| // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
| // for details. All rights reserved. Use of this source code is governed by a |
| // BSD-style license that can be found in the LICENSE file. |
| |
| #include "vm/globals.h" // Needed here to get TARGET_ARCH_X64. |
| #if defined(TARGET_ARCH_X64) |
| |
| #include "vm/intrinsifier.h" |
| |
| #include "vm/assembler.h" |
| #include "vm/dart_entry.h" |
| #include "vm/flow_graph_compiler.h" |
| #include "vm/instructions.h" |
| #include "vm/object_store.h" |
| #include "vm/regexp_assembler.h" |
| #include "vm/symbols.h" |
| |
| namespace dart { |
| |
| DECLARE_FLAG(bool, interpret_irregexp); |
| |
| // When entering intrinsics code: |
| // RBX: IC Data |
| // R10: Arguments descriptor |
| // TOS: Return address |
| // The RBX, R10 registers can be destroyed only if there is no slow-path, i.e. |
| // if the intrinsified method always executes a return. |
| // The RBP register should not be modified, because it is used by the profiler. |
| |
| #define __ assembler-> |
| |
| |
| intptr_t Intrinsifier::ParameterSlotFromSp() { return 0; } |
| |
| |
| void Intrinsifier::ObjectArraySetIndexed(Assembler* assembler) { |
| if (Isolate::Current()->flags().type_checks()) { |
| return; |
| } |
| |
| Label fall_through; |
| __ movq(RDX, Address(RSP, + 1 * kWordSize)); // Value. |
| __ movq(RCX, Address(RSP, + 2 * kWordSize)); // Index. |
| __ movq(RAX, Address(RSP, + 3 * kWordSize)); // Array. |
| __ testq(RCX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); |
| // Range check. |
| __ cmpq(RCX, FieldAddress(RAX, Array::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through); |
| // Note that RBX is Smi, i.e, times 2. |
| ASSERT(kSmiTagShift == 1); |
| // Destroy RCX (ic data) as we will not continue in the function. |
| __ StoreIntoObject(RAX, |
| FieldAddress(RAX, RCX, TIMES_4, Array::data_offset()), |
| RDX); |
| // Caller is responsible of preserving the value if necessary. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Allocate a GrowableObjectArray using the backing array specified. |
| // On stack: type argument (+2), data (+1), return-address (+0). |
| void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) { |
| // This snippet of inlined code uses the following registers: |
| // RAX, RCX, R13 |
| // and the newly allocated object is returned in RAX. |
| const intptr_t kTypeArgumentsOffset = 2 * kWordSize; |
| const intptr_t kArrayOffset = 1 * kWordSize; |
| Label fall_through; |
| |
| // Try allocating in new space. |
| const Class& cls = Class::Handle( |
| Isolate::Current()->object_store()->growable_object_array_class()); |
| __ TryAllocate(cls, &fall_through, Assembler::kFarJump, RAX, R13); |
| |
| // Store backing array object in growable array object. |
| __ movq(RCX, Address(RSP, kArrayOffset)); // data argument. |
| // RAX is new, no barrier needed. |
| __ InitializeFieldNoBarrier( |
| RAX, |
| FieldAddress(RAX, GrowableObjectArray::data_offset()), |
| RCX); |
| |
| // RAX: new growable array object start as a tagged pointer. |
| // Store the type argument field in the growable array object. |
| __ movq(RCX, Address(RSP, kTypeArgumentsOffset)); // type argument. |
| __ InitializeFieldNoBarrier( |
| RAX, |
| FieldAddress(RAX, GrowableObjectArray::type_arguments_offset()), |
| RCX); |
| |
| // Set the length field in the growable array object to 0. |
| __ ZeroInitSmiField(FieldAddress(RAX, GrowableObjectArray::length_offset())); |
| __ ret(); // returns the newly allocated object in RAX. |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Add an element to growable array if it doesn't need to grow, otherwise |
| // call into regular code. |
| // On stack: growable array (+2), value (+1), return-address (+0). |
| void Intrinsifier::GrowableArray_add(Assembler* assembler) { |
| // In checked mode we need to check the incoming argument. |
| if (Isolate::Current()->flags().type_checks()) return; |
| Label fall_through; |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // Array. |
| __ movq(RCX, FieldAddress(RAX, GrowableObjectArray::length_offset())); |
| // RCX: length. |
| __ movq(RDX, FieldAddress(RAX, GrowableObjectArray::data_offset())); |
| // RDX: data. |
| // Compare length with capacity. |
| __ cmpq(RCX, FieldAddress(RDX, Array::length_offset())); |
| __ j(EQUAL, &fall_through); // Must grow data. |
| // len = len + 1; |
| __ IncrementSmiField(FieldAddress(RAX, GrowableObjectArray::length_offset()), |
| 1); |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); // Value |
| ASSERT(kSmiTagShift == 1); |
| __ StoreIntoObject(RDX, |
| FieldAddress(RDX, RCX, TIMES_4, Array::data_offset()), |
| RAX); |
| __ LoadObject(RAX, Object::null_object()); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| #define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_factor) \ |
| Label fall_through; \ |
| const intptr_t kArrayLengthStackOffset = 1 * kWordSize; \ |
| __ MaybeTraceAllocation(cid, &fall_through, false, \ |
| /* inline_isolate = */ false); \ |
| __ movq(RDI, Address(RSP, kArrayLengthStackOffset)); /* Array length. */ \ |
| /* Check that length is a positive Smi. */ \ |
| /* RDI: requested array length argument. */ \ |
| __ testq(RDI, Immediate(kSmiTagMask)); \ |
| __ j(NOT_ZERO, &fall_through); \ |
| __ cmpq(RDI, Immediate(0)); \ |
| __ j(LESS, &fall_through); \ |
| __ SmiUntag(RDI); \ |
| /* Check for maximum allowed length. */ \ |
| /* RDI: untagged array length. */ \ |
| __ cmpq(RDI, Immediate(max_len)); \ |
| __ j(GREATER, &fall_through); \ |
| /* Special case for scaling by 16. */ \ |
| if (scale_factor == TIMES_16) { \ |
| /* double length of array. */ \ |
| __ addq(RDI, RDI); \ |
| /* only scale by 8. */ \ |
| scale_factor = TIMES_8; \ |
| } \ |
| const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \ |
| __ leaq(RDI, Address(RDI, scale_factor, fixed_size)); \ |
| __ andq(RDI, Immediate(-kObjectAlignment)); \ |
| Heap::Space space = Heap::SpaceForAllocation(cid); \ |
| __ movq(R13, Address(THR, Thread::heap_offset())); \ |
| __ movq(RAX, Address(R13, Heap::TopOffset(space))); \ |
| __ movq(RCX, RAX); \ |
| \ |
| /* RDI: allocation size. */ \ |
| __ addq(RCX, RDI); \ |
| __ j(CARRY, &fall_through); \ |
| \ |
| /* Check if the allocation fits into the remaining space. */ \ |
| /* RAX: potential new object start. */ \ |
| /* RCX: potential next object start. */ \ |
| /* RDI: allocation size. */ \ |
| /* R13: heap. */ \ |
| __ cmpq(RCX, Address(R13, Heap::EndOffset(space))); \ |
| __ j(ABOVE_EQUAL, &fall_through); \ |
| \ |
| /* Successfully allocated the object(s), now update top to point to */ \ |
| /* next object start and initialize the object. */ \ |
| __ movq(Address(R13, Heap::TopOffset(space)), RCX); \ |
| __ addq(RAX, Immediate(kHeapObjectTag)); \ |
| __ UpdateAllocationStatsWithSize(cid, RDI, space, \ |
| /* inline_isolate = */ false); \ |
| /* Initialize the tags. */ \ |
| /* RAX: new object start as a tagged pointer. */ \ |
| /* RCX: new object end address. */ \ |
| /* RDI: allocation size. */ \ |
| /* R13: scratch register. */ \ |
| { \ |
| Label size_tag_overflow, done; \ |
| __ cmpq(RDI, Immediate(RawObject::SizeTag::kMaxSizeTag)); \ |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); \ |
| __ shlq(RDI, Immediate(RawObject::kSizeTagPos - kObjectAlignmentLog2)); \ |
| __ jmp(&done, Assembler::kNearJump); \ |
| \ |
| __ Bind(&size_tag_overflow); \ |
| __ movq(RDI, Immediate(0)); \ |
| __ Bind(&done); \ |
| \ |
| /* Get the class index and insert it into the tags. */ \ |
| __ orq(RDI, Immediate(RawObject::ClassIdTag::encode(cid))); \ |
| __ movq(FieldAddress(RAX, type_name::tags_offset()), RDI); /* Tags. */ \ |
| } \ |
| /* Set the length field. */ \ |
| /* RAX: new object start as a tagged pointer. */ \ |
| /* RCX: new object end address. */ \ |
| __ movq(RDI, Address(RSP, kArrayLengthStackOffset)); /* Array length. */ \ |
| __ InitializeFieldNoBarrier(RAX, \ |
| FieldAddress(RAX, type_name::length_offset()), \ |
| RDI); \ |
| /* Initialize all array elements to 0. */ \ |
| /* RAX: new object start as a tagged pointer. */ \ |
| /* RCX: new object end address. */ \ |
| /* RDI: iterator which initially points to the start of the variable */ \ |
| /* RBX: scratch register. */ \ |
| /* data area to be initialized. */ \ |
