
| __ ret(); |
| |
| __ Bind(&found); |
| __ movq(RCX, Address(RDX, kWordSize * SubtypeTestCache::kTestResult)); |
| __ ret(); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: instantiator type arguments or NULL. |
| // TOS + 2: instance. |
| // TOS + 3: cache array. |
| // Result in RCX: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 1); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: instantiator type arguments or NULL. |
| // TOS + 2: instance. |
| // TOS + 3: cache array. |
| // Result in RCX: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype2TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 2); |
| } |
| |
| |
| // Used to check class and type arguments. Arguments passed on stack: |
| // TOS + 0: return address. |
| // TOS + 1: instantiator type arguments. |
| // TOS + 2: instance. |
| // TOS + 3: cache array. |
| // Result in RCX: null -> not found, otherwise result (true or false). |
| void StubCode::GenerateSubtype3TestCacheStub(Assembler* assembler) { |
| GenerateSubtypeNTestCacheStub(assembler, 3); |
| } |
| |
| |
| // Return the current stack pointer address, used to stack alignment |
| // checks. |
| // TOS + 0: return address |
| // Result in RAX. |
| void StubCode::GenerateGetStackPointerStub(Assembler* assembler) { |
| __ leaq(RAX, Address(RSP, kWordSize)); |
| __ ret(); |
| } |
| |
| |
| // Jump to the exception or error handler. |
| // TOS + 0: return address |
| // Arg1: program counter |
| // Arg2: stack pointer |
| // Arg3: frame_pointer |
| // Arg4: exception object |
| // Arg5: stacktrace object |
| // Arg6: thread |
| // No Result. |
| void StubCode::GenerateJumpToExceptionHandlerStub(Assembler* assembler) { |
| ASSERT(kExceptionObjectReg == RAX); |
| ASSERT(kStackTraceObjectReg == RDX); |
| ASSERT(CallingConventions::kArg4Reg != kStackTraceObjectReg); |
| ASSERT(CallingConventions::kArg1Reg != kStackTraceObjectReg); |
| |
| #if defined(_WIN64) |
| Register stacktrace_reg = RBX; |
| __ movq(stacktrace_reg, Address(RSP, 5 * kWordSize)); |
| __ movq(THR, Address(RSP, 6 * kWordSize)); |
| #else |
| Register stacktrace_reg = CallingConventions::kArg5Reg; |
| __ movq(THR, CallingConventions::kArg6Reg); |
| #endif |
| __ movq(RBP, CallingConventions::kArg3Reg); |
| __ movq(RSP, CallingConventions::kArg2Reg); |
| __ movq(kStackTraceObjectReg, stacktrace_reg); |
| __ movq(kExceptionObjectReg, CallingConventions::kArg4Reg); |
| // Set the tag. |
| __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartTagId)); |
| // Clear top exit frame. |
| __ movq(Address(THR, Thread::top_exit_frame_info_offset()), |
| Immediate(0)); |
| __ jmp(CallingConventions::kArg1Reg); // Jump to the exception handler code. |
| } |
| |
| |
| // Calls to the runtime to optimize the given function. |
| // RDI: function to be reoptimized. |
| // R10: argument descriptor (preserved). |
| void StubCode::GenerateOptimizeFunctionStub(Assembler* assembler) { |
| __ EnterStubFrame(); |
| __ LoadObject(R12, Object::null_object()); |
| __ pushq(R10); |
| __ pushq(R12); // Setup space on stack for return value. |
| __ pushq(RDI); |
| __ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry, 1); |
| __ popq(RAX); // Disard argument. |
| __ popq(CODE_REG); // Get Code object. |
| __ popq(R10); // Restore argument descriptor. |
| __ movq(RAX, FieldAddress(CODE_REG, Code::entry_point_offset())); |
| __ LeaveStubFrame(); |
| __ jmp(RAX); |
| __ int3(); |
| } |
| |
| |
| // Does identical check (object references are equal or not equal) with special |
| // checks for boxed numbers. |
| // Left and right are pushed on stack. |
| // Return ZF set. |
| // Note: A Mint cannot contain a value that would fit in Smi, a Bigint |
| // cannot contain a value that fits in Mint or Smi. |
| static void GenerateIdenticalWithNumberCheckStub(Assembler* assembler, |
| const Register left, |
| const Register right) { |
| Label reference_compare, done, check_mint, check_bigint; |
| // If any of the arguments is Smi do reference compare. |
| __ testq(left, Immediate(kSmiTagMask)); |
| __ j(ZERO, &reference_compare); |
| __ testq(right, Immediate(kSmiTagMask)); |
| __ j(ZERO, &reference_compare); |
| |
| // Value compare for two doubles. |
| __ CompareClassId(left, kDoubleCid); |
| __ j(NOT_EQUAL, &check_mint, Assembler::kNearJump); |
| __ CompareClassId(right, kDoubleCid); |
| __ j(NOT_EQUAL, &done, Assembler::kFarJump); |
| |
| // Double values bitwise compare. |
| __ movq(left, FieldAddress(left, Double::value_offset())); |
| __ cmpq(left, FieldAddress(right, Double::value_offset())); |
