blob: b64ca2809b8411be4f61711f823fbf9364ea8f2b [file] [log] [blame]
// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file
// for details. All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#include <map>
#include <set>
#include <string>
#include "vm/kernel_to_il.h"
#include "vm/compiler.h"
#include "vm/intermediate_language.h"
#include "vm/kernel_reader.h"
#include "vm/longjump.h"
#include "vm/method_recognizer.h"
#include "vm/object_store.h"
#include "vm/report.h"
#include "vm/resolver.h"
#include "vm/stack_frame.h"
#if !defined(DART_PRECOMPILED_RUNTIME)
namespace dart {
DECLARE_FLAG(bool, support_externalizable_strings);
namespace kernel {
#define Z (zone_)
#define H (translation_helper_)
#define T (type_translator_)
#define I Isolate::Current()
static void DiscoverEnclosingElements(Zone* zone,
const Function& function,
Function* outermost_function,
TreeNode** outermost_node,
Class** klass) {
// Find out if there is an enclosing kernel class (which will be used to
// resolve type parameters).
*outermost_function = function.raw();
while (outermost_function->parent_function() != Object::null()) {
*outermost_function = outermost_function->parent_function();
}
*outermost_node =
static_cast<TreeNode*>(outermost_function->kernel_function());
if (*outermost_node != NULL) {
TreeNode* parent = NULL;
if ((*outermost_node)->IsProcedure()) {
parent = Procedure::Cast(*outermost_node)->parent();
} else if ((*outermost_node)->IsConstructor()) {
parent = Constructor::Cast(*outermost_node)->parent();
} else if ((*outermost_node)->IsField()) {
parent = Field::Cast(*outermost_node)->parent();
}
if (parent != NULL && parent->IsClass()) *klass = Class::Cast(parent);
}
}
void ScopeBuilder::EnterScope(TreeNode* node, TokenPosition start_position) {
scope_ = new (Z) LocalScope(scope_, depth_.function_, depth_.loop_);
scope_->set_begin_token_pos(start_position);
ASSERT(node->kernel_offset() >= 0);
result_->scopes.Insert(node->kernel_offset(), scope_);
}
void ScopeBuilder::ExitScope(TokenPosition end_position) {
scope_->set_end_token_pos(end_position);
scope_ = scope_->parent();
}
LocalVariable* ScopeBuilder::MakeVariable(TokenPosition declaration_pos,
TokenPosition token_pos,
const dart::String& name,
const AbstractType& type) {
return new (Z) LocalVariable(declaration_pos, token_pos, name, type);
}
void ScopeBuilder::AddParameters(FunctionNode* function, intptr_t pos) {
List<VariableDeclaration>& positional = function->positional_parameters();
for (intptr_t i = 0; i < positional.length(); ++i) {
AddParameter(positional[i], pos++);
}
List<VariableDeclaration>& named = function->named_parameters();
for (intptr_t i = 0; i < named.length(); ++i) {
AddParameter(named[i], pos++);
}
}
void ScopeBuilder::AddParameter(VariableDeclaration* declaration,
intptr_t pos) {
LocalVariable* variable = MakeVariable(
declaration->position(), declaration->position(),
H.DartSymbol(declaration->name()), T.TranslateVariableType(declaration));
if (declaration->IsFinal()) {
variable->set_is_final();
}
scope_->InsertParameterAt(pos, variable);
result_->locals.Insert(declaration->kernel_offset(), variable);
// The default value may contain 'let' bindings for which the constant
// evaluator needs scope bindings.
Expression* defaultValue = declaration->initializer();
if (defaultValue != NULL) {
defaultValue->AcceptExpressionVisitor(this);
}
}
void ScopeBuilder::AddExceptionVariable(
GrowableArray<LocalVariable*>* variables,
const char* prefix,
intptr_t nesting_depth) {
LocalVariable* v = NULL;
// If we are inside a function with yield points then Kernel transformer
// could have lifted some of the auxiliary exception variables into the
// context to preserve them across yield points because they might
// be needed for rethrow.
// Check if it did and capture such variables instead of introducing
// new local ones.
// Note: function that wrap kSyncYielding function does not contain
// its own try/catches.
if (current_function_node_->async_marker() == FunctionNode::kSyncYielding) {
ASSERT(current_function_scope_->parent() != NULL);
v = current_function_scope_->parent()->LocalLookupVariable(
GenerateName(prefix, nesting_depth - 1));
if (v != NULL) {
scope_->CaptureVariable(v);
}
}
// No need to create variables for try/catch-statements inside
// nested functions.
if (depth_.function_ > 0) return;
if (variables->length() >= nesting_depth) return;
// If variable was not lifted by the transformer introduce a new
// one into the current function scope.
if (v == NULL) {
v = MakeVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
GenerateName(prefix, nesting_depth - 1),
AbstractType::dynamic_type());
// If transformer did not lift the variable then there is no need
// to lift it into the context when we encouter a YieldStatement.
v->set_is_forced_stack();
current_function_scope_->AddVariable(v);
}
variables->Add(v);
}
void ScopeBuilder::AddTryVariables() {
AddExceptionVariable(&result_->catch_context_variables,
":saved_try_context_var", depth_.try_);
}
void ScopeBuilder::AddCatchVariables() {
AddExceptionVariable(&result_->exception_variables, ":exception",
depth_.catch_);
AddExceptionVariable(&result_->stack_trace_variables, ":stack_trace",
depth_.catch_);
}
void ScopeBuilder::AddIteratorVariable() {
if (depth_.function_ > 0) return;
if (result_->iterator_variables.length() >= depth_.for_in_) return;
ASSERT(result_->iterator_variables.length() == depth_.for_in_ - 1);
LocalVariable* iterator =
MakeVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
GenerateName(":iterator", depth_.for_in_ - 1),
AbstractType::dynamic_type());
current_function_scope_->AddVariable(iterator);
result_->iterator_variables.Add(iterator);
}
void ScopeBuilder::LookupVariable(VariableDeclaration* declaration) {
LocalVariable* variable =
result_->locals.Lookup(declaration->kernel_offset());
if (variable == NULL) {
// We have not seen a declaration of the variable, so it must be the
// case that we are compiling a nested function and the variable is
// declared in an outer scope. In that case, look it up in the scope by
// name and add it to the variable map to simplify later lookup.
ASSERT(current_function_scope_->parent() != NULL);
const dart::String& name = H.DartSymbol(declaration->name());
variable = current_function_scope_->parent()->LookupVariable(name, true);
ASSERT(variable != NULL);
result_->locals.Insert(declaration->kernel_offset(), variable);
}
if (variable->owner()->function_level() < scope_->function_level()) {
// We call `LocalScope->CaptureVariable(variable)` in two scenarios for two
// different reasons:
// Scenario 1:
// We need to know which variables defined in this function
// are closed over by nested closures in order to ensure we will
// create a [Context] object of appropriate size and store captured
// variables there instead of the stack.
// Scenario 2:
// We need to find out which variables defined in enclosing functions
// are closed over by this function/closure or nested closures. This
// is necessary in order to build a fat flattened [ContextScope]
// object.
scope_->CaptureVariable(variable);
} else {
ASSERT(variable->owner()->function_level() == scope_->function_level());
}
}
void ScopeBuilder::LookupCapturedVariableByName(LocalVariable** variable,
const dart::String& name) {
if (*variable == NULL) {
*variable = scope_->LookupVariable(name, true);
ASSERT(*variable != NULL);
scope_->CaptureVariable(*variable);
}
}
const dart::String& ScopeBuilder::GenerateName(const char* prefix,
intptr_t suffix) {
char name[64];
OS::SNPrint(name, 64, "%s%" Pd "", prefix, suffix);
return H.DartSymbol(name);
}
void ScopeBuilder::AddVariable(VariableDeclaration* declaration) {
// In case `declaration->IsConst()` the flow graph building will take care of
// evaluating the constant and setting it via
// `declaration->SetConstantValue()`.
const dart::String& name = declaration->name()->is_empty()
? GenerateName(":var", name_index_++)
: H.DartSymbol(declaration->name());
LocalVariable* variable =
MakeVariable(declaration->position(), declaration->end_position(), name,
T.TranslateVariableType(declaration));
if (declaration->IsFinal()) {
variable->set_is_final();
}
scope_->AddVariable(variable);
result_->locals.Insert(declaration->kernel_offset(), variable);
}
static bool IsStaticInitializer(const Function& function, Zone* zone) {
return (function.kind() == RawFunction::kImplicitStaticFinalGetter) &&
dart::String::Handle(zone, function.name())
.StartsWith(Symbols::InitPrefix());
}
ScopeBuildingResult* ScopeBuilder::BuildScopes() {
if (result_ != NULL) return result_;
ASSERT(scope_ == NULL && depth_.loop_ == 0 && depth_.function_ == 0);
result_ = new (Z) ScopeBuildingResult();
ParsedFunction* parsed_function = parsed_function_;
const dart::Function& function = parsed_function->function();
// Setup a [ActiveClassScope] and a [ActiveMemberScope] which will be used
// e.g. for type translation.
const dart::Class& klass =
dart::Class::Handle(zone_, parsed_function_->function().Owner());
Function& outermost_function = Function::Handle(Z);
TreeNode* outermost_node = NULL;
Class* kernel_class = NULL;
DiscoverEnclosingElements(Z, function, &outermost_function, &outermost_node,
&kernel_class);
// Use [klass]/[kernel_class] as active class. Type parameters will get
// resolved via [kernel_class] unless we are nested inside a static factory
// in which case we will use [member].
ActiveClassScope active_class_scope(&active_class_, kernel_class, &klass);
Member* member = ((outermost_node != NULL) && outermost_node->IsMember())
? Member::Cast(outermost_node)
: NULL;
ActiveMemberScope active_member(&active_class_, member);
LocalScope* enclosing_scope = NULL;
if (function.IsLocalFunction()) {
enclosing_scope = LocalScope::RestoreOuterScope(
ContextScope::Handle(Z, function.context_scope()));
}
current_function_scope_ = scope_ = new (Z) LocalScope(enclosing_scope, 0, 0);
scope_->set_begin_token_pos(function.token_pos());
scope_->set_end_token_pos(function.end_token_pos());
LocalVariable* context_var = parsed_function->current_context_var();
context_var->set_is_forced_stack();
scope_->AddVariable(context_var);
scope_->AddVariable(parsed_function->EnsureExpressionTemp());
parsed_function->SetNodeSequence(
new SequenceNode(TokenPosition::kNoSource, scope_));
switch (function.kind()) {
case RawFunction::kClosureFunction:
case RawFunction::kRegularFunction:
case RawFunction::kGetterFunction:
case RawFunction::kSetterFunction:
case RawFunction::kConstructor: {
FunctionNode* node;
if (node_->IsProcedure()) {
node = Procedure::Cast(node_)->function();
} else if (node_->IsConstructor()) {
node = Constructor::Cast(node_)->function();
} else {
node = FunctionNode::Cast(node_);
}
current_function_node_ = node;
intptr_t pos = 0;
if (function.IsClosureFunction()) {
LocalVariable* variable = MakeVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::ClosureParameter(), AbstractType::dynamic_type());
variable->set_is_forced_stack();
scope_->InsertParameterAt(pos++, variable);
} else if (!function.is_static()) {
// We use [is_static] instead of [IsStaticFunction] because the latter
// returns `false` for constructors.
dart::Class& klass = dart::Class::Handle(Z, function.Owner());
Type& klass_type = H.GetCanonicalType(klass);
LocalVariable* variable =
MakeVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::This(), klass_type);
scope_->InsertParameterAt(pos++, variable);
result_->this_variable = variable;
// We visit instance field initializers because they might contain
// [Let] expressions and we need to have a mapping.
if (node_->IsConstructor()) {
Class* klass = Class::Cast(Constructor::Cast(node_)->parent());
for (intptr_t i = 0; i < klass->fields().length(); i++) {
Field* field = klass->fields()[i];
if (!field->IsStatic() && (field->initializer() != NULL)) {
EnterScope(field, field->position());
field->initializer()->AcceptExpressionVisitor(this);
ExitScope(field->end_position());
}
}
}
} else if (function.IsFactory()) {
LocalVariable* variable = MakeVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::TypeArgumentsParameter(), AbstractType::dynamic_type());
scope_->InsertParameterAt(pos++, variable);
result_->type_arguments_variable = variable;
}
AddParameters(node, pos);
// We generate a syntethic body for implicit closure functions - which
// will forward the call to the real function.