| __ xorq(RBX, RBX); /* Zero. */ \ |
| __ leaq(RDI, FieldAddress(RAX, sizeof(Raw##type_name))); \ |
| Label done, init_loop; \ |
| __ Bind(&init_loop); \ |
| __ cmpq(RDI, RCX); \ |
| __ j(ABOVE_EQUAL, &done, Assembler::kNearJump); \ |
| __ movq(Address(RDI, 0), RBX); \ |
| __ addq(RDI, Immediate(kWordSize)); \ |
| __ jmp(&init_loop, Assembler::kNearJump); \ |
| __ Bind(&done); \ |
| \ |
| __ ret(); \ |
| __ Bind(&fall_through); \ |
| |
| |
| static ScaleFactor GetScaleFactor(intptr_t size) { |
| switch (size) { |
| case 1: return TIMES_1; |
| case 2: return TIMES_2; |
| case 4: return TIMES_4; |
| case 8: return TIMES_8; |
| case 16: return TIMES_16; |
| } |
| UNREACHABLE(); |
| return static_cast<ScaleFactor>(0); |
| } |
| |
| |
| #define TYPED_DATA_ALLOCATOR(clazz) \ |
| void Intrinsifier::TypedData_##clazz##_new(Assembler* assembler) { \ |
| intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
| intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
| ScaleFactor scale = GetScaleFactor(size); \ |
| TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, scale); \ |
| } \ |
| void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \ |
| intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
| intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
| ScaleFactor scale = GetScaleFactor(size); \ |
| TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, scale); \ |
| } |
| CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
| #undef TYPED_DATA_ALLOCATOR |
| |
| |
| // Tests if two top most arguments are smis, jumps to label not_smi if not. |
| // Topmost argument is in RAX. |
| static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); |
| __ movq(RCX, Address(RSP, + 2 * kWordSize)); |
| __ orq(RCX, RAX); |
| __ testq(RCX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, not_smi); |
| } |
| |
| |
| void Intrinsifier::Integer_addFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX contains right argument. |
| __ addq(RAX, Address(RSP, + 2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in RAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_add(Assembler* assembler) { |
| Integer_addFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_subFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX contains right argument, which is the actual minuend of subtraction. |
| __ subq(RAX, Address(RSP, + 2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in RAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_sub(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX contains right argument, which is the actual subtrahend of subtraction. |
| __ movq(RCX, RAX); |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); |
| __ subq(RAX, RCX); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in RAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| |
| void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX is the right argument. |
| ASSERT(kSmiTag == 0); // Adjust code below if not the case. |
| __ SmiUntag(RAX); |
| __ imulq(RAX, Address(RSP, + 2 * kWordSize)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in RAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_mul(Assembler* assembler) { |
| Integer_mulFromInteger(assembler); |
| } |
| |
| |
| // Optimizations: |
| // - result is 0 if: |
| // - left is 0 |
| // - left equals right |
| // - result is left if |
| // - left > 0 && left < right |
| // RAX: Tagged left (dividend). |
| // RCX: Tagged right (divisor). |
| // Returns: |
| // RAX: Untagged fallthrough result (remainder to be adjusted), or |
| // RAX: Tagged return result (remainder). |
| static void EmitRemainderOperation(Assembler* assembler) { |
| Label return_zero, try_modulo, not_32bit, done; |
| // Check for quick zero results. |
| __ cmpq(RAX, Immediate(0)); |
| __ j(EQUAL, &return_zero, Assembler::kNearJump); |
| __ cmpq(RAX, RCX); |
| __ j(EQUAL, &return_zero, Assembler::kNearJump); |
| |
| // Check if result equals left. |
| __ cmpq(RAX, Immediate(0)); |
| __ j(LESS, &try_modulo, Assembler::kNearJump); |
| // left is positive. |
| __ cmpq(RAX, RCX); |
| __ j(GREATER, &try_modulo, Assembler::kNearJump); |
| // left is less than right, result is left (RAX). |
| __ ret(); |
| |
| __ Bind(&return_zero); |
| __ xorq(RAX, RAX); |
| __ ret(); |
| |
| __ Bind(&try_modulo); |
| |
| // Check if both operands fit into 32bits as idiv with 64bit operands |
| // requires twice as many cycles and has much higher latency. We are checking |
| // this before untagging them to avoid corner case dividing INT_MAX by -1 that |
| // raises exception because quotient is too large for 32bit register. |
| __ movsxd(RBX, RAX); |
| __ cmpq(RBX, RAX); |
| __ j(NOT_EQUAL, ¬_32bit, Assembler::kNearJump); |
| __ movsxd(RBX, RCX); |
| __ cmpq(RBX, RCX); |
| __ j(NOT_EQUAL, ¬_32bit, Assembler::kNearJump); |
| |
| // Both operands are 31bit smis. Divide using 32bit idiv. |
| __ SmiUntag(RAX); |
| __ SmiUntag(RCX); |
| __ cdq(); |
| __ idivl(RCX); |
| __ movsxd(RAX, RDX); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| // Divide using 64bit idiv. |
| __ Bind(¬_32bit); |
| __ SmiUntag(RAX); |
| __ SmiUntag(RCX); |
| __ cqo(); |
| __ idivq(RCX); |
| __ movq(RAX, RDX); |
| __ Bind(&done); |
| } |
| |
| |
| // Implementation: |
| // res = left % right; |
| // if (res < 0) { |
| // if (right < 0) { |
| // res = res - right; |
| // } else { |
| // res = res + right; |
| // } |
| // } |
| void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) { |
| Label fall_through, negative_result; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| __ movq(RCX, Address(RSP, + 2 * kWordSize)); |
| // RAX: Tagged left (dividend). |
| // RCX: Tagged right (divisor). |
| __ cmpq(RCX, Immediate(0)); |
| __ j(EQUAL, &fall_through); |
| EmitRemainderOperation(assembler); |
| // Untagged remainder result in RAX. |
| __ cmpq(RAX, Immediate(0)); |
| __ j(LESS, &negative_result, Assembler::kNearJump); |
| __ SmiTag(RAX); |
| __ ret(); |
| |
| __ Bind(&negative_result); |
| Label subtract; |
| // RAX: Untagged result. |
| // RCX: Untagged right. |
| __ cmpq(RCX, Immediate(0)); |
| __ j(LESS, &subtract, Assembler::kNearJump); |
| __ addq(RAX, RCX); |
| __ SmiTag(RAX); |
| __ ret(); |
| |
| __ Bind(&subtract); |
| __ subq(RAX, RCX); |
| __ SmiTag(RAX); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_truncDivide(Assembler* assembler) { |
| Label fall_through, not_32bit; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX: right argument (divisor) |
| __ cmpq(RAX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| __ movq(RCX, RAX); |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // Left argument (dividend). |
| |
| // Check if both operands fit into 32bits as idiv with 64bit operands |
| // requires twice as many cycles and has much higher latency. We are checking |
| // this before untagging them to avoid corner case dividing INT_MAX by -1 that |
| // raises exception because quotient is too large for 32bit register. |
| __ movsxd(RBX, RAX); |
| __ cmpq(RBX, RAX); |
| __ j(NOT_EQUAL, ¬_32bit); |
| __ movsxd(RBX, RCX); |
| __ cmpq(RBX, RCX); |
| __ j(NOT_EQUAL, ¬_32bit); |
| |
| // Both operands are 31bit smis. Divide using 32bit idiv. |
| __ SmiUntag(RAX); |
| __ SmiUntag(RCX); |
| __ cdq(); |
| __ idivl(RCX); |
| __ movsxd(RAX, RAX); |
| __ SmiTag(RAX); // Result is guaranteed to fit into a smi. |
| __ ret(); |
| |
| // Divide using 64bit idiv. |
| __ Bind(¬_32bit); |
| __ SmiUntag(RAX); |
| __ SmiUntag(RCX); |
| __ pushq(RDX); // Preserve RDX in case of 'fall_through'. |
| __ cqo(); |
| __ idivq(RCX); |
| __ popq(RDX); |
| // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
| // cannot tag the result. |
| __ cmpq(RAX, Immediate(0x4000000000000000)); |
| __ j(EQUAL, &fall_through); |
| __ SmiTag(RAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_negate(Assembler* assembler) { |
| Label fall_through; |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi value. |
| __ negq(RAX); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| // Result is in RAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX is the right argument. |
| __ andq(RAX, Address(RSP, + 2 * kWordSize)); |
| // Result is in RAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitAnd(Assembler* assembler) { |
