blob: 6db94886cc97843a06f2574c47a04291dbd34c32 [file] [log] [blame]
// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include "vm/globals.h"
#if defined(HOST_OS_LINUX)
#include "vm/os.h"
#include <errno.h> // NOLINT
#include <limits.h> // NOLINT
#include <malloc.h> // NOLINT
#include <time.h> // NOLINT
#include <sys/resource.h> // NOLINT
#include <sys/time.h> // NOLINT
#include <sys/types.h> // NOLINT
#include <sys/syscall.h> // NOLINT
#include <sys/stat.h> // NOLINT
#include <fcntl.h> // NOLINT
#include <unistd.h> // NOLINT
#include "platform/memory_sanitizer.h"
#include "platform/utils.h"
#include "vm/code_observers.h"
#include "vm/dart.h"
#include "vm/flags.h"
#include "vm/isolate.h"
#include "vm/lockers.h"
#include "vm/os_thread.h"
#include "vm/zone.h"
namespace dart {
#ifndef PRODUCT
DEFINE_FLAG(bool,
generate_perf_events_symbols,
false,
"Generate events symbols for profiling with perf");
// Linux CodeObservers.
class PerfCodeObserver : public CodeObserver {
public:
PerfCodeObserver() : out_file_(NULL) {
Dart_FileOpenCallback file_open = Dart::file_open_callback();
if (file_open == NULL) {
return;
}
intptr_t pid = getpid();
char* filename = OS::SCreate(NULL, "/tmp/perf-%" Pd ".map", pid);
out_file_ = (*file_open)(filename, true);
free(filename);
}
~PerfCodeObserver() {
Dart_FileCloseCallback file_close = Dart::file_close_callback();
if ((file_close == NULL) || (out_file_ == NULL)) {
return;
}
(*file_close)(out_file_);
}
virtual bool IsActive() const {
return FLAG_generate_perf_events_symbols && (out_file_ != NULL);
}
virtual void Notify(const char* name,
uword base,
uword prologue_offset,
uword size,
bool optimized) {
Dart_FileWriteCallback file_write = Dart::file_write_callback();
if ((file_write == NULL) || (out_file_ == NULL)) {
return;
}
const char* marker = optimized ? "*" : "";
char* buffer =
OS::SCreate(Thread::Current()->zone(), "%" Px " %" Px " %s%s\n", base,
size, marker, name);
{
MutexLocker ml(CodeObservers::mutex());
(*file_write)(buffer, strlen(buffer), out_file_);
}
}
private:
void* out_file_;
DISALLOW_COPY_AND_ASSIGN(PerfCodeObserver);
};
#endif // !PRODUCT
const char* OS::Name() {
return "linux";
}
intptr_t OS::ProcessId() {
return static_cast<intptr_t>(getpid());
}
static bool LocalTime(int64_t seconds_since_epoch, tm* tm_result) {
time_t seconds = static_cast<time_t>(seconds_since_epoch);
if (seconds != seconds_since_epoch) return false;
struct tm* error_code = localtime_r(&seconds, tm_result);
return error_code != NULL;
}
const char* OS::GetTimeZoneName(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// If unsuccessful, return an empty string like V8 does.
return (succeeded && (decomposed.tm_zone != NULL)) ? decomposed.tm_zone : "";
}
int OS::GetTimeZoneOffsetInSeconds(int64_t seconds_since_epoch) {
tm decomposed;
bool succeeded = LocalTime(seconds_since_epoch, &decomposed);
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// If unsuccessful, return zero like V8 does.
return succeeded ? static_cast<int>(decomposed.tm_gmtoff) : 0;
}
int OS::GetLocalTimeZoneAdjustmentInSeconds() {
// TODO(floitsch): avoid excessive calls to tzset?
tzset();
// Even if the offset was 24 hours it would still easily fit into 32 bits.
// Note that Unix and Dart disagree on the sign.
return static_cast<int>(-timezone);
}
int64_t OS::GetCurrentTimeMillis() {
return GetCurrentTimeMicros() / 1000;
}
int64_t OS::GetCurrentTimeMicros() {
// gettimeofday has microsecond resolution.
struct timeval tv;
if (gettimeofday(&tv, NULL) < 0) {
UNREACHABLE();
return 0;
}
return (static_cast<int64_t>(tv.tv_sec) * 1000000) + tv.tv_usec;
}
int64_t OS::GetCurrentMonotonicTicks() {
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) != 0) {
UNREACHABLE();
return 0;
}
// Convert to nanoseconds.
int64_t result = ts.tv_sec;
result *= kNanosecondsPerSecond;
result += ts.tv_nsec;
return result;
}
int64_t OS::GetCurrentMonotonicFrequency() {
return kNanosecondsPerSecond;
}
int64_t OS::GetCurrentMonotonicMicros() {
int64_t ticks = GetCurrentMonotonicTicks();
ASSERT(GetCurrentMonotonicFrequency() == kNanosecondsPerSecond);
return ticks / kNanosecondsPerMicrosecond;
}
int64_t OS::GetCurrentThreadCPUMicros() {
struct timespec ts;
if (clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts) != 0) {
UNREACHABLE();
return -1;
}
int64_t result = ts.tv_sec;
result *= kMicrosecondsPerSecond;
result += (ts.tv_nsec / kNanosecondsPerMicrosecond);
return result;
}
// TODO(5411554): May need to hoist these architecture dependent code
// into a architecture specific file e.g: os_ia32_linux.cc
intptr_t OS::ActivationFrameAlignment() {
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64) || defined(TARGET_ARCH_DBC)
const int kMinimumAlignment = 16;
#elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS)
const int kMinimumAlignment = 8;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default stack alignment for
// testing purposes.