// -> see BuildGraphOfImplicitClosureFunction
if (!function.IsImplicitClosureFunction()) {
// TODO(jensj): HACK: Push the begin token to after any parameters to
// avoid crash when breaking on definition line of async method in
// debugger. It seems that another scope needs to be added
// in which captures are made, but I can't make that work.
// This 'solution' doesn't crash, but I cannot see the parameters at
// that particular breakpoint either.
// Also push the end token to after the "}" to avoid crashing on
// stepping past the last line (to the "}" character).
if (node->body() != NULL && node->body()->position().IsReal()) {
scope_->set_begin_token_pos(node->body()->position());
}
if (scope_->end_token_pos().IsReal()) {
scope_->set_end_token_pos(scope_->end_token_pos().Next());
}
node_->AcceptVisitor(this);
}
break;
}
case RawFunction::kImplicitGetter:
case RawFunction::kImplicitStaticFinalGetter:
case RawFunction::kImplicitSetter: {
ASSERT(node_->IsField());
if (IsStaticInitializer(function, Z)) {
node_->AcceptVisitor(this);
break;
}
bool is_setter = function.IsImplicitSetterFunction();
bool is_method = !function.IsStaticFunction();
intptr_t pos = 0;
if (is_method) {
dart::Class& klass = dart::Class::Handle(Z, function.Owner());
Type& klass_type = H.GetCanonicalType(klass);
LocalVariable* variable =
MakeVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::This(), klass_type);
scope_->InsertParameterAt(pos++, variable);
result_->this_variable = variable;
}
if (is_setter) {
result_->setter_value =
MakeVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::Value(), AbstractType::dynamic_type());
scope_->InsertParameterAt(pos++, result_->setter_value);
}
break;
}
case RawFunction::kMethodExtractor: {
// Add a receiver parameter. Though it is captured, we emit code to
// explicitly copy it to a fixed offset in a freshly-allocated context
// instead of using the generic code for regular functions.
// Therefore, it isn't necessary to mark it as captured here.
dart::Class& klass = dart::Class::Handle(Z, function.Owner());
Type& klass_type = H.GetCanonicalType(klass);
LocalVariable* variable =
MakeVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::This(), klass_type);
scope_->InsertParameterAt(0, variable);
result_->this_variable = variable;
break;
}
case RawFunction::kNoSuchMethodDispatcher:
case RawFunction::kInvokeFieldDispatcher:
for (intptr_t i = 0; i < function.NumParameters(); ++i) {
LocalVariable* variable = MakeVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource,
dart::String::ZoneHandle(Z, function.ParameterNameAt(i)),
AbstractType::dynamic_type());
scope_->InsertParameterAt(i, variable);
}
break;
case RawFunction::kSignatureFunction:
case RawFunction::kIrregexpFunction:
UNREACHABLE();
}
parsed_function->AllocateVariables();
return result_;
}
void ScopeBuilder::VisitThisExpression(ThisExpression* node) {
HandleSpecialLoad(&result_->this_variable, Symbols::This());
}
void ScopeBuilder::VisitTypeParameterType(TypeParameterType* node) {
Function& function = Function::Handle(Z, parsed_function_->function().raw());
while (function.IsClosureFunction()) {
function = function.parent_function();
}
if (function.IsFactory()) {
// The type argument vector is passed as the very first argument to the
// factory constructor function.
HandleSpecialLoad(&result_->type_arguments_variable,
Symbols::TypeArgumentsParameter());
} else {
// The type argument vector is stored on the instance object. We therefore
// need to capture `this`.
HandleSpecialLoad(&result_->this_variable, Symbols::This());
}
}
void ScopeBuilder::VisitVariableGet(VariableGet* node) {
LookupVariable(node->variable());
}
void ScopeBuilder::VisitVariableSet(VariableSet* node) {
LookupVariable(node->variable());
node->VisitChildren(this);
}
void ScopeBuilder::HandleLocalFunction(TreeNode* parent,
FunctionNode* function) {
LocalScope* saved_function_scope = current_function_scope_;
FunctionNode* saved_function_node = current_function_node_;
ScopeBuilder::DepthState saved_depth_state = depth_;
depth_ = DepthState(depth_.function_ + 1);
EnterScope(parent, function->position());
current_function_scope_ = scope_;
current_function_node_ = function;
if (depth_.function_ == 1) {
FunctionScope function_scope = {function->kernel_offset(), scope_};
result_->function_scopes.Add(function_scope);
}
AddParameters(function);
VisitFunctionNode(function);
ExitScope(function->end_position());
depth_ = saved_depth_state;
current_function_scope_ = saved_function_scope;
current_function_node_ = saved_function_node;
}
void ScopeBuilder::HandleSpecialLoad(LocalVariable** variable,
const dart::String& symbol) {
if (current_function_scope_->parent() != NULL) {
// We are building the scope tree of a closure function and saw [node]. We
// lazily populate the variable using the parent function scope.
if (*variable == NULL) {
*variable =
current_function_scope_->parent()->LookupVariable(symbol, true);
ASSERT(*variable != NULL);
}
}
if ((current_function_scope_->parent() != NULL) ||
(scope_->function_level() > 0)) {
// Every scope we use the [variable] from needs to be notified of the usage
// in order to ensure that preserving the context scope on that particular
// use-site also includes the [variable].
scope_->CaptureVariable(*variable);
}
}
void ScopeBuilder::VisitFunctionExpression(FunctionExpression* node) {
HandleLocalFunction(node, node->function());
}
void ScopeBuilder::VisitLet(Let* node) {
EnterScope(node, node->position());
node->VisitChildren(this);
ExitScope(node->end_position());
}
void ScopeBuilder::VisitBlock(Block* node) {
EnterScope(node, node->position());
node->VisitChildren(this);
ExitScope(node->end_position());
}
void ScopeBuilder::VisitVariableDeclaration(VariableDeclaration* node) {
AddVariable(node);
node->VisitChildren(this);
}
void ScopeBuilder::VisitFunctionDeclaration(FunctionDeclaration* node) {
VisitVariableDeclaration(node->variable());
HandleLocalFunction(node, node->function());
}
void ScopeBuilder::VisitWhileStatement(WhileStatement* node) {
++depth_.loop_;
node->VisitChildren(this);
--depth_.loop_;
}
void ScopeBuilder::VisitDoStatement(DoStatement* node) {
++depth_.loop_;
node->VisitChildren(this);
--depth_.loop_;
}
void ScopeBuilder::VisitForStatement(ForStatement* node) {
EnterScope(node, node->position());
List<VariableDeclaration>& variables = node->variables();
for (intptr_t i = 0; i < variables.length(); ++i) {
VisitVariableDeclaration(variables[i]);
}
++depth_.loop_;
if (node->condition() != NULL) {
node->condition()->AcceptExpressionVisitor(this);
}
node->body()->AcceptStatementVisitor(this);
List<Expression>& updates = node->updates();
for (intptr_t i = 0; i < updates.length(); ++i) {
updates[i]->AcceptExpressionVisitor(this);
}
--depth_.loop_;
ExitScope(node->end_position());
}
void ScopeBuilder::VisitForInStatement(ForInStatement* node) {
node->iterable()->AcceptExpressionVisitor(this);
++depth_.for_in_;
AddIteratorVariable();
++depth_.loop_;
EnterScope(node, node->position());
VisitVariableDeclaration(node->variable());
node->body()->AcceptStatementVisitor(this);
ExitScope(node->end_position());
--depth_.loop_;
--depth_.for_in_;
}
void ScopeBuilder::AddSwitchVariable() {
if ((depth_.function_ == 0) && (result_->switch_variable == NULL)) {
LocalVariable* variable =
MakeVariable(TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::SwitchExpr(), AbstractType::dynamic_type());
variable->set_is_forced_stack();
current_function_scope_->AddVariable(variable);
result_->switch_variable = variable;
}
}
void ScopeBuilder::VisitSwitchStatement(SwitchStatement* node) {
AddSwitchVariable();
node->VisitChildren(this);
}
void ScopeBuilder::VisitReturnStatement(ReturnStatement* node) {
if ((depth_.function_ == 0) && (depth_.finally_ > 0) &&
(result_->finally_return_variable == NULL)) {
const dart::String& name = H.DartSymbol(":try_finally_return_value");
LocalVariable* variable =
MakeVariable(TokenPosition::kNoSource, TokenPosition::kNoSource, name,
AbstractType::dynamic_type());
current_function_scope_->AddVariable(variable);
result_->finally_return_variable = variable;
}
node->VisitChildren(this);
}
void ScopeBuilder::VisitTryCatch(TryCatch* node) {
++depth_.try_;
AddTryVariables();
node->body()->AcceptStatementVisitor(this);
--depth_.try_;
++depth_.catch_;
AddCatchVariables();
List<Catch>& catches = node->catches();
for (intptr_t i = 0; i < catches.length(); ++i) {
Catch* ketch = catches[i];
EnterScope(ketch, ketch->position());
if (ketch->exception() != NULL) {
VisitVariableDeclaration(ketch->exception());
}
if (ketch->stack_trace() != NULL) {
VisitVariableDeclaration(ketch->stack_trace());
}
ketch->body()->AcceptStatementVisitor(this);
ExitScope(ketch->end_position());
}
--depth_.catch_;
}
void ScopeBuilder::VisitTryFinally(TryFinally* node) {
++depth_.try_;
++depth_.finally_;
AddTryVariables();
node->body()->AcceptStatementVisitor(this);
--depth_.finally_;
--depth_.try_;
++depth_.catch_;
AddCatchVariables();
node->finalizer()->AcceptStatementVisitor(this);
--depth_.catch_;
}
void ScopeBuilder::VisitFunctionNode(FunctionNode* node) {
List<TypeParameter>& type_parameters = node->type_parameters();
for (intptr_t i = 0; i < type_parameters.length(); ++i) {
VisitTypeParameter(type_parameters[i]);
}
if (FLAG_causal_async_stacks &&
(node->dart_async_marker() == FunctionNode::kAsync ||
node->dart_async_marker() == FunctionNode::kAsyncStar)) {
LocalVariable* asyncStackTraceVar = MakeVariable(
TokenPosition::kNoSource, TokenPosition::kNoSource,
Symbols::AsyncStackTraceVar(), AbstractType::dynamic_type());
scope_->AddVariable(asyncStackTraceVar);
}
if (node->async_marker() == FunctionNode::kSyncYielding) {
LocalScope* scope = parsed_function_->node_sequence()->scope();
intptr_t offset = parsed_function_->function().num_fixed_parameters();
for (intptr_t i = 0;
i < parsed_function_->function().NumOptionalPositionalParameters();
i++) {
scope->VariableAt(offset + i)->set_is_forced_stack();
}
}
// Do not visit the positional and named parameters, because they've
// already been added to the scope.