| Integer_bitAndFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX is the right argument. |
| __ orq(RAX, Address(RSP, + 2 * kWordSize)); |
| // Result is in RAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitOr(Assembler* assembler) { |
| Integer_bitOrFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) { |
| Label fall_through; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX is the right argument. |
| __ xorq(RAX, Address(RSP, + 2 * kWordSize)); |
| // Result is in RAX. |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_bitXor(Assembler* assembler) { |
| Integer_bitXorFromInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_shl(Assembler* assembler) { |
| ASSERT(kSmiTagShift == 1); |
| ASSERT(kSmiTag == 0); |
| Label fall_through, overflow; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // Shift value is in RAX. Compare with tagged Smi. |
| __ cmpq(RAX, Immediate(Smi::RawValue(Smi::kBits))); |
| __ j(ABOVE_EQUAL, &fall_through, Assembler::kNearJump); |
| |
| __ SmiUntag(RAX); |
| __ movq(RCX, RAX); // Shift amount must be in RCX. |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // Value. |
| |
| // Overflow test - all the shifted-out bits must be same as the sign bit. |
| __ movq(RDI, RAX); |
| __ shlq(RAX, RCX); |
| __ sarq(RAX, RCX); |
| __ cmpq(RAX, RDI); |
| __ j(NOT_EQUAL, &overflow, Assembler::kNearJump); |
| |
| __ shlq(RAX, RCX); // Shift for result now we know there is no overflow. |
| |
| // RAX is a correctly tagged Smi. |
| __ ret(); |
| |
| __ Bind(&overflow); |
| // Mint is rarely used on x64 (only for integers requiring 64 bit instead of |
| // 63 bits as represented by Smi). |
| __ Bind(&fall_through); |
| } |
| |
| |
| static void CompareIntegers(Assembler* assembler, Condition true_condition) { |
| Label fall_through, true_label; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| // RAX contains the right argument. |
| __ cmpq(Address(RSP, + 2 * kWordSize), RAX); |
| __ j(true_condition, &true_label, Assembler::kNearJump); |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_lessThan(Assembler* assembler) { |
| CompareIntegers(assembler, LESS); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) { |
| CompareIntegers(assembler, LESS); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterThan(Assembler* assembler) { |
| CompareIntegers(assembler, GREATER); |
| } |
| |
| |
| void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) { |
| CompareIntegers(assembler, LESS_EQUAL); |
| } |
| |
| |
| void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) { |
| CompareIntegers(assembler, GREATER_EQUAL); |
| } |
| |
| |
| // This is called for Smi, Mint and Bigint receivers. The right argument |
| // can be Smi, Mint, Bigint or double. |
| void Intrinsifier::Integer_equalToInteger(Assembler* assembler) { |
| Label fall_through, true_label, check_for_mint; |
| const intptr_t kReceiverOffset = 2; |
| const intptr_t kArgumentOffset = 1; |
| |
| // For integer receiver '===' check first. |
| __ movq(RAX, Address(RSP, + kArgumentOffset * kWordSize)); |
| __ movq(RCX, Address(RSP, + kReceiverOffset * kWordSize)); |
| __ cmpq(RAX, RCX); |
| __ j(EQUAL, &true_label, Assembler::kNearJump); |
| __ orq(RAX, RCX); |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &check_for_mint, Assembler::kNearJump); |
| // Both arguments are smi, '===' is good enough. |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| __ Bind(&true_label); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| |
| // At least one of the arguments was not Smi. |
| Label receiver_not_smi; |
| __ Bind(&check_for_mint); |
| __ movq(RAX, Address(RSP, + kReceiverOffset * kWordSize)); |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &receiver_not_smi); |
| |
| // Left (receiver) is Smi, return false if right is not Double. |
| // Note that an instance of Mint or Bigint never contains a value that can be |
| // represented by Smi. |
| __ movq(RAX, Address(RSP, + kArgumentOffset * kWordSize)); |
| __ CompareClassId(RAX, kDoubleCid); |
| __ j(EQUAL, &fall_through); |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| |
| __ Bind(&receiver_not_smi); |
| // RAX:: receiver. |
| __ CompareClassId(RAX, kMintCid); |
| __ j(NOT_EQUAL, &fall_through); |
| // Receiver is Mint, return false if right is Smi. |
| __ movq(RAX, Address(RSP, + kArgumentOffset * kWordSize)); |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); |
| // Smi == Mint -> false. |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| // TODO(srdjan): Implement Mint == Mint comparison. |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Integer_equal(Assembler* assembler) { |
| Integer_equalToInteger(assembler); |
| } |
| |
| |
| void Intrinsifier::Integer_sar(Assembler* assembler) { |
| Label fall_through, shift_count_ok; |
| TestBothArgumentsSmis(assembler, &fall_through); |
| const Immediate& count_limit = Immediate(0x3F); |
| // Check that the count is not larger than what the hardware can handle. |
| // For shifting right a Smi the result is the same for all numbers |
| // >= count_limit. |
| __ SmiUntag(RAX); |
| // Negative counts throw exception. |
| __ cmpq(RAX, Immediate(0)); |
| __ j(LESS, &fall_through, Assembler::kNearJump); |
| __ cmpq(RAX, count_limit); |
| __ j(LESS_EQUAL, &shift_count_ok, Assembler::kNearJump); |
| __ movq(RAX, count_limit); |
| __ Bind(&shift_count_ok); |
| __ movq(RCX, RAX); // Shift amount must be in RCX. |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // Value. |
| __ SmiUntag(RAX); // Value. |
| __ sarq(RAX, RCX); |
| __ SmiTag(RAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Argument is Smi (receiver). |
| void Intrinsifier::Smi_bitNegate(Assembler* assembler) { |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); // Index. |
| __ notq(RAX); |
| __ andq(RAX, Immediate(~kSmiTagMask)); // Remove inverted smi-tag. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Smi_bitLength(Assembler* assembler) { |
| ASSERT(kSmiTagShift == 1); |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); // Index. |
| // XOR with sign bit to complement bits if value is negative. |
| __ movq(RCX, RAX); |
| __ sarq(RCX, Immediate(63)); // All 0 or all 1. |
| __ xorq(RAX, RCX); |
| // BSR does not write the destination register if source is zero. Put a 1 in |
| // the Smi tag bit to ensure BSR writes to destination register. |
| __ orq(RAX, Immediate(kSmiTagMask)); |
| __ bsrq(RAX, RAX); |
| __ SmiTag(RAX); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_lsh(Assembler* assembler) { |
| // static void _lsh(Uint32List x_digits, int x_used, int n, |
| // Uint32List r_digits) |
| |
| __ movq(RDI, Address(RSP, 4 * kWordSize)); // x_digits |
| __ movq(R8, Address(RSP, 3 * kWordSize)); // x_used is Smi |
| __ subq(R8, Immediate(2)); // x_used > 0, Smi. R8 = x_used - 1, round up. |
| __ sarq(R8, Immediate(2)); // R8 + 1 = number of digit pairs to read. |
| __ movq(RCX, Address(RSP, 2 * kWordSize)); // n is Smi |
| __ SmiUntag(RCX); |
| __ movq(RBX, Address(RSP, 1 * kWordSize)); // r_digits |
| __ movq(RSI, RCX); |
| __ sarq(RSI, Immediate(6)); // RSI = n ~/ (2*_DIGIT_BITS). |
| __ leaq(RBX, FieldAddress(RBX, RSI, TIMES_8, TypedData::data_offset())); |
| __ xorq(RAX, RAX); // RAX = 0. |
| __ movq(RDX, FieldAddress(RDI, R8, TIMES_8, TypedData::data_offset())); |
| __ shldq(RAX, RDX, RCX); |
| __ movq(Address(RBX, R8, TIMES_8, 2 * Bigint::kBytesPerDigit), RAX); |
| Label last; |
| __ cmpq(R8, Immediate(0)); |
| __ j(EQUAL, &last, Assembler::kNearJump); |
| Label loop; |
| __ Bind(&loop); |
| __ movq(RAX, RDX); |
| __ movq(RDX, |
| FieldAddress(RDI, R8, TIMES_8, |
| TypedData::data_offset() - 2 * Bigint::kBytesPerDigit)); |
| __ shldq(RAX, RDX, RCX); |
| __ movq(Address(RBX, R8, TIMES_8, 0), RAX); |
| __ decq(R8); |
| __ j(NOT_ZERO, &loop, Assembler::kNearJump); |
| __ Bind(&last); |
| __ shldq(RDX, R8, RCX); // R8 == 0. |
| __ movq(Address(RBX, 0), RDX); |
| // Returning Object::null() is not required, since this method is private. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_rsh(Assembler* assembler) { |
| // static void _rsh(Uint32List x_digits, int x_used, int n, |
| // Uint32List r_digits) |
| |
| __ movq(RDI, Address(RSP, 4 * kWordSize)); // x_digits |
