| // Copyright (c) 2017, the Dart project authors. Please see the AUTHORS file | 
 | // for details. All rights reserved. Use of this source code is governed by a | 
 | // BSD-style license that can be found in the LICENSE file. | 
 |  | 
 | /// Computes the strongly connected components of [graph]. | 
 | /// | 
 | /// This implementation is based on [Dijkstra's path-based strong component | 
 | /// algorithm] | 
 | /// (https://en.wikipedia.org/wiki/Path-based_strong_component_algorithm#Description). | 
 | List<List<T>> computeStrongComponents<T>(Graph<T> graph) { | 
 |   List<List<T>> result = <List<T>>[]; | 
 |   int count = 0; | 
 |   Map<T, int> preorderNumbers = <T, int>{}; | 
 |   List<T> unassigned = <T>[]; | 
 |   List<T> candidates = <T>[]; | 
 |   Set<T> assigned = <T>{}; | 
 |  | 
 |   void recursivelySearch(T vertex) { | 
 |     // Step 1: Set the preorder number of [vertex] to [count], and increment | 
 |     // [count]. | 
 |     preorderNumbers[vertex] = count++; | 
 |  | 
 |     // Step 2: Push [vertex] onto [unassigned] and also onto [candidates]. | 
 |     unassigned.add(vertex); | 
 |     candidates.add(vertex); | 
 |  | 
 |     // Step 3: For each edge from [vertex] to a neighboring vertex [neighbor]: | 
 |     for (T neighbor in graph.neighborsOf(vertex)) { | 
 |       var neighborPreorderNumber = preorderNumbers[neighbor]; | 
 |       if (neighborPreorderNumber == null) { | 
 |         // If the preorder number of [neighbor] has not yet been assigned, | 
 |         // recursively search [neighbor]; | 
 |         recursivelySearch(neighbor); | 
 |       } else if (!assigned.contains(neighbor)) { | 
 |         // Otherwise, if [neighbor] has not yet been assigned to a strongly | 
 |         // connected component: | 
 |         // | 
 |         // * Repeatedly pop vertices from [candidates] until the top element of | 
 |         //   [candidates] has a preorder number less than or equal to the | 
 |         //   preorder number of [neighbor]. | 
 |         while (preorderNumbers[candidates.last]! > neighborPreorderNumber) { | 
 |           candidates.removeLast(); | 
 |         } | 
 |       } | 
 |     } | 
 |     // Step 4: If [vertex] is the top element of [candidates]: | 
 |     if (candidates.last == vertex) { | 
 |       // Pop vertices from [unassigned] until [vertex] has been popped, and | 
 |       // assign the popped vertices to a new component. | 
 |       List<T> component = <T>[]; | 
 |       while (true) { | 
 |         T top = unassigned.removeLast(); | 
 |         component.add(top); | 
 |         assigned.add(top); | 
 |         if (top == vertex) break; | 
 |       } | 
 |       result.add(component); | 
 |  | 
 |       // Pop [vertex] from [candidates]. | 
 |       candidates.removeLast(); | 
 |     } | 
 |   } | 
 |  | 
 |   for (T vertex in graph.vertices) { | 
 |     if (preorderNumbers[vertex] == null) { | 
 |       recursivelySearch(vertex); | 
 |     } | 
 |   } | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | abstract class Graph<T> { | 
 |   Iterable<T> get vertices; | 
 |  | 
 |   Iterable<T> neighborsOf(T vertex); | 
 | } |