if (node->body() != NULL) {
node->body()->AcceptStatementVisitor(this);
}
// Ensure that :await_jump_var, :await_ctx_var, :async_op and
// :async_stack_trace are captured.
if (node->async_marker() == FunctionNode::kSyncYielding) {
{
LocalVariable* temp = NULL;
LookupCapturedVariableByName(
(depth_.function_ == 0) ? &result_->yield_jump_variable : &temp,
Symbols::AwaitJumpVar());
}
{
LocalVariable* temp = NULL;
LookupCapturedVariableByName(
(depth_.function_ == 0) ? &result_->yield_context_variable : &temp,
Symbols::AwaitContextVar());
}
{
LocalVariable* temp =
scope_->LookupVariable(Symbols::AsyncOperation(), true);
if (temp != NULL) {
scope_->CaptureVariable(temp);
}
}
if (FLAG_causal_async_stacks) {
LocalVariable* temp =
scope_->LookupVariable(Symbols::AsyncStackTraceVar(), true);
if (temp != NULL) {
scope_->CaptureVariable(temp);
}
}
}
}
void ScopeBuilder::VisitYieldStatement(YieldStatement* node) {
ASSERT(node->is_native());
if (depth_.function_ == 0) {
AddSwitchVariable();
// Promote all currently visible local variables into the context.
// TODO(27590) CaptureLocalVariables promotes to many variables into
// the scope. Mark those variables as stack_local.
// TODO(27590) we don't need to promote those variables that are
// not used across yields.
scope_->CaptureLocalVariables(current_function_scope_);
}
}
void ScopeBuilder::VisitAssertStatement(AssertStatement* node) {
if (I->asserts()) {
RecursiveVisitor::VisitAssertStatement(node);
}
}
void ScopeBuilder::VisitConstructor(Constructor* node) {
// Field initializers that come from non-static field declarations are
// compiled as if they appear in the constructor initializer list. This is
// important for closure-valued field initializers because the VM expects the
// corresponding closure functions to appear as if they were nested inside the
// constructor.
List<Field>& fields = Class::Cast(node->parent())->fields();
for (intptr_t i = 0; i < fields.length(); ++i) {
Field* field = fields[i];
Expression* initializer = field->initializer();
if (!field->IsStatic() && (initializer != NULL)) {
initializer->AcceptExpressionVisitor(this);
}
}
node->VisitChildren(this);
}
class BreakableBlock {
public:
BreakableBlock(FlowGraphBuilder* builder, LabeledStatement* statement)
: builder_(builder),
labeled_statement_(statement),
outer_(builder->breakable_block_),
destination_(NULL),
outer_finally_(builder->try_finally_block_),
context_depth_(builder->context_depth_),
try_index_(builder->CurrentTryIndex()) {
builder_->breakable_block_ = this;
}
~BreakableBlock() { builder_->breakable_block_ = outer_; }
bool HadJumper() { return destination_ != NULL; }
JoinEntryInstr* destination() { return destination_; }
JoinEntryInstr* BreakDestination(LabeledStatement* label,
TryFinallyBlock** outer_finally,
intptr_t* context_depth) {
BreakableBlock* block = builder_->breakable_block_;
while (block->labeled_statement_ != label) {
block = block->outer_;
}
ASSERT(block != NULL);
*outer_finally = block->outer_finally_;
*context_depth = block->context_depth_;
return block->EnsureDestination();
}
private:
JoinEntryInstr* EnsureDestination() {
if (destination_ == NULL) {
destination_ = builder_->BuildJoinEntry(try_index_);
}
return destination_;
}
FlowGraphBuilder* builder_;
LabeledStatement* labeled_statement_;
BreakableBlock* outer_;
JoinEntryInstr* destination_;
TryFinallyBlock* outer_finally_;
intptr_t context_depth_;
intptr_t try_index_;
};
class SwitchBlock {
public:
SwitchBlock(FlowGraphBuilder* builder, SwitchStatement* switch_stmt)
: builder_(builder),
outer_(builder->switch_block_),
outer_finally_(builder->try_finally_block_),
switch_statement_(switch_stmt),
context_depth_(builder->context_depth_),
try_index_(builder->CurrentTryIndex()) {
builder_->switch_block_ = this;
}
~SwitchBlock() { builder_->switch_block_ = outer_; }
bool HadJumper(SwitchCase* switch_case) {
return destinations_.Lookup(switch_case) != NULL;
}
JoinEntryInstr* Destination(SwitchCase* label,
TryFinallyBlock** outer_finally = NULL,
intptr_t* context_depth = NULL) {
// Find corresponding [SwitchStatement].
SwitchBlock* block = this;
while (true) {
block->EnsureSwitchCaseMapping();
if (block->Contains(label)) break;
block = block->outer_;
}
// Set the outer finally block.
if (outer_finally != NULL) {
*outer_finally = block->outer_finally_;
*context_depth = block->context_depth_;
}
// Ensure there's [JoinEntryInstr] for that [SwitchCase].
return block->EnsureDestination(label);
}
private:
typedef std::set<SwitchCase*> DestinationSwitches;
JoinEntryInstr* EnsureDestination(SwitchCase* switch_case) {
JoinEntryInstr* cached_inst = destinations_.Lookup(switch_case);
if (cached_inst == NULL) {
JoinEntryInstr* inst = builder_->BuildJoinEntry(try_index_);
destinations_.Insert(switch_case, inst);
return inst;
}
return cached_inst;
}
void EnsureSwitchCaseMapping() {
if (destination_switches_.begin() == destination_switches_.end()) {
List<SwitchCase>& cases = switch_statement_->cases();
for (intptr_t i = 0; i < cases.length(); i++) {
destination_switches_.insert(cases[i]);
}
}
}
bool Contains(SwitchCase* sc) {
return destination_switches_.find(sc) != destination_switches_.end();
}
FlowGraphBuilder* builder_;
SwitchBlock* outer_;
Map<SwitchCase, JoinEntryInstr*> destinations_;
DestinationSwitches destination_switches_;
TryFinallyBlock* outer_finally_;
SwitchStatement* switch_statement_;
intptr_t context_depth_;
intptr_t try_index_;
};
class TryFinallyBlock {
public:
TryFinallyBlock(FlowGraphBuilder* builder, Statement* finalizer)
: builder_(builder),
outer_(builder->try_finally_block_),
finalizer_(finalizer),
context_depth_(builder->context_depth_),
// Finalizers are executed outside of the try block hence
// try depth of finalizers are one less than current try
// depth.
try_depth_(builder->try_depth_ - 1),
try_index_(builder_->CurrentTryIndex()) {
builder_->try_finally_block_ = this;
}
~TryFinallyBlock() { builder_->try_finally_block_ = outer_; }
Statement* finalizer() const { return finalizer_; }
intptr_t context_depth() const { return context_depth_; }
intptr_t try_depth() const { return try_depth_; }
intptr_t try_index() const { return try_index_; }
TryFinallyBlock* outer() const { return outer_; }
private:
FlowGraphBuilder* const builder_;
TryFinallyBlock* const outer_;
Statement* const finalizer_;
const intptr_t context_depth_;
const intptr_t try_depth_;
const intptr_t try_index_;
};
class TryCatchBlock {
public:
explicit TryCatchBlock(FlowGraphBuilder* builder,
intptr_t try_handler_index = -1)
: builder_(builder),
outer_(builder->try_catch_block_),
try_index_(try_handler_index) {
if (try_index_ == -1) try_index_ = builder->AllocateTryIndex();
builder->try_catch_block_ = this;
}
~TryCatchBlock() { builder_->try_catch_block_ = outer_; }
intptr_t try_index() { return try_index_; }
TryCatchBlock* outer() const { return outer_; }
private:
FlowGraphBuilder* builder_;
TryCatchBlock* outer_;
intptr_t try_index_;
};
class CatchBlock {
public:
CatchBlock(FlowGraphBuilder* builder,
LocalVariable* exception_var,
LocalVariable* stack_trace_var,
intptr_t catch_try_index)
: builder_(builder),
outer_(builder->catch_block_),
exception_var_(exception_var),
stack_trace_var_(stack_trace_var),
catch_try_index_(catch_try_index) {
builder_->catch_block_ = this;
}
~CatchBlock() { builder_->catch_block_ = outer_; }
LocalVariable* exception_var() { return exception_var_; }
LocalVariable* stack_trace_var() { return stack_trace_var_; }
intptr_t catch_try_index() { return catch_try_index_; }
private:
FlowGraphBuilder* builder_;
CatchBlock* outer_;
LocalVariable* exception_var_;
LocalVariable* stack_trace_var_;
intptr_t catch_try_index_;
};
Fragment& Fragment::operator+=(const Fragment& other) {
if (entry == NULL) {
entry = other.entry;
current = other.current;
} else if (current != NULL && other.entry != NULL) {
current->LinkTo(other.entry);
current = other.current;
}
return *this;
}
Fragment& Fragment::operator<<=(Instruction* next) {
if (entry == NULL) {
entry = current = next;
} else if (current != NULL) {
current->LinkTo(next);
current = next;
}
return *this;
}
Fragment Fragment::closed() {
ASSERT(entry != NULL);
return Fragment(entry, NULL);
}
Fragment operator+(const Fragment& first, const Fragment& second) {
Fragment result = first;
result += second;
return result;
}
Fragment operator<<(const Fragment& fragment, Instruction* next) {
Fragment result = fragment;
result <<= next;
return result;
}
RawInstance* TranslationHelper::Canonicalize(const Instance& instance) {
if (instance.IsNull()) return instance.raw();
const char* error_str = NULL;
RawInstance* result = instance.CheckAndCanonicalize(thread(), &error_str);
if (result == Object::null()) {
ReportError("Invalid const object %s", error_str);
}
return result;
}
const dart::String& TranslationHelper::DartString(const char* content,
Heap::Space space) {
return dart::String::ZoneHandle(Z, dart::String::New(content, space));
}
dart::String& TranslationHelper::DartString(String* content,
Heap::Space space) {
return dart::String::ZoneHandle(
Z, dart::String::FromUTF8(content->buffer(), content->size(), space));
}
const dart::String& TranslationHelper::DartSymbol(const char* content) const {
return dart::String::ZoneHandle(Z, Symbols::New(thread_, content));
}
dart::String& TranslationHelper::DartSymbol(String* content) const {
return dart::String::ZoneHandle(
Z, dart::Symbols::FromUTF8(thread_, content->buffer(), content->size()));
}
const dart::String& TranslationHelper::DartClassName(
CanonicalName* kernel_class) {
ASSERT(kernel_class->IsClass());
dart::String& name = DartString(kernel_class->name());
return ManglePrivateName(kernel_class->parent(), &name);
}
const dart::String& TranslationHelper::DartConstructorName(
CanonicalName* constructor) {
ASSERT(constructor->IsConstructor());
return DartFactoryName(constructor);
}
const dart::String& TranslationHelper::DartProcedureName(
CanonicalName* procedure) {
ASSERT(procedure->IsProcedure());
if (procedure->IsSetter()) {
return DartSetterName(procedure);
} else if (procedure->IsGetter()) {
return DartGetterName(procedure);
} else if (procedure->IsFactory()) {
return DartFactoryName(procedure);
} else {
return DartMethodName(procedure);
}
}
const dart::String& TranslationHelper::DartSetterName(CanonicalName* setter) {
return DartSetterName(setter->parent(), setter->name());
}
const dart::String& TranslationHelper::DartSetterName(Name* setter_name) {
return DartSetterName(setter_name->library(), setter_name->string());
}
const dart::String& TranslationHelper::DartSetterName(CanonicalName* parent,
String* setter) {
// The names flowing into [setter] are coming from the Kernel file:
// * user-defined setters: `fieldname=`
// * property-set expressions: `fieldname`
//
// The VM uses `get:fieldname` and `set:fieldname`.