| __ movq(RCX, Address(RSP, 2 * kWordSize)); // n is Smi |
| __ SmiUntag(RCX); |
| __ movq(RBX, Address(RSP, 1 * kWordSize)); // r_digits |
| __ movq(RDX, RCX); |
| __ sarq(RDX, Immediate(6)); // RDX = n ~/ (2*_DIGIT_BITS). |
| __ movq(RSI, Address(RSP, 3 * kWordSize)); // x_used is Smi |
| __ subq(RSI, Immediate(2)); // x_used > 0, Smi. RSI = x_used - 1, round up. |
| __ sarq(RSI, Immediate(2)); |
| __ leaq(RDI, FieldAddress(RDI, RSI, TIMES_8, TypedData::data_offset())); |
| __ subq(RSI, RDX); // RSI + 1 = number of digit pairs to read. |
| __ leaq(RBX, FieldAddress(RBX, RSI, TIMES_8, TypedData::data_offset())); |
| __ negq(RSI); |
| __ movq(RDX, Address(RDI, RSI, TIMES_8, 0)); |
| Label last; |
| __ cmpq(RSI, Immediate(0)); |
| __ j(EQUAL, &last, Assembler::kNearJump); |
| Label loop; |
| __ Bind(&loop); |
| __ movq(RAX, RDX); |
| __ movq(RDX, Address(RDI, RSI, TIMES_8, 2 * Bigint::kBytesPerDigit)); |
| __ shrdq(RAX, RDX, RCX); |
| __ movq(Address(RBX, RSI, TIMES_8, 0), RAX); |
| __ incq(RSI); |
| __ j(NOT_ZERO, &loop, Assembler::kNearJump); |
| __ Bind(&last); |
| __ shrdq(RDX, RSI, RCX); // RSI == 0. |
| __ movq(Address(RBX, 0), RDX); |
| // Returning Object::null() is not required, since this method is private. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_absAdd(Assembler* assembler) { |
| // static void _absAdd(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| __ movq(RDI, Address(RSP, 5 * kWordSize)); // digits |
| __ movq(R8, Address(RSP, 4 * kWordSize)); // used is Smi |
| __ addq(R8, Immediate(2)); // used > 0, Smi. R8 = used + 1, round up. |
| __ sarq(R8, Immediate(2)); // R8 = number of digit pairs to process. |
| __ movq(RSI, Address(RSP, 3 * kWordSize)); // a_digits |
| __ movq(RCX, Address(RSP, 2 * kWordSize)); // a_used is Smi |
| __ addq(RCX, Immediate(2)); // a_used > 0, Smi. R8 = a_used + 1, round up. |
| __ sarq(RCX, Immediate(2)); // R8 = number of digit pairs to process. |
| __ movq(RBX, Address(RSP, 1 * kWordSize)); // r_digits |
| |
| // Precompute 'used - a_used' now so that carry flag is not lost later. |
| __ subq(R8, RCX); |
| __ incq(R8); // To account for the extra test between loops. |
| |
| __ xorq(RDX, RDX); // RDX = 0, carry flag = 0. |
| Label add_loop; |
| __ Bind(&add_loop); |
| // Loop (a_used+1)/2 times, RCX > 0. |
| __ movq(RAX, FieldAddress(RDI, RDX, TIMES_8, TypedData::data_offset())); |
| __ adcq(RAX, FieldAddress(RSI, RDX, TIMES_8, TypedData::data_offset())); |
| __ movq(FieldAddress(RBX, RDX, TIMES_8, TypedData::data_offset()), RAX); |
| __ incq(RDX); // Does not affect carry flag. |
| __ decq(RCX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &add_loop, Assembler::kNearJump); |
| |
| Label last_carry; |
| __ decq(R8); // Does not affect carry flag. |
| __ j(ZERO, &last_carry, Assembler::kNearJump); // If used - a_used == 0. |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop (used+1)/2 - (a_used+1)/2 times, R8 > 0. |
| __ movq(RAX, FieldAddress(RDI, RDX, TIMES_8, TypedData::data_offset())); |
| __ adcq(RAX, Immediate(0)); |
| __ movq(FieldAddress(RBX, RDX, TIMES_8, TypedData::data_offset()), RAX); |
| __ incq(RDX); // Does not affect carry flag. |
| __ decq(R8); // Does not affect carry flag. |
| __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&last_carry); |
| Label done; |
| __ j(NOT_CARRY, &done); |
| __ movq(FieldAddress(RBX, RDX, TIMES_8, TypedData::data_offset()), |
| Immediate(1)); |
| |
| __ Bind(&done); |
| // Returning Object::null() is not required, since this method is private. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_absSub(Assembler* assembler) { |
| // static void _absSub(Uint32List digits, int used, |
| // Uint32List a_digits, int a_used, |
| // Uint32List r_digits) |
| |
| __ movq(RDI, Address(RSP, 5 * kWordSize)); // digits |
| __ movq(R8, Address(RSP, 4 * kWordSize)); // used is Smi |
| __ addq(R8, Immediate(2)); // used > 0, Smi. R8 = used + 1, round up. |
| __ sarq(R8, Immediate(2)); // R8 = number of digit pairs to process. |
| __ movq(RSI, Address(RSP, 3 * kWordSize)); // a_digits |
| __ movq(RCX, Address(RSP, 2 * kWordSize)); // a_used is Smi |
| __ addq(RCX, Immediate(2)); // a_used > 0, Smi. R8 = a_used + 1, round up. |
| __ sarq(RCX, Immediate(2)); // R8 = number of digit pairs to process. |
| __ movq(RBX, Address(RSP, 1 * kWordSize)); // r_digits |
| |
| // Precompute 'used - a_used' now so that carry flag is not lost later. |
| __ subq(R8, RCX); |
| __ incq(R8); // To account for the extra test between loops. |
| |
| __ xorq(RDX, RDX); // RDX = 0, carry flag = 0. |
| Label sub_loop; |
| __ Bind(&sub_loop); |
| // Loop (a_used+1)/2 times, RCX > 0. |
| __ movq(RAX, FieldAddress(RDI, RDX, TIMES_8, TypedData::data_offset())); |
| __ sbbq(RAX, FieldAddress(RSI, RDX, TIMES_8, TypedData::data_offset())); |
| __ movq(FieldAddress(RBX, RDX, TIMES_8, TypedData::data_offset()), RAX); |
| __ incq(RDX); // Does not affect carry flag. |
| __ decq(RCX); // Does not affect carry flag. |
| __ j(NOT_ZERO, &sub_loop, Assembler::kNearJump); |
| |
| Label done; |
| __ decq(R8); // Does not affect carry flag. |
| __ j(ZERO, &done, Assembler::kNearJump); // If used - a_used == 0. |
| |
| Label carry_loop; |
| __ Bind(&carry_loop); |
| // Loop (used+1)/2 - (a_used+1)/2 times, R8 > 0. |
| __ movq(RAX, FieldAddress(RDI, RDX, TIMES_8, TypedData::data_offset())); |
| __ sbbq(RAX, Immediate(0)); |
| __ movq(FieldAddress(RBX, RDX, TIMES_8, TypedData::data_offset()), RAX); |
| __ incq(RDX); // Does not affect carry flag. |
| __ decq(R8); // Does not affect carry flag. |
| __ j(NOT_ZERO, &carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // Returning Object::null() is not required, since this method is private. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_mulAdd(Assembler* assembler) { |
| // Pseudo code: |
| // static int _mulAdd(Uint32List x_digits, int xi, |
| // Uint32List m_digits, int i, |
| // Uint32List a_digits, int j, int n) { |
| // uint64_t x = x_digits[xi >> 1 .. (xi >> 1) + 1]; // xi is Smi and even. |
| // if (x == 0 || n == 0) { |
| // return 2; |
| // } |
| // uint64_t* mip = &m_digits[i >> 1]; // i is Smi and even. |
| // uint64_t* ajp = &a_digits[j >> 1]; // j is Smi and even. |
| // uint64_t c = 0; |
| // SmiUntag(n); // n is Smi and even. |
| // n = (n + 1)/2; // Number of pairs to process. |
| // do { |
| // uint64_t mi = *mip++; |
| // uint64_t aj = *ajp; |
| // uint128_t t = x*mi + aj + c; // 64-bit * 64-bit -> 128-bit. |
| // *ajp++ = low64(t); |
| // c = high64(t); |
| // } while (--n > 0); |
| // while (c != 0) { |
| // uint128_t t = *ajp + c; |
| // *ajp++ = low64(t); |
| // c = high64(t); // c == 0 or 1. |
| // } |
| // return 2; |
| // } |
| |
| Label done; |
| // RBX = x, done if x == 0 |
| __ movq(RCX, Address(RSP, 7 * kWordSize)); // x_digits |
| __ movq(RAX, Address(RSP, 6 * kWordSize)); // xi is Smi |
| __ movq(RBX, FieldAddress(RCX, RAX, TIMES_2, TypedData::data_offset())); |
| __ testq(RBX, RBX); |
| __ j(ZERO, &done, Assembler::kNearJump); |
| |
| // R8 = (SmiUntag(n) + 1)/2, no_op if n == 0 |
| __ movq(R8, Address(RSP, 1 * kWordSize)); |
| __ addq(R8, Immediate(2)); |
| __ sarq(R8, Immediate(2)); // R8 = number of digit pairs to process. |
| __ j(ZERO, &done, Assembler::kNearJump); |
| |
| // RDI = mip = &m_digits[i >> 1] |
| __ movq(RDI, Address(RSP, 5 * kWordSize)); // m_digits |
| __ movq(RAX, Address(RSP, 4 * kWordSize)); // i is Smi |
| __ leaq(RDI, FieldAddress(RDI, RAX, TIMES_2, TypedData::data_offset())); |
| |
| // RSI = ajp = &a_digits[j >> 1] |
| __ movq(RSI, Address(RSP, 3 * kWordSize)); // a_digits |
| __ movq(RAX, Address(RSP, 2 * kWordSize)); // j is Smi |
| __ leaq(RSI, FieldAddress(RSI, RAX, TIMES_2, TypedData::data_offset())); |
| |
| // RCX = c = 0 |
| __ xorq(RCX, RCX); |
| |
| Label muladd_loop; |
| __ Bind(&muladd_loop); |
| // x: RBX |
| // mip: RDI |
| // ajp: RSI |
| // c: RCX |
| // t: RDX:RAX (not live at loop entry) |
| // n: R8 |
| |
| // uint64_t mi = *mip++ |
| __ movq(RAX, Address(RDI, 0)); |
| __ addq(RDI, Immediate(2*Bigint::kBytesPerDigit)); |
| |
| // uint128_t t = x*mi |
| __ mulq(RBX); // t = RDX:RAX = RAX * RBX, 64-bit * 64-bit -> 64-bit |
| __ addq(RAX, RCX); // t += c |
| __ adcq(RDX, Immediate(0)); |
| |
| // uint64_t aj = *ajp; t += aj |
| __ addq(RAX, Address(RSI, 0)); |