// Flags::DebugIsInt("stackalign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
return alignment;
}
intptr_t OS::PreferredCodeAlignment() {
#if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) || \
defined(TARGET_ARCH_ARM64) || defined(TARGET_ARCH_DBC)
const int kMinimumAlignment = 32;
#elif defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_MIPS)
const int kMinimumAlignment = 16;
#else
#error Unsupported architecture.
#endif
intptr_t alignment = kMinimumAlignment;
// TODO(5411554): Allow overriding default code alignment for
// testing purposes.
// Flags::DebugIsInt("codealign", &alignment);
ASSERT(Utils::IsPowerOfTwo(alignment));
ASSERT(alignment >= kMinimumAlignment);
ASSERT(alignment <= OS::kMaxPreferredCodeAlignment);
return alignment;
}
bool OS::AllowStackFrameIteratorFromAnotherThread() {
return false;
}
int OS::NumberOfAvailableProcessors() {
return sysconf(_SC_NPROCESSORS_ONLN);
}
uintptr_t OS::MaxRSS() {
struct rusage usage;
usage.ru_maxrss = 0;
int r = getrusage(RUSAGE_SELF, &usage);
ASSERT(r == 0);
return usage.ru_maxrss * KB;
}
void OS::Sleep(int64_t millis) {
int64_t micros = millis * kMicrosecondsPerMillisecond;
SleepMicros(micros);
}
void OS::SleepMicros(int64_t micros) {
struct timespec req; // requested.
struct timespec rem; // remainder.
int64_t seconds = micros / kMicrosecondsPerSecond;
micros = micros - seconds * kMicrosecondsPerSecond;
int64_t nanos = micros * kNanosecondsPerMicrosecond;
req.tv_sec = seconds;
req.tv_nsec = nanos;
while (true) {
int r = nanosleep(&req, &rem);
if (r == 0) {
break;
}
// We should only ever see an interrupt error.
ASSERT(errno == EINTR);
// Copy remainder into requested and repeat.
req = rem;
}
}
// TODO(regis, iposva): When this function is no longer called from the
// CodeImmutability test in object_test.cc, it will be called only from the
// simulator, which means that only the Intel implementation is needed.
void OS::DebugBreak() {
__builtin_trap();
}
uintptr_t DART_NOINLINE OS::GetProgramCounter() {
return reinterpret_cast<uintptr_t>(
__builtin_extract_return_addr(__builtin_return_address(0)));
}
char* OS::StrNDup(const char* s, intptr_t n) {
return strndup(s, n);
}
intptr_t OS::StrNLen(const char* s, intptr_t n) {
return strnlen(s, n);
}
void OS::Print(const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(stdout, format, args);
va_end(args);
}
void OS::VFPrint(FILE* stream, const char* format, va_list args) {
vfprintf(stream, format, args);
fflush(stream);
}
int OS::SNPrint(char* str, size_t size, const char* format, ...) {
va_list args;
va_start(args, format);
int retval = VSNPrint(str, size, format, args);
va_end(args);
return retval;
}
int OS::VSNPrint(char* str, size_t size, const char* format, va_list args) {
MSAN_UNPOISON(str, size);
int retval = vsnprintf(str, size, format, args);
if (retval < 0) {
FATAL1("Fatal error in OS::VSNPrint with format '%s'", format);
}
return retval;
}
char* OS::SCreate(Zone* zone, const char* format, ...) {
va_list args;
va_start(args, format);
char* buffer = VSCreate(zone, format, args);
va_end(args);
return buffer;
}
char* OS::VSCreate(Zone* zone, const char* format, va_list args) {
// Measure.
va_list measure_args;
va_copy(measure_args, args);
intptr_t len = VSNPrint(NULL, 0, format, measure_args);
va_end(measure_args);
char* buffer;
if (zone) {
buffer = zone->Alloc<char>(len + 1);
} else {
buffer = reinterpret_cast<char*>(malloc(len + 1));
}
ASSERT(buffer != NULL);
// Print.
va_list print_args;
va_copy(print_args, args);
VSNPrint(buffer, len + 1, format, print_args);
va_end(print_args);
return buffer;
}
bool OS::StringToInt64(const char* str, int64_t* value) {
ASSERT(str != NULL && strlen(str) > 0 && value != NULL);
int32_t base = 10;
char* endptr;
int i = 0;
if (str[0] == '-') {
i = 1;
}
if ((str[i] == '0') && (str[i + 1] == 'x' || str[i + 1] == 'X') &&
(str[i + 2] != '\0')) {
base = 16;
}
errno = 0;
*value = strtoll(str, &endptr, base);
return ((errno == 0) && (endptr != str) && (*endptr == 0));
}
void OS::RegisterCodeObservers() {
#ifndef PRODUCT
if (FLAG_generate_perf_events_symbols) {
CodeObservers::Register(new PerfCodeObserver);
}
#endif // !PRODUCT
}
void OS::PrintErr(const char* format, ...) {
va_list args;
va_start(args, format);
VFPrint(stderr, format, args);
va_end(args);
}
void OS::InitOnce() {
// TODO(5411554): For now we check that initonce is called only once,
// Once there is more formal mechanism to call InitOnce we can move
// this check there.
static bool init_once_called = false;
ASSERT(init_once_called == false);
init_once_called = true;
}
void OS::Shutdown() {}
void OS::Abort() {
abort();
}
void OS::Exit(int code) {
exit(code);
}
} // namespace dart
#endif // defined(HOST_OS_LINUX)