//
// => In order to be consistent, we remove the `=` always and adopt the VM
// conventions.
ASSERT(setter->size() > 0);
intptr_t skip = 0;
if (setter->buffer()[setter->size() - 1] == '=') {
skip = 1;
}
dart::String& name = dart::String::ZoneHandle(
Z, dart::String::FromUTF8(setter->buffer(), setter->size() - skip,
allocation_space_));
ManglePrivateName(parent, &name, false);
name = dart::Field::SetterSymbol(name);
return name;
}
const dart::String& TranslationHelper::DartGetterName(CanonicalName* getter) {
return DartGetterName(getter->parent(), getter->name());
}
const dart::String& TranslationHelper::DartGetterName(Name* getter_name) {
return DartGetterName(getter_name->library(), getter_name->string());
}
const dart::String& TranslationHelper::DartGetterName(CanonicalName* parent,
String* getter) {
dart::String& name = DartString(getter);
ManglePrivateName(parent, &name, false);
name = dart::Field::GetterSymbol(name);
return name;
}
const dart::String& TranslationHelper::DartFieldName(Name* kernel_name) {
dart::String& name = DartString(kernel_name->string());
return ManglePrivateName(kernel_name->library(), &name);
}
const dart::String& TranslationHelper::DartInitializerName(Name* kernel_name) {
// The [DartFieldName] will take care of mangling the name.
dart::String& name =
dart::String::Handle(Z, DartFieldName(kernel_name).raw());
name = Symbols::FromConcat(thread_, Symbols::InitPrefix(), name);
return name;
}
const dart::String& TranslationHelper::DartMethodName(CanonicalName* method) {
return DartMethodName(method->parent(), method->name());
}
const dart::String& TranslationHelper::DartMethodName(Name* method_name) {
return DartMethodName(method_name->library(), method_name->string());
}
const dart::String& TranslationHelper::DartMethodName(CanonicalName* parent,
String* method) {
dart::String& name = DartString(method);
return ManglePrivateName(parent, &name);
}
const dart::String& TranslationHelper::DartFactoryName(CanonicalName* factory) {
ASSERT(factory->IsConstructor() || factory->IsFactory());
GrowableHandlePtrArray<const dart::String> pieces(Z, 3);
pieces.Add(DartClassName(factory->EnclosingName()));
pieces.Add(Symbols::Dot());
// [DartMethodName] will mangle the name.
pieces.Add(DartMethodName(factory));
return dart::String::ZoneHandle(
Z, dart::Symbols::FromConcatAll(thread_, pieces));
}
dart::RawLibrary* TranslationHelper::LookupLibraryByKernelLibrary(
CanonicalName* kernel_library) {
// We only use the name and don't rely on having any particular parent. This
// ASSERT is just a sanity check.
ASSERT(kernel_library->IsLibrary() ||
kernel_library->parent()->IsAdministrative());
const dart::String& library_name = DartSymbol(kernel_library->name());
ASSERT(!library_name.IsNull());
dart::RawLibrary* library =
dart::Library::LookupLibrary(thread_, library_name);
ASSERT(library != Object::null());
return library;
}
dart::RawClass* TranslationHelper::LookupClassByKernelClass(
CanonicalName* kernel_class) {
ASSERT(kernel_class->IsClass());
dart::RawClass* klass = NULL;
const dart::String& class_name = DartClassName(kernel_class);
CanonicalName* kernel_library = kernel_class->parent();
dart::Library& library =
dart::Library::Handle(Z, LookupLibraryByKernelLibrary(kernel_library));
klass = library.LookupClassAllowPrivate(class_name);
ASSERT(klass != Object::null());
return klass;
}
dart::RawField* TranslationHelper::LookupFieldByKernelField(
CanonicalName* kernel_field) {
ASSERT(kernel_field->IsField());
CanonicalName* enclosing = kernel_field->EnclosingName();
dart::Class& klass = dart::Class::Handle(Z);
if (enclosing->IsLibrary()) {
dart::Library& library =
dart::Library::Handle(Z, LookupLibraryByKernelLibrary(enclosing));
klass = library.toplevel_class();
} else {
ASSERT(enclosing->IsClass());
klass = LookupClassByKernelClass(enclosing);
}
dart::RawField* field =
klass.LookupFieldAllowPrivate(DartSymbol(kernel_field->name()));
ASSERT(field != Object::null());
return field;
}
dart::RawFunction* TranslationHelper::LookupStaticMethodByKernelProcedure(
CanonicalName* procedure) {
const dart::String& procedure_name = DartProcedureName(procedure);
// The parent is either a library or a class (in which case the procedure is a
// static method).
CanonicalName* enclosing = procedure->EnclosingName();
if (enclosing->IsLibrary()) {
dart::Library& library =
dart::Library::Handle(Z, LookupLibraryByKernelLibrary(enclosing));
dart::RawFunction* function =
library.LookupFunctionAllowPrivate(procedure_name);
ASSERT(function != Object::null());
return function;
} else {
ASSERT(enclosing->IsClass());
dart::Class& klass =
dart::Class::Handle(Z, LookupClassByKernelClass(enclosing));
dart::RawFunction* raw_function =
klass.LookupFunctionAllowPrivate(procedure_name);
ASSERT(raw_function != Object::null());
// TODO(27590): We can probably get rid of this after no longer using
// core libraries from the source.
dart::Function& function = dart::Function::ZoneHandle(Z, raw_function);
if (function.IsRedirectingFactory()) {
ClassFinalizer::ResolveRedirectingFactory(klass, function);
function = function.RedirectionTarget();
}
return function.raw();
}
}
dart::RawFunction* TranslationHelper::LookupConstructorByKernelConstructor(
CanonicalName* constructor) {
ASSERT(constructor->IsConstructor());
dart::Class& klass = dart::Class::Handle(
Z, LookupClassByKernelClass(constructor->EnclosingName()));
return LookupConstructorByKernelConstructor(klass, constructor);
}
dart::RawFunction* TranslationHelper::LookupConstructorByKernelConstructor(
const dart::Class& owner,
CanonicalName* constructor) {
ASSERT(constructor->IsConstructor());
dart::RawFunction* function =
owner.LookupConstructorAllowPrivate(DartConstructorName(constructor));
ASSERT(function != Object::null());
return function;
}
dart::Type& TranslationHelper::GetCanonicalType(const dart::Class& klass) {
ASSERT(!klass.IsNull());
// Note that if cls is _Closure, the returned type will be _Closure,
// and not the signature type.
Type& type = Type::ZoneHandle(Z, klass.CanonicalType());
if (!type.IsNull()) {
return type;
}
type = Type::New(klass, TypeArguments::Handle(Z, klass.type_parameters()),
klass.token_pos());
if (klass.is_type_finalized()) {
type ^= ClassFinalizer::FinalizeType(klass, type);
// Note that the receiver type may now be a malbounded type.
klass.SetCanonicalType(type);
}
return type;
}
void TranslationHelper::ReportError(const char* format, ...) {
const Script& null_script = Script::Handle(Z);
va_list args;
va_start(args, format);
Report::MessageV(Report::kError, null_script, TokenPosition::kNoSource,
Report::AtLocation, format, args);
va_end(args);
UNREACHABLE();
}
void TranslationHelper::ReportError(const Error& prev_error,
const char* format,
...) {
const Script& null_script = Script::Handle(Z);
va_list args;
va_start(args, format);
Report::LongJumpV(prev_error, null_script, TokenPosition::kNoSource, format,
args);
va_end(args);
UNREACHABLE();
}
dart::String& TranslationHelper::ManglePrivateName(CanonicalName* parent,
dart::String* name_to_modify,
bool symbolize) {
if (name_to_modify->Length() >= 1 && name_to_modify->CharAt(0) == '_') {
const dart::Library& library =
dart::Library::Handle(Z, LookupLibraryByKernelLibrary(parent));
*name_to_modify = library.PrivateName(*name_to_modify);
} else if (symbolize) {
*name_to_modify = Symbols::New(thread_, *name_to_modify);
}
return *name_to_modify;
}
const Array& TranslationHelper::ArgumentNames(List<NamedExpression>* named) {
if (named->length() == 0) return Array::ZoneHandle(Z);
const Array& names =
Array::ZoneHandle(Z, Array::New(named->length(), Heap::kOld));
for (intptr_t i = 0; i < named->length(); ++i) {
names.SetAt(i, DartSymbol((*named)[i]->name()));
}
return names;
}
ConstantEvaluator::ConstantEvaluator(FlowGraphBuilder* builder,
Zone* zone,
TranslationHelper* h,
DartTypeTranslator* type_translator)
: builder_(builder),
isolate_(Isolate::Current()),
zone_(zone),
translation_helper_(*h),
type_translator_(*type_translator),
script_(Script::Handle(
zone,
builder == NULL ? Script::null()
: builder_->parsed_function_->function().script())),
result_(Instance::Handle(zone)) {}
Instance& ConstantEvaluator::EvaluateExpression(Expression* expression) {
if (!GetCachedConstant(expression, &result_)) {
expression->AcceptExpressionVisitor(this);
CacheConstantValue(expression, result_);
}
// We return a new `ZoneHandle` here on purpose: The intermediate language
// instructions do not make a copy of the handle, so we do it.
return dart::Instance::ZoneHandle(Z, result_.raw());
}
Object& ConstantEvaluator::EvaluateExpressionSafe(Expression* expression) {
LongJumpScope jump;
if (setjmp(*jump.Set()) == 0) {
return EvaluateExpression(expression);
} else {
Thread* thread = H.thread();
Error& error = Error::Handle(Z);
error = thread->sticky_error();
thread->clear_sticky_error();
return error;
}
}
Instance& ConstantEvaluator::EvaluateConstructorInvocation(
ConstructorInvocation* node) {
if (!GetCachedConstant(node, &result_)) {
VisitConstructorInvocation(node);
CacheConstantValue(node, result_);
}
// We return a new `ZoneHandle` here on purpose: The intermediate language
// instructions do not make a copy of the handle, so we do it.
return dart::Instance::ZoneHandle(Z, result_.raw());
}
Instance& ConstantEvaluator::EvaluateListLiteral(ListLiteral* node) {
if (!GetCachedConstant(node, &result_)) {
VisitListLiteral(node);
CacheConstantValue(node, result_);
}
// We return a new `ZoneHandle` here on purpose: The intermediate language
// instructions do not make a copy of the handle, so we do it.