| __ adcq(RDX, Immediate(0)); |
| |
| // *ajp++ = low64(t) |
| __ movq(Address(RSI, 0), RAX); |
| __ addq(RSI, Immediate(2*Bigint::kBytesPerDigit)); |
| |
| // c = high64(t) |
| __ movq(RCX, RDX); |
| |
| // while (--n > 0) |
| __ decq(R8); // --n |
| __ j(NOT_ZERO, &muladd_loop, Assembler::kNearJump); |
| |
| __ testq(RCX, RCX); |
| __ j(ZERO, &done, Assembler::kNearJump); |
| |
| // *ajp += c |
| __ addq(Address(RSI, 0), RCX); |
| __ j(NOT_CARRY, &done, Assembler::kNearJump); |
| |
| Label propagate_carry_loop; |
| __ Bind(&propagate_carry_loop); |
| __ addq(RSI, Immediate(2*Bigint::kBytesPerDigit)); |
| __ incq(Address(RSI, 0)); // c == 0 or 1 |
| __ j(CARRY, &propagate_carry_loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| __ movq(RAX, Immediate(Smi::RawValue(2))); // Two digits processed. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) { |
| // Pseudo code: |
| // static int _sqrAdd(Uint32List x_digits, int i, |
| // Uint32List a_digits, int used) { |
| // uint64_t* xip = &x_digits[i >> 1]; // i is Smi and even. |
| // uint64_t x = *xip++; |
| // if (x == 0) return 2; |
| // uint64_t* ajp = &a_digits[i]; // j == 2*i, i is Smi. |
| // uint64_t aj = *ajp; |
| // uint128_t t = x*x + aj; |
| // *ajp++ = low64(t); |
| // uint128_t c = high64(t); |
| // int n = ((used - i + 2) >> 2) - 1; // used and i are Smi. n: num pairs. |
| // while (--n >= 0) { |
| // uint64_t xi = *xip++; |
| // uint64_t aj = *ajp; |
| // uint192_t t = 2*x*xi + aj + c; // 2-bit * 64-bit * 64-bit -> 129-bit. |
| // *ajp++ = low64(t); |
| // c = high128(t); // 65-bit. |
| // } |
| // uint64_t aj = *ajp; |
| // uint128_t t = aj + c; // 64-bit + 65-bit -> 66-bit. |
| // *ajp++ = low64(t); |
| // *ajp = high64(t); |
| // return 2; |
| // } |
| |
| // RDI = xip = &x_digits[i >> 1] |
| __ movq(RDI, Address(RSP, 4 * kWordSize)); // x_digits |
| __ movq(RAX, Address(RSP, 3 * kWordSize)); // i is Smi |
| __ leaq(RDI, FieldAddress(RDI, RAX, TIMES_2, TypedData::data_offset())); |
| |
| // RBX = x = *xip++, return if x == 0 |
| Label x_zero; |
| __ movq(RBX, Address(RDI, 0)); |
| __ cmpq(RBX, Immediate(0)); |
| __ j(EQUAL, &x_zero); |
| __ addq(RDI, Immediate(2*Bigint::kBytesPerDigit)); |
| |
| // RSI = ajp = &a_digits[i] |
| __ movq(RSI, Address(RSP, 2 * kWordSize)); // a_digits |
| __ leaq(RSI, FieldAddress(RSI, RAX, TIMES_4, TypedData::data_offset())); |
| |
| // RDX:RAX = t = x*x + *ajp |
| __ movq(RAX, RBX); |
| __ mulq(RBX); |
| __ addq(RAX, Address(RSI, 0)); |
| __ adcq(RDX, Immediate(0)); |
| |
| // *ajp++ = low64(t) |
| __ movq(Address(RSI, 0), RAX); |
| __ addq(RSI, Immediate(2*Bigint::kBytesPerDigit)); |
| |
| // int n = (used - i + 1)/2 - 1 |
| __ movq(R8, Address(RSP, 1 * kWordSize)); // used is Smi |
| __ subq(R8, Address(RSP, 3 * kWordSize)); // i is Smi |
| __ addq(R8, Immediate(2)); |
| __ sarq(R8, Immediate(2)); |
| __ decq(R8); // R8 = number of digit pairs to process. |
| |
| // uint128_t c = high64(t) |
| __ xorq(R13, R13); // R13 = high64(c) == 0 |
| __ movq(R12, RDX); // R12 = low64(c) == high64(t) |
| |
| Label loop, done; |
| __ Bind(&loop); |
| // x: RBX |
| // xip: RDI |
| // ajp: RSI |
| // c: R13:R12 |
| // t: RCX:RDX:RAX (not live at loop entry) |
| // n: R8 |
| |
| // while (--n >= 0) |
| __ decq(R8); // --n |
| __ j(NEGATIVE, &done, Assembler::kNearJump); |
| |
| // uint64_t xi = *xip++ |
| __ movq(RAX, Address(RDI, 0)); |
| __ addq(RDI, Immediate(2*Bigint::kBytesPerDigit)); |
| |
| // uint192_t t = RCX:RDX:RAX = 2*x*xi + aj + c |
| __ mulq(RBX); // RDX:RAX = RAX * RBX |
| __ xorq(RCX, RCX); // RCX = 0 |
| __ shldq(RCX, RDX, Immediate(1)); |
| __ shldq(RDX, RAX, Immediate(1)); |
| __ shlq(RAX, Immediate(1)); // RCX:RDX:RAX <<= 1 |
| __ addq(RAX, Address(RSI, 0)); // t += aj |
| __ adcq(RDX, Immediate(0)); |
| __ adcq(RCX, Immediate(0)); |
| __ addq(RAX, R12); // t += low64(c) |
| __ adcq(RDX, R13); // t += high64(c) << 64 |
| __ adcq(RCX, Immediate(0)); |
| |
| // *ajp++ = low64(t) |
| __ movq(Address(RSI, 0), RAX); |
| __ addq(RSI, Immediate(2*Bigint::kBytesPerDigit)); |
| |
| // c = high128(t) |
| __ movq(R12, RDX); |
| __ movq(R13, RCX); |
| |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // uint128_t t = aj + c |
| __ addq(R12, Address(RSI, 0)); // t = c, t += *ajp |
| __ adcq(R13, Immediate(0)); |
| |
| // *ajp++ = low64(t) |
| // *ajp = high64(t) |
| __ movq(Address(RSI, 0), R12); |
| __ movq(Address(RSI, 2*Bigint::kBytesPerDigit), R13); |
| |
| __ Bind(&x_zero); |
| __ movq(RAX, Immediate(Smi::RawValue(2))); // Two digits processed. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Bigint_estQuotientDigit(Assembler* assembler) { |
| // Pseudo code: |
| // static int _estQuotientDigit(Uint32List args, Uint32List digits, int i) { |
| // uint64_t yt = args[_YT_LO .. _YT]; // _YT_LO == 0, _YT == 1. |
| // uint64_t* dp = &digits[(i >> 1) - 1]; // i is Smi. |
| // uint64_t dh = dp[0]; // dh == digits[(i >> 1) - 1 .. i >> 1]. |
| // uint64_t qd; |
| // if (dh == yt) { |
| // qd = (DIGIT_MASK << 32) | DIGIT_MASK; |
| // } else { |
| // dl = dp[-1]; // dl == digits[(i >> 1) - 3 .. (i >> 1) - 2]. |
| // qd = dh:dl / yt; // No overflow possible, because dh < yt. |
| // } |
| // args[_QD .. _QD_HI] = qd; // _QD == 2, _QD_HI == 3. |
| // return 2; |
| // } |
| |
| // RDI = args |
| __ movq(RDI, Address(RSP, 3 * kWordSize)); // args |
| |
| // RCX = yt = args[0..1] |
| __ movq(RCX, FieldAddress(RDI, TypedData::data_offset())); |
| |
| // RBX = dp = &digits[(i >> 1) - 1] |
| __ movq(RBX, Address(RSP, 2 * kWordSize)); // digits |
| __ movq(RAX, Address(RSP, 1 * kWordSize)); // i is Smi and odd. |
| __ leaq(RBX, FieldAddress(RBX, RAX, TIMES_2, |
| TypedData::data_offset() - Bigint::kBytesPerDigit)); |
| |
| // RDX = dh = dp[0] |
| __ movq(RDX, Address(RBX, 0)); |
| |
| // RAX = qd = (DIGIT_MASK << 32) | DIGIT_MASK = -1 |
| __ movq(RAX, Immediate(-1)); |
| |
| // Return qd if dh == yt |
| Label return_qd; |
| __ cmpq(RDX, RCX); |
| __ j(EQUAL, &return_qd, Assembler::kNearJump); |
| |
| // RAX = dl = dp[-1] |
| __ movq(RAX, Address(RBX, -2*Bigint::kBytesPerDigit)); |
| |
| // RAX = qd = dh:dl / yt = RDX:RAX / RCX |
| __ divq(RCX); |
| |
| __ Bind(&return_qd); |
| // args[2..3] = qd |
| __ movq(FieldAddress(RDI, |
| TypedData::data_offset() + 2*Bigint::kBytesPerDigit), |
| RAX); |
| |
| __ movq(RAX, Immediate(Smi::RawValue(2))); // Two digits processed. |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Montgomery_mulMod(Assembler* assembler) { |
| // Pseudo code: |
| // static int _mulMod(Uint32List args, Uint32List digits, int i) { |
| // uint64_t rho = args[_RHO .. _RHO_HI]; // _RHO == 2, _RHO_HI == 3. |
| // uint64_t d = digits[i >> 1 .. (i >> 1) + 1]; // i is Smi and even. |
| // uint128_t t = rho*d; |
| // args[_MU .. _MU_HI] = t mod DIGIT_BASE^2; // _MU == 4, _MU_HI == 5. |
| // return 2; |
| // } |
| |
| // RDI = args |
| __ movq(RDI, Address(RSP, 3 * kWordSize)); // args |
| |
| // RCX = rho = args[2 .. 3] |
| __ movq(RCX, |
| FieldAddress(RDI, |
| TypedData::data_offset() + 2*Bigint::kBytesPerDigit)); |
| |
| // RAX = digits[i >> 1 .. (i >> 1) + 1] |
| __ movq(RBX, Address(RSP, 2 * kWordSize)); // digits |
| __ movq(RAX, Address(RSP, 1 * kWordSize)); // i is Smi |
| __ movq(RAX, FieldAddress(RBX, RAX, TIMES_2, TypedData::data_offset())); |
| |
| // RDX:RAX = t = rho*d |
| __ mulq(RCX); |
| |
| // args[4 .. 5] = t mod DIGIT_BASE^2 = low64(t) |
| __ movq(FieldAddress(RDI, |
| TypedData::data_offset() + 4*Bigint::kBytesPerDigit), |
| RAX); |
| |
| __ movq(RAX, Immediate(Smi::RawValue(2))); // Two digits processed. |
| __ ret(); |
| } |
| |
| |
| // Check if the last argument is a double, jump to label 'is_smi' if smi |
| // (easy to convert to double), otherwise jump to label 'not_double_smi', |
| // Returns the last argument in RAX. |
| static void TestLastArgumentIsDouble(Assembler* assembler, |
| Label* is_smi, |
| Label* not_double_smi) { |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(ZERO, is_smi); // Jump if Smi. |
| __ CompareClassId(RAX, kDoubleCid); |
| __ j(NOT_EQUAL, not_double_smi); |
| // Fall through if double. |
| } |
| |
| |
| // Both arguments on stack, left argument is a double, right argument is of |
| // unknown type. Return true or false object in RAX. Any NaN argument |