| __ jmp(&done, Assembler::kFarJump); |
| |
| __ Bind(&check_mint); |
| __ CompareClassId(left, kMintCid); |
| __ j(NOT_EQUAL, &check_bigint, Assembler::kNearJump); |
| __ CompareClassId(right, kMintCid); |
| __ j(NOT_EQUAL, &done, Assembler::kFarJump); |
| __ movq(left, FieldAddress(left, Mint::value_offset())); |
| __ cmpq(left, FieldAddress(right, Mint::value_offset())); |
| __ jmp(&done, Assembler::kFarJump); |
| |
| __ Bind(&check_bigint); |
| __ CompareClassId(left, kBigintCid); |
| __ j(NOT_EQUAL, &reference_compare, Assembler::kFarJump); |
| __ CompareClassId(right, kBigintCid); |
| __ j(NOT_EQUAL, &done, Assembler::kFarJump); |
| __ EnterStubFrame(); |
| __ ReserveAlignedFrameSpace(0); |
| __ movq(CallingConventions::kArg1Reg, left); |
| __ movq(CallingConventions::kArg2Reg, right); |
| __ CallRuntime(kBigintCompareRuntimeEntry, 2); |
| // Result in RAX, 0 means equal. |
| __ LeaveStubFrame(); |
| __ cmpq(RAX, Immediate(0)); |
| __ jmp(&done); |
| |
| __ Bind(&reference_compare); |
| __ cmpq(left, right); |
| __ Bind(&done); |
| } |
| |
| |
| // Called only from unoptimized code. All relevant registers have been saved. |
| // TOS + 0: return address |
| // TOS + 1: right argument. |
| // TOS + 2: left argument. |
| // Returns ZF set. |
| void StubCode::GenerateUnoptimizedIdenticalWithNumberCheckStub( |
| Assembler* assembler) { |
| // Check single stepping. |
| Label stepping, done_stepping; |
| if (FLAG_support_debugger) { |
| __ LoadIsolate(RAX); |
| __ movzxb(RAX, Address(RAX, Isolate::single_step_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| __ j(NOT_EQUAL, &stepping); |
| __ Bind(&done_stepping); |
| } |
| |
| const Register left = RAX; |
| const Register right = RDX; |
| |
| __ movq(left, Address(RSP, 2 * kWordSize)); |
| __ movq(right, Address(RSP, 1 * kWordSize)); |
| GenerateIdenticalWithNumberCheckStub(assembler, left, right); |
| __ ret(); |
| |
| if (FLAG_support_debugger) { |
| __ Bind(&stepping); |
| __ EnterStubFrame(); |
| __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
| __ RestoreCodePointer(); |
| __ LeaveStubFrame(); |
| __ jmp(&done_stepping); |
| } |
| } |
| |
| |
| // Called from optimized code only. |
| // TOS + 0: return address |
| // TOS + 1: right argument. |
| // TOS + 2: left argument. |
| // Returns ZF set. |
| void StubCode::GenerateOptimizedIdenticalWithNumberCheckStub( |
| Assembler* assembler) { |
| const Register left = RAX; |
| const Register right = RDX; |
| |
| __ movq(left, Address(RSP, 2 * kWordSize)); |
| __ movq(right, Address(RSP, 1 * kWordSize)); |
| GenerateIdenticalWithNumberCheckStub(assembler, left, right); |
| __ ret(); |
| } |
| |
| |
| void StubCode::EmitMegamorphicLookup( |
| Assembler* assembler, Register receiver, Register cache, Register target) { |
| ASSERT((cache != RAX) && (cache != RDI)); |
| __ LoadTaggedClassIdMayBeSmi(RAX, receiver); |
| // RAX: class ID of the receiver (smi). |
| __ movq(RDI, FieldAddress(cache, MegamorphicCache::buckets_offset())); |
| __ movq(RBX, FieldAddress(cache, MegamorphicCache::mask_offset())); |
| // RDI: cache buckets array. |
| // RBX: mask. |
| __ movq(RCX, RAX); |
| |
| Label loop, update, call_target_function; |
| __ jmp(&loop); |
| |
| __ Bind(&update); |
| __ AddImmediate(RCX, Immediate(Smi::RawValue(1))); |
| __ Bind(&loop); |
| __ andq(RCX, RBX); |
| const intptr_t base = Array::data_offset(); |
| // RCX is smi tagged, but table entries are two words, so TIMES_8. |
| __ movq(RDX, FieldAddress(RDI, RCX, TIMES_8, base)); |
| |
| ASSERT(kIllegalCid == 0); |
| __ testq(RDX, RDX); |
| __ j(ZERO, &call_target_function, Assembler::kNearJump); |
| __ cmpq(RDX, RAX); |
| __ j(NOT_EQUAL, &update, Assembler::kNearJump); |
| |
| __ Bind(&call_target_function); |
| // Call the target found in the cache. For a class id match, this is a |
| // proper target for the given name and arguments descriptor. If the |
| // illegal class id was found, the target is a cache miss handler that can |
| // be invoked as a normal Dart function. |
| __ movq(RAX, FieldAddress(RDI, RCX, TIMES_8, base + kWordSize)); |
| __ movq(CODE_REG, FieldAddress(RAX, Function::code_offset())); |
| __ movq(target, FieldAddress(RAX, Function::entry_point_offset())); |
| } |
| |
| |
| // Called from megamorphic calls. |
| // RDI: receiver. |
| // RBX: lookup cache. |
| // Result: |
| // RCX: entry point. |
| void StubCode::GenerateMegamorphicLookupStub(Assembler* assembler) { |
| EmitMegamorphicLookup(assembler, RDI, RBX, RCX); |
| __ ret(); |
| } |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_X64 |