return dart::Instance::ZoneHandle(Z, result_.raw());
}
Instance& ConstantEvaluator::EvaluateMapLiteral(MapLiteral* node) {
if (!GetCachedConstant(node, &result_)) {
VisitMapLiteral(node);
CacheConstantValue(node, result_);
}
// We return a new `ZoneHandle` here on purpose: The intermediate language
// instructions do not make a copy of the handle, so we do it.
return dart::Instance::ZoneHandle(Z, result_.raw());
}
void ConstantEvaluator::VisitBigintLiteral(BigintLiteral* node) {
const dart::String& value = H.DartString(node->value());
result_ = Integer::New(value, Heap::kOld);
result_ = H.Canonicalize(result_);
}
void ConstantEvaluator::VisitBoolLiteral(BoolLiteral* node) {
result_ = dart::Bool::Get(node->value()).raw();
}
void ConstantEvaluator::VisitDoubleLiteral(DoubleLiteral* node) {
result_ = dart::Double::New(H.DartString(node->value()), Heap::kOld);
result_ = H.Canonicalize(result_);
}
void ConstantEvaluator::VisitIntLiteral(IntLiteral* node) {
result_ = dart::Integer::New(node->value(), Heap::kOld);
result_ = H.Canonicalize(result_);
}
void ConstantEvaluator::VisitNullLiteral(NullLiteral* node) {
result_ = dart::Instance::null();
}
void ConstantEvaluator::VisitStringLiteral(StringLiteral* node) {
result_ = H.DartSymbol(node->value()).raw();
}
void ConstantEvaluator::VisitTypeLiteral(TypeLiteral* node) {
const AbstractType& type = T.TranslateType(node->type());
if (type.IsMalformed()) {
H.ReportError("Malformed type literal in constant expression.");
}
result_ = type.raw();
}
RawObject* ConstantEvaluator::EvaluateConstConstructorCall(
const dart::Class& type_class,
const TypeArguments& type_arguments,
const Function& constructor,
const Object& argument) {
// Factories have one extra argument: the type arguments.
// Constructors have 1 extra arguments: receiver.
const int kNumArgs = 1;
const int kNumExtraArgs = 1;
const int num_arguments = kNumArgs + kNumExtraArgs;
const Array& arg_values =
Array::Handle(Z, Array::New(num_arguments, Heap::kOld));
Instance& instance = Instance::Handle(Z);
if (!constructor.IsFactory()) {
instance = Instance::New(type_class, Heap::kOld);
if (!type_arguments.IsNull()) {
ASSERT(type_arguments.IsInstantiated());
instance.SetTypeArguments(
TypeArguments::Handle(Z, type_arguments.Canonicalize()));
}
arg_values.SetAt(0, instance);
} else {
// Prepend type_arguments to list of arguments to factory.
ASSERT(type_arguments.IsZoneHandle());
arg_values.SetAt(0, type_arguments);
}
arg_values.SetAt((0 + kNumExtraArgs), argument);
const Array& args_descriptor = Array::Handle(
Z, ArgumentsDescriptor::New(num_arguments, Object::empty_array()));
const Object& result = Object::Handle(
Z, DartEntry::InvokeFunction(constructor, arg_values, args_descriptor));
ASSERT(!result.IsError());
if (constructor.IsFactory()) {
// The factory method returns the allocated object.
instance ^= result.raw();
}
return H.Canonicalize(instance);
}
bool ConstantEvaluator::GetCachedConstant(TreeNode* node, Instance* value) {
if (builder_ == NULL) return false;
const Function& function = builder_->parsed_function_->function();
if (function.kind() == RawFunction::kImplicitStaticFinalGetter) {
// Don't cache constants in initializer expressions. They get
// evaluated only once.
return false;
}
bool is_present = false;
ASSERT(!script_.InVMHeap());
if (script_.compile_time_constants() == Array::null()) {
return false;
}
KernelConstantsMap constants(script_.compile_time_constants());
*value ^= constants.GetOrNull(node, &is_present);
// Mutator compiler thread may add constants while background compiler
// is running, and thus change the value of 'compile_time_constants';
// do not assert that 'compile_time_constants' has not changed.
constants.Release();
if (FLAG_compiler_stats && is_present) {
H.thread()->compiler_stats()->num_const_cache_hits++;
}
return is_present;
}
void ConstantEvaluator::CacheConstantValue(TreeNode* node,
const Instance& value) {
ASSERT(Thread::Current()->IsMutatorThread());
if (builder_ == NULL) return;
const Function& function = builder_->parsed_function_->function();
if (function.kind() == RawFunction::kImplicitStaticFinalGetter) {
// Don't cache constants in initializer expressions. They get
// evaluated only once.
return;
}
const intptr_t kInitialConstMapSize = 16;
ASSERT(!script_.InVMHeap());
if (script_.compile_time_constants() == Array::null()) {
const Array& array = Array::Handle(
HashTables::New<KernelConstantsMap>(kInitialConstMapSize, Heap::kNew));
script_.set_compile_time_constants(array);
}
KernelConstantsMap constants(script_.compile_time_constants());
constants.InsertNewOrGetValue(node, value);
script_.set_compile_time_constants(constants.Release());
}
void ConstantEvaluator::VisitSymbolLiteral(SymbolLiteral* node) {
const dart::String& symbol_value = H.DartSymbol(node->value());
const dart::Class& symbol_class =
dart::Class::ZoneHandle(Z, I->object_store()->symbol_class());
ASSERT(!symbol_class.IsNull());
const dart::Function& symbol_constructor = Function::ZoneHandle(
Z, symbol_class.LookupConstructor(Symbols::SymbolCtor()));
ASSERT(!symbol_constructor.IsNull());
result_ ^= EvaluateConstConstructorCall(
symbol_class, TypeArguments::Handle(Z), symbol_constructor, symbol_value);
}
void ConstantEvaluator::VisitListLiteral(ListLiteral* node) {
DartType* types[] = {node->type()};
const TypeArguments& type_arguments = T.TranslateTypeArguments(types, 1);
intptr_t length = node->expressions().length();
const Array& const_list =
Array::ZoneHandle(Z, Array::New(length, Heap::kOld));
const_list.SetTypeArguments(type_arguments);
for (intptr_t i = 0; i < length; i++) {
const Instance& expression = EvaluateExpression(node->expressions()[i]);
const_list.SetAt(i, expression);
}
const_list.MakeImmutable();
result_ = H.Canonicalize(const_list);
}
void ConstantEvaluator::VisitMapLiteral(MapLiteral* node) {
DartType* types[] = {node->key_type(), node->value_type()};
const TypeArguments& type_arguments = T.TranslateTypeArguments(types, 2);
intptr_t length = node->entries().length();
Array& const_kv_array =
Array::ZoneHandle(Z, Array::New(2 * length, Heap::kOld));
for (intptr_t i = 0; i < length; i++) {
const_kv_array.SetAt(2 * i + 0,
EvaluateExpression(node->entries()[i]->key()));
const_kv_array.SetAt(2 * i + 1,
EvaluateExpression(node->entries()[i]->value()));
}
const_kv_array.MakeImmutable();
const_kv_array ^= H.Canonicalize(const_kv_array);
const dart::Class& map_class = dart::Class::Handle(
Z, dart::Library::LookupCoreClass(Symbols::ImmutableMap()));
ASSERT(!map_class.IsNull());
ASSERT(map_class.NumTypeArguments() == 2);
const dart::Field& field = dart::Field::Handle(
Z, map_class.LookupInstanceFieldAllowPrivate(H.DartSymbol("_kvPairs")));
ASSERT(!field.IsNull());
// NOTE: This needs to be kept in sync with `runtime/lib/immutable_map.dart`!
result_ = Instance::New(map_class, Heap::kOld);
ASSERT(!result_.IsNull());
result_.SetTypeArguments(type_arguments);
result_.SetField(field, const_kv_array);
result_ = H.Canonicalize(result_);
}
void ConstantEvaluator::VisitConstructorInvocation(
ConstructorInvocation* node) {
Arguments* kernel_arguments = node->arguments();
const Function& constructor = Function::Handle(
Z, H.LookupConstructorByKernelConstructor(node->target()));
dart::Class& klass = dart::Class::Handle(Z, constructor.Owner());
// Build the type arguments vector (if necessary).
const TypeArguments* type_arguments =
TranslateTypeArguments(constructor, &klass, kernel_arguments);
// Prepare either the instance or the type argument vector for the constructor
// call.
Instance* receiver = NULL;
const TypeArguments* type_arguments_argument = NULL;
if (!constructor.IsFactory()) {
receiver = &Instance::ZoneHandle(Z, Instance::New(klass, Heap::kOld));
if (type_arguments != NULL) {
receiver->SetTypeArguments(*type_arguments);
}
} else {
type_arguments_argument = type_arguments;
}
const Object& result = RunFunction(constructor, kernel_arguments, receiver,
type_arguments_argument);
if (constructor.IsFactory()) {
// Factories return the new object.
result_ ^= result.raw();
result_ = H.Canonicalize(result_);
} else {
ASSERT(!receiver->IsNull());
result_ = H.Canonicalize(*receiver);
}
}
void ConstantEvaluator::VisitMethodInvocation(MethodInvocation* node) {
Arguments* kernel_arguments = node->arguments();
// Dart does not support generic methods yet.
ASSERT(kernel_arguments->types().length() == 0);
const dart::Instance& receiver = EvaluateExpression(node->receiver());
dart::Class& klass = dart::Class::Handle(
Z, isolate_->class_table()->At(receiver.GetClassId()));
ASSERT(!klass.IsNull());
// Search the superclass chain for the selector.
dart::Function& function = dart::Function::Handle(Z);
const dart::String& method_name = H.DartMethodName(node->name());
while (!klass.IsNull()) {
function = klass.LookupDynamicFunctionAllowPrivate(method_name);
if (!function.IsNull()) break;
klass = klass.SuperClass();
}
// The frontend should guarantee that [MethodInvocation]s inside constant
// expressions are always valid.
ASSERT(!function.IsNull());
// Run the method and canonicalize the result.
const Object& result = RunFunction(function, kernel_arguments, &receiver);
result_ ^= result.raw();
result_ = H.Canonicalize(result_);
}
void ConstantEvaluator::VisitStaticGet(StaticGet* node) {
CanonicalName* target = node->target();
if (target->IsField()) {
const dart::Field& field =
dart::Field::Handle(Z, H.LookupFieldByKernelField(target));
if (field.StaticValue() == Object::sentinel().raw() ||
field.StaticValue() == Object::transition_sentinel().raw()) {
field.EvaluateInitializer();
result_ = field.StaticValue();
result_ = H.Canonicalize(result_);
field.SetStaticValue(result_, true);
} else {
result_ = field.StaticValue();
}
} else if (target->IsProcedure()) {
const Function& function =
Function::ZoneHandle(Z, H.LookupStaticMethodByKernelProcedure(target));
if (target->IsMethod()) {
Function& closure_function =
Function::ZoneHandle(Z, function.ImplicitClosureFunction());
closure_function.set_kernel_function(function.kernel_function());
result_ = closure_function.ImplicitStaticClosure();
result_ = H.Canonicalize(result_);
} else if (target->IsGetter()) {
UNIMPLEMENTED();
} else {
UNIMPLEMENTED();
}
}
}
void ConstantEvaluator::VisitVariableGet(VariableGet* node) {
// When we see a [VariableGet] the corresponding [VariableDeclaration] must've
// been executed already. It therefore must have a constant object associated
// with it.