| // returns false. Any non-double argument causes control flow to fall through |
| // to the slow case (compiled method body). |
| static void CompareDoubles(Assembler* assembler, Condition true_condition) { |
| Label fall_through, is_false, is_true, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Both arguments are double, right operand is in RAX. |
| __ movsd(XMM1, FieldAddress(RAX, Double::value_offset())); |
| __ Bind(&double_op); |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // Left argument. |
| __ movsd(XMM0, FieldAddress(RAX, Double::value_offset())); |
| __ comisd(XMM0, XMM1); |
| __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false; |
| __ j(true_condition, &is_true, Assembler::kNearJump); |
| // Fall through false. |
| __ Bind(&is_false); |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(RAX); |
| __ cvtsi2sdq(XMM1, RAX); |
| __ jmp(&double_op); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Double_greaterThan(Assembler* assembler) { |
| CompareDoubles(assembler, ABOVE); |
| } |
| |
| |
| void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) { |
| CompareDoubles(assembler, ABOVE_EQUAL); |
| } |
| |
| |
| void Intrinsifier::Double_lessThan(Assembler* assembler) { |
| CompareDoubles(assembler, BELOW); |
| } |
| |
| |
| void Intrinsifier::Double_equal(Assembler* assembler) { |
| CompareDoubles(assembler, EQUAL); |
| } |
| |
| |
| void Intrinsifier::Double_lessEqualThan(Assembler* assembler) { |
| CompareDoubles(assembler, BELOW_EQUAL); |
| } |
| |
| |
| // Expects left argument to be double (receiver). Right argument is unknown. |
| // Both arguments are on stack. |
| static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) { |
| Label fall_through; |
| TestLastArgumentIsDouble(assembler, &fall_through, &fall_through); |
| // Both arguments are double, right operand is in RAX. |
| __ movsd(XMM1, FieldAddress(RAX, Double::value_offset())); |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // Left argument. |
| __ movsd(XMM0, FieldAddress(RAX, Double::value_offset())); |
| switch (kind) { |
| case Token::kADD: __ addsd(XMM0, XMM1); break; |
| case Token::kSUB: __ subsd(XMM0, XMM1); break; |
| case Token::kMUL: __ mulsd(XMM0, XMM1); break; |
| case Token::kDIV: __ divsd(XMM0, XMM1); break; |
| default: UNREACHABLE(); |
| } |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, |
| &fall_through, |
| Assembler::kFarJump, |
| RAX, // Result register. |
| R13); |
| __ movsd(FieldAddress(RAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Double_add(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kADD); |
| } |
| |
| |
| void Intrinsifier::Double_mul(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kMUL); |
| } |
| |
| |
| void Intrinsifier::Double_sub(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kSUB); |
| } |
| |
| |
| void Intrinsifier::Double_div(Assembler* assembler) { |
| DoubleArithmeticOperations(assembler, Token::kDIV); |
| } |
| |
| |
| void Intrinsifier::Double_mulFromInteger(Assembler* assembler) { |
| Label fall_through; |
| // Only smis allowed. |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); |
| // Is Smi. |
| __ SmiUntag(RAX); |
| __ cvtsi2sdq(XMM1, RAX); |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(RAX, Double::value_offset())); |
| __ mulsd(XMM0, XMM1); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, |
| &fall_through, |
| Assembler::kFarJump, |
| RAX, // Result register. |
| R13); |
| __ movsd(FieldAddress(RAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // Left is double right is integer (Bigint, Mint or Smi) |
| void Intrinsifier::DoubleFromInteger(Assembler* assembler) { |
| Label fall_through; |
| __ movq(RAX, Address(RSP, +1 * kWordSize)); |
| __ testq(RAX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); |
| // Is Smi. |
| __ SmiUntag(RAX); |
| __ cvtsi2sdq(XMM0, RAX); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, |
| &fall_through, |
| Assembler::kFarJump, |
| RAX, // Result register. |
| R13); |
| __ movsd(FieldAddress(RAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::Double_getIsNaN(Assembler* assembler) { |
| Label is_true; |
| __ movq(RAX, Address(RSP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(RAX, Double::value_offset())); |
| __ comisd(XMM0, XMM0); |
| __ j(PARITY_EVEN, &is_true, Assembler::kNearJump); // NaN -> true; |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Double_getIsNegative(Assembler* assembler) { |
| Label is_false, is_true, is_zero; |
| __ movq(RAX, Address(RSP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(RAX, Double::value_offset())); |
| __ xorpd(XMM1, XMM1); // 0.0 -> XMM1. |
| __ comisd(XMM0, XMM1); |
| __ j(PARITY_EVEN, &is_false, Assembler::kNearJump); // NaN -> false. |
| __ j(EQUAL, &is_zero, Assembler::kNearJump); // Check for negative zero. |
| __ j(ABOVE_EQUAL, &is_false, Assembler::kNearJump); // >= 0 -> false. |
| __ Bind(&is_true); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| __ Bind(&is_false); |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_zero); |
| // Check for negative zero (get the sign bit). |
| __ movmskpd(RAX, XMM0); |
| __ testq(RAX, Immediate(1)); |
| __ j(NOT_ZERO, &is_true, Assembler::kNearJump); |
| __ jmp(&is_false, Assembler::kNearJump); |
| } |
| |
| |
| void Intrinsifier::DoubleToInteger(Assembler* assembler) { |
| __ movq(RAX, Address(RSP, +1 * kWordSize)); |
| __ movsd(XMM0, FieldAddress(RAX, Double::value_offset())); |
| __ cvttsd2siq(RAX, XMM0); |
| // Overflow is signalled with minint. |
| Label fall_through; |
| // Check for overflow and that it fits into Smi. |
| __ movq(RCX, RAX); |
| __ shlq(RCX, Immediate(1)); |
| __ j(OVERFLOW, &fall_through, Assembler::kNearJump); |
| __ SmiTag(RAX); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::MathSqrt(Assembler* assembler) { |
| Label fall_through, is_smi, double_op; |
| TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
| // Argument is double and is in RAX. |
| __ movsd(XMM1, FieldAddress(RAX, Double::value_offset())); |
| __ Bind(&double_op); |
| __ sqrtsd(XMM0, XMM1); |
| const Class& double_class = Class::Handle( |
| Isolate::Current()->object_store()->double_class()); |
| __ TryAllocate(double_class, |
| &fall_through, |
| Assembler::kFarJump, |
| RAX, // Result register. |
| R13); |
| __ movsd(FieldAddress(RAX, Double::value_offset()), XMM0); |
| __ ret(); |
| __ Bind(&is_smi); |
| __ SmiUntag(RAX); |
| __ cvtsi2sdq(XMM1, RAX); |
| __ jmp(&double_op); |
| __ Bind(&fall_through); |
| } |
| |
| |
| // var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64; |
| // _state[kSTATE_LO] = state & _MASK_32; |
| // _state[kSTATE_HI] = state >> 32; |
| void Intrinsifier::Random_nextState(Assembler* assembler) { |
| const Library& math_lib = Library::Handle(Library::MathLibrary()); |
| ASSERT(!math_lib.IsNull()); |
| const Class& random_class = Class::Handle( |
| math_lib.LookupClassAllowPrivate(Symbols::_Random())); |
| ASSERT(!random_class.IsNull()); |
| const Field& state_field = Field::ZoneHandle( |
| random_class.LookupInstanceField(Symbols::_state())); |
| ASSERT(!state_field.IsNull()); |
| const Field& random_A_field = Field::ZoneHandle( |
| random_class.LookupStaticField(Symbols::_A())); |
| ASSERT(!random_A_field.IsNull()); |
| ASSERT(random_A_field.is_const()); |
| const Instance& a_value = Instance::Handle(random_A_field.StaticValue()); |
| const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value(); |
| // Receiver. |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); |
| // Field '_state'. |
| __ movq(RBX, FieldAddress(RAX, state_field.Offset())); |
| // Addresses of _state[0] and _state[1]. |
| const intptr_t scale = Instance::ElementSizeFor(kTypedDataUint32ArrayCid); |
| const intptr_t offset = Instance::DataOffsetFor(kTypedDataUint32ArrayCid); |
| Address addr_0 = FieldAddress(RBX, 0 * scale + offset); |
| Address addr_1 = FieldAddress(RBX, 1 * scale + offset); |
| __ movq(RAX, Immediate(a_int_value)); |
| __ movl(RCX, addr_0); |
| __ imulq(RCX, RAX); |
| __ movl(RDX, addr_1); |
| __ addq(RDX, RCX); |
| __ movl(addr_0, RDX); |
| __ shrq(RDX, Immediate(32)); |
| __ movl(addr_1, RDX); |
| __ ret(); |
| } |
| |
| // Identity comparison. |
| void Intrinsifier::ObjectEquals(Assembler* assembler) { |