LocalVariable* variable = builder_->LookupVariable(node->variable());
ASSERT(variable->IsConst());
result_ = variable->ConstValue()->raw();
}
void ConstantEvaluator::VisitLet(Let* node) {
VariableDeclaration* variable = node->variable();
LocalVariable* local = builder_->LookupVariable(variable);
local->SetConstValue(EvaluateExpression(variable->initializer()));
node->body()->AcceptExpressionVisitor(this);
}
void ConstantEvaluator::VisitStaticInvocation(StaticInvocation* node) {
const Function& function = Function::ZoneHandle(
Z, H.LookupStaticMethodByKernelProcedure(node->procedure()));
dart::Class& klass = dart::Class::Handle(Z, function.Owner());
// Build the type arguments vector (if necessary).
const TypeArguments* type_arguments =
TranslateTypeArguments(function, &klass, node->arguments());
const Object& result =
RunFunction(function, node->arguments(), NULL, type_arguments);
result_ ^= result.raw();
result_ = H.Canonicalize(result_);
}
void ConstantEvaluator::VisitStringConcatenation(StringConcatenation* node) {
intptr_t length = node->expressions().length();
bool all_string = true;
const Array& strings = Array::Handle(Z, Array::New(length));
for (intptr_t i = 0; i < length; i++) {
EvaluateExpression(node->expressions()[i]);
strings.SetAt(i, result_);
all_string = all_string && result_.IsString();
}
if (all_string) {
result_ = dart::String::ConcatAll(strings, Heap::kOld);
result_ = H.Canonicalize(result_);
} else {
// Get string interpolation function.
const dart::Class& cls = dart::Class::Handle(
Z, dart::Library::LookupCoreClass(Symbols::StringBase()));
ASSERT(!cls.IsNull());
const Function& func = Function::Handle(
Z, cls.LookupStaticFunction(
dart::Library::PrivateCoreLibName(Symbols::Interpolate())));
ASSERT(!func.IsNull());
// Build argument array to pass to the interpolation function.
const Array& interpolate_arg = Array::Handle(Z, Array::New(1, Heap::kOld));
interpolate_arg.SetAt(0, strings);
// Run and canonicalize.
const Object& result =
RunFunction(func, interpolate_arg, Array::null_array());
result_ = H.Canonicalize(dart::String::Cast(result));
}
}
void ConstantEvaluator::VisitConditionalExpression(
ConditionalExpression* node) {
if (EvaluateBooleanExpression(node->condition())) {
EvaluateExpression(node->then());
} else {
EvaluateExpression(node->otherwise());
}
}
void ConstantEvaluator::VisitLogicalExpression(LogicalExpression* node) {
if (node->op() == LogicalExpression::kAnd) {
if (EvaluateBooleanExpression(node->left())) {
EvaluateBooleanExpression(node->right());
}
} else {
ASSERT(node->op() == LogicalExpression::kOr);
if (!EvaluateBooleanExpression(node->left())) {
EvaluateBooleanExpression(node->right());
}
}
}
void ConstantEvaluator::VisitNot(Not* node) {
result_ ^= Bool::Get(!EvaluateBooleanExpression(node->expression())).raw();
}
void ConstantEvaluator::VisitPropertyGet(PropertyGet* node) {
const intptr_t kLengthLen = sizeof("length") - 1;
String* string = node->name()->string();
if ((string->size() == kLengthLen) &&
(memcmp(string->buffer(), "length", kLengthLen) == 0)) {
node->receiver()->AcceptExpressionVisitor(this);
if (result_.IsString()) {
const dart::String& str =
dart::String::Handle(Z, dart::String::RawCast(result_.raw()));
result_ = Integer::New(str.Length());
} else {
H.ReportError(
"Constant expressions can only call "
"'length' on string constants.");
}
} else {
VisitDefaultExpression(node);
}
}
const TypeArguments* ConstantEvaluator::TranslateTypeArguments(
const Function& target,
dart::Class* target_klass,
Arguments* kernel_arguments) {
List<DartType>& kernel_type_arguments = kernel_arguments->types();
const TypeArguments* type_arguments = NULL;
if (kernel_type_arguments.length() > 0) {
type_arguments = &T.TranslateInstantiatedTypeArguments(
*target_klass, kernel_type_arguments.raw_array(),
kernel_type_arguments.length());
if (!(type_arguments->IsNull() || type_arguments->IsInstantiated())) {
H.ReportError("Type must be constant in const constructor.");
}
} else if (target.IsFactory() && type_arguments == NULL) {
// All factories take a type arguments vector as first argument (independent
// of whether the class is generic or not).
type_arguments = &TypeArguments::ZoneHandle(Z, TypeArguments::null());
}
return type_arguments;
}
const Object& ConstantEvaluator::RunFunction(const Function& function,
Arguments* kernel_arguments,
const Instance* receiver,
const TypeArguments* type_args) {
// We do not support generic methods yet.
ASSERT((receiver == NULL) || (type_args == NULL));
intptr_t extra_arguments =
(receiver != NULL ? 1 : 0) + (type_args != NULL ? 1 : 0);
// Build up arguments.
const Array& arguments = Array::ZoneHandle(
Z, Array::New(extra_arguments + kernel_arguments->count()));
const Array& names =
Array::ZoneHandle(Z, Array::New(kernel_arguments->named().length()));
intptr_t pos = 0;
if (receiver != NULL) {
arguments.SetAt(pos++, *receiver);
}
if (type_args != NULL) {
arguments.SetAt(pos++, *type_args);
}
for (intptr_t i = 0; i < kernel_arguments->positional().length(); i++) {
EvaluateExpression(kernel_arguments->positional()[i]);
arguments.SetAt(pos++, result_);
}
for (intptr_t i = 0; i < kernel_arguments->named().length(); i++) {
NamedExpression* named_expression = kernel_arguments->named()[i];
EvaluateExpression(named_expression->expression());
arguments.SetAt(pos++, result_);
names.SetAt(i, H.DartSymbol(named_expression->name()));
}
return RunFunction(function, arguments, names);
}
const Object& ConstantEvaluator::RunFunction(const Function& function,
const Array& arguments,
const Array& names) {
const Array& args_descriptor =
Array::Handle(Z, ArgumentsDescriptor::New(arguments.Length(), names));
const Object& result = Object::Handle(
Z, DartEntry::InvokeFunction(function, arguments, args_descriptor));
if (result.IsError()) {
H.ReportError(Error::Cast(result), "error evaluating constant constructor");
}
return result;
}
FlowGraphBuilder::FlowGraphBuilder(
TreeNode* node,
ParsedFunction* parsed_function,
const ZoneGrowableArray<const ICData*>& ic_data_array,
InlineExitCollector* exit_collector,
intptr_t osr_id,
intptr_t first_block_id)
: translation_helper_(Thread::Current()),
zone_(translation_helper_.zone()),
node_(node),
parsed_function_(parsed_function),
osr_id_(osr_id),
ic_data_array_(ic_data_array),
exit_collector_(exit_collector),
next_block_id_(first_block_id),
next_function_id_(0),
context_depth_(0),
loop_depth_(0),
try_depth_(0),
catch_depth_(0),
for_in_depth_(0),
stack_(NULL),
pending_argument_count_(0),
graph_entry_(NULL),
scopes_(NULL),
breakable_block_(NULL),
switch_block_(NULL),
try_finally_block_(NULL),
try_catch_block_(NULL),
next_used_try_index_(0),
catch_block_(NULL),
type_translator_(&translation_helper_,
&active_class_,
/* finalize= */ true),
constant_evaluator_(this,
zone_,
&translation_helper_,
&type_translator_) {}
FlowGraphBuilder::~FlowGraphBuilder() {}
Fragment FlowGraphBuilder::TranslateFinallyFinalizers(
TryFinallyBlock* outer_finally,
intptr_t target_context_depth) {
TryFinallyBlock* const saved_block = try_finally_block_;
TryCatchBlock* const saved_try_catch_block = try_catch_block_;
const intptr_t saved_depth = context_depth_;
const intptr_t saved_try_depth = try_depth_;
Fragment instructions;
// While translating the body of a finalizer we need to set the try-finally
// block which is active when translating the body.
while (try_finally_block_ != outer_finally) {
// Set correct try depth (in case there are nested try statements).
try_depth_ = try_finally_block_->try_depth();
// Potentially restore the context to what is expected for the finally
// block.
instructions += AdjustContextTo(try_finally_block_->context_depth());
// The to-be-translated finalizer has to have the correct try-index (namely
// the one outside the try-finally block).
bool changed_try_index = false;
intptr_t target_try_index = try_finally_block_->try_index();
while (CurrentTryIndex() != target_try_index) {
try_catch_block_ = try_catch_block_->outer();
changed_try_index = true;
}
if (changed_try_index) {
JoinEntryInstr* entry = BuildJoinEntry();
instructions += Goto(entry);
instructions = Fragment(instructions.entry, entry);
}
Statement* finalizer = try_finally_block_->finalizer();
try_finally_block_ = try_finally_block_->outer();
// This will potentially have exceptional cases as described in
// [VisitTryFinally] and will handle them.
instructions += TranslateStatement(finalizer);
// We only need to make sure that if the finalizer ended normally, we
// continue towards the next outer try-finally.
if (!instructions.is_open()) break;
}
if (instructions.is_open() && target_context_depth != -1) {
// A target context depth of -1 indicates that the code after this
// will not care about the context chain so we can leave it any way we
// want after the last finalizer. That is used when returning.
instructions += AdjustContextTo(target_context_depth);
}
try_finally_block_ = saved_block;
try_catch_block_ = saved_try_catch_block;
context_depth_ = saved_depth;
try_depth_ = saved_try_depth;
return instructions;
}
Fragment FlowGraphBuilder::EnterScope(TreeNode* node, bool* new_context) {
Fragment instructions;
const intptr_t context_size =
scopes_->scopes.Lookup(node->kernel_offset())->num_context_variables();
if (context_size > 0) {
instructions += PushContext(context_size);
instructions += Drop();
if (new_context != NULL) {
*new_context = true;
}
}
return instructions;
}
Fragment FlowGraphBuilder::ExitScope(TreeNode* node) {
Fragment instructions;
const intptr_t context_size =
scopes_->scopes.Lookup(node->kernel_offset())->num_context_variables();
if (context_size > 0) {
instructions += PopContext();
}
return instructions;
}
Fragment FlowGraphBuilder::LoadContextAt(int depth) {
intptr_t delta = context_depth_ - depth;
ASSERT(delta >= 0);
Fragment instructions = LoadLocal(parsed_function_->current_context_var());
while (delta-- > 0) {
instructions += LoadField(Context::parent_offset());
}
return instructions;
}
Fragment FlowGraphBuilder::AdjustContextTo(int depth) {
ASSERT(depth <= context_depth_ && depth >= 0);
Fragment instructions;
if (depth < context_depth_) {
instructions += LoadContextAt(depth);
instructions += StoreLocal(TokenPosition::kNoSource,
parsed_function_->current_context_var());
instructions += Drop();
context_depth_ = depth;
}
return instructions;
}
Fragment FlowGraphBuilder::PushContext(int size) {
ASSERT(size > 0);
Fragment instructions = AllocateContext(size);
LocalVariable* context = MakeTemporary();
instructions += LoadLocal(context);
instructions += LoadLocal(parsed_function_->current_context_var());
instructions +=
StoreInstanceField(TokenPosition::kNoSource, Context::parent_offset());
instructions += StoreLocal(TokenPosition::kNoSource,
parsed_function_->current_context_var());
++context_depth_;
return instructions;
}
Fragment FlowGraphBuilder::PopContext() {
return AdjustContextTo(context_depth_ - 1);
}
Fragment FlowGraphBuilder::LoadInstantiatorTypeArguments() {
// TODO(27590): We could use `active_class_->IsGeneric()`.
Fragment instructions;
if (scopes_->type_arguments_variable != NULL) {
#ifdef DEBUG
Function& function =
Function::Handle(Z, parsed_function_->function().raw());
while (function.IsClosureFunction()) {
function = function.parent_function();
}
ASSERT(function.IsFactory());
#endif
instructions += LoadLocal(scopes_->type_arguments_variable);
} else if (scopes_->this_variable != NULL &&
active_class_.kernel_class != NULL &&
active_class_.kernel_class->type_parameters().length() > 0) {
ASSERT(!parsed_function_->function().IsFactory());
intptr_t type_arguments_field_offset =
active_class_.klass->type_arguments_field_offset();
ASSERT(type_arguments_field_offset != dart::Class::kNoTypeArguments);
instructions += LoadLocal(scopes_->this_variable);
instructions += LoadField(type_arguments_field_offset);
} else {
instructions += NullConstant();
}
return instructions;
}
Fragment FlowGraphBuilder::InstantiateType(const AbstractType& type) {
InstantiateTypeInstr* instr = new (Z)
InstantiateTypeInstr(TokenPosition::kNoSource, type, Pop(),
NULL); // TODO(regis): Pop function type arguments.
Push(instr);
return Fragment(instr);
}
Fragment FlowGraphBuilder::InstantiateTypeArguments(
const TypeArguments& type_arguments) {
InstantiateTypeArgumentsInstr* instr = new (Z) InstantiateTypeArgumentsInstr(
TokenPosition::kNoSource, type_arguments, *active_class_.klass, Pop(),
NULL); // TODO(regis): Pop function type arguments.
Push(instr);
return Fragment(instr);
}
Fragment FlowGraphBuilder::TranslateInstantiatedTypeArguments(
const TypeArguments& type_arguments) {
Fragment instructions;
if (type_arguments.IsNull() || type_arguments.IsInstantiated()) {
// There are no type references to type parameters so we can just take it.
instructions += Constant(type_arguments);
} else {
// The [type_arguments] vector contains a type reference to a type
// parameter we need to resolve it.
const bool use_instantiator =
type_arguments.IsUninstantiatedIdentity() ||
type_arguments.CanShareInstantiatorTypeArguments(*active_class_.klass);
if (use_instantiator) {
// If the instantiator type arguments are just passed on, we don't need to
// resolve the type parameters.
//
// This is for example the case here:
// class Foo<T> {
// newList() => new List<T>();
// }
// We just use the type argument vector from the [Foo] object and pass it
// directly to the `new List<T>()` factory constructor.
instructions += LoadInstantiatorTypeArguments();
} else {
// Otherwise we need to resolve [TypeParameterType]s in the type
// expression based on the current instantiator type argument vector.
instructions += LoadInstantiatorTypeArguments();
instructions += InstantiateTypeArguments(type_arguments);
}
}
return instructions;
}
Fragment FlowGraphBuilder::AllocateContext(int size) {
AllocateContextInstr* allocate =
new (Z) AllocateContextInstr(TokenPosition::kNoSource, size);
Push(allocate);
return Fragment(allocate);
}
Fragment FlowGraphBuilder::AllocateObject(const dart::Class& klass,
intptr_t argument_count) {
ArgumentArray arguments = GetArguments(argument_count);
AllocateObjectInstr* allocate =
new (Z) AllocateObjectInstr(TokenPosition::kNoSource, klass, arguments);
Push(allocate);
return Fragment(allocate);
}
Fragment FlowGraphBuilder::AllocateObject(const dart::Class& klass,
const Function& closure_function) {
ArgumentArray arguments = new (Z) ZoneGrowableArray<PushArgumentInstr*>(Z, 0);
AllocateObjectInstr* allocate =
new (Z) AllocateObjectInstr(TokenPosition::kNoSource, klass, arguments);
allocate->set_closure_function(closure_function);
Push(allocate);
return Fragment(allocate);
}
Fragment FlowGraphBuilder::BooleanNegate() {
BooleanNegateInstr* negate = new (Z) BooleanNegateInstr(Pop());
Push(negate);
return Fragment(negate);
}
Fragment FlowGraphBuilder::StrictCompare(Token::Kind kind,
bool number_check /* = false */) {
Value* right = Pop();
Value* left = Pop();
StrictCompareInstr* compare = new (Z) StrictCompareInstr(
TokenPosition::kNoSource, kind, left, right, number_check);
Push(compare);
return Fragment(compare);
}
Fragment FlowGraphBuilder::BranchIfTrue(TargetEntryInstr** then_entry,
TargetEntryInstr** otherwise_entry,
bool negate) {
Fragment instructions = Constant(Bool::True());
return instructions + BranchIfEqual(then_entry, otherwise_entry, negate);
}
Fragment FlowGraphBuilder::BranchIfNull(TargetEntryInstr** then_entry,
TargetEntryInstr** otherwise_entry,
bool negate) {
Fragment instructions = NullConstant();
return instructions + BranchIfEqual(then_entry, otherwise_entry, negate);
}
Fragment FlowGraphBuilder::BranchIfEqual(TargetEntryInstr** then_entry,
TargetEntryInstr** otherwise_entry,
bool negate) {
Value* right_value = Pop();
Value* left_value = Pop();
StrictCompareInstr* compare = new (Z) StrictCompareInstr(
TokenPosition::kNoSource, negate ? Token::kNE_STRICT : Token::kEQ_STRICT,
left_value, right_value, false);
BranchInstr* branch = new (Z) BranchInstr(compare);
*then_entry = *branch->true_successor_address() = BuildTargetEntry();
*otherwise_entry = *branch->false_successor_address() = BuildTargetEntry();
return Fragment(branch).closed();
}
Fragment FlowGraphBuilder::BranchIfStrictEqual(
TargetEntryInstr** then_entry,
TargetEntryInstr** otherwise_entry) {
Value* rhs = Pop();
Value* lhs = Pop();
StrictCompareInstr* compare = new (Z) StrictCompareInstr(
TokenPosition::kNoSource, Token::kEQ_STRICT, lhs, rhs, false);
BranchInstr* branch = new (Z) BranchInstr(compare);
*then_entry = *branch->true_successor_address() = BuildTargetEntry();
*otherwise_entry = *branch->false_successor_address() = BuildTargetEntry();
return Fragment(branch).closed();
}
Fragment FlowGraphBuilder::CatchBlockEntry(const Array& handler_types,
intptr_t handler_index,
bool needs_stacktrace) {
ASSERT(CurrentException()->is_captured() ==
CurrentStackTrace()->is_captured());
const bool should_restore_closure_context =
CurrentException()->is_captured() || CurrentCatchContext()->is_captured();
CatchBlockEntryInstr* entry = new (Z) CatchBlockEntryInstr(
TokenPosition::kNoSource, // Token position of catch block.
false, // Not an artifact of compilation.
AllocateBlockId(), CurrentTryIndex(), graph_entry_, handler_types,
handler_index, *CurrentException(), *CurrentStackTrace(),
needs_stacktrace, H.thread()->GetNextDeoptId(),
should_restore_closure_context);
graph_entry_->AddCatchEntry(entry);
Fragment instructions(entry);
// :saved_try_context_var can be captured in the context of
// of the closure, in this case CatchBlockEntryInstr restores
// :current_context_var to point to closure context in the
// same way as normal function prologue does.
// Update current context depth to reflect that.
const intptr_t saved_context_depth = context_depth_;
ASSERT(!CurrentCatchContext()->is_captured() ||
CurrentCatchContext()->owner()->context_level() == 0);
context_depth_ = 0;
instructions += LoadLocal(CurrentCatchContext());
instructions += StoreLocal(TokenPosition::kNoSource,
parsed_function_->current_context_var());
instructions += Drop();
context_depth_ = saved_context_depth;
return instructions;
}
Fragment FlowGraphBuilder::TryCatch(int try_handler_index) {
// The body of the try needs to have it's own block in order to get a new try
// index.
//
// => We therefore create a block for the body (fresh try index) and another
// join block (with current try index).
Fragment body;
JoinEntryInstr* entry =
new (Z) JoinEntryInstr(AllocateBlockId(), try_handler_index);
body += LoadLocal(parsed_function_->current_context_var());
body += StoreLocal(TokenPosition::kNoSource, CurrentCatchContext());
body += Drop();
body += Goto(entry);
return Fragment(body.entry, entry);
}
Fragment FlowGraphBuilder::CheckStackOverflowInPrologue() {
if (IsInlining()) {
// If we are inlining don't actually attach the stack check. We must still
// create the stack check in order to allocate a deopt id.
CheckStackOverflow();
return Fragment();
}
return CheckStackOverflow();
}
Fragment FlowGraphBuilder::CheckStackOverflow() {
return Fragment(
new (Z) CheckStackOverflowInstr(TokenPosition::kNoSource, loop_depth_));
}
Fragment FlowGraphBuilder::CloneContext() {
LocalVariable* context_variable = parsed_function_->current_context_var();
Fragment instructions = LoadLocal(context_variable);
CloneContextInstr* clone_instruction =
new (Z) CloneContextInstr(TokenPosition::kNoSource, Pop());
instructions <<= clone_instruction;
Push(clone_instruction);
instructions += StoreLocal(TokenPosition::kNoSource, context_variable);
instructions += Drop();
return instructions;
}
Fragment FlowGraphBuilder::Constant(const Object& value) {
ASSERT(value.IsNotTemporaryScopedHandle());
ConstantInstr* constant = new (Z) ConstantInstr(value);
Push(constant);
return Fragment(constant);
}
Fragment FlowGraphBuilder::CreateArray() {
Value* element_count = Pop();
CreateArrayInstr* array = new (Z) CreateArrayInstr(TokenPosition::kNoSource,
Pop(), // Element type.
element_count);
Push(array);
return Fragment(array);
}
Fragment FlowGraphBuilder::Goto(JoinEntryInstr* destination) {
return Fragment(new (Z) GotoInstr(destination)).closed();
}
Fragment FlowGraphBuilder::IntConstant(int64_t value) {
return Fragment(
Constant(Integer::ZoneHandle(Z, Integer::New(value, Heap::kOld))));
}
Fragment FlowGraphBuilder::InstanceCall(TokenPosition position,
const dart::String& name,
Token::Kind kind,
intptr_t argument_count,
intptr_t num_args_checked) {
return InstanceCall(position, name, kind, argument_count, Array::null_array(),
num_args_checked);
}
Fragment FlowGraphBuilder::InstanceCall(TokenPosition position,
const dart::String& name,
Token::Kind kind,
intptr_t argument_count,
const Array& argument_names,
intptr_t num_args_checked) {
ArgumentArray arguments = GetArguments(argument_count);
InstanceCallInstr* call =
new (Z) InstanceCallInstr(position, name, kind, arguments, argument_names,
num_args_checked, ic_data_array_);
Push(call);
return Fragment(call);
}
Fragment FlowGraphBuilder::ClosureCall(int argument_count,
const Array& argument_names) {
Value* function = Pop();
ArgumentArray arguments = GetArguments(argument_count);
ClosureCallInstr* call = new (Z) ClosureCallInstr(
function, arguments, argument_names, TokenPosition::kNoSource);
Push(call);
return Fragment(call);
}
Fragment FlowGraphBuilder::ThrowException(TokenPosition position) {
Fragment instructions;
instructions += Drop();
instructions += Fragment(new (Z) ThrowInstr(position)).closed();
// Use it's side effect of leaving a constant on the stack (does not change
// the graph).