| Label is_true; |
| const intptr_t kReceiverOffset = 2; |
| const intptr_t kArgumentOffset = 1; |
| |
| __ movq(RAX, Address(RSP, + kArgumentOffset * kWordSize)); |
| __ cmpq(RAX, Address(RSP, + kReceiverOffset * kWordSize)); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| } |
| |
| |
| // Return type quickly for simple types (not parameterized and not signature). |
| void Intrinsifier::ObjectRuntimeType(Assembler* assembler) { |
| Label fall_through; |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); |
| __ LoadClassIdMayBeSmi(RCX, RAX); |
| |
| // RCX: untagged cid of instance (RAX). |
| __ LoadClassById(RDI, RCX); |
| // RDI: class of instance (RAX). |
| __ movq(RCX, FieldAddress(RDI, Class::signature_function_offset())); |
| __ CompareObject(RCX, Object::null_object()); |
| __ j(NOT_EQUAL, &fall_through, Assembler::kNearJump); |
| |
| __ movzxw(RCX, FieldAddress(RDI, Class::num_type_arguments_offset())); |
| __ cmpq(RCX, Immediate(0)); |
| __ j(NOT_EQUAL, &fall_through, Assembler::kNearJump); |
| __ movq(RAX, FieldAddress(RDI, Class::canonical_types_offset())); |
| __ CompareObject(RAX, Object::null_object()); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); // Not yet set. |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::String_getHashCode(Assembler* assembler) { |
| Label fall_through; |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); // String object. |
| __ movq(RAX, FieldAddress(RAX, String::hash_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| __ j(EQUAL, &fall_through, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(&fall_through); |
| // Hash not yet computed. |
| } |
| |
| |
| void Intrinsifier::StringBaseCodeUnitAt(Assembler* assembler) { |
| Label fall_through, try_two_byte_string; |
| __ movq(RCX, Address(RSP, + 1 * kWordSize)); // Index. |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // String. |
| __ testq(RCX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through, Assembler::kNearJump); // Non-smi index. |
| // Range check. |
| __ cmpq(RCX, FieldAddress(RAX, String::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through, Assembler::kNearJump); |
| __ CompareClassId(RAX, kOneByteStringCid); |
| __ j(NOT_EQUAL, &try_two_byte_string, Assembler::kNearJump); |
| __ SmiUntag(RCX); |
| __ movzxb(RAX, FieldAddress(RAX, RCX, TIMES_1, OneByteString::data_offset())); |
| __ SmiTag(RAX); |
| __ ret(); |
| |
| __ Bind(&try_two_byte_string); |
| __ CompareClassId(RAX, kTwoByteStringCid); |
| __ j(NOT_EQUAL, &fall_through, Assembler::kNearJump); |
| ASSERT(kSmiTagShift == 1); |
| __ movzxw(RAX, FieldAddress(RAX, RCX, TIMES_1, OneByteString::data_offset())); |
| __ SmiTag(RAX); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::StringBaseCharAt(Assembler* assembler) { |
| Label fall_through, try_two_byte_string; |
| __ movq(RCX, Address(RSP, + 1 * kWordSize)); // Index. |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // String. |
| __ testq(RCX, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); // Non-smi index. |
| // Range check. |
| __ cmpq(RCX, FieldAddress(RAX, String::length_offset())); |
| // Runtime throws exception. |
| __ j(ABOVE_EQUAL, &fall_through); |
| __ CompareClassId(RAX, kOneByteStringCid); |
| __ j(NOT_EQUAL, &try_two_byte_string, Assembler::kNearJump); |
| __ SmiUntag(RCX); |
| __ movzxb(RCX, FieldAddress(RAX, RCX, TIMES_1, OneByteString::data_offset())); |
| __ cmpq(RCX, Immediate(Symbols::kNumberOfOneCharCodeSymbols)); |
| __ j(GREATER_EQUAL, &fall_through); |
| __ movq(RAX, Address(THR, Thread::predefined_symbols_address_offset())); |
| __ movq(RAX, Address(RAX, |
| RCX, |
| TIMES_8, |
| Symbols::kNullCharCodeSymbolOffset * kWordSize)); |
| __ ret(); |
| |
| __ Bind(&try_two_byte_string); |
| __ CompareClassId(RAX, kTwoByteStringCid); |
| __ j(NOT_EQUAL, &fall_through); |
| ASSERT(kSmiTagShift == 1); |
| __ movzxw(RCX, FieldAddress(RAX, RCX, TIMES_1, OneByteString::data_offset())); |
| __ cmpq(RCX, Immediate(Symbols::kNumberOfOneCharCodeSymbols)); |
| __ j(GREATER_EQUAL, &fall_through); |
| __ movq(RAX, Address(THR, Thread::predefined_symbols_address_offset())); |
| __ movq(RAX, Address(RAX, |
| RCX, |
| TIMES_8, |
| Symbols::kNullCharCodeSymbolOffset * kWordSize)); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) { |
| Label is_true; |
| // Get length. |
| __ movq(RAX, Address(RSP, + 1 * kWordSize)); // String object. |
| __ movq(RAX, FieldAddress(RAX, String::length_offset())); |
| __ cmpq(RAX, Immediate(Smi::RawValue(0))); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| __ Bind(&is_true); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) { |
| Label compute_hash; |
| __ movq(RBX, Address(RSP, + 1 * kWordSize)); // OneByteString object. |
| __ movq(RAX, FieldAddress(RBX, String::hash_offset())); |
| __ cmpq(RAX, Immediate(0)); |
| __ j(EQUAL, &compute_hash, Assembler::kNearJump); |
| __ ret(); |
| |
| __ Bind(&compute_hash); |
| // Hash not yet computed, use algorithm of class StringHasher. |
| __ movq(RCX, FieldAddress(RBX, String::length_offset())); |
| __ SmiUntag(RCX); |
| __ xorq(RAX, RAX); |
| __ xorq(RDI, RDI); |
| // RBX: Instance of OneByteString. |
| // RCX: String length, untagged integer. |
| // RDI: Loop counter, untagged integer. |
| // RAX: Hash code, untagged integer. |
| Label loop, done, set_hash_code; |
| __ Bind(&loop); |
| __ cmpq(RDI, RCX); |
| __ j(EQUAL, &done, Assembler::kNearJump); |
| // Add to hash code: (hash_ is uint32) |
| // hash_ += ch; |
| // hash_ += hash_ << 10; |
| // hash_ ^= hash_ >> 6; |
| // Get one characters (ch). |
| __ movzxb(RDX, FieldAddress(RBX, RDI, TIMES_1, OneByteString::data_offset())); |
| // RDX: ch and temporary. |
| __ addl(RAX, RDX); |
| __ movq(RDX, RAX); |
| __ shll(RDX, Immediate(10)); |
| __ addl(RAX, RDX); |
| __ movq(RDX, RAX); |
| __ shrl(RDX, Immediate(6)); |
| __ xorl(RAX, RDX); |
| |
| __ incq(RDI); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&done); |
| // Finalize: |
| // hash_ += hash_ << 3; |
| // hash_ ^= hash_ >> 11; |
| // hash_ += hash_ << 15; |
| __ movq(RDX, RAX); |
| __ shll(RDX, Immediate(3)); |
| __ addl(RAX, RDX); |
| __ movq(RDX, RAX); |
| __ shrl(RDX, Immediate(11)); |
| __ xorl(RAX, RDX); |
| __ movq(RDX, RAX); |
| __ shll(RDX, Immediate(15)); |
| __ addl(RAX, RDX); |
| // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
| __ andl(RAX, |
| Immediate(((static_cast<intptr_t>(1) << String::kHashBits) - 1))); |
| |
| // return hash_ == 0 ? 1 : hash_; |
| __ cmpq(RAX, Immediate(0)); |
| __ j(NOT_EQUAL, &set_hash_code, Assembler::kNearJump); |
| __ incq(RAX); |
| __ Bind(&set_hash_code); |
| __ SmiTag(RAX); |
| __ StoreIntoSmiField(FieldAddress(RBX, String::hash_offset()), RAX); |
| __ ret(); |
| } |
| |
| |
| // Allocates one-byte string of length 'end - start'. The content is not |
| // initialized. 'length-reg' contains tagged length. |
| // Returns new string as tagged pointer in RAX. |
| static void TryAllocateOnebyteString(Assembler* assembler, |
| Label* ok, |
| Label* failure, |
| Register length_reg) { |
| __ MaybeTraceAllocation(kOneByteStringCid, failure, false, |
| /* inline_isolate = */ false); |
| if (length_reg != RDI) { |
| __ movq(RDI, length_reg); |
| } |
| Label pop_and_fail; |
| __ pushq(RDI); // Preserve length. |
| __ SmiUntag(RDI); |
| const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1; |
| __ leaq(RDI, Address(RDI, TIMES_1, fixed_size)); // RDI is a Smi. |
| __ andq(RDI, Immediate(-kObjectAlignment)); |
| |
| const intptr_t cid = kOneByteStringCid; |
| Heap::Space space = Heap::SpaceForAllocation(cid); |
| __ movq(R13, Address(THR, Thread::heap_offset())); |
| __ movq(RAX, Address(R13, Heap::TopOffset(space))); |
| |
| // RDI: allocation size. |
| __ movq(RCX, RAX); |
| __ addq(RCX, RDI); |
| __ j(CARRY, &pop_and_fail); |
| |
| // Check if the allocation fits into the remaining space. |
| // RAX: potential new object start. |
| // RCX: potential next object start. |
| // RDI: allocation size. |
| // R13: heap. |
| __ cmpq(RCX, Address(R13, Heap::EndOffset(space))); |
| __ j(ABOVE_EQUAL, &pop_and_fail); |
| |
| // Successfully allocated the object(s), now update top to point to |
| // next object start and initialize the object. |
| __ movq(Address(R13, Heap::TopOffset(space)), RCX); |