NullConstant();
pending_argument_count_ -= 1;
return instructions;
}
Fragment FlowGraphBuilder::RethrowException(TokenPosition position,
int catch_try_index) {
Fragment instructions;
instructions += Drop();
instructions += Drop();
instructions +=
Fragment(new (Z) ReThrowInstr(position, catch_try_index)).closed();
// Use it's side effect of leaving a constant on the stack (does not change
// the graph).
NullConstant();
pending_argument_count_ -= 2;
return instructions;
}
Fragment FlowGraphBuilder::LoadClassId() {
LoadClassIdInstr* load = new (Z) LoadClassIdInstr(Pop());
Push(load);
return Fragment(load);
}
const dart::Field& MayCloneField(Zone* zone, const dart::Field& field) {
if ((Compiler::IsBackgroundCompilation() ||
FLAG_force_clone_compiler_objects) &&
field.IsOriginal()) {
return dart::Field::ZoneHandle(zone, field.CloneFromOriginal());
} else {
ASSERT(field.IsZoneHandle());
return field;
}
}
Fragment FlowGraphBuilder::LoadField(const dart::Field& field) {
LoadFieldInstr* load =
new (Z) LoadFieldInstr(Pop(), &MayCloneField(Z, field),
AbstractType::ZoneHandle(Z, field.type()),
TokenPosition::kNoSource, parsed_function_);
Push(load);
return Fragment(load);
}
Fragment FlowGraphBuilder::LoadField(intptr_t offset, intptr_t class_id) {
LoadFieldInstr* load = new (Z) LoadFieldInstr(
Pop(), offset, AbstractType::ZoneHandle(Z), TokenPosition::kNoSource);
load->set_result_cid(class_id);
Push(load);
return Fragment(load);
}
Fragment FlowGraphBuilder::LoadNativeField(MethodRecognizer::Kind kind,
intptr_t offset,
const Type& type,
intptr_t class_id,
bool is_immutable) {
LoadFieldInstr* load =
new (Z) LoadFieldInstr(Pop(), offset, type, TokenPosition::kNoSource);
load->set_recognized_kind(kind);
load->set_result_cid(class_id);
load->set_is_immutable(is_immutable);
Push(load);
return Fragment(load);
}
Fragment FlowGraphBuilder::LoadLocal(LocalVariable* variable) {
Fragment instructions;
if (variable->is_captured()) {
instructions += LoadContextAt(variable->owner()->context_level());
instructions += LoadField(Context::variable_offset(variable->index()));
} else {
LoadLocalInstr* load =
new (Z) LoadLocalInstr(*variable, TokenPosition::kNoSource);
instructions <<= load;
Push(load);
}
return instructions;
}
Fragment FlowGraphBuilder::InitStaticField(const dart::Field& field) {
InitStaticFieldInstr* init =
new (Z) InitStaticFieldInstr(Pop(), MayCloneField(Z, field));
return Fragment(init);
}
Fragment FlowGraphBuilder::LoadStaticField() {
LoadStaticFieldInstr* load =
new (Z) LoadStaticFieldInstr(Pop(), TokenPosition::kNoSource);
Push(load);
return Fragment(load);
}
Fragment FlowGraphBuilder::NullConstant() {
return Constant(Instance::ZoneHandle(Z, Instance::null()));
}
Fragment FlowGraphBuilder::NativeCall(const dart::String* name,
const Function* function) {
InlineBailout("kernel::FlowGraphBuilder::NativeCall");
NativeCallInstr* call = new (Z) NativeCallInstr(
name, function, FLAG_link_natives_lazily, TokenPosition::kNoSource);
Push(call);
return Fragment(call);
}
Fragment FlowGraphBuilder::PushArgument() {
PushArgumentInstr* argument = new (Z) PushArgumentInstr(Pop());
Push(argument);
argument->set_temp_index(argument->temp_index() - 1);
++pending_argument_count_;
return Fragment(argument);
}
Fragment FlowGraphBuilder::Return(TokenPosition position) {
Fragment instructions;
instructions += CheckReturnTypeInCheckedMode();
Value* value = Pop();
ASSERT(stack_ == NULL);
const Function& function = parsed_function_->function();
if (NeedsDebugStepCheck(function, position)) {
instructions += DebugStepCheck(position);
}
if (FLAG_causal_async_stacks &&
(function.IsAsyncClosure() || function.IsAsyncGenClosure())) {
// We are returning from an asynchronous closure. Before we do that, be
// sure to clear the thread's asynchronous stack trace.
const Function& target = Function::ZoneHandle(
Z, I->object_store()->async_clear_thread_stack_trace());
ASSERT(!target.IsNull());
instructions += StaticCall(TokenPosition::kNoSource, target, 0);
instructions += Drop();
}
ReturnInstr* return_instr = new (Z) ReturnInstr(position, value);
if (exit_collector_ != NULL) exit_collector_->AddExit(return_instr);
instructions <<= return_instr;
return instructions.closed();
}
Fragment FlowGraphBuilder::StaticCall(TokenPosition position,
const Function& target,
intptr_t argument_count) {
return StaticCall(position, target, argument_count, Array::null_array());
}
static intptr_t GetResultCidOfListFactory(Zone* zone,
const Function& function,
intptr_t argument_count) {
if (!function.IsFactory()) {
return kDynamicCid;
}
const dart::Class& owner = dart::Class::Handle(zone, function.Owner());
if ((owner.library() != dart::Library::CoreLibrary()) &&
(owner.library() != dart::Library::TypedDataLibrary())) {
return kDynamicCid;
}
if ((owner.Name() == Symbols::List().raw()) &&
(function.name() == Symbols::ListFactory().raw())) {
ASSERT(argument_count == 1 || argument_count == 2);
return (argument_count == 1) ? kGrowableObjectArrayCid : kArrayCid;
}
return FactoryRecognizer::ResultCid(function);
}
Fragment FlowGraphBuilder::StaticCall(TokenPosition position,
const Function& target,
intptr_t argument_count,
const Array& argument_names) {
ArgumentArray arguments = GetArguments(argument_count);
StaticCallInstr* call = new (Z) StaticCallInstr(
position, target, argument_names, arguments, ic_data_array_);
const intptr_t list_cid =
GetResultCidOfListFactory(Z, target, argument_count);
if (list_cid != kDynamicCid) {
call->set_result_cid(list_cid);
call->set_is_known_list_constructor(true);
} else if (target.recognized_kind() != MethodRecognizer::kUnknown) {
call->set_result_cid(MethodRecognizer::ResultCid(target));
}
Push(call);
return Fragment(call);
}
Fragment FlowGraphBuilder::StoreIndexed(intptr_t class_id) {
Value* value = Pop();
Value* index = Pop();
const StoreBarrierType emit_store_barrier =
value->BindsToConstant() ? kNoStoreBarrier : kEmitStoreBarrier;
StoreIndexedInstr* store = new (Z) StoreIndexedInstr(
Pop(), // Array.
index, value, emit_store_barrier, Instance::ElementSizeFor(class_id),
class_id, kAlignedAccess, Thread::kNoDeoptId, TokenPosition::kNoSource);
Push(store);
return Fragment(store);
}
Fragment FlowGraphBuilder::StoreInstanceField(
const dart::Field& field,
bool is_initialization_store,
StoreBarrierType emit_store_barrier) {
Fragment instructions;
const AbstractType& dst_type = AbstractType::ZoneHandle(Z, field.type());
instructions += CheckAssignableInCheckedMode(
dst_type, dart::String::ZoneHandle(Z, field.name()));
Value* value = Pop();
if (value->BindsToConstant()) {
emit_store_barrier = kNoStoreBarrier;
}
StoreInstanceFieldInstr* store = new (Z)
StoreInstanceFieldInstr(MayCloneField(Z, field), Pop(), value,
emit_store_barrier, TokenPosition::kNoSource);
store->set_is_initialization(is_initialization_store);
instructions <<= store;
return instructions;
}
Fragment FlowGraphBuilder::StoreInstanceFieldGuarded(
const dart::Field& field,
bool is_initialization_store) {
Fragment instructions;
const dart::Field& field_clone = MayCloneField(Z, field);
if (I->use_field_guards()) {
LocalVariable* store_expression = MakeTemporary();
instructions += LoadLocal(store_expression);
instructions += GuardFieldClass(field_clone, H.thread()->GetNextDeoptId());
instructions += LoadLocal(store_expression);
instructions += GuardFieldLength(field_clone, H.thread()->GetNextDeoptId());
}
instructions += StoreInstanceField(field_clone, is_initialization_store);
return instructions;
}
Fragment FlowGraphBuilder::StoreInstanceField(
TokenPosition position,
intptr_t offset,
StoreBarrierType emit_store_barrier) {
Value* value = Pop();
if (value->BindsToConstant()) {
emit_store_barrier = kNoStoreBarrier;
}
StoreInstanceFieldInstr* store = new (Z) StoreInstanceFieldInstr(
offset, Pop(), value, emit_store_barrier, position);
return Fragment(store);
}
Fragment FlowGraphBuilder::StoreLocal(TokenPosition position,
LocalVariable* variable) {
Fragment instructions;
if (variable->is_captured()) {
LocalVariable* value = MakeTemporary();
instructions += LoadContextAt(variable->owner()->context_level());
instructions += LoadLocal(value);
instructions += StoreInstanceField(
position, Context::variable_offset(variable->index()));
} else {
Value* value = Pop();
StoreLocalInstr* store =
new (Z) StoreLocalInstr(*variable, value, position);
instructions <<= store;
Push(store);
}
return instructions;
}
Fragment FlowGraphBuilder::StoreStaticField(TokenPosition position,
const dart::Field& field) {
return Fragment(
new (Z) StoreStaticFieldInstr(MayCloneField(Z, field), Pop(), position));
}
Fragment FlowGraphBuilder::StringInterpolate(TokenPosition position) {
Value* array = Pop();
StringInterpolateInstr* interpolate =
new (Z) StringInterpolateInstr(array, position);
Push(interpolate);
return Fragment(interpolate);
}
Fragment FlowGraphBuilder::StringInterpolateSingle(TokenPosition position) {
const int kNumberOfArguments = 1;
const Array& kNoArgumentNames = Object::null_array();
const dart::Class& cls = dart::Class::Handle(
dart::Library::LookupCoreClass(Symbols::StringBase()));
ASSERT(!cls.IsNull());
const Function& function = dart::Function::ZoneHandle(
Z, dart::Resolver::ResolveStatic(cls, dart::Library::PrivateCoreLibName(
Symbols::InterpolateSingle()),
kNumberOfArguments, kNoArgumentNames));
Fragment instructions;
instructions += PushArgument();
instructions += StaticCall(position, function, 1);
return instructions;
}
Fragment FlowGraphBuilder::ThrowTypeError() {
const dart::Class& klass = dart::Class::ZoneHandle(
Z, dart::Library::LookupCoreClass(Symbols::TypeError()));
ASSERT(!klass.IsNull());
const dart::Function& constructor = dart::