| __ addq(RAX, Immediate(kHeapObjectTag)); |
| __ UpdateAllocationStatsWithSize(cid, RDI, space, |
| /* inline_isolate = */ false); |
| |
| // Initialize the tags. |
| // RAX: new object start as a tagged pointer. |
| // RDI: allocation size. |
| { |
| Label size_tag_overflow, done; |
| __ cmpq(RDI, Immediate(RawObject::SizeTag::kMaxSizeTag)); |
| __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
| __ shlq(RDI, Immediate(RawObject::kSizeTagPos - kObjectAlignmentLog2)); |
| __ jmp(&done, Assembler::kNearJump); |
| |
| __ Bind(&size_tag_overflow); |
| __ xorq(RDI, RDI); |
| __ Bind(&done); |
| |
| // Get the class index and insert it into the tags. |
| __ orq(RDI, Immediate(RawObject::ClassIdTag::encode(cid))); |
| __ movq(FieldAddress(RAX, String::tags_offset()), RDI); // Tags. |
| } |
| |
| // Set the length field. |
| __ popq(RDI); |
| __ InitializeFieldNoBarrier(RAX, |
| FieldAddress(RAX, String::length_offset()), |
| RDI); |
| // Clear hash. |
| __ ZeroInitSmiField(FieldAddress(RAX, String::hash_offset())); |
| __ jmp(ok, Assembler::kNearJump); |
| |
| __ Bind(&pop_and_fail); |
| __ popq(RDI); |
| __ jmp(failure); |
| } |
| |
| |
| // Arg0: OneByteString (receiver). |
| // Arg1: Start index as Smi. |
| // Arg2: End index as Smi. |
| // The indexes must be valid. |
| void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) { |
| const intptr_t kStringOffset = 3 * kWordSize; |
| const intptr_t kStartIndexOffset = 2 * kWordSize; |
| const intptr_t kEndIndexOffset = 1 * kWordSize; |
| Label fall_through, ok; |
| __ movq(RSI, Address(RSP, + kStartIndexOffset)); |
| __ movq(RDI, Address(RSP, + kEndIndexOffset)); |
| __ orq(RSI, RDI); |
| __ testq(RSI, Immediate(kSmiTagMask)); |
| __ j(NOT_ZERO, &fall_through); // 'start', 'end' not Smi. |
| |
| __ subq(RDI, Address(RSP, + kStartIndexOffset)); |
| TryAllocateOnebyteString(assembler, &ok, &fall_through, RDI); |
| __ Bind(&ok); |
| // RAX: new string as tagged pointer. |
| // Copy string. |
| __ movq(RSI, Address(RSP, + kStringOffset)); |
| __ movq(RBX, Address(RSP, + kStartIndexOffset)); |
| __ SmiUntag(RBX); |
| __ leaq(RSI, FieldAddress(RSI, RBX, TIMES_1, OneByteString::data_offset())); |
| // RSI: Start address to copy from (untagged). |
| // RBX: Untagged start index. |
| __ movq(RCX, Address(RSP, + kEndIndexOffset)); |
| __ SmiUntag(RCX); |
| __ subq(RCX, RBX); |
| __ xorq(RDX, RDX); |
| // RSI: Start address to copy from (untagged). |
| // RCX: Untagged number of bytes to copy. |
| // RAX: Tagged result string |
| // RDX: Loop counter. |
| // RBX: Scratch register. |
| Label loop, check; |
| __ jmp(&check, Assembler::kNearJump); |
| __ Bind(&loop); |
| __ movzxb(RBX, Address(RSI, RDX, TIMES_1, 0)); |
| __ movb(FieldAddress(RAX, RDX, TIMES_1, OneByteString::data_offset()), RBX); |
| __ incq(RDX); |
| __ Bind(&check); |
| __ cmpq(RDX, RCX); |
| __ j(LESS, &loop, Assembler::kNearJump); |
| __ ret(); |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::OneByteStringSetAt(Assembler* assembler) { |
| __ movq(RCX, Address(RSP, + 1 * kWordSize)); // Value. |
| __ movq(RBX, Address(RSP, + 2 * kWordSize)); // Index. |
| __ movq(RAX, Address(RSP, + 3 * kWordSize)); // OneByteString. |
| __ SmiUntag(RBX); |
| __ SmiUntag(RCX); |
| __ movb(FieldAddress(RAX, RBX, TIMES_1, OneByteString::data_offset()), RCX); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::OneByteString_allocate(Assembler* assembler) { |
| __ movq(RDI, Address(RSP, + 1 * kWordSize)); // Length.v= |
| Label fall_through, ok; |
| TryAllocateOnebyteString(assembler, &ok, &fall_through, RDI); |
| // RDI: Start address to copy from (untagged). |
| |
| __ Bind(&ok); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| // TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
| static void StringEquality(Assembler* assembler, intptr_t string_cid) { |
| Label fall_through, is_true, is_false, loop; |
| __ movq(RAX, Address(RSP, + 2 * kWordSize)); // This. |
| __ movq(RCX, Address(RSP, + 1 * kWordSize)); // Other. |
| |
| // Are identical? |
| __ cmpq(RAX, RCX); |
| __ j(EQUAL, &is_true, Assembler::kNearJump); |
| |
| // Is other OneByteString? |
| __ testq(RCX, Immediate(kSmiTagMask)); |
| __ j(ZERO, &is_false); // Smi |
| __ CompareClassId(RCX, string_cid); |
| __ j(NOT_EQUAL, &fall_through, Assembler::kNearJump); |
| |
| // Have same length? |
| __ movq(RDI, FieldAddress(RAX, String::length_offset())); |
| __ cmpq(RDI, FieldAddress(RCX, String::length_offset())); |
| __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); |
| |
| // Check contents, no fall-through possible. |
| // TODO(srdjan): write a faster check. |
| __ SmiUntag(RDI); |
| __ Bind(&loop); |
| __ decq(RDI); |
| __ cmpq(RDI, Immediate(0)); |
| __ j(LESS, &is_true, Assembler::kNearJump); |
| if (string_cid == kOneByteStringCid) { |
| __ movzxb(RBX, |
| FieldAddress(RAX, RDI, TIMES_1, OneByteString::data_offset())); |
| __ movzxb(RDX, |
| FieldAddress(RCX, RDI, TIMES_1, OneByteString::data_offset())); |
| } else if (string_cid == kTwoByteStringCid) { |
| __ movzxw(RBX, |
| FieldAddress(RAX, RDI, TIMES_2, TwoByteString::data_offset())); |
| __ movzxw(RDX, |
| FieldAddress(RCX, RDI, TIMES_2, TwoByteString::data_offset())); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| __ cmpq(RBX, RDX); |
| __ j(NOT_EQUAL, &is_false, Assembler::kNearJump); |
| __ jmp(&loop, Assembler::kNearJump); |
| |
| __ Bind(&is_true); |
| __ LoadObject(RAX, Bool::True()); |
| __ ret(); |
| |
| __ Bind(&is_false); |
| __ LoadObject(RAX, Bool::False()); |
| __ ret(); |
| |
| __ Bind(&fall_through); |
| } |
| |
| |
| void Intrinsifier::OneByteString_equality(Assembler* assembler) { |
| StringEquality(assembler, kOneByteStringCid); |
| } |
| |
| |
| void Intrinsifier::TwoByteString_equality(Assembler* assembler) { |
| StringEquality(assembler, kTwoByteStringCid); |
| } |
| |
| |
| void Intrinsifier::JSRegExp_ExecuteMatch(Assembler* assembler) { |
| if (FLAG_interpret_irregexp) return; |
| |
| static const intptr_t kRegExpParamOffset = 3 * kWordSize; |
| static const intptr_t kStringParamOffset = 2 * kWordSize; |
| // start_index smi is located at offset 1. |
| |
| // Incoming registers: |
| // RAX: Function. (Will be loaded with the specialized matcher function.) |
| // RCX: Unknown. (Must be GC safe on tail call.) |
| // R10: Arguments descriptor. (Will be preserved.) |
| |
| // Load the specialized function pointer into RAX. Leverage the fact the |
| // string CIDs as well as stored function pointers are in sequence. |
| __ movq(RBX, Address(RSP, kRegExpParamOffset)); |
| __ movq(RDI, Address(RSP, kStringParamOffset)); |
| __ LoadClassId(RDI, RDI); |
| __ SubImmediate(RDI, Immediate(kOneByteStringCid)); |
| __ movq(RAX, FieldAddress(RBX, RDI, TIMES_8, |
| JSRegExp::function_offset(kOneByteStringCid))); |
| |
| // Registers are now set up for the lazy compile stub. It expects the function |
| // in RAX, the argument descriptor in R10, and IC-Data in RCX. |
| __ xorq(RCX, RCX); |
| |
| // Tail-call the function. |
| __ movq(CODE_REG, FieldAddress(RAX, Function::code_offset())); |
| __ movq(RDI, FieldAddress(RAX, Function::entry_point_offset())); |
| __ jmp(RDI); |
| } |
| |
| |
| // On stack: user tag (+1), return-address (+0). |
| void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) { |
| // RBX: Isolate. |
| __ LoadIsolate(RBX); |
| // RAX: Current user tag. |
| __ movq(RAX, Address(RBX, Isolate::current_tag_offset())); |
| // R10: UserTag. |
| __ movq(R10, Address(RSP, + 1 * kWordSize)); |
| // Set Isolate::current_tag_. |
| __ movq(Address(RBX, Isolate::current_tag_offset()), R10); |
| // R10: UserTag's tag. |
| __ movq(R10, FieldAddress(R10, UserTag::tag_offset())); |
| // Set Isolate::user_tag_. |
| __ movq(Address(RBX, Isolate::user_tag_offset()), R10); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::UserTag_defaultTag(Assembler* assembler) { |
| __ LoadIsolate(RAX); |
| __ movq(RAX, Address(RAX, Isolate::default_tag_offset())); |
| __ ret(); |
| } |
| |
| |
| void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) { |
| __ LoadIsolate(RAX); |
| __ movq(RAX, Address(RAX, Isolate::current_tag_offset())); |
| __ ret(); |
| } |
| |
| #undef __ |
| |
| } // namespace dart |
| |
| #endif // defined TARGET_ARCH_X64 |